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Breakthrough 
Deep	Learning:	machine	
learning	algorithms	based	on	
learning	mulHple	levels	of	
representaHon	/	abstracHon.	
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Amazing	improvements	in	error	rate	in	object	recogni4on,	object	
detec4on,	speech	recogni4on,	and	more	recently,	in	natural	language	
processing	/	understanding	



Machine Learning, 
AI & No Free Lunch 
•  Four	key	ingredients	for	ML	towards	AI	

1.  Lots	&	lots	of	data	

2.  Very	flexible	models	

3.  Enough	compu4ng	power	

4.  Powerful	priors	that	can	defeat	the	curse	of	
dimensionality	
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Bypassing the curse of 
dimensionality 
We	need	to	build	composi4onality	into	our	ML	models		

Just	as	human	languages	exploit	composi4onality	to	give	
representa4ons	and	meanings	to	complex	ideas	

Exploi4ng	composi4onality	gives	an	exponen4al	gain	in	
representa4onal	power	

(1)	Distributed	representa4ons	/	embeddings:	feature	learning	

(2)	Deep	architecture:	mul4ple	levels	of	feature	learning	

Addi4onal	prior:	composi4onality	is	useful	to	
describe	the	world	around	us	efficiently	
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Classical Symbolic AI vs  
Learning Distributed Representations 

•  Two	symbols	are	equally	far	from	each	other	
•  Concepts	are	not	represented	by	symbols	in	our	

brain,	but	by	paWerns	of	ac4va4on		
	(Connec'onism,	1980’s)	
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Exponential advantage of distributed 
representations 

Learning	a	set	of	parametric	features	that	are	not	
mutually	exclusive	can	be	exponen4ally	more	sta4s4cally	
efficient	than	having	nearest-neighbor-like	or	clustering-
like	models	



Under review as a conference paper at ICLR 2015
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Figure 9: (a) Segmentations from pool5 in Places-CNN. Many classes are encoded by several units
covering different object appearances. Each row shows the 3 top most confident images for each
unit. (b) Object frequency in SUN (only top 50 objects shown), (c) Counts of objects discovered by
pool5 in Places-CNN. (d) Frequency of most informative objects for scene classification.

4 EMERGENCE OF OBJECTS AS THE INTERNAL REPRESENTATION

As shown before, a large number of units in pool5 are devoted to detecting objects and scene-
regions (Fig. 8). But what categories are found? Is each category mapped to a single unit or are
there multiple units for each object class? Can we actually use this information to segment a scene?

4.1 WHAT OBJECT CLASSES EMERGE?

Fig. 9(a) shows some units from the Places-CNN grouped by the object class they seem to be detect-
ing. Each row shows the top three images for a particular unit that produce the strongest activations.
The segmentation shows the region of the image for which the unit is above a threshold. Each unit
seems to be selective to a particular appearance of the object. For instance, there are 6 units that
detect lamps, each unit detecting a particular type of lamp providing finer-grained discrimination;
there are 9 units selective to people, each one tuned to different scales or people doing different
tasks. ImageNet has an abundance of animals among the categories present: in the ImageNet-CNN,
out of the 256 units in pool5, there are 23 units devoted to detecting dogs or parts of dogs. The
categories found in pool5 tend to follow the target categories in ImageNet.

To answer the question of why certain objects emerge from pool5, we tested the Places-CNN on
fully annotated images from the SUN database (Xiao et al., 2014). The SUN database contains
8220 fully annotated images from the same 205 place categories used to train Places-CNN. There
are no duplicate images between SUN and Places. We use SUN instead of COCO (Lin et al., 2014)
as we need dense object annotations to study what the most informative object classes for scene
categorization are, and what the natural object frequencies in scene images are. For this study, we
manually mapped the tags given by AMT workers to the SUN categories. Fig. 9(b) shows the sorted
distribution of object counts in the SUN database which follows Zipf’s law.

One possibility is that the objects that emerge in pool5 correspond to the most frequent ones in the
database. Fig. 9(c) shows the counts of units found in pool5 for each object class (same sorting
as in Fig. 9(b)). The correlation between object frequency in the database and object frequency
discovered by the units in pool5 is 0.54. Another possibility is that the objects that emerge are the
objects that allow discriminating among scene categories. To measure the set of discriminant objects
we used the ground truth in the SUN database to measure the classification performance achieved by
each object class for scene classification. Then we count how many times each object class appears
as the most informative one. This measures the number of scene categories a particular object class
is the most useful for. The counts are shown in Fig. 9(d). Note the similarity between Fig. 9(c) and
Fig. 9(d). The correlation is 0.84 indicating that the network is automatically identifying the most
discriminative object categories to a large extent.

7

Hidden Units Discover Semantically 
Meaningful Concepts 

•  Zhou	et	al	&	Torralba,	arXiv1412.6856	submiWed	to	ICLR	2015	
•  Network	trained	to	recognize	places,	not	objects	

7	

Under review as a conference paper at ICLR 2015

Figure 10: Interpretation of a picture by different layers of the Places-CNN using the tags provided
by AMT workers. The first shows the final layer output of Places-CNN. The other three show
detection results along with the confidence based on the units’ activation and the semantic tags.
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Figure 11: (a) Segmentation of images from the SUN database using pool5 of Places-CNN (J =
Jaccard segmentation index, AP = average precision-recall.) (b) Precision-recall curves for some
discovered objects. (c) Histogram of AP for all discovered object classes.

Note that there are 115 units in pool5 of Places-CNN not detecting objects. This could be due to
incomplete learning or a complementary texture-based or part-based representation of the scenes.

4.2 OBJECT LOCALIZATION WITHIN THE INNER LAYERS

Places-CNN is trained to do scene classification using the output of the final layer of logistic re-
gression and achieves the state-of-the-art performance. From our analysis above, many of the units
in the inner layers could perform interpretable object localization. Thus we could use this single
Places-CNN with the annotation of units to do both scene recognition and object localization in a
single forward-pass. Fig. 10 shows an example of the output of different layers of the Places-CNN
using the tags provided by AMT workers. Bounding boxes are shown around the areas where each
unit is activated within its RF above a threshold.

In Fig. 11 we evaluate the segmentation performance of the objects discovered in pool5 using the
SUN database. The performance of many units is very high which provides strong evidence that
they are indeed detecting those object classes despite being trained for scene classification.

5 CONCLUSION

We find that object detectors emerge as a result of learning to classify scene categories, showing
that a single network can support recognition at several levels of abstraction (e.g., edges, textures,
objects, and scenes) without needing multiple outputs or networks. While it is common to train a
network to do several tasks and to use the final layer as the output, here we show that reliable outputs
can be extracted at each layer. As objects are the parts that compose a scene, detectors tuned to the
objects that are discriminant between scenes are learned in the inner layers of the network. Note
that only informative objects for specific scene recognition tasks will emerge. Future work should
explore which other tasks would allow for other object classes to be learned without the explicit
supervision of object labels.
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Each feature can be discovered 
without the need for seeing the 
exponentially large number of 
configurations of the other features 

•  Consider	a	network	whose	hidden	units	discover	the	following	
features:	
•  Person	wears	glasses	
•  Person	is	female	
•  Person	is	a	child	
•  Etc.	

If	each	of	n	feature	requires	O(k)	parameters,	need	O(nk)	examples	
	
Non-parametric	methods	would	require	O(nd)	examples	
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Exponential advantage of distributed 
representations 

9	

•  Bengio	2009	(Learning	Deep	Architectures	for	AI,	F	&	T	in	ML)	
•  Montufar	&	Morton	2014	(When	does	a	mixture	of	products	

contain	a	product	of	mixtures?	SIAM	J.	Discr.	Math)	

•  Longer	discussion	and	rela4ons	to	the	no4on	of	priors:	Deep	
Learning,	to	appear,	MIT	Press.	

