
Credit	Assignment:	Beyond	
Backpropagation		

	  
 

Yoshua	Bengio	
11	December	2016	

AutoDiff	NIPS’2016	Workshop

PLU
G:	D

eep
	Lea

rnin
g,	M

IT	Pr
ess	b

ook	
is	ou

t,	

chap
ters

	will
	rem

ain	o
nline

Deep Learning Jobs in Montreal
• Faculty	positions	at	all	levels	at	U.	Montreal	
• Researcher	positions	at	Element	AI	and	Google	Brain	Montreal	
• Researcher	positions	at	U.	Montreal	(IVADO	data	science	center)	
• Studentships	at	all	levels	at	U.	Montreal

2

Some Credit Assignment Principles

• Chain	rule	&	Backprop:	exact	gradient	wrt	parameters,	via	gradient	wrt	
intermediate	states	
• not	always	computable,	or	0	when	discrete	operations	
• only	valuable	in	infinitesimal	ball		
• but	can	be	stochastic	(noise	viewed	as	an	extra	input)	
• requires	storing	the	full	forward	computation	state	(alternative:						

forward	accumulation,	both	memory	and	compute	heavy)	
• Boltzmann	machines:	stochastic	gradient	estimator	involves	sampling	

from	MCMC,	which	may	have	high	variance,	iterative	relaxation	
• REINFORCE	(or	random	perturbations	/	finite	differences):	very	general	

but	very	high	variance,	bad	scaling	
• Actor-Critic:	trades	off	some	variance	for	potentially	high	bias

3

Backprop wins
• In	practice,	when	backprop	can	be	used,	it	tends	to	work	MUCH	

better	than	any	of	the	other	principles	
• It	can	be	enhanced	by	various	adaptive	techniques	(adaptive	

learning	rate,	natural	gradient,	momentum-like	techniques)	
• Why?	

• only	needs	to	consider	ONE	direction	in	the	space	of	
variations	of	the	parameters	(the	gradient)	

• efficient	and	exact	computation	of	the	gradient

4

Limitations of backprop
• When	the	computation	is	DISCRETE	or	just	VERY	NONLINEAR	we	

are	in	trouble	with	backprop	
• very	deep	composition	of	non-linearities,	very	deep	nets	

(non-ResNet)	
• RNNs	with	long	sequences,	problem	with	long-term	

dependencies,	for	the	same	reason	
• The	effect	of	an	infinitesimal	change	does	not	always	tell	us	

what	a	small	but	finite	change	would	yield

5

Issues with Boltzmann Machines (with
the existing learning procedures)
• Sampling	from	the	MCMC	of	the	model	is	required	in	the	inner	loop	

of	training	
• As	the	model	gets	sharper,	mixing	between	well-separated	modes	

stalls

6

Training	updates

Mixing
vicious	circle

• Make	a	correction	that	guarantees	to	
first	order	that	the	projection	
estimated	target	is	closer	to	the	
correct	target	than	the	original	value

7

Difference Target-Prop
(Lee, Zhang, Fischer & Bengio 2014 & 2015)

Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied

fi(ĥi�1)

But we can get exact target if

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi

Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied

fi(ĥi�1)

But we can get exact target if

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi

Equilibrium	Propagation  
 

Bridging	the	Gap	Between	Energy-Based	Models	and	
Backpropagation

Benjamin	Scellier	&	Yoshua	Bengio
Montreal Institute for Learning Algorithms

arXiv:1602.0519	

Mostly	material	from:

How could we train a continuous time physical
system that performs computations?

• Consider	a	physical	system	that	performs	potentially	useful	
computations	through	its	deterministic	or	stochastic	dynamics	

• It	has	parameters						that	could	be	tuned	

• Tractable	cost	function	C	can	measure	how	good	are	its	answers	

• The	relationship	between	parameters	and	objective	J	(cost	at	
equilibrium	of	the	dynamics)	is	implicit	(via	the	dynamics)	

• How	to	estimate	the	gradient	of	the	loss	wrt	parameters?

