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Deep Learning Jobs in Montreal

e Faculty positions at all levels at U. Montreal
e Researcher positions at Element Al and Google Brain Montreal
e Researcher positions at U. Montreal (IVADO data science center)

e Studentships at all levels at U. Montreal

Something B | G

is happening in Montreal
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Some Credilt Assignment ‘Primaigt@,s

e Chain rule & Backprop: exact gradient wrt parameters, via gradient wrt
intermediate states

e not always computable, or O when discrete operations
* only valuable in infinitesimal ball
* but can be stochastic (noise viewed as an extra input)

e requires storing the full forward computation state (alternative:
forward accumulation, both memory and compute heavy)

* Boltzmann machines: stochastic gradient estimator involves sampling
from MCMC, which may have high variance, iterative relaxation

 REINFORCE (or random perturbations / finite differences): very general
but very high variance, bad scaling

* Actor-Critic: trades off some variance for potentially high bias



Ba{mprap WS

In practice, when backprop can be used, it tends to work MUCH
better than any of the other principles

It can be enhanced by various adaptive techniques (adaptive
learning rate, natural gradient, momentume-like techniques)

Why?

e only needs to consider ONE direction in the space of
variations of the parameters (the gradient)

e efficient and exact computation of the gradient



Limitations of backprop

e When the computation is DISCRETE or just VERY NONLINEAR we
are in trouble with backprop

e very deep composition of non-linearities, very deep nets
(non-ResNet)

e RNNs with long sequences, problem with long-term
dependencies, for the same reason

 The effect of an infinitesimal change does not always tell us
what a small but finite change would yield



Issues wikth Bolkzwanin Machines (wikh
the existing learning procedures)

e Sampling from the MCMC of the model is required in the inner loop
of training

e As the model gets sharper, mixing between well-separated modes
st
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Training updates
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Difference Target-Prop

(Lee, Zhawng, Fischer & Bengio 2014 &% 2018) hi. ° h;

first order that the projection

estimated target is closer to the

correct target than the original value f
7

e Make a correction that guarantees to /
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Mostly material from:

Equilibrium Propagation

Bridging the Gap Between Energy-Based Models and
Backpropagation

arXiv:1602.0519

Benjamin Scellier & Yoshua Bengio
Montreal Institute for Learning Algorithms



How could we Erain a conbtinuous ktime phvs&@&i
system that performs computations?

e Consider a physical system that performs potentially useful
computations through its deterministic or stochastic dynamics

e |t has parameters (9that could be tuned

* Tractable cost function C can measure how good are its answers

* The relationship between parameters and objective J (cost at
equilibrium of the dynamics) is implicit (via the dynamics)

e How to estimate the gradient of the loss wrt parameters?



Equilibria of the Dynamics

e Deterministic case: dynamics converge to fixed points which are
minima of an UNKNOWN energy function F

OF ,
— =0 s=0
0s
e Stochastic case: dynamics converge in probability to the
Boltzmann distribution associated with UNKNOWN F

s~ P(s) x e F(s)
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Clamping & Nudging

e The outside world can exert some
influence on v

.. Network
e Coefficients Bcontrol how much ewor

pressure is put on different

elements of v

F(B,6,5,) = Elf5) + A8,

Internal External
energy energy
Ly 1 :
. Eg AlB,s,v)= F 4 501y =l
e Clamping x: 5:6 —_)'Q Prediction: clamp x and let y free with 5y — O

 Nudge y towards right answer with small By — €
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Traditional ‘Explicit” Proposed ‘Implicit’

Framework Framework
Objective Function Objective Function
J(0,v) = C (0, fo(v),v) Ji0,v) = C8 (9, s v)
A T \ T
| Cost Function | Cost Function
\ oF
i) T r
C(0,-,v) Cy(0,,v) =4 o (60,5,+,v)
\ T - ' | r S
Prediction Learned Prediction Learned
B Parameter S = 5; e Parameter
Gy '
5= ) 0 local minimum of 9
s+ F(0,0,s,v)
I I

Data V Data V




Main Theorem

e Gradient on the objective function (cost at equilibrium) can be
obtained by a ONE-DIMENSIONAL finite-difference

d—dgﬁ(e V) = mn-(dF(eHgas”f ) dF(f)ﬁs ))

Small Sufficient Sufficient
nudging statistic statistic
after before

nudging nudging
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Skochastic Version

5 e—F(Q,,B,s,V)

e Equilibrium distribution: Do (s) ==

Zy
* Objective = expected cost under that distribution:

Ta0%) =B, 8- 526.5,5.v)

e Theorem:

d 1 OF

- OF
5 o L (nates w8
d@JB (4,v) gl_rf(l) : (Ee,v [8«9 (9,5+§5,5,V)] Eg . [89 (9,5,8,V)]>
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Apptwa&om to

y
Su,parvasaci Learning
* Negative phase: External World
* Clamp x with 596 — 00 ”
* Let y free with B — 0 o X
y =

* Let dynamics converge to minimum of energy
* Read out the prediction y and measure loss C
* Measure sufficient statistics ——
e Positive phase:
* Nudge y towards smaller loss by setting ﬁy — €
* Let dynamics converge to nearby modified min of energy
* Measure sufficient statistics ——

00

* Update parameters towards the difference in suff. stat.
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No Need for Calibration of Physical System wrt
Idealized Ama\ij?:ér: Model

e Traditional analog circuits are meant to approximate an analytic
model defined by an equation

e Analog physical implementation are imperfect proxys 2 need
to calibrate and deal with low-precision approximation

e Alternatively: tune the parameters wrt the ACTUAL energy
implemented by the physical system, using Equilibrium
Propagation

16



Inherits Properties of Backprop

e Unlike finite-difference methods in parameter space, backprop is
equivalent to finite difference IN A SINGLE DIRECTION, THE
DIRECTION OF THE COST GRADIENT. Same here.

 |n the case where the network has a multi-layer structure, we can
show that the propagation of perturbations (nudges)
corresponds to back-propagation of gradients

 First shot at showing this in

e Bengio & Fischer, Early Inference in Energy-Based Models Approximates
Back-Propagation, arXiv:1510.02777
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Propagation of errors = propagation of surprises

= getting back in harmony
Bengio & Fischer, 2015, arXiv:1510.02777

Variation on the output y is propagated into a variation in h,

mediated by the feedback weights W' =

transpose of feedforward weights W v O 0 00
1
Then th iationinh, ist f d
en the variation in h, is transforme MmO OO O
into a variation in h,, etc. I
oC

And we show that / proportionalto  5p,
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Equ&iibrmm ?rc:-pag&&mm Includes
Ordinary Backprop for Feedforward
Nebs as Spa«ti&i Case

e Consider the internal energy function

E =Y |lh— filhi—1)]’
[

With layered architecture, hl= [-th layer of activations, ho =x
fl = parametrized computation at /-th layer.

e E has a global minimum at hl — fl (hl—l)
e |tisalsoa mode associated with stationary distribution.
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Equilibrium Propagation Includes
Ordinary Backprop for Feedforward

Nebs as Spef:mt Case v 0000
e With this feedforward-compatible energy-function I
E=> |lhi— filhi-1)| 1

) hey O O O O
 Negative phase is EQUIVALENT to feedforward prop. I

e Positive phase: nudge outputs, nudges propagated backwards r 000 O
e Equilibrium-propagation estimates the same gradient as backprop in a

feedforward net, but using a physical (analog) dynamical system which

implements the above energy function, with no need for a separate circuit
for backpropagation.
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Connection to Marginal Log-Likelihood
(Bolbzmanin Machine)

* Define ¢(€) — log Epg [6—56’]
e Thm: if Fis linear in 6 then

¢(§) = log Zgi¢s — log Zg

e Note that
dlogZg OF "(0) = .J
=8 — Byl ¢'(0) = Jg
e OF0.5+s0). . OF(8,5,50)
Y ,S’/U 9 787/0
o0 — _EPB+£5[ 90 ] | EPB[ 90 ]

09(§) 0log pg(v

lim —

t—soo 00 06
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Interpretation for Biological
Implementation of Backprop > STDP

e This was the initial motivation
e Hopfield(-like) en%rgy function

sy 1
E(s)=) 5 " 5 > Wip(si)p(s;) — Y bip(si)
e givesrise to nzeurally platfgiélgle dynamics (with graéient descent
or Langevin dynamics) _gSE (0.5) = p'(s:) (Z Wiip(s;) + bi) s
’ J#

. Sufficient statistics = Hebbian _9Z (0,5) = —p(si)p(s;)
8Wij ’

e Update: a form of contrastive Hebbianlupdate
AW:; oc lim £ (P (Sf> pd(sﬁ) —p(s))p (52))

—0
e Can be implemented by continuously foIIowngIO(Si)p(Sj)

during the positive phase = STDP update.

e Remaining issue: need symmetric weights.
25



Some Open Problems

23

How to implement this in analog electric circuit? With a voltage
source and current flowing, there is no equilibrium in terms of
electrons’ energy (position & momentum), only in terms of
currents and voltages: Lyapunov function?

Get rid of local minima of energy formulation and generalize to
system defined purely by its dynamics, learn the transition
operator, thus avoiding the weight symmetry constraint

Generalize these ideas to unsupervised learning (ongoing)
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