•  Prop.	2	of	Pascanu,	Montufar	&	Bengio	ICLR’2014:	number	of	
pieces	dis4nguished	by	1-hidden-layer	rec4fier	net	with	n	units	
and	d	inputs	(i.e.	O(nd)	parameters)	is	
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Exponential advantage of depth 

Theore4cal	arguments:	

…	
1	 2	 3	 2n 

1	 2	 3	
…	

n	

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems on advantage of depth: 
(Hastad et al 86 & 91, Bengio et al 2007, Bengio 
& Delalleau 2011, Martens et al 2013, Pascanu 
et al 2014, Montufar et al NIPS 2014) 

Some functions compactly 
represented with k layers may 
require exponential size with 2 
layers 

RBMs & auto-encoders = universal approximator 



Why does it work? No Free Lunch 

•  It	only	works	because	we	are	making	some	assump4ons	about	
the	data	genera4ng	distribu4on	

•  Worse-case	distribu4ons	s4ll	require	exponen4al	data	

•  But	the	world	has	structure	and	we	can	get	an	exponen4al	gain	
by	exploi4ng	some	of	it	
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•  Expressiveness	of	deep	networks	with	piecewise	linear	ac4va4on	
func4ons:	exponen4al	advantage	for	depth 		(Montufar	et	al,	
NIPS	2014)	

•  Number	of	pieces	dis4nguished	for	a	network	with	depth	L	and	ni	
units	per	layer	is	at	least	

					or,	if	hidden	layers	have	width	n	and	input	has	size	n0	

13	

Exponential advantage of depth 



Y LeCun 

 
 

Backprop 
(modular approach) 



Y LeCun 
Typical Multilayer Neural Net Architecture 

l  Complex learning machines can be 
built by assembling modules into 
networks 

l  Linear Module 
l  Out = W.In+B 

l  ReLU Module (Rectified Linear Unit) 
l  Outi = 0  if Ini<0 
l  Outi = Ini  otherwise 

l  Cost Module: Squared Distance 
l  C = ||In1 - In2||2 

l  Objective Function 

l  L(Θ)=1/p Σk C(Xk,Yk,Θ) 
l  Θ = (W1,B1,W2,B2,W3,B3) Linear 

ReLU 

Linear 

ReLU 

Squared Distance 

Linear 

C(X,Y,Θ) 

X (input) Y (desired output) 

W1, B1 

W2, B2 

W3, B3 



Y LeCun 
Building a Network by Assembling Modules 

l  All major deep learning frameworks use modules (inspired by SN/Lush, 1991) 
l  Torch7, Theano, TensorFlow…. 

 

Linear 

ReLU 

Linear 

LogSoftMax 

NegativeLogLikelihood 

C(X,Y,Θ) 

X 
input 

Y 
Label  

W1,B1 

W2,B2 



Y LeCun 
Computing Gradients by Back-Propagation 

l  A practical Application of Chain Rule 

 

l  Backprop for the state gradients: 

l  dC/dXi-1 = dC/dXi . dXi/dXi-1  

l  dC/dXi-1 = dC/dXi . dFi(Xi-1,Wi)/dXi-1  

 

l  Backprop for the weight gradients: 

l  dC/dWi = dC/dXi . dXi/dWi  

l  dC/dWi = dC/dXi . dFi(Xi-1,Wi)/dWi  

Cost 

Fn(Xn-1,Wn) 

C(X,Y,Θ) 

X (input) Y (desired output) 

Fi(Xi-1,Wi) 

F1(X0,W1) 

Xi-1 

Xi 

dC/dXi-1 

dC/dXi 

dC/dWn 
Wn 

dC/dWi 
Wi 



Y LeCun 
Running Backprop 

l  Torch7 example 

l  Gradtheta contains the gradient 

 

Linear 

ReLU 

Linear 

LogSoftMax 

NegativeLogLikelihood 

C(X,Y,Θ) 

X 
input 

Y 
Label  

W1,B1 

W2,B2 

Θ 



Y LeCun 
Module Classes 

l  Y = W.X   ;   dC/dX = WT . dC/dY  ;  dC/dW = dC/dY . (dC/dX)T 

 

l  y = ReLU(x)  ;   if (x<0)  dC/dx = 0  else  dC/dx = dC/dy 

 

l  Y1 = X, Y2 = X   ;  dC/dX = dC/dY1 + dC/dY2 

 

l  Y = X1 + X2    ;   dC/dX1 = dC/dY   ;   dC/dX2 = dC/dY 

 

l  y = max(x1,x2) ; if (x1>x2) dC/dx1 = dC/dy else dC/dx1=0 

 

l  Yi = Xi – log[∑j exp(Xj)] ;  ….. 

ReLU 

Linear 

LogSoftMax 

Duplicate 

Add 

Max 



Y LeCun 
Module Classes 

l  Many more basic module classes 

l  Cost functions: 
l  Squared error 
l  Hinge loss 
l  Ranking loss 

l  Non-linearities and operators 
l  ReLU, “leaky” ReLU, abs,…. 
l  Tanh, logistic 
l  Just about any simple function (log, exp, add, mul,….) 

l  Specialized modules 
l  Multiple convolutions (1D, 2D, 3D) 
l  Pooling/subsampling: max, average, Lp, log(sum(exp())), maxout 
l  Long Short-Term Memory, attention, 3-way multiplicative interactions. 
l  Switches 
l  Normalizations: batch norm, contrast norm, feature norm... 
l  inception 



Y LeCun 
Any Architecture works 

" Any connection graph is permissible 
"  Directed acyclic graphs (DAG) 
"  Networks with loops must be 

“unfolded in time”. 

" Any module is permissible 
"  As long as it is continuous and 

differentiable almost everywhere with 
respect to the parameters, and with 
respect to non-terminal inputs. 

" Most frameworks provide automatic 
differentiation  
"  Theano, Torch7+autograd,… 
"   Programs are turned into 

computation DAGs and automatically 
differentiated. 



Y LeCun 
Backprop in Practice 

" Use ReLU non-linearities 

" Use cross-entropy loss for classification 

" Use Stochastic Gradient Descent on minibatches 

" Shuffle the training samples (← very important) 

" Normalize the input variables (zero mean, unit variance) 

" Schedule to decrease the learning rate 

" Use a bit of L1 or L2 regularization on the weights (or a combination) 
"  But it's best to turn it on after a couple of epochs 

" Use “dropout” for regularization 

" Lots more in [LeCun et al. “Efficient Backprop” 1998] 

" Lots, lots more in “Neural Networks, Tricks of the Trade” (2012 edition) 
edited by G. Montavon, G. B. Orr, and K-R Müller (Springer) 

" More recent: Deep Learning (MIT Press book in preparation) 



Y LeCun 

 
Convolutional  

Networks 

+ 



Y LeCun 
Deep Learning = Training Multistage Machines 

" Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor 

Trainable  
Classifier 

Feature  
Extractor 

" Mainstream Pattern Recognition 9until recently) 

Trainable  
Classifier 

Feature  
Extractor 

Mid-Level 
Features 

" Deep Learning: Multiple stages/layers trained end to end 

Trainable  
Classifier 

Low-Level 
Features 

Mid-Level 
Features 

High-Level 
Features 



Y LeCun 

Overall Architecture: multiple stages of  
Normalization → Filter Bank → Non-Linearity → Pooling 

" Normalization: variation on whitening (optional) 

–  Subtractive: average removal, high pass filtering 
–  Divisive: local contrast normalization, variance normalization 

" Filter Bank: dimension expansion, projection on overcomplete basis 
" Non-Linearity: sparsification, saturation, lateral inhibition.... 

–  Rectification (ReLU), Component-wise shrinkage, tanh,.. 
 
 

" Pooling: aggregation over space or feature type 

–  Max, Lp norm, log prob.  

Classifier feature 
Pooling  

Non- 
Linear 

Filter 
Bank  

Norm 
feature 

Pooling  
Non- 

Linear 
Filter 
Bank  

Norm 



Y LeCun 
ConvNet Architecture 

" LeNet1  [LeCun et al. NIPS 1989] 

Filter Bank +non-linearity 

Filter Bank +non-linearity 

Pooling 

Pooling 

Filter Bank +non-linearity 



Y LeCun 
Multiple Convolutions 

Animation: Andrej Karpathy http://cs231n.github.io/convolutional-networks/ 



Y LeCun 
Convolutional Networks (vintage 1990)  

" filters → tanh → average-tanh → filters → tanh → average-tanh → filters → tanh 



Y LeCun 
Example: 1D (Temporal) convolutional net 

" 1D (Temporal) ConvNet, aka Timed-Delay Neural Nets 
" Groups of units are replicated at each time step. 
" Replicas have identical (shared) weights. 



Y LeCun 
LeNet5  

" Simple ConvNet  
" for MNIST 
" [LeCun 1998] 

input 
1@32x32 

Layer 1 
6@28x28 

Layer 2 
6@14x14 

Layer 3 
12@10x10 

Layer 4 
12@5x5 

Layer 5 
100@1x1 

10 

5x5 
convolution 

5x5 
convolution 
 

5x5 
convolution 
 

2x2 
pooling/ 
subsampling 

2x2 
pooling/ 
subsampling 

Layer 6: 10 



Y LeCun 
Applying a ConvNet with a Sliding Window 

" Every layer is a convolution  
" Sometimes called “fully convolutional nets” 
" There is no such thing as a “fully connected layer” 
 



Y LeCun 
Sliding Window ConvNet + Weighted FSM (Fixed Post-Proc) 

[Matan,	Burges,	LeCun,	Denker	NIPS	1991]	[LeCun,	BoWou,	Bengio,	Haffner,	Proc	IEEE	1998]	



Y LeCun 
Sliding Window ConvNet + Weighted FSM 



Y LeCun 
Why Multiple Layers? The World is Compositional 

" Hierarchy of representations with increasing level of abstraction 

" Each stage is a kind of trainable feature transform 

" Image recognition: Pixel → edge → texton → motif → part → object 

" Text: Character → word → word group → clause → sentence → story 

" Speech: Sample → spectral band → sound → … → phone → phoneme → word 

 

 
Trainable  
Classifier 

Low-Level 
Feature 

Mid-Level 
Feature 

High-Level 
Feature 



Y LeCun 
Yes, ConvNets are somewhat inspired by the Visual Cortex 

[picture from Simon Thorpe] 

[Gallant & Van Essen]  

" The ventral (recognition) pathway in the visual cortex has multiple stages 
" Retina - LGN - V1 - V2 - V4 - PIT - AIT .... 
 