9

Equilibria of the Dynamics
• Deterministic	case:	dynamics	converge	to	fixed	points	which	are	

minima	of	an	UNKNOWN	energy	function	F		

• Stochastic	case:	dynamics	converge	in	probability	to	the	
Boltzmann	distribution	associated	with	UNKNOWN	F	

10

Clamping & Nudging
• The	outside	world	can	exert	some	

influence	on	v	
• Coefficients						control	how	much	

pressure	is	put	on	different	
elements	of	v	

• E.g.	

• Clamping	x:	
• Nudge	y	towards	right	answer	with	small																																						
11

Internal	
energy

External	
energy

Prediction:	clamp	x	and	let	y	free	with	

Proposed	‘Implicit’ 
Framework

Traditional	‘Explicit’ 
Framework

Main Theorem
• Gradient	on	the	objective	function	(cost	at	equilibrium)	can	be	

obtained	by	a	ONE-DIMENSIONAL	finite-difference

13

Small	
nudging

Sufficient	
statistic	
after	
nudging

Sufficient	
statistic	
before	
nudging

Stochastic Version
• Equilibrium	distribution:	

• Objective	=	expected	cost	under	that	distribution:	

• Theorem:

14

and
@L

@s

(✓, s

⇤
,�

⇤
) = 0, (59)

and then we do one step of gradient descent on L with respect to ✓, that is

�✓ / �@L

@✓

(✓, s

⇤
,�

⇤
). (60)

The first condition (Eq. 58) gives
@F

@s

(✓,�, s

⇤
, v) = 0) s

⇤
= s

�

✓,v

. (61)

Thus s⇤ is the 0-phase fixed point. Injecting this into the second condition (Eq. 59) we get

� · @

2

F

@�@s

(✓,�, s

�

✓,v

, v) + �

⇤ · @
2

F

@s

2

(✓,�, s, v) = 0. (62)

Comparing Eq. 62 and Eq. 21, we conclude that

�

⇤
= � · @s

�

✓

@�

, (63)

which is the directional derivative of the fixed point (as a function of �) at the point � in the direction �. Finally, injecting the
values of s⇤ and �

⇤ in Eq. 60, we get

�✓ / ��

⇤ · @

2

F

@s@✓

(✓,�, s

⇤
, v) = �� · @s

�

✓

@�

· @

2

F

@s@✓

(✓,�, s

�

✓

, v) (64)

= � lim

⇠!0

1

⇠

✓

@F

@✓

⇣

✓,� + ⇠�, s

�+⇠�

✓,v

, v

⌘

� @F

@✓

⇣

✓,�, s

�

✓,v

, v

⌘

◆

(65)

B/ Stochastic Framework
Rather than the deterministic dynamical system Eq. 37, a more likely dynamics would include some form of noise. As
suggested by Bengio and Fischer (2015), injecting Gaussian noise in the gradient system Eq. 37 leads to a Langevin dynamics,
which we write as the following stochastic differential equation:

ds = �@F

@s

(✓,�, s, v)dt+ �dB(t), (66)

where B(t) is a standard Brownian motion of dimension dim(s). In addition to the force � @F

@s

(✓,�, s, v)dt, the Brownian
term �dB(t) models some form of noise in the network. For fixed ✓, � and v, the Langevin dynamics Eq. 66 is known to
converge to the Boltzmann distribution (consequence of the Fokker-Planck equation).

Let us denote by p

�

✓,v

the Boltzmann distribution corresponding to the energy function F . It is characterized by

p

�

✓,v

(s) :=

e

�F (✓,�,s,v)

Z

�

✓,v

, (67)

where Z

�

✓,v

is the partition function

Z

�

✓,v

(s) :=

Z

e

�F (✓,�,s,v)

. (68)

Let us write E�

✓,v

the expectation over s ⇠ p

�

✓,v

(s). Similarly to the deterministic case, we define the objective function as

e

J

�

�

(✓, v) := E�

✓,v

� · @F
@�

(✓,�, s, v)

�

. (69)

As for the gradient on the cost function, the learning rule takes the form

d

d✓

e

J

�

�

(✓, v) = lim

⇠!0

1

⇠

✓

E�+⇠�

✓,v

@F

@✓

(✓,� + ⇠�, s, v)

�

� E�

✓,v

@F

@✓

(✓,�, s, v)

�◆

, (70)

as a consequence of Theorem 3 below, which generalizes Theorem 1 to the stochastic framework.

