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Outline of the Tutorial

1. Motivations and Scope

2. Algorithms

3. Analysis, Issues and Practice
4. Applications to NLP

5. Culture vs Local Minima

See (Bengio, Courville & Vincent 2012)
“Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”
And for a pdf of the

slides and a detailed list of references.



OLkimate Goals

e Al

e Needs knowledge

e Needs learning

* Needs generalizing where probability mass
concentrates

e Neeg

e NeecC
(Ima

s ways to fight the curse of dimensionality
s disentangling the underlying explanatory factors

King sense of the data”)



Representation Learning

e Good features essential for successful ML
 Handcrafting features vs learning them

e Good representation: captures posterior belief about
explanatory causes, disentangles these underl m
factors of variation ' ‘

e Representation learning: guesses
the features / factors / causes =

good representation.



Deep Representation Learning

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction

When the number of levels can be data-
selected, this is a deep architecture
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A Good 0Ld ‘Dee.p Architecture

Optional Output layer

Here predicting a supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer —

This has raw sensory inputs (roughly)



What We Are Fighting Against:
The Curse ofDimensionality

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting features

1 dimension:
10 positions

2 dimensions:
100 positions
(o]

> 3 dimensions:
1000 positions!



Easy Learning

learned function: prediction = f(x)




Local Smoothness Prior: Locatty
Capture the Variakions

* = training example

YA

true functjgn: unknbwn

prediction

.-~""learnt = interpolat
f X I , .’ .
(x) oy




Real Data Are o Highly Curved
Manifolds

" [shrinking )

“transformation
1 wn
v

raw input vector space
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Nokt bimensionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Is there any ho pe to
generalize v\av\%acattv?

Yes! Need more pri.ars!
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Part 1

Six Grood Reasons ko Exptare.
Represev\&akiov\ Learning



# 1 Learning features, not just
handerafting them

Most ML systems use very carefully hand-designed
features and representations

Many practitioners are very experienced — and good — at such
feature design (or kernel design)

“Machine learning” often reduces to linear models (including
CRFs) and nearest-neighbor-like features/models (including n-
grams, kernel SVMs, etc.)

Hand-crafting features is time-consuming, brittle, incomplete
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How cah we automatically Llearn good
features?

Claim: to approach Al, need to move scope of ML beyond
hand-crafted features and simple models

Humans develop representations and abstractions to
enable problem-solving and reasoning; our computers
should do the same

Handcrafted features can be combined with learned
features, or new more abstract features learned on top
of handcrafted features

15



# 2 The need for distributed
representations

e (lustering, Nearest-

Clusterin
N ne Neighbors, RBF SVMs, local
X > non-parametric density
D estimation & prediction,

decision trees, etc.

e Parameters for each
distinguishable region

LOCAL PARTITION

e # distinguishable regions
linear in # parameters

16



# 2 The need for distributed
representations

Multi-
i Sub—partition 3
CIUSterlng \pClzl Sub-—partition 2
e Factor models, PCA, RBMs, e e S
Neural Nets, Sparse Coding, o
Deep Learning, etc. Sub—partition 1 N

e Each parameter influences
many regions, not just local
neighbors Voo
e # distinguishable regions C osTmvmbRARITON
grows almost exponentially
with # parameters

e GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Cl1=0
C2=1 \

C1 C2 C3

input
17



# 2 The need for distributed
representations

Clustering e
. Sub—partition 3
CIUSterlng ‘\pm:l Sub—partition 2
)\ gé:(l) ‘\(Cj»z‘:('] i"l‘:
C3=0 \ /
Sub—partition 1 3 coel
X

Cl1=0

et \ Ci=0
C3=0 \ Co=1
\ C3=1

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than

nearest-neighbor-like or clustering-like models

18



#3 Uv\sugervise.d fealure Learning

Today, most practical ML applications require (lots of)
labeled training data

But almost all data is unlabeled

The brain needs to learn about 104 synaptic strengths

... in about 10° seconds
Labels cannot possibly provide enough information

Most information acquired in an unsupervised fashion

19



# 3 How do humans generalize
from very few examples?

20

They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

Previous learning from: unlabeled data
+ labels for other tasks

Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)



F 3 Sharing Statistical Strength bj
Semi-Supervised Learning

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised

21



H 4 Learhing multiple Levels
of representation

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and then compose
them to more complex ones

22



#4 Sharing Compov\eu!:s N a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

3) 2X3) + (1374)
Sum-product
network
LYy

Theorems in
(Bengio & Delalleau, ALT 2011;

Delalleau & Bengio NIPS 2011)
xrs T4



#4- Learning mui.!:ipi.e levels FE %

X . jé,, =5 5
Of TQP‘“QSQ“EQ&LQV\ (Lee, Largman, Pham & Ng, NIPS 2009)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
to form objects

A LA TN AL VP
\\ \\ N \,"‘ Layer 1

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




#4“ Handling the compasi&i.onau&v
of human language and thought

e Human languages, ideas, and “ \ i -
artifacts are composed from £>

simpler components I

e Recursion: the same
operator (same parameters)
is applied repeatedly on
different states/components
of the computation

e Result after unfolding = dee
) 5 P (Bottou 2011, Socher et al 2011)
representations 5
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#E Mulli-Task Learning

e Generalizing better to new
tasks is crucial to approach Al

e Deep architectures learn good
intermediate representations
that can be shared across tasks

e Good representations that
disentangle underlying factors
of variation make sense for
many tasks because each task
concerns a subset of the factors

26



FHE sharing Statistical Stremgth

e Multiple levels of latent
variables also allow
combinatorial sharing of
statistical strength:
intermediate levels can also
be seen as sub-tasks

e E.g.dictionary, with
intermediate concepts re-
used across many definitions

Prior: some shared underlying explanatory factors between tasks

27



#5 Cambm&ng Multiple Sources of
Evidence with Shared epresen&a&i.ovxs

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types
across data sources
e Shared learned representations help event ur' person
propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...
(Bordes et al AISTATS 2012) 8

e Traditional ML: data = matrix

history words url

P(person,url,event) '

P(url,words,history)

28



#6 Different object types

represented i same space

DOLPHIN
OBAMA
—EIFFEL TOWER

) Google:

| S. Bengio, J.
Weston & N.
Usunier

Lo (1CAI 2011,

NIPS’2010,
JMLR 2010,
MLJ 2010)

100-dim
embedding space

Learn ®(<) and &,(-) to optimize precision@k.



#6 Invariance and “Di.sev\&avxgung

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

30



#6 Emergence of Disentangling

TR ;‘;—!
7 N
T

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

Bas St

31



#6 Sparse Representations

e Just add a penalty on learned representation
e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information

Prior: only few concepts and attributes relevant per example

32



Deep Sparse Rectifier Neural Networlks
(

Glorot,Bordes and Bengio AISTATS 2011), following up on (Nair & Hinton 2010)

Neuroscience motivations
Leaky integrate-and-fire model

200 et
_—
N 150 -~
= - . : o
£ 100 / Machine learning motivations
: /
= 50 mm) Sparse representations
0 mm) Sparse and linear gradients
2 4 6 8 10
Input current (A) -9
x 10
Output
1 [—Sigmoid |
~——Tanh
0.5 Hidden layer 2
c) 0//
05 Hidden layer 1
' /
-1
2 1 0 1 2 3 -3 2 1 0 1 2 3 Input
Rectifier Commonly used functions
f(x)=max(0,x)
mm) One-sided
mm) Real zeros

mmp “default’ regime at 0




Deep Sparse Rectifier Neural Nets:

Can train deeper supervised nets!

Experiments and results
Stacked denoising autoencoder

4 image recognition and 1 sentiment analysis datasets
Better generalization than hyperbolic tangent networks

Rectifier networks achieve their best performance without
needing unsupervised pre-training

1 1111

Unsupervised pre-training is beneficial in the semi-
supervised setting

NISTP

Neuron

MNIST

CIFAR10

NISTP

NORB

L/ S5TIA Ly L O

With unsupervised pre-training
Rectifier| 1.20% | 49.96% |32.86% [16.46%
Tanh 1.16% | 50.79% |35.89% | 17.66%
Softplus | 1.17% | 49.52% |33.27% | 19.19%

Without unsupervised pre-training
Rectifier| 1.43% | 50.86% |32.64% [16.40%
Tanh 1.57% | 52.62% |36.46% | 19.29%
Softplus | 1.77% | 53.20% |35.48% | 17.68%

_________ T .
Tanh+pretraining ||
~~"Rect
- Rect+pre’_[raining |

10 20

i
30

|
40

i
50

i
60

i
70

Ratio of supervised examples (%)




Tem Fo'mt Coherence and Scales

e One of the hints from nature about different explanatory
factors:

e Rapidly changing factors (often noise)

* Slowly changing (generally more abstract)
* Different factors at different time scales

e We should exploit those hints to disentangle better!

e (Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &
Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al
2009, Bergstra & Bengio 2009)



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently

36



Bypassing the curse by sharing
statistical strength

e Besides very fast GPU-enabled predictors, the main advantage
of representation learning is statistical: potential to learn from
less labeled examples because of sharing of statistical strength:

* Unsupervised pre-training and semi-supervised training
* Multi-task learning

* Multi-data sharing, learning about symbolic objects and their
relations

37



Nkv NOw ¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful

(except for convolutional neural nets when used by people who speak French)

What has changed?

*  New methods for unsupervised pre-training have been
developed (variants of Restricted Boltzmann Machines =
RBMs, regularized autoencoders, sparse coding, etc.)