Y LeCun 
What are ConvNets Good For 

" Signals that comes to you in the form of (multidimensional) arrays. 
" Signals that have strong local correlations 
" Signals where features can appear anywhere 
" Signals in which objects are invariant to translations and distortions. 
 

" 1D ConvNets: sequential signals, text 

–  Text Classification 
–  Musical Genre Recognition 
–  Acoustic Modeling for Speech Recognition 
–  Time-Series Prediction 

" 2D ConvNets: images, time-frequency representations (speech and audio) 
–  Object detection, localization, recognition 

" 3D ConvNets: video, volumetric images, tomography images 
–  Video recognition / understanding 
–  Biomedical image analysis 
–  Hyperspectral image analysis 



Recurrent Neural Networks 

37	



Recurrent Neural Networks 

•  Selec4vely	summarize	an	input	sequence	in	a	fixed-size	state	
vector	via	a	recursive	update	

38	
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Recurrent Neural Networks 

•  Can	produce	an	output	at	each	4me	step:	unfolding	the	graph	
tells	us	how	to	back-prop	through	4me.	

39	
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Generative RNNs 

40	
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•  An	RNN	can	represent	a	fully-connected	directed	generaHve	
model:	every	variable	predicted	from	all	previous	ones.	



Maximum Likelihood =  
Teacher Forcing 

•  During	training,	past	y	
in	input	is	from	training	
data	

•  At	genera4on	4me,	
past	y	in	input	is	
generated	

•  Mismatch	can	cause		
”compounding	error”		

41	

P (yt | ht)

ht

xt

ŷt ⇠ P (yt | ht)

(xt, yt) : next input/output training pair

yt



Increasing the Expressive Power of 
RNNs with more Depth 

•  ICLR	2014,	How	to	construct	deep	recurrent	neural	networks	
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Long-Term Dependencies   

•  The	RNN	gradient	is	a	product	of	Jacobian	matrices,	each	
associated	with	a	step	in	the	forward	computa4on.	To	store	
informa4on	robustly	in	a	finite-dimensional	state,	the	dynamics	
must	be	contrac4ve	[Bengio	et	al	1994].		

	
•  Problems:		

•  sing.	values	of	Jacobians	>	1	à	gradients	explode		
•  or	sing.	values	<	1	à	gradients	shrink	&	vanish	
•  or	random	à	variance	grows	exponen4ally	
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Storing	bits	
robustly	requires	
sing.	values<1	

(Hochreiter	1991)	

Gradient	
clipping	



Gradient Norm Clipping 
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(Mikolov	thesis	2012;	
Pascanu,	Mikolov,	Bengio,	ICML	2013)	



RNN Tricks  
(Pascanu,	Mikolov,	Bengio,	ICML	2013;	Bengio,	Boulanger	&	Pascanu,	ICASSP	2013)	

•  Clipping	gradients	(avoid	exploding	gradients)	
•  Leaky	integra4on	(propagate	long-term	dependencies)	
•  Momentum	(cheap	2nd	order)	
•  Ini4aliza4on	(start	in	right	ballpark	avoids	exploding/vanishing)	
•  Sparse	Gradients	(symmetry	breaking)	
•  Gradient	propaga4on	regularizer	(avoid	vanishing	gradient)	
•  LSTM	self-loops	(avoid	vanishing	gradient)	
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×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Gated Recurrent Units & LSTM 
•  Create	a	path	where	

gradients	can	flow	for	
longer	with	self-loop	

•  Corresponds	to	an	
eigenvalue	of	Jacobian	
slightly	less	than	1	

•  LSTM	is	heavily	used	
(Hochreiter	&	Schmidhuber	
1997)	

•  GRU	light-weight	version	
(Cho	et	al	2014)	
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RNN Tricks 
•  Delays	and	mul4ple	4me	scales,	Elhihi	&	Bengio	NIPS	1996	
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Backprop in Practice 
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Other	tricks:	see	Deep	Learning	book	(in	prepara4on,	online)	



Y 
LeCun 

The Convergence of Gradient Descent 

"  Batch Gradient 
"  There is an optimal learning 
rate 
"  Equal to inverse 2

nd
 derivative 



Y 
LeCun 

Let's Look at a single linear unit 

"  Single unit, 2 inputs 

"  Quadratic loss 
"  E(W) = 1/p ∑p (Y – W●Xp)2 

"  Dataset: classification: Y=-1 for blue, +1 for red. 

"  Hessian is covariance matrix of input vectors 
"  H = 1/p ∑ Xp Xp

T 
"  To avoid ill conditioning: normalize the inputs 

"  Zero mean  
"  Unit variance for all variable  

X1 X2 

W1 W2 

W0 



Y 
LeCun 

Convergence is Slow When Hessian has Different Eigenvalues 

"  Batch Gradient, small learning rate            Batch Gradient, large learning rate 



Y 
LeCun 

Convergence is Slow When Hessian has Different Eigenvalues 

"  Batch Gradient, small learning rate            "  Stochastic Gradient: Much Faster 
"  But fluctuates near the minimum 

"  Batch Gradient, small learning rate            "  Batch Gradient, small learning rate            



Y 
LeCun 

Multilayer Nets Have Non-Convex Objective Functions 

"  1-1-1 network  
"  Y = W1*W2*X  

"   trained to compute the identity function with quadratic loss 
"  Single sample X=1, Y=1  L(W) = (1-W1*W2)^2 

"   Solution: W2 = 1/W2  hyperbola. 

Solution Saddle point Solution 

X 

Z 

Y 

W2 

W1 



Y 
LeCun 

Deep Nets with ReLUs and Max Pooling 

"  Stack of linear transforms interspersed with Max operators 
"  Point-wise ReLUs: 

"  Max Pooling 
"  “switches” from one layer to the next 

"  Input-output function 
"  Sum over active paths 
"  Product of all weights along the path 
"  Solutions are hyperbolas 

"  Objective function is full of saddle points 
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A Myth Has Been Debunked: Local 
Minima in Neural Nets  
! Convexity is not needed 
•  (Pascanu,	Dauphin,	Ganguli,	Bengio,	arXiv	May	2014):	On	the	

saddle	point	problem	for	non-convex	op'miza'on	
•  (Dauphin,	Pascanu,	Gulcehre,	Cho,	Ganguli,	Bengio,	NIPS’	2014):	

Iden'fying	and	a[acking	the	saddle	point	problem	in	high-
dimensional	non-convex	op'miza'on		

•  (Choromanska,	Henaff,	Mathieu,	Ben	Arous	&	LeCun,	
AISTATS’2015):	The	Loss	Surface	of	Mul'layer	Nets	
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Saddle Points 

•  Local	minima	dominate	in	low-D,	but	
saddle	points	dominate	in	high-D	

•  Most	local	minima	are	close	to	the	
boWom	(global	minimum	error)	
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Saddle Points During Training 

•  Oscilla4ng	between	two	behaviors:	
•  Slowly	approaching	a	saddle	point	
•  Escaping	it	
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Low Index Critical Points 

Choromanska	et	al	&	LeCun	2014,	‘The	Loss	Surface	of	Mul'layer	Nets’	
Shows	that	deep	rec4fier	nets	are	analogous	to	spherical	spin-glass	models	
The	low-index	cri4cal	points	of	large	models	concentrate	in	a	band	just	
above	the	global	minimum	
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Piecewise Linear Nonlinearity 
	

•  Jarreth,		Kavukcuoglu,	Ranzato	&	LeCun	ICCV	2009:	absolute	value	
rec4fica4on	works	beWer	than	tanh	in	lower	layers	of	convnet	

•  Nair	&	Hinton	ICML	2010:	Duplica4ng	sigmoid	units	with	same	
weights	but	different	bias	in	an	RBM	approximates	a	rec4fied	
linear	unit	(ReLU)	

•  Glorot,	Bordes	and	Bengio	AISTATS	2011:	Using	a	rec4fier	non-
linearity	(ReLU)	instead	of	tanh	of	sotplus	allows	for	the	first	4me	
to	train	very	deep	supervised	networks	without	the	need	for	
unsupervised	pre-training;	was	biologically	moHvated	

•  Krizhevsky,	Sutskever	&	Hinton	NIPS	2012:	
						rec4fiers	one	of	the	crucial	ingredients	in	
						ImageNet	breakthrough	

f(x)=max(0,x)	

f(x)=log(1+exp(x))	