17

and
@L

@s

(✓, s

⇤
,�

⇤
) = 0, (59)

and then we do one step of gradient descent on L with respect to ✓, that is

�✓ / �@L

@✓

(✓, s

⇤
,�

⇤
). (60)

The first condition (Eq. 58) gives
@F

@s

(✓,�, s

⇤
, v) = 0) s

⇤
= s

�

✓,v

. (61)

Thus s⇤ is the 0-phase fixed point. Injecting this into the second condition (Eq. 59) we get

� · @

2

F

@�@s

(✓,�, s

�

✓,v

, v) + �

⇤ · @
2

F

@s

2

(✓,�, s, v) = 0. (62)

Comparing Eq. 62 and Eq. 21, we conclude that

�

⇤
= � · @s

�

✓

@�

, (63)

which is the directional derivative of the fixed point (as a function of �) at the point � in the direction �. Finally, injecting the
values of s⇤ and �

⇤ in Eq. 60, we get

�✓ / ��

⇤ · @

2

F

@s@✓

(✓,�, s

⇤
, v) = �� · @s

�

✓

@�

· @

2

F

@s@✓

(✓,�, s

�

✓

, v) (64)

= � lim

⇠!0

1

⇠

✓

@F

@✓

⇣

✓,� + ⇠�, s

�+⇠�

✓,v

, v

⌘

� @F

@✓

⇣

✓,�, s

�

✓,v

, v

⌘

◆

(65)

B/ Stochastic Framework
Rather than the deterministic dynamical system Eq. 37, a more likely dynamics would include some form of noise. As
suggested by Bengio and Fischer (2015), injecting Gaussian noise in the gradient system Eq. 37 leads to a Langevin dynamics,
which we write as the following stochastic differential equation:

ds = �@F

@s

(✓,�, s, v)dt+ �dB(t), (66)

where B(t) is a standard Brownian motion of dimension dim(s). In addition to the force � @F

@s

(✓,�, s, v)dt, the Brownian
term �dB(t) models some form of noise in the network. For fixed ✓, � and v, the Langevin dynamics Eq. 66 is known to
converge to the Boltzmann distribution (consequence of the Fokker-Planck equation).

Let us denote by p

�

✓,v

the Boltzmann distribution corresponding to the energy function F . It is characterized by

p

�

✓,v

(s) :=

e

�F (✓,�,s,v)

Z

�

✓,v

, (67)

where Z

�

✓,v

is the partition function

Z

�

✓,v

(s) :=

Z

e

�F (✓,�,s,v)

. (68)

Let us write E�

✓,v

the expectation over s ⇠ p

�

✓,v

(s). Similarly to the deterministic case, we define the objective function as

e

J

�

�

(✓, v) := E�

✓,v

� · @F
@�

(✓,�, s, v)

�

. (69)

As for the gradient on the cost function, the learning rule takes the form

d

d✓

e

J

�

�

(✓, v) = lim

⇠!0

1

⇠

✓

E�+⇠�

✓,v

@F

@✓

(✓,� + ⇠�, s, v)

�

� E�

✓,v

@F

@✓

(✓,�, s, v)

�◆

, (70)

as a consequence of Theorem 3 below, which generalizes Theorem 1 to the stochastic framework.

17

and
@L

@s

(✓, s

⇤
,�

⇤
) = 0, (59)

and then we do one step of gradient descent on L with respect to ✓, that is

�✓ / �@L

@✓

(✓, s

⇤
,�

⇤
). (60)

The first condition (Eq. 58) gives
@F

@s

(✓,�, s

⇤
, v) = 0) s

⇤
= s

�

✓,v

. (61)

Thus s⇤ is the 0-phase fixed point. Injecting this into the second condition (Eq. 59) we get

� · @

2

F

@�@s

(✓,�, s

�

✓,v

, v) + �

⇤ · @
2

F

@s

2

(✓,�, s, v) = 0. (62)