* Better understanding of these methods

* Successful real-world applications, winning challenges and

beating SOTASs in various areas
38



39

Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

Sparse coding variants

WA  Bengi
Montréal
Torontg 7R
Hinto -
%8 Le Cun
212 New York



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Ckal:&_gvxge: ‘Deeﬂgwg,eamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




More Successful Applications

41

Microsoft uses DL for speech rec. service (audio video indexing), based on
Hinton/Toronto’s DBNs (Mohamed et al 2011)

Google uses DL in its Google Goggles service, using Ng/Stanford DL systems

NYT talks about these: http://www.nytimes.com/2012/06/26/technology/in-a-
big-network-of-computers-evidence-of-machine-learning.html?_r=1

Substantially beating SOTA in language modeling (perplexity from 140 to 102
on Broadcast News) for speech recognition (WSJ WER from 16.9% to 14.4%)
(Mikolov et al 2011) and translation (+1.8 BLEU) (Schwenk 2012)

SENNA: Unsup. pre-training + multi-task DL reaches SOTA on POS, NER, SRL,
chunking, parsing, with >10x better speed & memory (Collobert et al 2011)

Recursive nets surpass SOTA in paraphrasing (Socher et al 2011)
Denoising AEs substantially beat SOTA in sentiment analysis (Glorot et al 2011)
Contractive AEs SOTA in knowledge-free MNIST (.8% err) (Rifai et al NIPS 2011)

Le Cun/NYU'’s stacked PSDs most accurate & fastest in pedestrian detection
and DL in top 2 winning entries of German road sign recognition competition



More aboul de.p!:k
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Architecture bap&k

output

element

SRIESIE AR




‘De.e.p Architectures are Mcre
Expresswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproxima’ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio &

Delalleau 2011, Braverman 2011)

Functions compactly represented
with k layers may require
exponential size with 2 layers




N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



9 TR3 a8°

* A ov SK.O' 5 A ~EATER
COMNECTION ADNTS SEE
BELow FOR NEATR CRCUT

COMPLETE CIRCUIT DIAGRAM, SERIES 420




“Shallow” circuit

iInput

123 n

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture



Sum~Produck Nebworlkes

0.5x1 4+ x9 + 3.1x3

0.5

Depth 2 suffices to represent any finite
polynomial (sum of products)

(Poon & Domingos 2010) use deep sum-
product networks to efficiently parametrize
partition functions



?otvmwmmts Ehak Need ‘Dep%k

2 gl gl g
(3 =0+ U5 = x129 + 2374 = f1(21, 22, 73, 24)

e 2; layers and n = 4' input variables
e alternate additive and multiplicative units

o unit (" takes as inputs (5! -1 and féj_ !

Need O(n) nodes with depth log(n) circuit
Need O(2'") nodes with depth-2 circuit



More ‘Poi.jmcmmts Ehobk Need "bep&k

(3 =22 + 23 + 22 + 3(2179 + 7173 + T973)

(2 = 23+ xy79
+ri1r3 + Tok3

(3 = 22 + x179
+2171173 + Tols

I 9 T3

e 2; + 1 layers and n variables (n independent of 7)
e alternate multiplicative and additive units
o unit (¥ takes as inputs {(¥|m # j}



More ‘Deep T‘heory

Poly-logarithmic Independence Fools Bounded-
Depth Boolean Circuits

Braverman, CACM 54(4), April 2011.

If all marginals of the input distribution involving
at most k variables are uniform, higher depth
makes it exponentially easier to distinguish the
joint from the uniform.



/

Good zwork -- but 7 think
we rmiight need a little
rmiore detail right fere.

53
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Part 2

Representation Learhing
Algorithms



A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide

ahead of time what variables
these logistic regressions are
trying to predict!

55



A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

56



A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

57



Back-—?rap

58

Compute gradient of example-wise loss wrt
parameters

Simply applying the derivative chain rule wisely

o
2= fly) y=glx) 5 =55

If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient




Simn Fl.e. Chain Rule

59

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z _ 9z dy

Ox ~ Oy Ox



Mut&ipte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox ~ Oy; Ox

60

Oys Ox



Mut&ipta Pabths Chain Rule - General

&

61



Chain Rule in Flow G-'mpk
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of T

0z 0vy;
Z 0y; Ox

62



Back-?mp TN Mutki‘.-—Lajer Net
NLL = —log P(Y = y|x)

63



Ba«ck'-?rr.ap i Greneral Flow G*mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of I

64



Back-Prop in Recurrent & Recursive

Nets

* Replicate a
parameterized function
over different time
steps or nodes of a DAG

* Qutput state at one
time-step / node is used
as input for another
time-step / node

65

Zt—l Zt zt+1
o () o
- ® >® 0L
o () > )
> @ () )
Xi-1 Xe | Xt+1
0000 0000 0000
A small crowd
quietly enters
the historic
eeDes church
VP S
"""" emantic
NP VP ,,,,,,, P Representations
A small quietly N P
crowd enters Det Adj. N.

i J i }
istoric  church




Backpropagation Through Structure

* Inference - discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous. o
O______.

66



Automatic Differentiation

67

W

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping



Distributed Representations and Neural
Nets: How to do unsupervised training?

68
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i CA code= latent features h

C0000

Linear Manifold / \
Linear Auto-Encoder
Lin

inear Graussian Factors 000 0@ 00 - O

nuu

input reconstruction
Input x, 0-mean Linear manifold
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x x x

W = principal eigen-basis of Cov(X)

Probabilistic interpretations:

1. Gaussian with full
covariance W' W+Al

2. Latent marginally iid
Gaussian factors h with
x = WT h + noise



Directed Factor Models

70

P(h) factorizes into P(h,) P(h.,)...

Different priors: 1 2 2]) 2 s e
* PCA: P(h;) is Gaussian

* ICA: P(h,) is non-parametric

* Sparse coding: P(h,) is concentrated near O
Likelihood is typically Gaussian x [ h

with mean given by W' h
Inference procedures (predicting h, given x) differ

Sparse h: x is explained by the weighted addition of selected
filters h, — X W, A

h, ‘ h, h
Azgx / + .8 x + .7 x \




Sparse autoencoder illustration for
imaqges

Natural Images

Learned bases: }

Test example

[a, ..., ags] = [0,0,..,0,0.8,0,..,00.3,0, .., 0,0.5,0]
., (feature representation)




Stacking Single-Layer Learners

e PCAis great but can’t be stacked into deeper more abstract

representations (linear x linear = linear)
e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning

P e— — — — — — — —

10OCOO0O) h!

RBM |

..... >
'©oooooo) by

'(OOOOOOO) bl
!
!

©000000 !

| RBM

Cooo'ooo@ x

RBM for hy

RBM for x

" T ©0O00000) hy

' RBM '
| |

(O @OOOOOO) hal

(OOOOOOO) X

RBM for ¥ and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

72



Effective deep Learning became possible
through unsupervised pre-training

} g

test classification error (perc)
+H

number of layers

73

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

number of layers




Optimizing Deep Non-Linear
Composition of Functions Seems Hard

* Failure of training deep supervised nets before 2006

e Regularization effect vs optimization effect of
unsupervised pre-training

* |s optimization difficulty due to
* ill-conditioning?
* local minima?

°  both?

74



Inikial E:xam'ates Matter More
(eritical pe.ri‘.od?)

Variance of the output

[os]

4 < =x 1-layer network without pretraining
€5 _“ ® @ 1-layer network with RBM pre-training
[} \ . N N . N N . .
£ \ 5
P20 N WS RV SO RS S SN S R
e N
= \\“
m5_ ..... \. ............................................................................................
gl A\
° b
%4_ ........ %\ ......................................................................................
o e : : : : : : ;
Solo S K S R S
5 s NIRRT : s e
> : Q : : X"'%----:-_X ) !
) ' ' . H \ . -~
] IS R SN SRR S— SN S S
®.. y
g L R S ‘.-“---‘-____._“/

; ; i ; ; i
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction at which we vary the examples

(o)
o
o—-
=
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Leariing Dynamics of Deep Neks

A
® As weights become larger, get trapped in basin of (\ ]_/1

attraction (sign does not change) S

® Critical period. Initialization matters. K ¥>




Order & Selection of Examples Ma!:!:ars

(Bengio, Louradour, Collobert & Weston, ICML2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan e
2009) e
e Start with easier examples |
e Faster convergence to a better local
minimum in deep architectures — curriculum

= =no-curriculum

e Also acts like a regularizer with
optimization effect?

77



Understanding the difficully of
training deep feedforward neural
networlkes

(Glorot & Bengio, AISTATS 2010)

Study the activations and gradients
e wrt depth
* as training progresses
 for different initializations = big difference
 for different activation non-linearities



Layer-wise Uhsupervised Learning

Input 000 .. O

79



Layer-Wise Unsupervised Pre-training

features O00©® ... @

80



Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %
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Layer-Wise Unsupervised Pre-training

features O00©® ... @

82



Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..
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Supervi.sad Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)

87



Reskricted Bolbtzmann Machines



Undirected Models:

the Restricted Pl Boltzmann Machine
[Hinton et al 2006] R

e Probabilistic model of the joint distribution of
the observed variables (inputs alone or inputs

and targets) x

hy hy hy

e Latent (hidden) variables h model high-order
dependencies

e Inference is easy, P(h|x) factorizes

X1 X

e See Bengio (2009) detailed monograph/review: ﬂ
“Learning Deep Architectures for Al”.

e See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Bolkzmann Machines & MRFs

e Boltzmann machines:

- 1 1 1 S oo —
(Hinton 84) P(CE) _ Ze—Energy(m) _ ZecTzz:-{—a:TWm _ Eezz 'L-'L'z'*‘zz.’j z;Wijxj

e Markov Random Fields:
Undirected

graphical

1 i o models
P(x) = Eezi ’Lfi.(\)

Soft constraint / probabilistic statement

® More interesting with latent variables!



Restricted Boltzmann Machine
(RBMm)

P(m h) — lebTh-i-cT:L’-i-hTWm — lezz bihi+2j Cjil}j-i-zi,j hiW;;x;
) 7 7
e A popular building
block for deep
architectures

O - ¢ n hidden

e Bipartite undirected
graphical model

x Observed



Gribbs Sampling & Block Gibbs Sampling

* Want to sample from P(X,,X,,...X,)
e Gibbs sampling
* |terate or randomly chooseiin {1...n}
e Sample X, from P(X. | X;,X,,..X. 1, X.,1,---X,)
can only make small changes at a time! = slow mixing
Note how fixed point samples from the joint.

e Block Gibbs sampling
* X’s organized in blocks, e.g. A=(X,,X,,X3), B=(X,,Xs,X¢), C=...
* Do Gibbs on P(A,B,C,...), i.e.
e Sample A from P(A|B,C)
e Sample B from P(B|A,C)
e Sample C from P(C|A,B), and iterate...

* Larger changes = faster mixing
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Gribbs Sampling in RBMs

h; ~P(h|x) h, ~P(h|x,) hs ~P(h|x;)

N~

C
X; X, ~ P(x]h) X3~ P(x|h)y)

pum—

® Fasy inference

P(h]x) and P(x|h) factorize = ' . p 1\ Gibbs

P(h|x)=T1 P(h,|x) sampling x>h=>x->N...

“—

T T T
P(a:,h) — %eb h+c” z+h” Wx



Problems with Gibbs Sampling

In practice, Gibbs sampling does not always mix well...
RBM trained by CD on MNIST
DDODEDDDDEOERER
n n n n n n n n n n Chains from random state
HDNNNDEEEENEN

Chains from real digits
UG ErAvAvAY o

(Desjardins et al 2010)



RBM with (imaqe, Label) visible uniks

hidden

OCOOO OO0

A
@XXX) 00000

label

Y

(Larochelle & Bengio 2008)



RBMs are Universal Approximators

(Le Roux & Bengio 2008)

e Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

e With enough hidden units, can perfectly model any discrete
distribution

e RBMs with variable # of hidden units = non-parametric



RBM Conditionals Factorize

exp(b’x + c’h + h'Wx)

P(h|x) = —
() > rexp(b’x + c’h + h'Wx)

I, exp(c;h; + h; W;x)
H,L- Zfli eXp(Cifli + EZWZX)
H exp(h;(c; + W;x))

205, exp(hy(c; + Wix))

= H P(h;|x).