Leaky integrate-and-fire model 

Neuroscience motivations 

sotplus	

Leaky integrate-and-fire model 



Stochastic Neurons as Regularizer: 
Improving	neural	networks	by	prevenHng	co-adaptaHon	
of	feature	detectors	(Hinton et al 2012, arXiv) 
•  Dropouts	trick:	during	training	mul4ply	neuron	output	by	random	

bit	(p=0.5),	during	test	by	0.5	
•  Used	in	deep	supervised	networks	
•  Similar	to	denoising	auto-encoder,		but	corrup4ng	every	layer	
•  Works	beWer	with	some	non-lineari4es	(rec4fiers,	maxout)						

(Goodfellow	et	al.	ICML	2013)	

•  Equivalent	to	averaging	over	exponen4ally	many	architectures	
•  Used	by	Krizhevsky	et	al	to	break	through	ImageNet	SOTA	
•  Also	improves	SOTA	on	CIFAR-10	(18à16%	err)	
•  Knowledge-free	MNIST	with	DBMs	(.95à.79%	err)	
•  TIMIT	phoneme	classifica4on	(22.7à19.7%	err)	
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Dropout Regularizer: Super-Efficient 
Bagging 

61	
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Batch Normalization 

•  Standardize	ac4va4ons	(before	nonlinearity)	across	minibatch	
•  Backprop	through	this	operaHon	
•  Regularizes	&	helps	to	train	
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where m is the size of the mini-batch. Using these statistics,
we can standardize each feature as follows
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where ✏ is a small positive constant to improve numerical sta-
bility.

However, standardizing the intermediate activations re-
duces the representational power of the layer. To account for
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original layer representation. So, for a standard feedforward
layer in a neural network

y = �(Wx+ b), (5)

where W is the weights matrix, b is the bias vector, x is the
input of the layer and � is an arbitrary activation function,
batch normalization is applied as follows

y = �(BN(Wx)). (6)

Note that the bias vector has been removed, since its effect
is cancelled by the standardization. Since the normalization
is now part of the network, the back propagation procedure
needs to be adapted to propagate gradients through the mean
and variance computations as well.

At test time, we can’t use the statistics of the mini-batch.
Instead, we can estimate them by either forwarding several
training mini-batches through the network and averaging their
statistics, or by maintaining a running average calculated over
each mini-batch seen during training.

3. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs) extend Neural Net-
works to sequential data. Given an input sequence of vec-
tors (x1, . . . ,xT

), they produce a sequence of hidden states
(h1, . . . ,hT

), which are computed at time step t as follows
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where [x : y] denotes the concatenation of x and y. Finally,
we can stack RNNs by using h as the input to another RNN,
creating deeper architectures [13]
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In vanilla RNNs, the activation function � is usually a sig-
moid function, such as the hyperbolic tangent. Training such
networks is known to be particularly difficult, because of van-
ishing and exploding gradients [14].

3.1. Long Short-Term Memory

A commonly used recurrent structure is the Long Short-Term
Memory (LSTM). It addresses the vanishing gradient prob-
lem commonly found in vanilla RNNs by incorporating gat-
ing functions into its state dynamics [6]. At each time step,
an LSTM maintains a hidden vector h and a cell vector c

responsible for controlling state updates and outputs. More
concretely, we define the computation at time step t as fol-
lows [15]:
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where sigmoid(·) is the logistic sigmoid function, tanh is the
hyperbolic tangent function, W

h· are the recurrent weight
matrices and W

x· are the input-to-hiddent weight matrices.
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are respectively the input, forget and output gates,
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is the cell.

4. BATCH NORMALIZATION FOR RNNS

From equation 6, an analogous way to apply batch normaliza-
tion to an RNN would be as follows:
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However, in our experiments, when batch normalization was
applied in this fashion, the model failed to learn. In un-
normalized RNNs, the tied nature of the recurrent weight
matrix W
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makes optimization difficult since small changes
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is now part of the network, the back propagation procedure
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training mini-batches through the network and averaging their
statistics, or by maintaining a running average calculated over
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where [x : y] denotes the concatenation of x and y. Finally,
we can stack RNNs by using h as the input to another RNN,
creating deeper architectures [13]
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rameters � and �, which respectively scale and shift the data,
leading to a layer of the form

BN(x
k

) = �

k

x̂

k

+ �

k

. (4)

By setting �

k

to �

k

and �

k

to x̄

k

, the network can recover the
original layer representation. So, for a standard feedforward
layer in a neural network

y = �(Wx+ b), (5)

where W is the weights matrix, b is the bias vector, x is the
input of the layer and � is an arbitrary activation function,
batch normalization is applied as follows

y = �(BN(Wx)). (6)

Note that the bias vector has been removed, since its effect
is cancelled by the standardization. Since the normalization
is now part of the network, the back propagation procedure
needs to be adapted to propagate gradients through the mean
and variance computations as well.

At test time, we can’t use the statistics of the mini-batch.
Instead, we can estimate them by either forwarding several
training mini-batches through the network and averaging their
statistics, or by maintaining a running average calculated over
each mini-batch seen during training.

3. RECURRENT NEURAL NETWORKS

Recurrent Neural Networks (RNNs) extend Neural Net-
works to sequential data. Given an input sequence of vec-
tors (x1, . . . ,xT

), they produce a sequence of hidden states
(h1, . . . ,hT

), which are computed at time step t as follows

h

t

= �(W
h

h

t�1 +W

x

x

t

), (7)

where W

h

is the recurrent weight matrix, W
x

is the input-
to-hidden weight matrix, and � is an arbitrary activation func-
tion.

If we have access to the whole input sequence, we can use
information not only from the past time steps, but also from
the future ones, allowing for bidirectional RNNs [12]
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 �
h
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x

x

t

), (9)

h

t

= [
�!
h

t

:
 �
h

t

], (10)

where [x : y] denotes the concatenation of x and y. Finally,
we can stack RNNs by using h as the input to another RNN,
creating deeper architectures [13]

h
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t

= �(W
h

h

l

t�1 +W

x

h

l�1
t

). (11)

In vanilla RNNs, the activation function � is usually a sig-
moid function, such as the hyperbolic tangent. Training such
networks is known to be particularly difficult, because of van-
ishing and exploding gradients [14].

3.1. Long Short-Term Memory

A commonly used recurrent structure is the Long Short-Term
Memory (LSTM). It addresses the vanishing gradient prob-
lem commonly found in vanilla RNNs by incorporating gat-
ing functions into its state dynamics [6]. At each time step,
an LSTM maintains a hidden vector h and a cell vector c

responsible for controlling state updates and outputs. More
concretely, we define the computation at time step t as fol-
lows [15]:
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) (12)
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) (13)
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� tanh(W
hc

h

t�1 +W

xc

x

t

) (14)
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x
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) (15)
h

t
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t

� tanh(c
t

) (16)

where sigmoid(·) is the logistic sigmoid function, tanh is the
hyperbolic tangent function, W

h· are the recurrent weight
matrices and W

x· are the input-to-hiddent weight matrices.
i

t

, f
t

and o

t

are respectively the input, forget and output gates,
and c

t

is the cell.

4. BATCH NORMALIZATION FOR RNNS

From equation 6, an analogous way to apply batch normaliza-
tion to an RNN would be as follows:

h

t

= �(BN(W
h

h

t�1 +W

x

x

t

)). (17)

However, in our experiments, when batch normalization was
applied in this fashion, the model failed to learn. In un-
normalized RNNs, the tied nature of the recurrent weight
matrix W

h

makes optimization difficult since small changes

(Ioffe	&	Szegedy	ICML	2015)		



Early Stopping 

•  Beau4ful	FREE	LUNCH	(no	need	to	launch	many	different	
training	runs	for	each	value	of	hyper-parameter	for	#itera4ons)	

•  Monitor	valida4on	error	during	training	(ater	visi4ng	#	of	
training	examples	=	a	mul4ple	of	valida4on	set	size)	

•  Keep	track	of	parameters	with	best	valida4on	error	and	report	
them	at	the	end	

•  If	error	does	not	improve	enough	(with	some	pa4ence),	stop.	
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Random Sampling of Hyperparameters 
(Bergstra	&	Bengio	2012)	
•  Common	approach:	manual	+	grid	search	
•  Grid	search	over	hyperparameters:	simple	&	wasteful	
•  Random	search:	simple	&	efficient	

•  Independently	sample	each	HP,	e.g.	l.rate~exp(U[log(.1),log(.0001)])	
•  Each	training	trial	is	iid	
•  If	a	HP	is	irrelevant	grid	search	is	wasteful	
•  More	convenient:	ok	to	early-stop,	con4nue	further,	etc.	
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Sequential Model-Based Optimization 
of Hyper-Parameters 

•  (HuWer	et	al	JAIR	2009;	Bergstra	et	al	NIPS	2011;	Thornton	et	al	
arXiv	2012;	Snoek	et	al	NIPS	2012)	