Comparing Eq. 62 and Eq. 21, we conclude that

�

⇤
= � · @s

�

✓

@�

, (63)

which is the directional derivative of the fixed point (as a function of �) at the point � in the direction �. Finally, injecting the
values of s⇤ and �

⇤ in Eq. 60, we get

�✓ / ��

⇤ · @

2

F

@s@✓

(✓,�, s

⇤
, v) = �� · @s

�

✓

@�

· @

2

F

@s@✓

(✓,�, s

�

✓

, v) (64)

= � lim

⇠!0

1

⇠

✓

@F

@✓

⇣

✓,� + ⇠�, s

�+⇠�

✓,v

, v

⌘

� @F

@✓

⇣

✓,�, s

�

✓,v

, v

⌘

◆

(65)

B/ Stochastic Framework
Rather than the deterministic dynamical system Eq. 37, a more likely dynamics would include some form of noise. As
suggested by Bengio and Fischer (2015), injecting Gaussian noise in the gradient system Eq. 37 leads to a Langevin dynamics,
which we write as the following stochastic differential equation:

ds = �@F

@s

(✓,�, s, v)dt+ �dB(t), (66)

where B(t) is a standard Brownian motion of dimension dim(s). In addition to the force � @F

@s

(✓,�, s, v)dt, the Brownian
term �dB(t) models some form of noise in the network. For fixed ✓, � and v, the Langevin dynamics Eq. 66 is known to
converge to the Boltzmann distribution (consequence of the Fokker-Planck equation).

Let us denote by p

�

✓,v

the Boltzmann distribution corresponding to the energy function F . It is characterized by

p

�

✓,v

(s) :=

e

�F (✓,�,s,v)

Z

�

✓,v

, (67)

where Z

�

✓,v

is the partition function

Z

�

✓,v

(s) :=

Z

e

�F (✓,�,s,v)

. (68)

Let us write E�

✓,v

the expectation over s ⇠ p

�

✓,v

(s). Similarly to the deterministic case, we define the objective function as

e

J

�

�

(✓, v) := E�

✓,v

� · @F
@�

(✓,�, s, v)

�

. (69)

As for the gradient on the cost function, the learning rule takes the form

d

d✓

e

J

�

�

(✓, v) = lim

⇠!0

1

⇠

✓

E�+⇠�

✓,v

@F

@✓

(✓,� + ⇠�, s, v)

�

� E�

✓,v

@F

@✓

(✓,�, s, v)

�◆

, (70)

as a consequence of Theorem 3 below, which generalizes Theorem 1 to the stochastic framework.

17

Application to
Supervised Learning
• Negative	phase:	

• Clamp	x	with	
• Let	y	free	with	
• Let	dynamics	converge	to	minimum	of	energy	
• Read	out	the	prediction	y	and	measure	loss	C	
• Measure	sufficient	statistics	

• Positive	phase:	
• Nudge	y	towards	smaller	loss	by	setting		
• Let	dynamics	converge	to	nearby	modified	min	of	energy	
• Measure	sufficient	statistics	

• Update	parameters	towards	the	difference	in	suff.	stat.

15

No Need for Calibration of Physical System wrt
Idealized Analytic Model

• Traditional	analog	circuits	are	meant	to	approximate	an	analytic	
model	defined	by	an	equation	

• Analog	physical	implementation	are	imperfect	proxys	à need	
to	calibrate	and	deal	with	low-precision	approximation	

• Alternatively:	tune	the	parameters	wrt	the	ACTUAL	energy	
implemented	by	the	physical	system,	using	Equilibrium	
Propagation

16

Inherits Properties of Backprop
• Unlike	finite-difference	methods	in	parameter	space,	backprop	is	

equivalent	to	finite	difference	IN	A	SINGLE	DIRECTION,	THE	
DIRECTION	OF	THE	COST	GRADIENT.	Same	here.	