RBM Energy Gives Binomial Neurons

With h; € {0,1}, recall Energy(x,h) = —b’x — c’h — h'Wx

elci +1W;x+other terms

P(hz = 1|X) - elci—{—lwix—i—other terms + eOc,-+OW,-x—|—other terms

eci +W;x

eci+Wix + 1
1
1 _|_ e_ci_Wix
= sigm(c; + W;x).

1
l+e—a"

since sigm(a) =



G—Energy(x,h)

RBM Free Energy Pxh=—7p

* Free Energy = equivalent energy when marginalizing

—Energy(x,h) e—FreeEnergy(X)

€

P(x) = Eh: = = =

e Can be computed exactly and efficiently in RBMs
FreeEnergy(x) b'x — Z log Z ehi(ci +Wix)

e Marginal likelihood P(x) tractable up to partltlon function Z



Factorization of the Free Energy

Let the energy have the following general form:

Energy(x.h) = —f(x) + >, 7i(x, h;)
Then
1

P(x) = E o~ FreeEnergy(x) _ ;Z —Energy(x,h)

— _S‘;‘ S‘eﬂ(X)ZV(Xh)_ S‘S‘ S‘eﬂ(X)H —7i(x,h;)

eﬂ(x)
— ~ Z e~ 71(x;h1) Z e—72(x;h2) Z e~ Yk (x;hy)
h, ho hy
— Pt HZ —7i(x,h;)

FreeEnergy(x) = — log P(x) — log Z = —3(x) — Zlogz o vi(x.hy)
: —



Energy-Based Models Gradient

e —Energy(x) -
_ _ —Energy(x)
P(x) = 7 Z = Z e sy
Olog P(x)  OEnergy(x) 0OlogZ
00 B 06 00
dlogZ  Jlog) e~ Energy(x)
00 B 00
10 ZX e—Energy(x)
- Z 90
— _i Energy(x) 8EnergY( )
Z 06

_ _Z P(x (9Energy( )



Bolkzmawnn Machine Gradient

P(.T) =~ Zh e—Energy(m h) _

e Gradient has two components:

0log P(x)

o6

[“posiﬂve phose”]

—FreeEnergy(:c)

[“negaﬂve phase” ]

Vs

| OFreeE ~ 6FreeEnergy(5:)\
(b My, P02
OE h OE h
— 3 P(h|z) negriat) Zg{;ﬁp( h) S=Re (L. )
o J

® |n RBMs, easy to sample or sum over h|x
m Difficult part: sampling from P(x), typically with a Markov chain




Positive & Negative Samples

 Observed (+) examples push the energy down

e Generated / dream / fantasy (-) samples / particles push
the energy up

X- Equilibrium: E[gradient] =0



Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k
(CD-k) Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while
(PCD) weights slowly change

Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring
modes

Herding: Deterministic near-chaos dynamical system defines
both learning and sampling

Tempered MCMC: use higher temperature to escape modes



Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase

block Gibbs chain at observed x, run k Gibls steps
(Hinton 2002)

h™ ~P(h|x") h™~P(h|x)
é c
Observed x* k=2steps Sampledx
positive phase negative phase
push down

Free Energy

push up



Persistent CD (PCD) / Stochastic Max.

Likelihood (SML)

Run negative Gibbs chain in background while weights sloy¥s
change (Younes 1999, Tieleman 2008).

* Guarantees (Younes 1999; Yuille 2005)

* |f learning rate decreases in 1/t,

chain mixes before parameters change too much,

chain stays converged when parameters change

h*~P(h|x")

Observed x*
(positive phase)

previous X

new x



PCD/ASML + large learning rate

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push
FreeEnergy down l




Sowme RBM Variawks

e Different energy functions and allowed
values for the hidden and visible units:

* Hinton et al 2006: binary-binary RBMs
Welling NIPS’2004: exponential family units )

Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no
conditional covariance), propose mcRBM

e Ranzato et al NIPS’2010: mPoT, similar energy function
Courville et al ICML’2011: spike-and-slab RBM
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Convolubionally Trained
Spilke & Slab RBMs Samples




ssRBM is not Cheating

Samples from p-ssRBM:

T:
9
o
£
©
(%)
©
Q
)
O
| -
()]
C
()
OF

Nearest examples in CIFAR:
(least square dist.)

Training examples




‘Spiw@_ &% Slab RBMs
E(v,s,h) = Zv Wisihi + = v <A+Z<I>h>

1=1

N
—|—%;ais- Zaz,uzsz th —I—Z%MZ iy

Model conditional covariance of pixels (given
hidden units) Copn = (AJFZﬁV:l S Oéi_lhiWiWiT)_l
Hidden representation decomposed into a
product s*h, h is binary, s is real
s*h is often O (naturally sparse)



Spike &% Slab RBMs

1

P(hi=1]v) = 0o(bi = 5(v = &n,) Cypp, (v = Euin,))
N

p(s|v,h)= HN ((aflvTWi —|—,uz-> hi . ozi_l)
i=1

N
p(U | 8, h): N (Cvs,hZWiSihi ) Cvs,h)
=1

Can use efficient 3-way Gibbs sampling



Auto-Encoders & Variawnks



Auto-Encoders

code= latent features h

* MLP whose target output = input 00000
* Reconstruction=decoder(encoder(input)), V \wr
e.g. "Y ford 000 - O
h = tanh(b+ W) reconstruction
reconstruction = tanh(c+ WTh) rix)
Loss L(z,reconstruction) = ||reconstruction — z||?

e With bottleneck, code = new coordinate system
e Encoder and decoder can have 1 or more layers
e Training deep auto-encoders notoriously difficult
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Link Between Contrastive Divergence
and Aublo-Encoder Recownstruction
Error Gradient

(Bengio & Delalleau 2009):

e CD-2k estimates the log-likelihood gradient from 2k
diminishing terms of an expansion that mimics the Gibbs
steps

e reconstruction error gradient looks only at the first step, i.e.,
is a kind of mean-field approximation of CD-0.5

d

1 |+ E 0log P(hg|xs:1)
06

dlogP(x;) Z(ElalogP(xsms)

00 00

|

s=1

0log P(x;)
+ E [ 50




Traditional Directed X|0 Models
P(X.0) = P(X|0)P(6)

—FE¢(X)
Zg

&

P(X|0) =




What are reqularized auto-encoders
Learning exactly?

e Any training criterion E(X, 8) interpretable as a form of MAP:
e JEPADA: Joint Energy in PArameters and Data (sengio, counville, vincent 2012)

—E(X,0)

/

This Z does not depend on 6. If E(X, 0) tractable, so is the gradient
No magic; consider traditional directed model:

E(X, 9) — E@(X) + log Zy — log P(Q)

P(X,0) = =

Application: Predictive Sparse Decomposition, regularized auto-encoders, ...

117



Joint Parameter-Data Energy (IEPADA)

e Getting rid of the partition function problem

e Sampling X given 0, even when previously there was no
probabilistic interpretation to E(X, 9)

e Sampling B given X (Bayesian)

* |nference and decision based on the model for which 6 was
really tuned.

e BUT WHAT MATHEMATICAL FORMS MAKE SENSE?

Reconstruction error and pseudo-likelihood-like things seem to
work well. What else?
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I think I finally understand
what auto-encoders do!

e Tryto carve holes in ||r(x)-x||? at training examples

e Vector r(x)-x points in direction of increasing prob., i.e. estimate
score = d log p(x) / dx: learn score vector field = local mean

e Generalize (valleys) in between above holes to form manifolds

e drlx)/dx estimates the local covariance and is linked to the
Hessian d?log p(x) / dx?

e Regularized AEs estimate 1%t and 2"9 local moments of the
density (imagine a ball around each x), which allows to sample
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Stacking Auto-Encoders

r

U
hz@OOQOOO) hz@OOQOOO)
W, w;' W,
llelelelelelel0) h;@OOOOO>OOOOOOO)HI nOOOO000)
W, Wy W;A W:A
x ©O000CO000D x©OO0O x ©O000)

Auto-encoders can be stacked successfully (Bengio et al NIPS’2006) to form !
highly non-linear representations, which with fine-tuning overperformed i
purely supervised MLPs
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Greedy Layerwise Supervi,sad Training

s

U
h2©OQ§)OOO> hz(OOOCA)OOO)
W» U, W,
nQOOOO00D hr@OOCADOOO) y m(OOOCA)OOO)
W, Uy W1 Wi
x s xQO0O00 x ©O0000)

Generally worse than unsupervised pre-training but better than ordinary
training of a deep neural network (Bengio et al. NIPS’2006). Has been used
successfully on large labeled datasets, where unsupervised pre-training did
not make as much of an impact.



Supervised Fine-Tuning is Important

e Greedy layer-wise
unsupervised pre-

0.10

1Nt 1 —— No AA, hidden supervised fine-tuning
traln | ng phase Wlth ------ No AA, no hidden supervised fine-tuning
_ ---- AA, hidden supervised fine-tuning
RBMS or aUtO enCOderS - - AA, no hidden supervised fine-tuning

on MNIST

e Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

e (Cantrain all RBMs at the °® 5 160 150 700
same time, same results

0.05F

o



(Auto-Encoder) Reconstruction Loss

e Discrete inputs: cross-entropy for binary inputs
* -2 x log r(x) + (1-x.) log(1-r,(x)) (with 0<r,(x)<1)
or log-likelihood reconstruction criterion, e.g., for a
multinomial (one-hot) input

* -2 x logri(x) (where 2.r(x)=1, summing over subset of inputs
associated with this multinomial variable)

e |In general: consider what are appropriate loss functions to
predict each of the input variables, typically —log P(x|r(x)) or the
equivalent KL divergence.
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anifold Learning

Additional prior: examples concentrate near a lower
dimensional “manifold” (region of high density with only few

operations allowed which allow small changes while staying on
the manifold)

variable dimension locally?
- Soft # of dimensions?