•  Iterate	
•  			Es4mate	P(valid.	err	|	hyper-params	config	x,	D)	
•  			choose	op4mis4c	x,	e.g.	maxx	P(valid.	err	<	current	min.	err	|	x)	
•  			train	with	config	x,	observe	valid.	err.	v,	D	ß	D	U	{(x,v)}	
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Distributed Training 

•  Minibatches		
•  Large	minibatches	+	2nd	order	&	natural	gradient	methods	
•  Asynchronous	SGD	(Bengio	et	al	2003,	Le	et	al	ICML	2012,	Dean	et	al	NIPS	2012)	

•  Data	parallelism	vs	model	parallelism	
•  BoWleneck:	sharing	weights/updates	among	nodes,	to	avoid	
node-models	to	move	too	far	from	each	other	

•  EASGD	(Zhang	et	al	NIPS	2015)	works	well	in	prac4ce	
•  Efficiently	exploi4ng	more	than	a	few	GPUs	remains	a	challenge	
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Vision 
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((switch	laptops)	



Speech Recognition 
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Using DL 

The dramatic impact of Deep 
Learning on Speech Recognition 

  (according to Microsoft) 



Y LeCun 
Speech Recognition with Convolutional Nets (NYU/IBM) 

"  Multilingual recognizer 
"  Multiscale input 

"  Large context window 



Y LeCun 
Speech Recognition with Convolutional Nets (NYU/IBM) 

"  Acoustic Model: ConvNet with 7 layers. 54.4 million parameters. 
"  Classifies acoustic signal into 3000 context-dependent subphones categories 
"  ReLU units + dropout for last layers 
"  Trained on GPU. 4 days of training 



Y LeCun 
Speech Recognition with Convolutional Nets (NYU/IBM) 

"  Training samples.  
"  40 MEL-frequency Cepstral Coefficients 
"  Window: 40 frames, 10ms each 



Y LeCun 
Speech Recognition with Convolutional Nets (NYU/IBM) 

"  Convolution Kernels at Layer 1: 
"  64 kernels of size 9x9 



•  Hybrid	systems,	neural	nets	+	
HMMs	(Bengio	1991,	Bo[ou	1991)	

•  Neural	net	outputs	scores	for	
each	arc,	recognized	output	=	
labels	along	best	path;	trained	
discrimina4vely	(LeCun	et	al	1998)	

•  Connec4onist	Temporal	
Classifica4on	(Graves	2006)	

•  DeepSpeech	and	aWen4on-
based	end-to-end	RNNs	
(Hannun	et	al	2014;	Graves	&	
Jaitly	2014;	Chorowski	et	al	
NIPS	2015)	
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Natural Language 
Representations 

75	



Neural Language Models: fighting one 
exponential by another one! 

•  (Bengio	et	al	NIPS’2000)	
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w1 w2 w3 w4 w5 w6

R(w6)R(w5)R(w4)R(w3)R(w2)R(w1)

output

input sequence

i−th output = P(w(t)  = i | context)

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for w(t−n+1) index for w(t−2) index for w(t−1)

shared parameters

Matrix

in
look−up
Table C

C

C(w(t−2)) C(w(t−1))C(w(t−n+1))

. . .

Exponen4ally	large	set	of	
generaliza4ons:	seman4cally	close	
sequences	

Exponen4ally	large	set	of	possible	contexts	



Neural word embeddings: visualization 
directions = Learned Attributes 
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Analogical Representations for Free 
(Mikolov	et	al,	ICLR	2013)	

•  Seman4c	rela4ons	appear	as	linear	rela4onships	in	the	space	of	
learned	representa4ons	

•  King	–	Queen	≈		Man	–	Woman	
•  Paris	–	France	+	Italy	≈	Rome	
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Paris	

France	
Italy	

Rome	



Handling Large Output Spaces 
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categories	

words	within	each	category	

•  Sampling	“nega4ve”	examples:	increase	score	of	
correct	word	and	stochas4cally	decrease	all	the	
others		
•  Uniform	sampling	(Collobert	&	Weston,	ICML	2008)		

•  Importance	sampling,	(Bengio	&	Senecal	AISTATS	2003;	Dauphin	et	al	ICML	

2011)	;	GPU	friendly	implementa4on	(Jean	et	al	ACL	2015)	

•  Decompose	output	probabili4es	hierarchically		(Morin	&	
Bengio	2005;	Blitzer	et	al	2005;	Mnih	&	Hinton	2007,2009;	Mikolov	et	al	2011)	



Encoder-Decoder Framework 
•  Intermediate	representa4on	of	meaning		

=	‘universal	representa4on’	
•  Encoder:	from	word	sequence	to	sentence	representa4on	
•  Decoder:	from	representa4on	to	word	sequence	distribu4on	
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(Cho	et	al	EMNLP	2014;	Sutskever	et	al	NIPS	2014)		



Attention Mechanism for Deep 
Learning 

•  Consider	an	input	(or	intermediate)	sequence	or	image	
•  Consider	an	upper	level	representa4on,	which	can	choose	

«	where	to	look	»,	by	assigning	a	weight	or	probability	to	each	
input	posi4on,	as	produced	by	an	MLP,	applied	at	each	posi4on	
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Lower-level	

Higher-level	
Sotmax	over	lower		
loca4ons	condi4oned	
on	context	at	lower	and	
higher	loca4ons		

(Bahdanau,	Cho	&	Bengio,	arXiv	sept.	2014)	following	up	on	(Graves	2013)	and	
(Larochelle	&	Hinton	NIPS	2010)	
	

•  Sot	aWen4on	(backprop)	vs	
•  Stochas4c	hard	aWen4on	(RL)	



End-to-End Machine Translation with 
Recurrent Nets and Attention Mechanism 

•  Reached	the	state-of-the-art	in	one	year,	from	scratch	
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→

⋆

•
◦

◦

→ →

⋆
◦ •

(Bahdanau	et	al	2014,	Jean	et	al	2014,	Gulcehre	et	al	2015,	Jean	et	al	2015)			



IWSLT 2015 – Luong & Manning (2015) 
TED talk MT, English-German 
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Image-to-Text: Caption Generation 
with Attention 
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(Xu	et	al,	ICML	2015)	

Following	many	papers	
on	cap4on	genera4on,	
including	(Kiros	et	al	
2014;	Mao	et	al	2014;	
Vinyals	et	al	2014;	
Donahue	et	al	2014;	
Karpathy	&	Li	2014;	
Fang	et	al	2014)	



Paying 
Attention to 
Selected Parts 
of the Image 
While Uttering 
Words 
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The Good 
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And the Bad 
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Y 
LeCun 

But How can Neural Nets Remember Things? 

"  Recurrent networks cannot remember things for very long 
"  The cortex only remember things for 20 seconds 

"  We need a “hippocampus” (a separate memory module) 
"  LSTM [Hochreiter 1997], registers 

"  Memory networks [Weston et 2014] (FAIR), associative memory 

"  NTM [Graves et al. 2014], “tape”. 

Recurrent net memory 

Attention 
mechanism 



Y 
LeCun Memory Networks Enable REASONING 

"  Add a short-term memory to a network 

Results on  
Question Answering 
Task 

http://arxiv.org/abs/1410.3916 

(Weston, Chopra, 
Bordes 2014) 
 



Y 
LeCun 

End-to-End Memory Network 

"  [Sukhbataar, Szlam, Weston, Fergus NIPS 2015, ArXiv:1503.08895] 
"  Weakly-supervised MemNN: no need to tell which memory location to use. 



Y 
LeCun 

Stack-Augmented RNN: learning “algorithmic” sequences 

"  [Joulin & Mikolov, ArXiv:1503.01007] 



Sparse Access Memory for Long-Term 
Dependencies 
•  A	mental	state	stored	in	an	external	memory	can	stay	for	

arbitrarily	long	dura4ons,	un4l	evoked	for	read	or	write	
•  Forge�ng	=	vanishing	gradient.	
•  Memory	=	larger	state,	reducing	the	need	for	forge�ng/vanishing	
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passive	copy	

access	



How do humans generalize 
from very few examples? 
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•  They	transfer	knowledge	from	previous	learning:	
•  Representa4ons	

•  Explanatory	factors	

•  Previous	learning	from:	unlabeled	data		

	 	 					 	+	labels	for	other	tasks	

•  Prior:	shared	underlying	explanatory	factors,	in	
parHcular	between	P(x)	and	P(Y|x)		

	



Raw	data	
1	layer	 2	layers	

4	layers	
3	layers	

ICML’2011	
workshop	on	
Unsup.	&	
Transfer	Learning	

NIPS’2011	
Transfer	
Learning	
Challenge		
Paper:	
ICML’2012	

Unsupervised and Transfer Learning Challenge 
+ Transfer Learning Challenge: Won by 
Unsupervised Deep Learning 