• In	the	case	where	the	network	has	a	multi-layer	structure,	we	can	
show	that	the	propagation	of	perturbations	(nudges)	
corresponds	to	back-propagation	of	gradients	
• First	shot	at	showing	this	in		
• Bengio	&	Fischer,	Early	Inference	in	Energy-Based	Models	Approximates	

Back-Propagation,	arXiv:1510.02777

17

Propagation of errors = propagation of surprises
= getting back in harmony

Variation	on	the	output	y	is	propagated	into	a	variation	in	h1		

mediated	by	the	feedback	weights	WT	=		
transpose	of	feedforward	weights	W	

Then	the	variation	in	h1		is	transformed	

into	a	variation	in	h2	,	etc.	

And	we	show	that					proportional	to	

18

W WT

Bengio	&	Fischer,	2015,	arXiv:1510.02777	

Equilibrium Propagation Includes
Ordinary Backprop for Feedforward
Nets as Special Case

• Consider	the	internal	energy	function	

With	layered	architecture,						=	l-th	layer	of	activations,		
						=	parametrized	computation	at	l-th	layer.	
• E	has	a	global	minimum	at	
• It	is	also	a	mode	associated	with	stationary	distribution.	

19

Equilibrium Propagation Includes
Ordinary Backprop for Feedforward
Nets as Special Case
• With	this	feedforward-compatible	energy-function		

• Negative	phase	is	EQUIVALENT	to	feedforward	prop.	
• Positive	phase:	nudge	outputs,	nudges	propagated	backwards	
• Equilibrium-propagation	estimates	the	same	gradient	as	backprop	in	a	

feedforward	net,	but	using	a	physical	(analog)	dynamical	system	which	
implements	the	above	energy	function,	with	no	need	for	a	separate	circuit	
for	backpropagation.

20

Connection to Marginal Log-Likelihood
(Boltzmann Machine)

• Define	

• Thm:		if	F	is	linear	in								then	

• Note	that	

• Corollary:

21

22

Interpretation for Biological
Implementation of Backprop à STDP
•  This	was	the	ini+al	mo+va+on	
•  Hopfield(-like)	energy	func+on		

•  gives	rise	to	neurally	plausible	dynamics	(with	gradient	descent	

or	Langevin	dynamics)	

•  Sufficient	sta+s+cs	=	Hebbian	

•  Update:	a	form	of	contras+ve	Hebbian	update	

•  Can	be	implemented	by	con+nuously	following																																			

during	the	posi+ve	phase	=	STDP	update.	

•  Remaining	issue:	need	symmetric	weights.	
25	

3 Hopfield Model Revisited: A More Biologically Plausible Backprop
To illustrate our implicit framework for machine learning, we propose in this section a new kind of ’backprop’ that has some
features that make more sense, from a physical point of view, than the one implemented by feedforward nets. However, still
several points need to be elucidated from a biological perspective. Perhaps the most important of them is that our model (like
many other models) requires symmetric weights.

The setting considered here is the supervised setting presented in section 2.2. In the context of neural networks, the state
s = {x, y, h} is the vector of the states of the units and ✓ = (W, b) represents the set of free parameters to be learned,
which includes the synaptic weights W

ij

and the neuron biases b

i

. The units are continuous-valued and would correspond
to averaged voltage potential across time, spikes, and possibly neurons in the same minicolumn. Finally, ⇢ is a nonlinear
activation function such that ⇢(s

i

) represents the firing rate of unit i. The network is recurrently connected with symmetric
connections. The algorithm presented here is applicable to any architecture, even a fully connected network. However, to
make the connection to backpropagation more obvious, we will consider more specifically a layered architecture with no
skip-connections and no lateral connections within a layer (Figure 4).

Figure 3: Our algorithm works for any architecture, even a fully connected network.