“ fshrinking
'trgnsfonnation

4 ,,

raw input vector space




Denoising Auto-Encoder

(Vincent et al 2008)

e Corrupt the input
e Reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder

prior: examples

e Learns a vector field pointing towards concentrate near a
higher probability direction lower dimensional
“manifold”

r(x)-x = dlogp(x)/dx
e Some DAEs correspond toa kmd of

Corrupted inQut

Matching (Vincent 2011)
[equivalent when noise—>0]

e No partition function,
can measure training
criterion




Stacked Denoising Auto-Encoders

Budget of 10 million iterations

1 layer w/o pre-training
3 layers w/o pre-training

1 layer with RBM pretraining
3 layers with RBM pre-training
1 layer with denoising AA pre-training [4
3 layers with denoising AA pre-training :

Infinite MNIST

Note how
advantage of
better
initialization
does not vanish
like other
regularizers as
#texemples—> oo

Online classification error

0 1 2 3 4 5 6 7 8 9 10
Number of examples seen 10"



Auto-Encoders Learn Salienk
Variakions, Like a non-linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Lom&ra&wa Aubto-Encoders

. e (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
A Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

reconstruction(x) = g(h(x)) = decoder(encoder(z))

Training criterion:

2
Jcar(0) Z )\Z 8:1: ) + L(z, reconstruction(x))

xeD, 1] |

wants contraction in all cannot afford contraction in
directions manifold directions

If h;=sigmoid(b;+W; x)

(dh,(x)/dx)? = h2(1-h)2W,2



LOM&T‘&&&LV& Aubto-Encoders

(Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

Most hidden units saturate:
few active units represent the
active subspace (local chart)

Each region/chart = subset of active hidden units
Neighboring region: one of the units becomes active/inactive
SHARED SET OF FILTERS ACROSS REGIONS, EACH USING A SUBSET



1.5

O
in

Jacobian singular values

CIFAR-10

o AE
o CAE

- -
-

Jacobian’s spectrum is peaked =
RN local low-dimensional
: _>.representation / relevant factors

[E—

100 200 300 400 500 600 700 800
# singular values
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Cownkractive Auto-Encoders

Benchmark of medium-size datasets on which several deep learning
algorithms had been evaluated (Larochelle et al ICML 2007)

Data Set | SVM, ;| SAE-3| RBM-3|DAE-b-3| CAE-1| CAE-2
basic 3.03:015| 3.46x016| 3.11x015| 2.84x015] 2.83:015| 2.48:014
rot I1.11+02s8|10.30+027]| 10.30x027| 9.532026| 11.59+028] 9.66=026
bg-rand 14.582031| 11.28z028| 6.73x022| 10.30x027| 13.57+030] 10.90 2027
bg-img 22.6120379|23.00x037| 16.312032| 16.68+033| 16.70+033| 15.50+0.32
bg-img-rot| 55.18+0.44|51.93+044(47.39+0.44| 43.760.43|48. 102044 | 45.2320.44
rect 2.15:013| 2.41+013| 2.60x014 1.99+012| 1.48+010] 1.2120.10
rect-img | 24.04+037|24.05+037]22.50+037| 21.59+036| 21.86036 | 21.5420.36




Input Point Tangents

MNIST
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Input Point Tangents

MNIST Tangents

134



Distributed vs Local
(CIFAR-10 unsupervised)

Input Point Tangents

Contractive Auto-Encoder
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Denoising auto-encoders
are also contractive!

e Taylor-expand Gaussian corruption noise in reconstruction

error.

El(z,r(z+¢€))]

Q

E

(zz: — (r(m) +

E|

or(x)
oz

N’ (- (mmggu))]

or(x)

e Yields a contractive penalty in the reconstruction function
(instead of encoder) proportional to amount of corruption noise
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Learhed Tangent Pro &P:
the Manifold Tangent Classifier

3 hypotheses:

1. Semi-supervised hypothesis (P(x) related to P(y|x))

2. Unsupervised manifold hypothesis (data
concentrates near low-dim. manifolds)

3. Manifold hypothesis for classification (low density
between class manifolds)



Learhed Tangent Pro &P:
the Manifold Tangent Classifier

Algorithm:

1. Estimate local principal directions of variation U(x)
by CAE (principal singular vectors of dh(x)/dx)

2. Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||

Makes f(x) insensitive to variations on manifold at x,
tangent plane characterized by U(x).



Manifold Tangent Classifier Resulbs

e Leading singular vectors on MNIST, CIFAR-10, RCV1:

Trading +gilt -slow +matur -percent | +bin -anti +interest -sen
& +yen -term +auction -sent +coupon  -predict | +calcul -californ
Markets +usda -debt +treasur -pressure | +discount -belgian | +overnight -introduc

e Knowledge-free MNIST: 0.81% error

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 095% 0.95% 0.81%

° -
Semi-su P. NN SVM CNN TSVM DBN-INCA EmbedNN CAE MTC
100 | 25.81 2344 2298 16.81 - 16.86 1347 12.03
600 | 1144 885 7.68 6.16 8.7 5.97 6.3 5.13
1000 | 10.7  7.77  6.45 5.38 - 5.73 477  3.64
3000 | 6.04 421  3.35 3.45 3.3 3.59 3.22  2.57

SVM  Distributed SVM MTC

* Forest (500k examples)
4.11% 3.46% 3.13%




Inference and Explaining Away

e Easy inference in RBMs and regularized Auto-Encoders
e But no explaining away (competition between causes)

e (Coates et al 2011): even when training filters as RBMs it helps
to perform additional explaining away (e.g. plug them into a
Sparse Coding inference), to obtain better-classifying features

e RBMs would need lateral connections to achieve similar effect

e Auto-Encoders would need to have lateral recurrent

connections
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SPQT$€. COdﬂhg (plshausen et al 97)

e Directed graphical model:

P(h) x e M z|h ~ N(WTh,o?I)
e One of the first unsupervised feature learning algorithms with
non-linear feature extraction (but linear decoder)

|z — WTh|?
2

min
h o

+ Alh|1

MAP inference recovers sparse h although P(h|x) not concentrated at O

e Linear decoder, non-parametric encoder
e Sparse Coding inference, convex opt. but expensive
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Predictive Sparse ﬁecomroseki,ou
r ol s
e Approximate the inference of sparse coding by E S :

an encoder:
Predictive Sparse Decomposition (kavukcuoglu et al 2008)

e Very successful applications in machine vision
with convolutional architectures

I
~ | ~
o — 2|13 IR

A
I

=N

142 |Z‘1




Predictive Sparse. 'ﬁecomposilzioh

e Stacked to form deep architectures F“EE-

 Alternating convolution, rectification, pooling ﬁ‘ilﬁ““

 Tiling: no sharing across overlapping filters I.Iﬂ‘nh.ii.nili

e Group sparsity penalty yields topographic Sl Frar
maps

N
Overlapping ‘ .
i bl
i 1 i N~
)
~ [ ~
|z — 2[5 EIER
— ¥
D (2)
T
K
/\Z wjzj2
R L i=1 \| jeP
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Deep Varianks



Level-Local Learning is Important

* Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

e |nitializing each layer of a supervised neural network as an
RBM, auto-encoder, denoising auto-encoder, etc helps a lot

e Helps most the layers further away from the target

e Not just an effect of unsupervised prior

e Jointly training all the levels of a deep architecture is
difficult

e |nitializing using a level-local learning algorithm is a useful
trick



Staclke of RBMs / AEs
> Deep MLY

 Encoder or P(h|v) becomes MLP layer
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Stack of RBMs / AEs
= Deer Auto-Encoder

(Hinton & Salakhdtdinov 2006)

e Stack encoders / P(h|x) into deep encoder
e Stack decoders / P(x|h) into deep decoder

o
"
j—
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Stack of RBMs / AEs
> Deep Recurrent Auto-Encoder

(Savard 2011) S —
N, 5

e Each hidden layer receives input from below and h,
above h, $Wz

 Halve the weights
h
e Deterministic (mean-field) recurrent computation ' ::wl
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Stack of RBMs
9 DQQF BQL‘:@.{ NQ‘: (Hinon e\aI2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down
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Stack of RBMs ll

> Deeﬁ Bolkzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

h;mees e y E— T—
Ya 3 2
h, —— Ms
2 2 2
h, ? A
T

!
2 2VV5

. S s

x‘wzl —ZT 2%

:
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Stack of Auto-Encoders
> Deep Greherative Auto-Encoder

(Rifai et al ICML 2012)

e MCMC on top-level auto-encoder
* h,,; = encode(decode(h,))+o noise
where noise is Normal(0, d/dh encode(decode(h,)))
e Then deterministically propagate down with decoders
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Manifold Learnin Interpretation
Allows Sampling from Au&o—Ev\coders

e Reconstruction function captures geometry of the input
distribution

e reconstruction(x)-x points towards high-density (score)

e Jacobian of reconstruction(x) has large singular values in
directions of local factors of variation (manifold tangents)

e Gives rise to an implicit density estimator and a sampling
algorithm for contractive and denoising auto-encoders (Rifai et

al ICML 2012) l "
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Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder
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Sampling from o
Reqularized Auto-Encoder

In practice: some thickness around tangent plane..
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Samples from a 2-level DAE

» TFD.
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Sam Le's From Table 1. Log-Likelihoods from Parzen density estimator

a 2,_. QVQL C AE using 10000 samples from each model

| DBN-=2 CAE-2
(ICML 2012) TFD ‘ 1908.80 = 65.94 2110.09 = 49.15

MNIST | 137.89 + 2.11 121.17 £ 1.59

a5 5 2 3 3 3 N-a-Saeey
oo L%%’fb%‘?e

MNIST

 Not using local covariance estimator, just isotropic noise: bad

RS
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MCMC Asymptotic Distribution:
Uncountable Graussion Mixture

e Each step samples next x from Gaussian with mean and
covariance a function of previous x

e Asymptotic distribution (if exists):

r(z) = / (&N (@; 1(3), 5(&))di

= uncountable gaussian mixture with weights = the density itself

e Thm: If £(x) is full-rank and p(x) in bounded region, then i exists.
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Cov\si.s&e.v\cj: Samples & Local Moments
(Bengio et al 2012, arXiv paper, “Implicit Density Estimation by Local
Moment Matching to Sample from Auto-Encoders”)

P()1)|5—z0||<6 X

e Inside-ball density:  ps(z|zo) = Z(0) s
e Ball size 620 around each x,, MCMC steps of size 0<<6

my= Ex[z|zo] =

Z(SB )d.’l? 1||:c $O||<5d.’17

- 7 / p(@ /” x_m0|l<6:cj\/'(m;u(m),E(:E))d:cd:i.
p(Z
N/Z(x))lﬂu(w) zo||<s M(Z)dT

= Elp(z)|zo]
* i.e.thelocal mean m, = expected value of MCMC mean in the
ball, and similarly for local covariance C, & MCMC covariance.

e Step size o controls quality of approximation, which corresponds
to a smooth of the estimated density.
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Cownsistency: Now-Paramebric /
Asymptotic” Minimizer of Criterion

2
dSU()
F

* Training criterion rewritten:
or(x
Lot = [ plao) (nxo ~ r(eo)|? +a | 20E0)

85130

o 2
= %i_rf%)/P(ﬂfo) ((/w ||z — T($)||2p5(x|a:o)d:c) + 2(500) F) dzo
e Local (non-parametric) parametrization around x,
or
r(x) =r(zg) + —| (x— o) =10+ Jo(z — x0)

ox

Zo

Liocal(Zo,6) = / |z — (ro + Jo(z — x0))||°ps(z|z0)dz + | Jo|| 7

Lglobal — %I_I)I(l)/ p($0)£local($03 5)d$0
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Cownsistency: Now-Paramebric /
Asymptotic” Minimizer of Criterion

8£local (370 . 5)

e Solving: 5 =0
0
8AC'local (5307 5) L
.7, —0
yields:
ro = (I — J())mo + Joxo
Jg = C()(OAI—I— Co)_l.

i.e. when 620 (i.e. J,20), <X means lhs / rhs 2 1:
To < MMy
J() = Cv_lco
e Reconstruction and its Jacobian estimate local mean & covariance
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Impi.ici.& ‘De.vxsi.&y Estimatlion

* In general, no explicit analytic formulation of the estimated
density, only of its local moments and 15t & 2" derivatives

e Can obtain samples by MCMC (of a smooth of estimated density)

e Alternatively, can parametrize r(x)-x = derivative of an energy
function energy(x) which provides an explicit analytic formulation
of the estimated density.

e We have avoided the partition function and introduced

a novel(?) alternative to maximum likelihood
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AE sampling: open questions
e Effects of parametric non-asymptotic setting?

e Training energy-based models as regularized AE

e Why better results when training as CAE vs DAE?
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Part 3

Practice, Issues, Questions
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Deep Learning Tricks of the Trade

* Y.Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
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Stochastic Gradient Descent (SGD)

e Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

8L(Zt, 0)
00

* L=loss function, z,= current example, © = parameter vector, and
g, = learning rate.