Multi-Task Learning 
•  Generalizing	beWer	to	new	tasks	(tens	

of	thousands!)	is	crucial	to	approach	AI	
•  Example:	speech	recogni4on,	sharing	

across	mul4ple	languages	

•  Deep	architectures	learn	good	
intermediate	representa4ons	that	can	
be	shared	across	tasks	

					(Collobert	&	Weston	ICML	2008,	
					Bengio	et	al	AISTATS	2011)	

•  Good	representa4ons	that	disentangle	
underlying	factors	of	varia4on	make	
sense	for	many	tasks	because	each	
task	concerns	a	subset	of	the	
factors	
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raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

Task	A	 Task	B	 Task	C	

Prior:	shared	underlying	explanatory	factors	between	tasks		
	

E.g.	dic4onary,	with	intermediate	
concepts	re-used	across	many	defini4ons	



Google Image Search 
Joint Embedding: different 

object types represented in same space 

Google:	
S.	Bengio,	J.	
Weston	&	N.	
Usunier	

(IJCAI	2011,	
NIPS’2010,	
JMLR	2010,	
ML	J	2010)	

WSABIE	objec4ve	func4on:	



Combining Multiple Sources of Evidence 
with Shared Representations 

•  Tradi4onal	ML:	data	=	matrix	
•  Rela4onal	learning:	mul4ple	sources,	

different	tuples	of	variables	
•  Share	representa4ons	of	same	types	

across	data	sources	
•  Shared	learned	representa4ons	help	

propagate	informa4on	among	data	
sources:	e.g.,	WordNet,	XWN,	
Wikipedia,	FreeBase,	ImageNet…
(Bordes	et	al	AISTATS	2012,	ML	J.	2013)	

•  FACTS	=	DATA	
•  DeducHon	=	GeneralizaHon	
97	

person	 url	 event	

url	 words	 history	

person	url	event	

P(person,url,event)	

url	words	history	

P(url,words,history)	



h1
h2 h3

Y

X1 X2 X3

selection switch

Multi-Task / Multimodal Learning 
with Different Inputs for Different 
Tasks 

E.g.	speaker	adapta4on,	
mul4modal	input…	
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Unsupervised	mul4modal	case:	
		(Srivastava	&	Salakhutdinov	NIPS	2012)	



x	and	y	represent	
different	modali4es,	e.g.,	
image,	text,	sound…	
	
Can	provide	0-shot	
generaliza4on	to	new	
categories	(values	of	y)	
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pairs in the training set(x,y)
-representation (encoder) functionx

y

h

x

= f
x

(x)

x

xtest

ytest

hy = fy(y)

y-space-space

f
x

-representation (encoder) function fy
relationship between embedded points 
within one of the domains
maps between representation spaces 

f
x

fy

Maps Between 
Representations 



Unsupervised Representation 
Learning 

100	



Why Unsupervised Learning? 

•  Recent	progress	mostly	in	supervised	DL	
•  Real	challenges	for	unsupervised	DL	
•  Poten4al	benefits:	
•  Exploit	tons	of	unlabeled	data	
•  Answer	new	ques4ons	about	the	variables	observed	
•  Regularizer	–	transfer	learning	–	domain	adapta4on	
•  Easier	op4miza4on	(divide	and	conquer)	
•  Joint	(structured)	outputs	
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Why Latent Factors & Unsupervised 
Representation Learning? Because of 
Causality. 

•  If	Ys	of	interest	are	among	the	causal	factors	of	X,	then	

is	4ed	to	P(X)	and	P(X|Y),	and	P(X)	is	defined	in	terms	of	P(X|Y),	i.e.	
•  The	best	possible	model	of	X	(unsupervised	learning)	MUST	

involve	Y	as	a	latent	factor,	implicitly	or	explicitly.	
•  Representa4on	learning	SEEKS	the	latent	variables	H	that	explain	

the	varia4ons	of	X,	making	it	likely	to	also	uncover	Y.	
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P (Y |X) =
P (X|Y )P (Y )

P (X)

On	causal	and	an'causal	learning,	(Janzing	et	al	ICML	2012)			



x

p
(x
)

If Y is a Cause of X, Semi-Supervised 
Learning Works 

•  Just	observing	the	x-density	reveals	the	causes	y	(cluster	ID)	
•  Ater	learning	p(x)	as	a	mixture,	a	single	labeled	example	per	class	

suffices	to	learn	p(y|x)	
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Invariance & Disentangling 
Underlying Factors 

•  Invariant	features	
•  Which	invariances?	

•  Alterna4ve:	learning	to	disentangle	factors,	i.e.	
keep	all	the	explanatory	factors	in	the	
representa4on	

•  Good	disentangling	à		
	avoid	the	curse	of	dimensionality	

•  Emerges	from	representa4on	learning						
(Goodfellow	et	al.	2009,	Glorot	et	al.	2011)	
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Boltzmann Machines / 
Undirected Graphical Models 
•  Boltzmann	machines:	
			(Hinton	84)	

	

•  Itera4ve	sampling	scheme	=	
stochas4c	relaxa4on,	
Monte-Carlo	Markov	chain	

•  Training	requires	sampling:	
might	take	a	lot	of	4me	to	
converge	if	there	are	well-
separated	modes	

	 	 	 	 	
					

																																																								
	
	
	



Restricted Boltzmann Machine 
(RBM) 

•  A	building	block	
(single-layer)	for	
deep	architectures	

	
•  BiparHte	undirected	

graphical	model	
                                                       

    
      

                                                        
 
 
 

observed 

hidden 

(Smolensky	1986,	Hinton		et	al	2006)	

 x‘ ~ P(x | h)          x 

 h ~ P(h|x)  h’ ~ P(h|x’) 

Block	
Gibbs	
sampling	



Capturing the Shape of the 
Distribution: Positive & Negative 
Samples 

•  Observed (+) examples push the energy down 
•  Generated / dream / fantasy (-) samples / particles push 

the energy up 

X+ 

X- 

Pr(x) =
e

�Energy(x)

Z

Boltzmann	machines,	undirected	graphical	models,	
RBMs,	energy-based	models	



Yann 
LeCun 
LeCun 

Eight Strategies to Shape the Energy Function 

"   1. build the machine so that the volume of low energy stuff is constant 
"  PCA, K-means, GMM, square ICA 

"   2. push down of the energy of data points, push up everywhere else 
"  Max likelihood (needs tractable partition function) 

"   3. push down of the energy of data points, push up on chosen locations 
"   contrastive divergence, Ratio Matching, Noise Contrastive Estimation, 
Minimum Probability Flow 

"   4. minimize the gradient and maximize the curvature around data points  
"  score matching 

"   5. train a dynamical system so that the dynamics goes to the manifold 
" denoising auto-encoder, diffusion inversion (nonequilibrium dynamics) 

"   6. use a regularizer that limits the volume of space that has low energy 
"  Sparse coding, sparse auto-encoder, PSD 

"   7. if E(Y) = ||Y - G(Y)||^2, make G(Y) as "constant" as possible. 
"  Contracting auto-encoder, saturating auto-encoder 

"   8. Adversarial training: generator tries to fool real/synthetic classifier. 



Auto-Encoders 

input!x!

code!h!

reconstruc,on!r!

Decoder.g!

Encoder.f!
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Denoising	auto-encoder:	
During	training,	input	is	corrupted	
stochas4cally,	and	auto-encoder	must	
learn	to	guess	the	distribu4on	of	the	
missing	informa4on.	

ProbabilisHc	reconstrucHon	criterion:	
Reconstruc4on	log-likelihood	=	
	-	log	P(x	|	h)	

P(h)	

P(x|h)	

Q(h|x)	

x	

•  Itera4ve	sampling	/	undirected	models:	
	 		RBM,	denoising	auto-encoder	

•  Ancestral	sampling	/	directed	models	
	Helmholtz	machine,	VAE,	etc.	
(Hinton	et	al	1995)	



Yann 
LeCun 
LeCun 

Predictive Sparse Decomposition (PSD) 

"  Train a “simple” feed-forward function to predict the result of a complex 
optimization on the data points of interest 

INPUT 

Decoder 

Y 

Distance 

Z LATENT 
VARIABLE 

Factor B 

[Kavukcuoglu, Ranzato, LeCun, rejected by every conference, 2008-2009] 

Generative Model 
Factor A 

Encoder Distance 

Fast Feed-Forward Model 
Factor A' 

1. Find optimal Zi for all Yi; 
2. Train Encoder to predict 
Zi from Yi 

Energy  = reconstruction_error + code_prediction_error + code_sparsity 



Probabilistic interpretation of auto-
encoders 

•  Manifold	&	probabilis4c	interpreta4ons	of	auto-encoders	
•  Denoising	Score	Matching	as	induc4ve	principle	

•  Es4ma4ng	the	gradient	of	the	energy	func4on	

•  Sampling	via	Markov	chain	

•  Varia4onal	auto-encoders	
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(Alain	&	Bengio	ICLR	2013)	

(Bengio	et	al	NIPS	2013;	Sohl-Dickstein	et	al	ICML	2015)	