3.1 A Kind of Hopfield Energy
Recall that in the supervised setting introduced in section 2.2, the energy function F is divided into an internal potential E and
an external potential A (Eq. 5). Moreover the external potential A is the quadratic potential (Eq. 6). As an internal potential
E, we consider here a kind of Hopfield energy, first studied by Bengio and Fischer (2015); Bengio et al. (2015a,b):

E(✓, s) :=

1

2

X

i

s

2

i

� 1

2

X

i 6=j

W

ij

⇢(s

i

)⇢(s

j

)�
X

i

b

i

⇢(s

i

). (34)

The connections are supposed to be symmetric, that is W
ij

= W

ji

. Note that

@E

@W

ij

(✓, s) = �⇢(s

i

)⇢(s

j

). (35)

Thus, the learning rule Eq. 10 can be rewritten

�W

ij

/ lim

⇠!0

1

⇠

⇣

⇢

⇣

s

⇠

i

⌘

⇢

⇣

s

⇠

j

⌘

� ⇢

�

s

0

i

�

⇢

�

s

0

j

�

⌘

(36)

where s

⇠

:= s

�+⇠�

✓,v

and s

0

:= s

�

✓,v

represent the ⇠-fixed point and the 0-fixed point. Thus, the learning rule Eq. 36 is a kind
of contrastive Hebbian learning rule, somewhat similar to the one studied by Movellan (1990) and the Boltzmann machine
learning rule. The differences with these algorithms will be discussed in section 4.1.

8

3 Hopfield Model Revisited: A More Biologically Plausible Backprop
To illustrate our implicit framework for machine learning, we propose in this section a new kind of ’backprop’ that has some
features that make more sense, from a physical point of view, than the one implemented by feedforward nets. However, still
several points need to be elucidated from a biological perspective. Perhaps the most important of them is that our model (like
many other models) requires symmetric weights.

The setting considered here is the supervised setting presented in section 2.2. In the context of neural networks, the state
s = {x, y, h} is the vector of the states of the units and ✓ = (W, b) represents the set of free parameters to be learned,
which includes the synaptic weights W

ij

and the neuron biases b

i

. The units are continuous-valued and would correspond
to averaged voltage potential across time, spikes, and possibly neurons in the same minicolumn. Finally, ⇢ is a nonlinear
activation function such that ⇢(s

i

) represents the firing rate of unit i. The network is recurrently connected with symmetric
connections. The algorithm presented here is applicable to any architecture, even a fully connected network. However, to
make the connection to backpropagation more obvious, we will consider more specifically a layered architecture with no
skip-connections and no lateral connections within a layer (Figure 4).

Figure 3: Our algorithm works for any architecture, even a fully connected network.

3.1 A Kind of Hopfield Energy
Recall that in the supervised setting introduced in section 2.2, the energy function F is divided into an internal potential E and
an external potential A (Eq. 5). Moreover the external potential A is the quadratic potential (Eq. 6). As an internal potential
E, we consider here a kind of Hopfield energy, first studied by Bengio and Fischer (2015); Bengio et al. (2015a,b):

E(✓, s) :=

1

2

X

i

s

2

i

� 1

2

X

i 6=j

W

ij

⇢(s

i

)⇢(s

j

)�
X

i

b

i

⇢(s

i

). (34)

The connections are supposed to be symmetric, that is W
ij

= W

ji

. Note that

@E

@W

ij

(✓, s) = �⇢(s

i

)⇢(s

j

). (35)

Thus, the learning rule Eq. 10 can be rewritten

�W

ij

/ lim

⇠!0

1

⇠

⇣

⇢

⇣

s

⇠

i

⌘

⇢

⇣

s

⇠

j

⌘

� ⇢

�

s

0

i

�

⇢

�

s

0

j

�

⌘

(36)

where s

⇠

:= s

�+⇠�

✓,v

and s

0

:= s

�

✓,v

represent the ⇠-fixed point and the 0-fixed point. Thus, the learning rule Eq. 36 is a kind
of contrastive Hebbian learning rule, somewhat similar to the one studied by Movellan (1990) and the Boltzmann machine
learning rule. The differences with these algorithms will be discussed in section 4.1.

8

3.2 The Neuronal Dynamics
It has been hypothesized numerous times (Hinton and Sejnowski, 1986; Friston and Stephan, 2007; Berkes et al., 2011) that,
given a state of sensory information (current and past inputs), neurons are collectively performing inference, i.e., moving
towards configurations that better ’explain’ the observed sensory data. We can think of the neurons’ configuration as an
’explanation’ (or ’interpretation’) for the observed sensory data, In the energy-based model presented here, that means that
the units of the network gradually move towards lower energy configurations that are more probable, given the sensory input
and according to the current "model of the world" associated with the parameters of the model.