H(t) < H(t_l) — €4

e Ordinary gradient descent is a batch method, very slow, should
never be used. 2" order batch method are being explored as an

alternative but SGD with selected learning schedule remains the
method to beat.
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Learining Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning

rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g.,

€E0T

T max(t, 7)

with hyper-parameters g, and t.
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Early Stopping

170

Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

Monitor validation error during training (after visiting #
examples a multiple of validation set size)

Keep track of parameters with best validation error and report
them at the end

If error does not improve enough (with some patience), stop.



Long-Term Dependencies i

* Invery deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L= L(sr(s7—1(---8t+1(8¢,-...))))
8_L B 0L Ost 0St11
Os;  OsT Osp—_1 ~ Osy

e Two kinds of problems:
* sing. values of Jacobians > 1 - gradients explode

 or sing. values < 1 = gradients shrink & vanish
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Long-Term Dependencies
and Clipping Trick

L I
@E') Xt1 X; Xt+1
Trick first introduced by Mikolov is to clip gradients

to a maximum NORM value.

Makes a big difference in Recurrent Nets. Allows SGD to compete
with HF optimization on difficult long-term dependencies tasks.
Helped to beat SOTA in text compression, language modeling,
speech recognition.
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Normalized Initialization ko Achieve
Uniby-Like Jacobian
Assuming f'(act=0)=1

To keep information flowing in both direction we would like to have the
following properties.

e Forward-propagation:
V(i,4'), Var[z'] = Var[z"] & Vi,n;Var[Wi = 1
e Back-propagation:
v(i,4'), Var[a§;8t] Var [6C°St] & Viyni Var[WY =1
Possible compromise:

Vi, Var[W? = - +2n (4)
3 1+1

This gives rise to proposed normalized initialization procedure:

Wi Ul V6 V6 )
Vi T 1 /Ty T g




test error %

Normalized Initialization with Variance-
Preserving Jacobians

T
AN WA, v —

(S

gofl | — Sigmoid depth 5 ||
| ‘ ‘ | — Sigmoid depth 4
| — Tanh
— Softsign
Tanh N
Softsign N
— Pre-training

- - A4 0 ) -, \
£ ) y s, 1
‘ : 1] DA A /. A
DO M el Y
v ;,\‘\‘1",, I
Yaeloy

H -~ A\, . y A
N \ ',’v‘i\lc-l - A ¥
‘ ‘ z : NN AR A /

0.0 0.5 1.0 1.5 2.0 2.t
# exemples seen le7




Parameter Initializakion
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Initialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g. mean target or
inverse sigmoid of mean target).

Initialize weights ~ Uniform(-r,r), r inversely proportional to fan-
in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units (and 4x bigger for sigmoid units)
(Glorot & Bengio AISTATS 2010)
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Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have huge output space.

code= latent features

C0000
I JoRdt 00® O
sparse input dense output probabilities

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights "N

categories

* Decompose output probabilities hierarchically (Mo
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton words within each category

2007,2009; Mikolov et al 2011) ﬂn. n
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Automatic Differentiation

* The gradient computation can be
automatically inferred from the symbolic
expression of the fprop.

* Makes it easier to quickly and safely try
new models.

e Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output.

* Theano Library (python) does it
symbolically. Other neural network

packages (Torch, Lush) can compute
gradients for any given run-time value.
(Bergstra et al SciPy’2010)
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Random Sampling of Hyperparameters
(Bergstra & Bengio 2012) &
e Common approach: manual + grid search b
e Grid search over hyperparameters: simple & wasteful
e Random search: simple & efficient
* Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])
e Each training trial is iid
e IfaHPisirrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
(@)
O

“O O O

178 Important parameter Important parameter



Issues and Questions
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Why is Unsupervised Pre-Training
Working So Well?

e Regularization hypothesis:
* Unsupervised component forces model close to P(x)
* Representations good for P(x) are good for P(y|x)

e Optimization hypothesis:
e Unsupervised initialization near better local minimum of P(y|x)

e Can reach lower local minimum otherwise not achievable by random initialization
* Easier to train each layer using a layer-local criterion

(Erhan et al IMLR 2010)




Leariing Tra jectories in
Function Space

e Each point a model in
function space

e Color = epoch e,

e Top: trajectories w/o “ |
pre-training ¢ B ae.

e Each trajectory “ s ! ° o
converges in diﬁerenw@i@, 2 DA T

local min. i,

 No overlap of regions
with and w/o pre-
training



Leariing Tra jectories in
Function Space

e Each trajectory I
converges in different e — ........ ............ out pre tralnmg ............ ............ .............
local min. Fan, S

* With ISOMAP, try to
preserve geometry:
pretrained nets =
converge near each ' B Tk N R
other (less variance) 1000 a .......... ............. ............. ............. ............. .............

1500 —oevennnns PRI PR e e RERUR s PR :

- be o . WitE re-tréinin
500 ‘Y'AHAH.?% o0 e éuA“A.“AuéuAHA“A“A;APA“A“AJ AAAAAAA gAué

-500

e Good answers =
worse than a needle
in a haystack
(learning dynamics)

-1500 I I i i i 1 I i
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000




Inference Challenges

e Many latent variables involved in understanding
language (sense ambiguity, parsing, semantic role)

 Almost any inference mechanism can be combined
with deep learning

e See [Bottou, Bengio, LeCun 97], [Graves 2012]

“l

e Complex inference can be hard (exponentially) and

needs to be approximate = learn to perform inference
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Dealing with Inference

e P(h|x)in general intractable (e.g. non-RBM Boltzmann machine)
e But explaining away is nice
* Approximations
e Variational approximations, e.g. see Goodfellow et al ICML 2012
(assume a unimodal posterior)
e MCMC, but certainly not to convergence

e We would like a model where approximate inference is going to be a good
approximation

* Predictive Sparse Decomposition does that
* Learning approx. sparse decoding (Gregor & LeCun ICML’2010)

e Estimating E[h]|x] in a Boltzmann with a separate network (Salakhutdinov &
Larochelle AISTATS 2010)
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Dealing with a Partition Function

o 7= ZX ) e-energy(x,h)
e |ntractable for most interesting models
e MCMC estimators of its gradient

e Noisy gradient, can’t reliably cover (spurious) modes

e Alternatives:

e Score matching (Hyvarinen 2005)

* Noise-contrastive estimation (Gutmann & Hyvarinen 2010)
Pseudo-likelihood

Ranking criteria (wsabie) to sample negative examples (Weston et al.
2010)

Auto-encoders?
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SCQT’Q MQ&C"\LMS (Hyvarinen 2005)

e Score of model p: dlog p(x)/dx does not contain partition fn Z

e Matching score of p to target score: ?
. 1||9logp(x) dlogq(x)]”
(x) | 5 ox ox
e Hyvarinen shows it equals
1 ||0log p(x) ||” 02 log p(x)
Eq(x) B H x + Z P + const

2 1
e and proposes to minimize corresponding empirical mean

e Shown to be asymptotically unbiased to estimate parameters

* Note: for GRBM, 1t term is squared reconstruction error and 2" term

looks like contractive penalty Zij h,(1-h;) W;?



Denoising Auto-Encoders doing
Score Matching on Graussion RBMs

e cleaninput - corrupted input = direction of increasing log-likelihood 0 log qa(i|x)
X — X 0x
\
* reconstruction —input = direction of increasing log-likelihood \ 8p(x;@)
7«(5() _ 5{ according to auto-encoder \
\
N L
VX

corrupted input in low-density region \

s~ TAX %
[ ) \\\

oxiginal inpdit ~ \\
< X/

data near high-density manifold

= Denoisingerror= || (7(X) — fé) — (x — i)”z = [[r(x) — XH2




Denoising Auto-Encoders doing
Score Matching o Gaussian RBMs

Gaussian DAE reconstruction:

r(x) = WHA(x) + ¢ = Wl sigm(Wx +b) +c
e Corresponds to gradient of free energy of Gaussian RBM

e Any (free) energy function with x? term gives rise to score function that can be written as
proportional to r(x)-x (=residual). Recent research shows this is true for any energy fn

* Not all DAEs have reconstruction residual = a derivative (most previous DAEs
with binomial KL divergence reconstruction error)

e See also (Swersky 2010), thesis on link between ordinary auto-encoder
reconstuction error & Score Matching



Contrastive Sampling of
Negative Examples

189

(Collobert & Weston ICML 2008) energy
(Bordes et al AAAI 2011, AISTATS 2012) function
Similar to wsabie (Weston et al, MLJ 2010)

Z Z max (fi(a:) — £(z)+1,0)

€D T~Q(Z|x) pull p?sh up
Negative down
example

In those cases, the negative example Z is obtained by uniformly
sampling one of the elements of 2 and keeping the rest fixed.