(Gregor	et	al	arXiv	2015)	

(Vincent	2011)	

(Kingma	&	Welling	ICLR	2014)	



Denoising Auto-Encoder 
•  Learns	a	vector	field	poin4ng	towards	higher	

probability	direc4on	(Alain	&	Bengio	2013)	

•  Some	DAEs	correspond	to	a	kind	of	Gaussian	
RBM	with	regularized	Score	Matching	(Vincent	
2011)	

					[equivalent	when	noiseà0]	

Corrupted input 

Corrupted input 

prior:	examples	
concentrate	near	a	
lower	dimensional	
“manifold”		reconstruction(x)� x ! �

2 @ log p(x)

@x



Regularized Auto-Encoders Learn a 
Vector Field that Estimates a 
Gradient Field (Alain	&	Bengio	ICLR	2013)	
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Denoising Auto-Encoder Markov Chain 
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Xt	

Xt	~	 Xt+1	~	

Xt+1	 Xt+2	

Xt+2	~	
corrupt	

denoise	

The	corrupt-encode-decode-sample	Markov	chain	associated	with	a	DAE	
samples	from	a	consistent	es4mator	of	the	data	genera4ng	distribu4on	



x"

r(x)"

x1" x2" x3"

Preference for Locally Constant Features 

•  Denoising	or	contrac4ve	auto-encoder	on	1-D	input:	
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E[||r(x+ �z)� x||2] ⇡ E[||r(x)� x||2] + �

2||@r(x)
@x

||2F

⇡ x� @E(x)

@x

E(x)



Q(h1|x)

x

h1

h2

h3

P (x|h1)

P (h1|h2)

P (h2|h3)

P (h3)

Q(h2|h1)

Q(h3|h2)

Q(x)

Helmholtz Machines (Hinton	et	al	1995)		and 
Variational Auto-Encoders (VAEs) 

•  Parametric	approximate	
inference	

•  Successors	of	Helmholtz	
machine	(Hinton	et	al	‘95)	

•  Maximize	varia4onal	lower	
bound	on	log-likelihood:	

	
where														=	data	distr.		
or	equivalently	

116	

De
co
de

r	=
	g
en

er
at
or
	

En
co
de

r	=
	in
fe
re
nc
e	

(Kingma	&	Welling	2013,	ICLR	2014)	
(Gregor	et	al	ICML	2014;	Rezende	et	al	ICML	2014)	
(Mnih	&	Gregor	ICML	2014;	Kingma	et	al,	NIPS	2014)	

	

minKL(Q(x, h)||P (x, h))
Q(x)

max

X

x

Q(h|x) log P (x, h)

Q(h|x) = max

X

x

Q(h|x) logP (x|h) +KL(Q(h|x)||P (h))



Geometric Interpretation 

•  Encoder:	map	input	to	a	new	space	
where	the	data	has	a	simpler	
distribu4on	

•  Add	noise	between	encoder	output	
and	decoder	input:	train	the	
decoder	to	be	robust	to	mismatch	
between	encoder	output	and	prior	
output.	
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f	 g	

f(x)	

P(h)	

x	

Q(h|x)	

contrac4ve	



DRAW: Sequential Variational Auto-
Encoder with Attention 

•  Even	for	a	sta4c	input,	the	encoder	and	decoder	are	now	
recurrent	nets,	which	gradually	add	elements	to	the	answer,	
and	use	an	aWen4on	mechanism	to	choose	where	to	do	so.	

118	

(Gregor	et	al	of	Google	DeepMind,	arXiv	1502.04623,	2015)		
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Abstract
This paper introduces the Deep Recurrent Atten-

tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction
A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-

Time

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
ing images in a single pass, it iteratively constructs scenes
through an accumulation of modifications emitted by the
decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is
the ability to selectively attend to parts of the scene while
ignoring others. A wealth of results in the past few years
suggest that visual structure can be better captured by a se-
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quence of partial glimpses, or foveations, than by a sin-
gle sweep through the entire image (Larochelle & Hinton,
2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;
Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-
manet et al., 2014). The main challenge faced by sequential
attention models is learning where to look, which can be
addressed with reinforcement learning techniques such as
policy gradients (Mnih et al., 2014). The attention model in
DRAW, however, is fully differentiable, making it possible
to train with standard backpropagation. In this sense it re-
sembles the selective read and write operations developed
for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,
along with the loss function used for training and the pro-
cedure for image generation. Section 3 presents the selec-
tive attention model and shows how it is applied to read-
ing and modifying images. Section 4 provides experi-
mental results on the MNIST, Street View House Num-
bers and CIFAR-10 datasets, with examples of generated
images; and concluding remarks are given in Section 5.
Lastly, we would like to direct the reader to the video
accompanying this paper (https://www.youtube.
com/watch?v=Zt-7MI9eKEo) which contains exam-
ples of DRAW networks reading and generating images.

2. The DRAW Network
The basic structure of a DRAW network is similar to that of
other variational auto-encoders: an encoder network deter-
mines a distribution over latent codes that capture salient
information about the input data; a decoder network re-
ceives samples from the code distribuion and uses them to
condition its own distribution over images. However there
are three key differences. Firstly, both the encoder and de-
coder are recurrent networks in DRAW, so that a sequence

of code samples is exchanged between them; moreover the
encoder is privy to the decoder’s previous outputs, allow-
ing it to tailor the codes it sends according to the decoder’s
behaviour so far. Secondly, the decoder’s outputs are suc-
cessively added to the distribution that will ultimately gen-
erate the data, as opposed to emitting this distribution in
a single step. And thirdly, a dynamically updated atten-
tion mechanism is used to restrict both the input region
observed by the encoder, and the output region modified
by the decoder. In simple terms, the network decides at
each timestep “where to read” and “where to write” as
well as “what to write”. The architecture is sketched in
Fig. 2, alongside a conventional, feedforward variational
auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-
work at a single time-step. The output of RNN enc at time

read

x

zt zt+1

P (x|z1:T )write

encoder
RNN

sample

decoder
RNN

read

x

write

encoder
RNN

sample

decoder
RNN

c

t�1

c

t

c

T

�

h

enc

t�1

h

dec

t�1

Q(zt|x, z1:t�1) Q(z

t+1

|x, z

1:t

)

. . .

decoding
(generative model)

encoding
(inference)

x

encoder
FNN

sample

decoder
FNN

z

Q(z|x)

P (x|z)

Figure 2. Left: Conventional Variational Auto-Encoder. Dur-
ing generation, a sample z is drawn from a prior P (z) and passed
through the feedforward decoder network to compute the proba-
bility of the input P (x|z) given the sample. During inference the
input x is passed to the encoder network, producing an approx-
imate posterior Q(z|x) over latent variables. During training, z
is sampled from Q(z|x) and then used to compute the total de-
scription length KL

�
Q(Z|x)||P (Z)

�
� log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-
work. At each time-step a sample zt from the prior P (zt) is
passed to the recurrent decoder network, which then modifies part
of the canvas matrix. The final canvas matrix cT is used to com-
pute P (x|z1:T ). During inference the input is read at every time-
step and the result is passed to the encoder RNN. The RNNs at
the previous time-step specify where to read. The output of the
encoder RNN is used to compute the approximate posterior over
the latent variables at that time-step.

t is the encoder hidden vector h

enc
t

. Similarly the output of
the decoder RNN dec at t is the hidden vector h

dec
t

. In gen-
eral the encoder and decoder may be implemented by any
recurrent neural network. In our experiments we use the
Long Short-Term Memory architecture (LSTM; Hochreiter
& Schmidhuber (1997)) for both, in the extended form with
forget gates (Gers et al., 2000). We favour LSTM due to
its proven track record for handling long-range dependen-
cies in real sequential data (Graves, 2013; Sutskever et al.,
2014). Throughout the paper, we use the notation b = L(a)

to denote a linear weight matrix from the vector a to the
vector b.

At each time-step t, the encoder receives input from both
the image x and from the previous decoder hidden vector
h

dec
t�1

. The precise form of the encoder input depends on a
read operation, which will be defined in the next section.
The output h

enc
t

of the encoder is used to parameterise a
distribution Q(Z

t

|henc
t

) over the latent vector z

t

. In our
experiments the latent distribution is a diagonal Gaussian
N (Z

t

|µ
t

, �

t

):

µ

t

= L(h

enc

t

) (1)
�

t

= exp (L(h

enc

t

)) (2)

Bernoulli distributions are more common than Gaussians



DRAW Samples of SVHN Images: 
generated samples vs training nearest 
neighbor 
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Figure 8. Generated MNIST images with two digits.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

4,701 images.

A major challenge with natural image generation is how to
model the pixel colours. In this work we applied a simple
approximation where the normalised intensity of each of
the RGB channels was treated as an independent Bernoulli
probability. This approach has the advantage of being easy
to implement and train; however it does mean that the loss
function used for training does not match the true compres-
sion cost of the data.