An obvious way to infer the fixed point s�
✓,v

is to perform gradient descent on F (✓,�, s, v) with respect to s. Thus we
assume that the time evolution of the units is governed by the gradient system

ds

dt

= �@F

@s

(✓,�, s, v). (37)

Unlike more conventional artificial neural networks, the model that we study here is a continuous-time dynamical system
described by the differential equation of motion Eq. 37. The total energy of the system decreases as time progresses (✓, � and
v being fixed) since

dF

dt

=

@F

@s

(✓,�, s, v) · ds
dt

= �
�

�

�

�

ds

dt

�

�

�

�

2

 0. (38)

The energy stops decreasing when the network has reached a fixed point:

dF

dt

= 0 , ds

dt

= 0 , @F

@s

(✓,�, s, v) = 0 , s = s

�

✓,v

. (39)

The differential equation of motion Eq. 37 can be seen as a sum of two ’forces’ that act on the temporal derivative of s:

ds

dt

= �@E

@s

(✓, s)� @A

@s

(�, s, v). (40)

The ’internal force’ induced by the internal potential (Eq. 34) on the i-th unit is

�@E

@s

i

(✓, s) = ⇢

0
(s

i

)

0

@

X

j 6=i

W

ij

⇢(s

j

) + b

i

1

A� s

i

, (41)

while the ’external force’ induced by the external potential (Eq. 6) on x

i

, y
i

and h

i

is respectively

� @A

@x

i

(�, s, v) = �

x

(x

i

� x

i

), � @A

@y

i

(�, s, v) = �

y

(y

i

� y

i

) and � @A

@h

i

(�, s, v) = 0. (42)

The form of Eq. 41 recalls a kind of leaky integrator neuron model, in which neurons are seen as performing leaky temporal
integration of their past inputs. Note that the hypothesis of symmetric connections (W

ij

= W

ji

) was used to derive Eq. 41.
As discussed in Bengio and Fischer (2015), the factor ⇢0(s

i

) would suggest that when a neuron is saturated (firing at the
maximal or minimal rate so that ⇢0(s

i

) ⇡ 0), its state is not sensitive to external inputs, while the leaky term drives it out of
the saturation regime, towards its resting value s

i

= 0.
The form of Eq. 42 suggests that when �

x

> 0, the ’external force’ drives the input unit x
i

towards the state of the world
x

i

. In the limit �
x

! +1, the input unit x
i

moves infinitely fast towards x
i

, so x

i

is immediately clamped to x

i

and is no
longer sensitive to the ’internal force’. The same reasoning holds for output units.

Finally, a more likely dynamics would include some form of noise. In the Appendix B, we present a stochastic framework
that naturally extends the analysis here.

3.3 Interpretation of the ⇠-Phase as Performing Backpropagation of Errors
Recall that in the supervised setting, we have � = {+1, 0} and � = {0, 1}, so that the 0-phase is with � = {+1, 0} and
the ⇠-phase is with �+ ⇠� = {+1, ⇠}. Although our algorithm works in principle with any infinitesimal ⇠ 6= 0, here we take
⇠ positive.

At the beginning of the ⇠-phase, starting from the 0-fixed point, the novel term 1

2

⇠ ky � yk2 in the external potential
induces a new ’external force’ that acts on the output units:

� @A

@y

i

(� + ⇠�, s, v) = ⇠(y

i

� y

i

). (43)

9

d

dt
⇢(si)⇢(sj)

Some Open Problems
• How	to	implement	this	in	analog	electric	circuit?	With	a	voltage	

source	and	current	flowing,	there	is	no	equilibrium	in	terms	of	
electrons’	energy	(position	&	momentum),	only	in	terms	of	
currents	and	voltages:	Lyapunov	function?	

• Get	rid	of	local	minima	of	energy	formulation	and	generalize	to	
system	defined	purely	by	its	dynamics,	learn	the	transition	
operator,	thus	avoiding	the	weight	symmetry	constraint	

• Generalize	these	ideas	to	unsupervised	learning	(ongoing)

23

Montreal	Institute	for	
Learning	Algorithms