For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?
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Poor Mixing: Depth to the Rescue

e Deeper representations can yield some disentangling
e Hypotheses:

* more abstract/disentangled representations unfold manifolds
and fill more the space

e can be exploited for better mixing between modes

e E.g. reverse video bit, class bits in learned object
representations: easy to Gibbs sample between modes at
Layer abstract level

o EEEEEEEE
q99999999
299999999 3 3

Points on the interpolating line between two classes, at dlfferent levels of representation
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Poor Mixing: Depth to the Rescue

e Sampling from DBNs and stacked Contrastive Auto-Encoders:
1. MCMC sample from top-level singler-layer model

2. Propagate top-level representations to input-level repr.

e Visits modes (classes) faster Toronto Eace Database

=
o S '
= = =
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Reqularized AE: MCMC Miracles?

e Virtually no burn-in waste with Denoising AE, trained to map
random configurations to plausible ones in 1 step (very few
necessary in practice)

e Tempering-like effect by controlling step size ¢ (in manifold
directions) trades off mixing speed with accuracy (more math
needed herel)

e Fast mode mixing if sampling at higher levels
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Other reasohs why reqularized auto-
encoders are intéresting alternatives

e Easy “inference” (can have iterative inference with lateral
connections, but not considered as an approximation to the
right thing)

 No partition function (and associated approximations)

 No negative feedback loop between sampling and
learning

— do we actually need an explicit probabilistic model?
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More Ope.vx Questions

e What is a good representation? Disentangling factors? Can we
design better training criteria / setups?

e Can we safely assume P(h|x) to be unimodal or few-modal?If
not, is there any alternative to explicit latent variables?

e Should we have explicit explaining away or just learn to produce
good representations? (possibly iteratively)

e Should learned representations be low-dimensional or sparse/
saturated and high-dimensional?

 Why is it more difficult to optimize deeper (or recurrent/
recursive) architectures? Does it necessarily get more difficult as
training progresses? Can we do better?
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Natural Language Processing (NLP)
Applications

(parts coming from ACL’2012 tutorial on Deep Learning for NLP, with Richard
Socher and Chris Manning)
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Deep Learning models have alread
achieved impressive results for NL

Neural Language Model n

[Mikolov et al. Interspeech 2011] © &

&

MSR MAVIS Speech System
[Dahl et al. 2012; Seide et al. 2011;
following Mohamed et al. 2011]

> )

”The algorithms represent the-;"irst time a
company has released a deep-neural-
networks (DNN)-based speech-recognition
algorithm in a commercial product.”
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|(‘
!
,/*

Discriminative LM

Model \ WSJ task m

KN5 Baseline

17.2
16.9

Recurrent NN combination 14.4

Acoustic model & | Recog | RT03S
training \ WER | FSH

GMM 40-mix,
BMMI, SWB 309h

CD-DNN 7 layer x
2048, SWB 309h

GMM 72-mix,
BMMI, FSH 2000h

1l-pass 27.4 23.6
—-adapt

1l-pass 18.5 16.1
—adapt (-33%) (-32%)
k-pass 18.6 17.1

+adapt



Existing NLP Applications

e Language Modeling (Speech Recognition, Machine Translation)
e Acoustic Modeling

e Part-Of-Speech Tagging

e Chunking

e Named Entity Recognition
 Semantic Role Labeling

e Parsing

* Sentiment Analysis

e Paraphrasing

* (Question-Answering

e Word-Sense Disambiguation
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Neural Language Model

 Bengio et al NIPS’2000
and JMLR 2003 “A
Neural Probabilistic

Language Model”

* Each word represented by
a distributed continuous-
valued code

* Generalizes to sequences
of words that are
semantically similar to
training sequences
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i-th output = P(w; = i | context)

normalized exponential

(e o [ ]

000 )

most| computation here

W

tanh
( 00 ..)

......................
shared parameters
across words

Wt—n+1 Wt—2 Wi—1



Language Modeling

* Predict P(next word | previous word)
* Gives a probability for a longer sequence
* Applications to Speech, Translation and Compression

 Computational bottleneck: large vocabulary V means that
computing the output costs #hidden units x |V].
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The standard word repre.se.hka&wu

The vast majority of rule-based and statistical NLP work regards
words as atomic symbols: lhobel, ﬂowfar@w:e, walle

In vector space terms, this is a vector with one 1 and a lot of zeroes

[coocoo000001 000 0]
Dimensionality: 20K (speech) — 50K (PTB) — 500K (big vocab) — 13M (Google 1T)

We call this a “one-hot” representation. Its problem:

motel [c 6000000001 0000] AND
hotel [oo 0000010006000 0] = ©
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Diskributional similarity based
mpresev\&a&ions

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)

One of the most successful ideas of modern statistical NLP

banking
banking

N These words will represent banking 77

You can vary whether you use local or large context to

get a more syntactic or semantic clustering
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Class-based (hard) and soft
clustering word representations

Class based models learn word classes of similar words based on
distributional information ( ~ class HMM)

e Brown clustering (Brown et al. 1992)
e Exchange clustering (Martin et al. 1998, Clark 2003)
e Desparsification and great example of unsupervised pre-training

Soft clustering models learn for each cluster/topic a distribution
over words of how likely that word is in each cluster

e Latent Semantic Analysis (LSA/LSI), Random projections
e Latent Dirichlet Analysis (LDA), HMM clustering
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Neural word embeddings
as a distributed representation

Similar idea, but thing of each
dimension as an attribute, not

as a cluster membership 4

0.286
Combine vector space 0.792
semantics with the prediction of -0.177
probabilistic models (Bengio et linguistics = -0.107
al. 2003, Collobert & Weston 0.109
2008, Turian et al. 2010) —0.542

0.349
In all of these approaches, 0.271
including deep learning models,

a word is represented as a
dense vector (TODO: sparsity)
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Neural word embeddings -
visualization

need help
come
go
take
give keep
make  get
meet cee continue
expect want become
think
say remain
are .
is
be
wergas
being
been

hadnaS
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Advantages of the neural word
embedding approach

Compared to a method like LSA, neural word embeddings
can become more meaningful through adding supervision
from one or multiple tasks

For instance, sentiment is usually not captured in unsupervised
word embeddings but can be in neural word vectors

We can build representations for large linguistic units

See below
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Contrastive Sampling of Negative
Examptes (Collobert et al. IMLR 2011)

ldea: A word and its context is a positive training
sample; a random word in that same context gives
a negative training sample:

E[bcat chills on a mat == cat chills Jeju a mat

Similar: Implicit negative evidence in Contrastive
Estimation, (Smith and Eisner 2005)
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A neural nekworlke for Learning word
vectors

How do we formalize this idea? Ask that

score(cat chills on a mat) > score(cat chills Jeju a mat)

How do we compute the score?

e With a neural network

e FEach word is associated with an
n-dimensional vector
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Word embedding matrix

e |nitialize all word vectors randomly to form a word embedding
matrix [, € R**IVI

V]
o o o) o0
o o o) o0
[ = o o o o o],
e o o o 0

the cat mat ..
e These are the word features we want to learn
e Also called a look-up table

* Conceptually you get a word’s vector by left multiplying a
one-hotvectoreby l: x=le
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Word vectors as Lv\pu,(: ko a neural
nebworle

e score(cat chills on a mat)

e To describe a phrase, retrieve (via index) the corresponding
vectors from L

cat chillson a mat

e Then concatenate them to 5n vector:
X =[ Q000 0000 0000 0000 000OC ]

How do we then compute score(x)?
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The secret sauce is the uv\supe.rvised
pre-training on a large text collection

.+ (Collobert & Weston 2008; Collobert et al. 2011)

! NER
A CoNLL (F1)

‘ State-of-the-art™ 97.24 89.31
A2 Supervised NN 96.37 81.47

Unsupervised pre-training 97.20 88.87
followed by supervised NN**
+ hand-crafted features*** 97 29 89.59

* Representative systems: POS: (Toutanova et al. 2003), NER: (Ando & Zhang
2005)

**130,000-word embedding trained on Wikipedia and Reuters with 11 word
window, 100 unit hidden layer — for 7 weeks! — then supervised task training

***Features are character suffixes for POS and a gazetteer for NER
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Supervised refinement of the
uv\su,pervi.sed word represewl:a&i.ov\ ketps

NER
CoNLL (F1)

Supervised NN 96.37 81.47
NN with Brown clusters 96.92 87.15
Fixed embeddings™ 97.10 88.87
C&W 2011** 97.29 89.59

* Same architecture as C&W 2011, but word embeddings are kept constant
during the supervised training phase

** C&W is unsupervised pre-train + supervised NN + features model of last slide
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Bilinear Language Model

* Even a linear version of the Neural Language Model works

better than n-grams

e [Mnih & Hinton 2007]

 APNews perplexity
down from 117 (KN6)

t0 96.5

|V|-length
Softmax layer

213

7 P=Y Ciry,
C
......................... n-length
Embedding
........... e ayer




Language Modeling Output Bottlenecie

" k|

 [Morin & Bengio 2005; Blitzer et al 2005, Mnih & Hinton
2007,2009; Mikolov et al 2011]: hierarchical representations,
multiple output groups, conditionally computed, predict
e P(word category | context)
* P(sub-category | context, category)
 P(word | context, sub-category, category)

* [Schwenk et al 2002]: only predict most frequent words
(short list) and use n-gram for the others

categories

* Hard categories, can be arbitrary

[Mikolov et al 2011] words within each category
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Language Modeling Output Bottlenecie:
Hierarchical word categories

Compute P(category|context)  P(word]|context,category)
P(word | category,context)
only for

category=category(word)

Instantiated
only for
category(word)

Context = previous words
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Language Modeling Output Bottlenecie:

Sampling Methods

* Importance sampling to recover next-word probabilities
[Bengio & Senecal 2003, 2008]

* Contrastive Sampling of negative examples, with a E - 1
ranking loss [Collobert et al, 2008, 2011] g

* (no probabilities, ok if the goal is just to learn word embeddings)

* Importance sampling for reconstructing bag-of-words [Dauphin
et al 2011}
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Sampled Reconskruction Triclk

[Dauphin et al, ICML 2011]

* Auto-encoders and RBMs reconstruct the input, which is

sparse and high-dimensional

code= latent features

C0000

000 @ Ce0 - O

sparse input dense output probabilities
* Applied to bag-of-words input for . ... |7 el
sentiment analysis, with denoising T B S S

auto-encoders

* Always reconstruct the non-zeros

in the input, and reconstruct as many i N_ e

randomly chosen zeros
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Representing Sparse High-Dimensional
Skufs: S'an«rpl;ec( Reconstruction

d
L(x.z) =Y  H(xx.z)
k

Stochastic reweighted loss

. Pk
L(x,z) = Z — H(xp, 21) Sample which
L Ar inputs to
f) c {O, 1}d with f) N P(f)’X) reconstruct
. B Importance sampling
qr — E[Pk“@ X, X] reweighting

~\ . . S Minimum-variance: guess
Let C(x,X) = (ki xp = Lorx; = 1} wrong reconstructions

Ao _ )1 if &€ C(x,X) As many randomly
P(pr = 1xx) = { IC(x,x)|/d, otherwise chosen other bits