The house number images generated by the network are
highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,
2009). CIFAR-10 is very diverse, and with only 50,000
training examples it is very difficult to generate realistic-
looking objects without overfitting (in other words, without
copying from the training set). Nonetheless the images in
Fig. 12 demonstrate that DRAW is able to capture much of
the shape, colour and composition of real photographs.

Nearest	training	
example	for	last	
column	of	samples	



Adversarial nets framework 

1
2
0

GAN: Generative Adversarial Networks 

Generator	
Network	

Discriminator	
Network	

Fake	
Image	

Real	
Image	

Training	
Set	

Random	
Vector	

Random	
Index	

Goodfellow	et	al	NIPS	2014	



Laplacian Pyramid 

1
2
1

(Denton	+	Chintala,	et	al	2015)	

LAPGAN: Laplacian Pyramid of 
Generative Adversarial Networks 

http://soumith.ch/eyescream/	
	



LAPGAN results •  40%	of	samples	mistaken	by	humans	for	real	photos	

•  Sharper	images	than	max.	lik.	proxys	(which	min.	KL(data|model)):		
•  GAN	objec4ve	=	compromise	between	KL(data|model)	and	KL(model|data)	

122	

(Denton + Chintala, et al 2015)	

LAPGAN: Visual Turing Test 



Convolutional GANs 

Strided	convolu4ons,	batch	normaliza4on,	only	convolu4onal	layers,	
ReLU	and	leaky	ReLU	

123	

(Radford	et	al,	arXiv		1511.06343)	

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated textures across multiple samples.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5



Space-Filling in Representation-Space 
Deeper	representaHons	"	abstracHons	"	disentangling	
Manifolds	are	expanded	and	flabened	

Linear	interpola4on	at	layer	2	

Linear	interpola4on	at	layer	1	

3’s	manifold	

9’s	manifold	

Linear	interpola4on	in	pixel	space	

X-space	

H-space	

(Bengio	et	al	ICML	2013)	



GAN: Interpolating in Latent Space 

If	the	model	is	good	(unfolds	the	manifold),	interpola4ng	between	
latent	values	yields	plausible	images.	
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Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

scene classification learn object detectors (Oquab et al., 2014). We demonstrate that an unsupervised
DCGAN trained on a large image dataset can also learn a hierarchy of features that are interesting.
Using guided backpropagation as proposed by (Springenberg et al., 2014), we show in Fig.5 that the
features learnt by the discriminator activate on typical parts of a bedroom, like beds and windows.
For comparison, in the same figure, we give a baseline for randomly initialized features that are not
activated on anything that is semantically relevant or interesting.

6.3 MANIPULATING THE GENERATOR REPRESENTATION

6.3.1 FORGETTING TO DRAW CERTAIN OBJECTS

In addition to the representations learnt by a discriminator, there is the question of what representa-
tions the generator learns. The quality of samples suggest that the generator learns specific object
representations for major scene components such as beds, windows, lamps, doors, and miscellaneous
furniture. In order to explore the form that these representations take, we conducted an experiment
to attempt to remove windows from the generator completely.

7

Under review as a conference paper at ICLR 2016

Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

9



Supervised and Unsupervised in One Learning Rule?	

"  Boltzmann Machines have all the right properties [Hinton 1831] [OK, OK 1983 ;-]	
"  Sup & unsup, generative & discriminative in one simple/local learning rule	
"  Feedback circuit reconstructs and propagates virtual hidden targets	
"  But they don't really work (or at least they don't scale).	

"  Problem: the feedforward path eliminates information	
"  If the feedforward path is invariant, then	
"  the reconstruction path is a one-to-many mapping	

"  Usual solution: sampling. But I'm allergic.	

input	

Many	
To 	

One	

reconstruction	

One	
To	

Many	

Predicted What	 what	

Cost	

Cost	

input	

Many	
To 	

One	

reconstruction	

One	
To	

Many	

Predicted What	 what	

Cost	



Deep Semi-Supervised Learning 

•  Unlike	unsupervised	pre-training,	modern	approaches	op4mize	
jointly	the	supervised	and	unsupervised	objec4ve	

•  Discrimina4ve	RBMs	(Larochelle	&	Bengio,	ICML	2008)	

•  Semi-Supervised	VAE	(Kingma	et	al,	NIPS	2014)	

•  Ladder	Network	(Rasmus	et	al,	NIPS	2015)	
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Semisupervised Learning with Ladder 
Network 

•  Jointly	trained	stack	of	denoising	auto-encoders	with	gated	
lateral	connec4ons	and	semi-supervised	objec4ve	
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(Rasmus	et	al,	NIPS	2015)		
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ẑ

(1)
z

(1)

z

(2)

x̃ x̂

x

x

x

g

(2)
(·, ·)

Figure 2: A conceptual illustration of the Ladder network when L = 2. The feedforward path
x ! z

(1) ! z

(2) ! y) shares the mappings f

(l) with the corrupted feedforward path, or encoder
(x ! ˜

z

(1) ! ˜

z

(2) ! ˜

y). The decoder (˜z(l) ! ˆ

z

(l) ! ˆ

x) consists of denoising functions g

(l) and
has costs functions C

(l)
d

on each layer trying to minimize the difference between ˆ

z

(l) and z

(l). The
output y of the encoder can also be trained using supervised learning.

Algorithm 1 Calculation of the output and cost function of the Ladder network

Require: x(n)

# Corrupted encoder and classifier
˜

h

(0)  ˜

z

(0)  x(n) + noise

for l = 1 to L do
˜

z

(l)
pre  W

(l)
˜

h

(l�1)

˜µ(l)  batchmean(

˜

z

(l)
pre)

˜�(l)  batchstd(

˜

z

(l)
pre)

˜

z

(l)  batchnorm(

˜

z

(l)
pre) + noise

˜

h

(l)  activation(�(l) � (

˜

z

(l)
+ �(l)

))

end for
P (

˜

y | x) ˜

h

(L)

# Clean encoder (for denoising targets)
h

(0)  z

(0)  x(n)

for l = 1 to L do
z

(l)  batchnorm(W

(l)
h

(l�1)
)

h

(l)  activation(�(l) � (z

(l)
+ �(l)

))

end for

# Final classification:
P (y | x) h

(L)

# Decoder and denoising
for l = L to 0 do

if l = L then
u

(L)  batchnorm(

˜

h

(L)
)

else
u

(l)  batchnorm(V

(l)
ˆ

z

(l+1)
)

end if
8i : ẑ

(l)
i

 g(z̃

(l)
i

, u

(l)
i

) # Eq. (1)

8i : ẑ

(l)
i,BN  

ẑ

(l)
i �µ̃

(l)
i

�̃

(l)
i

end for
# Cost function C for training:
C 0

if t(n) then
C � log P (

˜

y = t(n) | x)

end if
C C +

P
L

l=1 �
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ẑ

(l)
i �µ̃

(l)
i

�̃

(l)
i

end for
# Cost function C for training:
C 0

if t(n) then
C � log P (

˜

y = t(n) | x)

end if
C C +

P
L

l=1 �

l

���z(l) � ˆ

z

(l)
BN

���
2

# Eq. (2)

4

They	also	use	
Batch	Normaliza4on	

1%	error	on	PI-MNIST	with	100	labeled	examples	(Pezeshki	et	al	arXiv	1511.06430)	
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[Zhao, Mathieu, LeCun arXiv:1506.02351] 
Stacked What-Where Auto-Encoder 
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A bit like a ConvNet paired with a DeConvNet 



Conclusions & Challenges 
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Learning « How the world ticks » 

•  So	long	as	our	machine	learning	models	«	cheat	»	by	relying	only	
on	surface	sta4s4cal	regulari4es,	they	remain	vulnerable	to	out-
of-distribu4on	examples	

•  Humans	generalize	beWer	than	other	animals	by	implicitly	having	
a	more	accurate	internal	model	of	the	underlying	causal	
rela4onships	

•  This	allows	one	to	predict	future	situa4ons	(e.g.,	the	effect	of	
planned	ac4ons)	that	are	far	from	anything	seen	before,	an	
essen4al	component	of	reasoning,	intelligence	and	science	
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Learning Multiple Levels of 
Abstraction 

•  The	big	payoff	of	deep	learning	is	to	allow	learning	
higher	levels	of	abstrac4on	

•  Higher-level	abstrac4ons	disentangle	the	factors	of	
varia4on,	which	allows	much	easier	generaliza4on	and	
transfer	
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Challenges & Open Problems 

•  Unsupervised	learning	
•  How	to	evaluate?	

•  Long-term	dependencies		
•  Natural	language	understanding	&	reasoning	
•  More	robust	op4miza4on	(or	easier	to	train	architectures)	
•  Distributed	training	(that	scales)	&	specialized	hardware	
•  Bridging	the	gap	to	biology	
•  Deep	reinforcement	learning	
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A	More	ScienHfic	Approach	is	Needed,	not	Just	Building	Beber	Systems	