Recurrent Neural Net Langquage
Modeling for ASR

45 T —
. ..| —>—RN\N
14>__ o L oIllll| —%— RNN+KN4
¢ [Mikolov et al 2011] ol T e
@ Biggeris better.. T s
| experiments on Broadcast g N R
"= ' News NIST-RT04 g 19 AR AN S
& -
= 125
perplexity goes from
140 to 102 12
11.5 " " " " " PR | M " " " " PR
Paper shows how to o : 12
train a recurrent neural net Hidden layer size
. . . P(w:| context) P(w:t| context)
with a single core in a few — —
. >
days, with > 1% absolute | T
o . |
improvement in WER > N
L > wm-tH}V»
|3 —>>
Code: nttp://www.fit.vutbr.cz/~imikolov/rnnlm/ L > —>
- > —>>
219 | |




Neural Net Language Modeling for ASR

*  [Schwenk 2007], real-time ASR, perplexity AND word error rate |mprove
(CTS evaluatlon set 2003), perplexmes go from 50.1 to 45.5 ~

o backoff LM, CTS data £ | |
St hybrid LM, CTS data ===
2 x|l ystem backoff LM, CTS+BN data ———1 | _
= 25270 hybrid LM, CTS+BN data Ezzz2
— . o g
@)
24.51%
5 24t % system?2 _
-g Z 23.04%§
22.19% — 22.32%
(i 21 Z v 7] 2177% §
Syst 3
% 2 7 ystem
= 20 F 19.94% -
. 7 é 19.10% 19.30%
% / ' 18.85%
18 + % / .
1 A 1 1
7.2M 12.3M 27.3M

in-domain LM training corpus size
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Apptécal:ion to Statistical Machine
Tronslation :i

* Schwenk (NAACL 2012 workshop on the future of LM)
e 41M words, Arabic/English bitexts + 151M English from LDC

* Perplexity down from 71.1 (6 Gig back-off) to 56.9 (neural
model, 500M memory)

* +1.8 BLEU score (50.75 to 52.28)

* (Can take advantage of longer contexts

Code: http://lium.univ-lemans.fr/cslm/
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Modeling Semamntics

Learning Structured Embeddings of
Knowledge Bases, (Bordes, Weston,
Collobert & Bengio, AAAI 2011)

ck 2)

(_door_1, has part, |

o

’

Joi ' - AN
oint Learning of Words and Meaning o
Representations for Open-Text [Leﬂ Righi

Semantic Parsing, (Bordes, Glorot,
Weston & Bengio, AISTATS 2012) Noor 1 Vs £ e
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Modeling Relations: Operating on
Embeddings

energy

energy

choose
atrices

relation

Elementwise max. Element-wise max. Eleméent-whse max.
choose #
ector

Subj. words Verb words bj. words
rhs

Ii L black__2 cat__1 eat__2 white__1 mouse_2

Model (lhs, relation, rhs)

Each concept = 1 embedding vector
Each relation = 2 matrices. Matrix or mlp acts as operator.
Ranking criterion

Energy = low for training examples, high o/w
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Allowing Relations on Relatiowns

energy

choose vector

relation rh

Verb = relation. Too many to have a matrix each.
Each concept = 1 embedding vector
Each relation = 1 embedding vector

Can handle relations on relations on relations
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Training on Full Sentences

energy

F )

Element-wjse max. Element-wise max.

Verb words Obj. words

Subj. words
black__ 2 cat__1 eat__2 white__1 mouse_2

Use SENNA (Collobert et al 2011) = embedding-based NLP tagger for
Semantic Role Labeling, breaks sentence into (subject, verb, object) phrases

- Use max-pooling to aggregate embeddings of words inside each part
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Open-Text Semantic Parsing

e 3 steps:
""A musical score accompanies a television program ."
1, Semantic Role Labeling
(""A musical score", "‘accompanies”, "'a television program")
J, Preprocessing (POS, Chunking, ...)
((_musical_JJd score_NN ), _accompany VB ,_television_program NN )

\l, Word-sense Disambiguation

((_musical_JJ_1 score_NN_2), _accompany_VB_ 1, television_ program NN_1)

e |ast formula defines the Meaning Representation (MR).
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Training Criterion

e Intuition: if an entity of a triplet was missing, we would like our
model to predict it correctly i.e. to give it the lowest energy.
For example, this would allow us to answer questions like “what
is part of a car?”

* Hence, for any training triplet x, = (lhs, rel,, rhs) we would like:
(1) E(lhs;, rel, rhs;) < E(lhs;, rel;, rhs),
(2) E(lhs, rel, rhs)) < E(lhs;, rel;, rhsy),
(3) E(lhs, rel, rhs;) < E(lhs;, rel,, rhs;),

That is, the energy function E is trained to rank training samples
below all other triplets.
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Cowntrastive Sampling of Neg. Ex.=
pseudo-likelihood + un form sampling of neqative
variants

Train by stochastic gradient descent:
1. Randomly select a positive training triplet x, = (lhs,, rel,, rhs;).
2. Randomly select constraint (1), (2) or (3) and an entity é:

- If constraint (1), construct negative triplet X' = (&, rel,, rhs,).
- Else if constraint (2), construct X’ = (lhs, €, rhs,).
- Else, construct X' = (lhs,, rel, €).

3. If E(x,) > E(X’) — 1 make a gradient step to minimize:
max(0, 1 - E(X) + E(x/)).
4. Constraint embedding vectors to norm 1
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Question Answering: implicitly
adding new relations to WN or FB

Model (All) TextRunner
lhs ~army_NN_1 army
rel _attack_vB_1 attacked
_troop_NN_4 Israel
top | _armed_service_.NN_1| the village
ranked Ship_NN_1 another army
rhs _territory_NN_1 the city
~_military_unit_NN_1 the fort
_business_firm_NN_1 People
top _person_NN_1 Players
ranked family_NN_1 one
lhs _payoff_NN_3 Students
_card_game_NN_1 business
rel _earn_VB_1 earn
rhs ~-money_NN_1 money
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MRs inferred from text
define triplets between
WordNet synsets.

Model captures
knowledge about
relations between nouns
and verbs.

- Implicit addition of
new relations to

WordNet!

- Generalize Freebase!



Embedding Nearest Neighbors of
Words & Sewnses

“mark_NN “mark_NN_1 “mark_NN_2
_indication_NN _score_NN_1 “marking_NN_1
_print_NN_3 _number_NN_2 _symbolizing_NN_1
_print_NN _gradation_NN “naming_NN_1
_roll_ NN _evaluation_NN_1 ~marking_NN
_pointer_NN “tier_.NN_1 _punctuation_NN_3
_take VB ~canary_NN _different_JJ_1
_bring_VB _Ssea_mew_NN_1 _eccentric_NN
_put_VB _yellowbird_NN_2 _dissimilar_JJ
~ask_VB _canary_bird_NN_1 _Same_JJ_ 2
_hold_VB larus_marinus_NN_1| _similarity_NN_1

_provide_VB

“mew_NN

~common_JJ_1
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Word Sense Disambiquation

e Senseval-3 results
(only sentences with
Subject-Verb-Object
structure)

MFS=most frequent sense

All=training from all sources
Gamble=Decadt et al 2004

(Senseval-3 SOA)

e XWN results
XWN = eXtended WN
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Learning Multiple Word Vectors

e Tackles problems with polysemous words

e (Can be done with both standard tf-idf based
methods [Reisinger and Mooney, NAACL 2010]

learns multiple prototypes using both local and global context

 State of the art EecaContaxt Slobal,Context

correlations with /‘?“\@

human similarity
judgments

00 (0000 (0000 (0000 (oo

- he walks to the
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Learning Multiple Word Vectors

e Visualization of learned word vectors from
Huang et al. (ACL 2012)

translatiofvels fantasy stars

mangda
laundering movie—k o
transaction talk  ({plevision Inais
finance bank, video constellation
banking camera venue oracle
9P fiash asteroid mars S
: galaxy moon
rer%trwé:lpality direction planet
boundary
gap  G@nal.
plateau
territory
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Phoneme~Level Acoustic Models

* [Mohamed et al, 2011, IEEE Tr.ASLP] Tq :
2PN
* Unsupervised pre-training as Deep Belief Nets (a stack of
RBMs), supervised fine-tuning to predict phonemes
* Phoneme classification on TIMIT:
e CD-HMM: 27.3% error
* CRFs: 26.6%
* Triphone HMMs w. BMMI: 22.7%
* Unsupervised DBNs: 24.5%

* Fine-tuned DBNs: 20.7%
* Improved version by Dong Yu is RELEASED IN MICROSOFT’S

ASR system for Audio Video Indexing Service
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Domain Adaptation for

Senkiment Av\atjsi.s

e [Glorotetal, ICML 2011]
beats SOTA on Amazon
benchmark, 25 domains

* Embeddings pre-trained in
denoising auto-encoder

* Disentangling effect
(features specialize to
domain or sentiment)
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Transfer ratio

1
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Recursive Neural Networlkes
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Building on Word Vector Space Models

A
X, .
57T ) ¢ 5
4T X [1.1]

4

31T HKGermany [ ;]

-+ 9
2 France [2 ] xMonday[ ]
1T - K Tuesday [ ]
0 1 2 3 4 5 6 7 8 9 10

the country of my birth
the place where | was born

But how can we represent the meaning of longer phrases?

,37 BY mapping them into the same vector space!



How should we mayp pkrases inko a
vector space?

Use principle of compositionality

x the country of my birth
x the place where | was born

The meaning (vector) of a sentence
is determined by

(1) the meanings of its words and ¢ France -
onda
(2) the rules that combine them. X !
xTuesday
] L] L] L] L] L] ] : i )
2 3 4 5 6 7 8 9 10 X4

Recursive Neural Nets
can jointly learn
compositional vector
representations and
parse trees

the  country 538



Sentence Parsing: What we want
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Learn Skructure and Represen&akion
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Recursive Neural Networks for
Structure Prediction

Inputs: two candidate children’s representations

Outputs:
1. The semantic representation if the two nodes are merged.

2. Score of how plausible the new node would be.

- ;) 8

o, /\[3]
(1 //W{\
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Recursive Neural Network Definikion

score = 1.3 [2] = parent

score = U'p

Neural c
Network — | p=tanh (W [ ! ] + b)

C2

Same W parameters at all nodes
of the tree
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Related Work to Socher et al. (ICML
2011)

* Pollack (1990): Recursive auto-associative memories

B
/7

m\ 2
e Previous Recursive Neural Networks work by Goller & Kichler

(1996), Costa et al. (2003) assumed fixed tree structure and

used one hot vectors.

e Hinton (1990) and Bottou (2011): Related ideas about
recursive models and recursive operators as smooth

versions of logic operations
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Recursive Application of Relational
Operators

Bottou 2011: ‘From machine learning to machine reasoning’, also
Socher ICML2011.

sat
on
the
mat

the

cat

\&/\E/
:




Parsing a sentence with an RNN




Parsing a sentence




Parsing a sentence




Parsing a sentence




Max-Margin Fr‘mme.work[-i- Details

o

8 3
5 3

e Similar to max-margin parsing (Taskar et al. 2004), a supervised
max-margin objective

J = Zs(xi,yl-) — max (s(xi,y) —|—A<y7)7i))
i yeA(x;)

e The score of a tree is computed by
the sum of the parsing decision
scores at each node.

e The loss A(y,yi) penalizes all incorrect decisions
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Labeling in Recursive Neural Networlkes

NP
e \We can use each node’s

representation as features for a Softmax
softmax classifier:

Layer

plelp) = softmaz(Sp) Q

Neural

Network
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Experiments: Parsing Short Sentences

e Standard WSJ train/test L15Dev  L15 Test
e Good results on short

sentences Sigmoid NN (Titov & Henderson 2007) 89.3
* More work is needed for

longer sentences

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to SUNK m. from SUNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.
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Short Para kase. Detection

e Goalis to say which of candidate phrases are a good
paraphrase of a given phrase

* Motivated by Machine Translation

e Initial algorithms: Bannard & Callison-Burch 2005 (BC 2005), Callison-
Burch 2008 (CB 2008) exploit bilingual sentence-aligned corpora and
hand-built linguistic constraints

» Re-use system trained on F1 of Paraphrase Detection

parsing the WS)J 0,5
0,4

0,3
0,2
0,1

0 -

BC 2005 CB 2008 RNN
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Para ph'mse detection task, CCB dagtq,

the united
states

around the
world

it would be

of capital
punishment

in the long
run
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Candidates with human goodness label (1-5) ordered by recursive net

the usa (5) theus (5) united states(5) north america(4) united (1)
the (1) of the united states (3) america (5) nations (2) we (3)

around the globe(5) throughout the world(5) across the world(5) over
the world(2) in the world(5) of the budget(2) of the world(5)

it would represent (5) there will be (2) that would be (3) it would be
ideal (2) it would be appropriate (2) itis(3) it would (2)

of the death penalty (5) to death (2) the death penalty (2) of (1)

in the long term (5) in the short term (2) for the longer term (5) in
the future (5) inthe end (3) inthelong-term (5) intime (5) of the (1)



Scene Parsing

Similar principle of compositionality.

254

The meaning of a scene image is
also a function of smaller regions,

how they combine as parts to form
larger objects,

and how the objects interact



Algorithm for Parsing Images

Same Recursive Neural Network as for natural language parsing!
(Socher et al. ICML 2011)

Parsing Natural Scene Images

Semantic

Representations
Features

Segments
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Multi-class seqmentation

Bs<y [Ptee [Proad [Porass [JPwater oidg  Pmntn  Blfg obj.

Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Recursive Neural Network 78.1

256 Stanford Background Dataset (Gould et al. 2009)



Recursive Autoencoders

e Similar to Recursive Neural Net but instead of a
supervised score we compute a reconstruction error

ateachnode. f (1¢;: o)) = % |lets o] — [ ]|

oo y,=f(WI[xy;y1] + b)

XXX y1=f(W[X2,'X3] + b)

(eee00) (eeee) (0000
X1 X5 X3

\_
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Se.mi.--supervi.sad Recursive
Aubtoencoder

e To capture sentiment and solve antonym problem, add a softmax classifier

e Erroris a weighted combination of reconstruction error and cross-entropy
Socher et al. (EMNLP 2011)

Reconstruction error Cross-entropy error

( )

0000000 000O0OCOCO O0O0OCGOCO
W(Z) W(Iabel)

0000000

wo
(0000000 (0000000
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Comparing the meaning of two
sentences: Para pkmse Detection

e Socher et al. (NIPS 2011)

Unsupervised Unfolding RAE and a pair-wise sentence
comparison of nodes in parsed trees

Recursive Autoencoder

Neural Network for Variable-Sized Input

6 eeee 5?..? J@eee®
(ﬂijigﬁ) 3@sen f@eee ]@ees 201'Z$m

VACX X X

The cats catch mlce
—_

Cats eat mice

i ‘
W4567

Paraphrase

Pairwise Classification Output

Neural Network

Variable-Sized Pooling Layer

Similarity Matrix
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Recursive Autoencoders for Fall
Senktence ‘Fampkmse Detection

e Experiments on Microsoft Research Paraphrase Corpus
e (Dolan et al. 2004)

Method __________________ JAc__ P

Rus et al.(2008) 70.6 80.5
Mihalcea et al.(2006) 70.3 81.3
Islam et al.(2007) 72.6 81.3
Qiu et al.(2006) 72.0 81.6
Fernando et al.(2008) 74.1 82.4
Wan et al.(2006) 75.6 83.0
Das and Smith (2009) 73.9 82.3
Das and Smith (2009) + 18 Surface Features 76.1 82.7
F. Bu et al. (ACL 2012): String Re-writing Kernel 76.3

Unfolding Recursive Autoencoder (NIPS 2011) 76.8 83.6
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Compositionality Through Recursive
Mabrix-Vector Recursive Neural Neblworles

_ C1 Cye
p—tanh(W[ ]—I—b) _ 2¢1
Co p =tanh ( W O +b

Recursive Matrix-Vector Model

- vector

0 . i
®0 matrix

)
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Predicting Semtiment Distribukions

fairly annoying
——MV-RNN

not annoying

05
od —o— MV-RNN
~+~RNN
03
0% g
01 o ———_,
e

B o 3

1 é 1;: 4‘1 é (IS 7 8 9
unbelievably annoying

—e—MV-RNN
-+~ RNN

05

04r
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fairly awesome

051

iy —e—MV-RNN

| ~+~RNN

03

0.2

0.1 ’_'M/M
' L I 1 L L 1 L L ]

051

0.4

03

0.2r

not awesome

—e—MV-RNN
-+~ RNN

) S - S -—=r

1 2 3 4 5 6 7 8 9 10

unbelievably awesome

—e—MV-RNN
~+=RNN

fairly sad
05
ol —e—MV-RNN
' -+~ RNN
03r
0.2+
0.“&__;:#—_’%";'& O aa ";":';--ﬁ
Y

not sad
0.5
s ——MV-RNN
-+-RNN
03 —=—Ground Truth

unbelievably sad
—— MV-RNN
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Discussion
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Concerns

e Many algorithms and variants (burgeoning field)

 Hyper-parameters (layer size, regularization, possibly
learning rate)

* Use multi-core machines, clusters and
(Bergstra & Bengio 2012)

* Pretty common for powerful methods, e.g. BM25
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Concerns

e Slower to train than linear models

* Only by a small constant factor, and much more compact
than non-parametric (e.g. n-gram models)

* Very fast during inference/test time (feed-forward pass is just
a few matrix multiplies)

e Need more training data?

e Can handle and benefit from more training data (esp.
unlabeled), suitable for age of Big Data (Google trains neural
nets with a billion connections, [Le et al, ICML 2012])

* Need less labeled data
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Concern: non—convex op&imi.z.a&aon

e Can initialize system with convex learner
* Convex SVM

* Fixed feature space

 Then optimize non-convex variant (add and tune learned
features), can’t be worse than convex learner
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Transfer
Learhing

e Application of deep
learning could be in areas
where there are not
enough labeled data but regs 5 s
a transfer is possible I o

 Domain adaptation already showed that effect, thanks
to unsupervised feature learning

e Two transfer learning competitions won in 2011

e Transfer to resource-poor languages would be a great
application [Gouws, PhD proposal 2012]
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Learning Multiple Levels of
Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and
transfer oGS

* More abstract representations
—Successful transfer (domains,

g 1 R i

languages)
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Issue: underfitting due to combinatorially many poor local minima

Culture vs Local Minima

arXiv paper 2012, Y. Bengio
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vaa&ke.si.s 1

e When the brain of a single biological agent learns, it performs an
approximate optimization with respect to some endogenous
objective.

ijdzke.si.s 2

e When the brain of a single biological agent learns, it relies on
approximate local descent in order to gradually improve itself.
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Theoretical and experimental results on deep learning suggest:

ijo&kesis 3

 Higher-level abstractions in brains are represented by deeper
computations (going through more areas or more
computational steps in sequence over the same areas).

limited by effective local minima.
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vao&kesf.s ]

* Asingle human learner is unlikely to discover high-level
abstractions by chance because these are represented by a deep
sub-network in the brain.

Q%

H-:}Pa&ke.s ts & ,C\)\w\"'@‘ |

e A human brain can learn high-level abstractions if guided by the
signals produced by other humans, which act as hints or indirect
supervision for these high-level abstractions.
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How is one brain

transfer of information happens

transferring
abskractions to
another brain?

Linguistic Linguistic
representation representation

o ofmuoo_ o

Linguistic exchange
= tiny / noisy channel

Shared input X
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How do we escape Llocal minima?

e |inguistic inputs = extra examples, summarize
knowledge

e criterion landscape easier to optimize (e.g.
curriculum learning)

e turn difficult unsupervised learning into easy
supervised learning of intermediate abstractions
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How could language/education/
culture possibt:, help find the
better Local mihima associated
with more useful abstractions?

More than random search:
potential exponential speed-
up by divide-and-conquer
combinatorial advantage:
can combine solutions to

“jFQ&kQSiS 7 independently solved sub-

problems

e Language and meme recombination provide an efficient
evolutionary operator, allowing rapid search in the space of
memes, that helps humans build up better high-level internal
representations of their world.

275



From where do hew ideas emerge?

e Seconds: inference (novel explanations for current x)
e Minutes, hours: learning (local descent, like current DL)

e Years, centuries: cultural evolution (global optimization,
recombination of ideas from other humans)
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Related Tutorials

e See “Neural Net Language Models” Scholarpedia entry
e Deep Learning tutorials:

e Stanford deep learning tutorials with simple programming
assignments and reading list

e ACL 2012 Deep Learning for NLP tutorial
e |CML 2012 Representation Learning tutorial

e More reading: Paper references in separate pdf, on my web
page
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Software

* Theano (Python CPU/GPU) mathematical and deep learning
library
* Can do automatic, symbolic differentiation
* Senna: POS, Chunking, NER, SRL
* by Collobert et al.
* State-of-the-art performance on many tasks
* 3500 lines of C, extremely fast and using very little memory
e Recurrent Neural Network Language Model

e Recursive Neural Net and RAE models for paraphrase detection,
sentiment analysis, relation classification
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Software: what’s next

e Off-the-shelf SVM packages are useful to researchers
from a wide variety of fields (no need to understand
RKHS).

e To make deep learning more accessible: release off-
the-shelf learning packages that handle hyper-
parameter optimization, exploiting multi-core or
cluster at disposal of user.
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The End
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