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Outline of the Tutorial

1. Motivations and Scope

2. Algorithms

3. Analysis, Issues and Practice
4. Applications to NLP

5. Culture vs Local Minima

See (Bengio, Courville & Vincent 2012)
“Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”
And for a pdf of the

slides and a detailed list of references.



OLkimate Goals

e Al

e Needs knowledge

e Needs learning

* Needs generalizing where probability mass
concentrates

e Neeg

e NeecC
(Ima

s ways to fight the curse of dimensionality
s disentangling the underlying explanatory factors

King sense of the data”)



Representation Learning

e Good features essential for successful ML
 Handcrafting features vs learning them

e Good representation: captures posterior belief about
explanatory causes, disentangles these underl m
factors of variation ' ‘

e Representation learning: guesses
the features / factors / causes =

good representation.



Deep Representation Learning

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction

When the number of levels can be data-
selected, this is a deep architecture
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A Good 0Ld ‘Dee.p Architecture

Optional Output layer

Here predicting a supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer —

This has raw sensory inputs (roughly)



What We Are Fighting Against:
The Curse ofDimensionality

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting features

1 dimension:
10 positions

2 dimensions:
100 positions
(o]

> 3 dimensions:
1000 positions!



Easy Learning

learned function: prediction = f(x)




Local Smoothness Prior: Locatty
Capture the Variakions

* = training example

YA

true functjgn: unknbwn

prediction

.-~""learnt = interpolat
f X I , .’ .
(x) oy




Real Data Are o Highly Curved
Manifolds

" [shrinking )

“transformation
1 wn
v

raw input vector space
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Nokt bimensionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Is there any ho pe to
generalize v\av\%acattv?

Yes! Need more pri.ars!



13

Part 1

Six Grood Reasons ko Exptare.
Represev\&akiov\ Learning



# 1 Learning features, not just
handerafting them

Most ML systems use very carefully hand-designed
features and representations

Many practitioners are very experienced — and good — at such
feature design (or kernel design)

“Machine learning” often reduces to linear models (including
CRFs) and nearest-neighbor-like features/models (including n-
grams, kernel SVMs, etc.)

Hand-crafting features is time-consuming, brittle, incomplete
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How cah we automatically Llearn good
features?

Claim: to approach Al, need to move scope of ML beyond
hand-crafted features and simple models

Humans develop representations and abstractions to
enable problem-solving and reasoning; our computers
should do the same

Handcrafted features can be combined with learned
features, or new more abstract features learned on top
of handcrafted features

15



# 2 The need for distributed
representations

e (lustering, Nearest-

Clusterin
N ne Neighbors, RBF SVMs, local
X > non-parametric density
D estimation & prediction,

decision trees, etc.

e Parameters for each
distinguishable region

LOCAL PARTITION

e # distinguishable regions
linear in # parameters
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# 2 The need for distributed
representations

Multi-
i Sub—partition 3
CIUSterlng \pClzl Sub-—partition 2
e Factor models, PCA, RBMs, e e S
Neural Nets, Sparse Coding, o
Deep Learning, etc. Sub—partition 1 N

e Each parameter influences
many regions, not just local
neighbors Voo
e # distinguishable regions C osTmvmbRARITON
grows almost exponentially
with # parameters

e GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Cl1=0
C2=1 \

C1 C2 C3

input
17



# 2 The need for distributed
representations

Clustering e
. Sub—partition 3
CIUSterlng ‘\pm:l Sub—partition 2
)\ gé:(l) ‘\(Cj»z‘:('] i"l‘:
C3=0 \ /
Sub—partition 1 3 coel
X

Cl1=0

et \ Ci=0
C3=0 \ Co=1
\ C3=1

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than

nearest-neighbor-like or clustering-like models
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#3 Uv\sugervise.d fealure Learning

Today, most practical ML applications require (lots of)
labeled training data

But almost all data is unlabeled

The brain needs to learn about 104 synaptic strengths

... in about 10° seconds
Labels cannot possibly provide enough information

Most information acquired in an unsupervised fashion
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# 3 How do humans generalize
from very few examples?

20

They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

Previous learning from: unlabeled data
+ labels for other tasks

Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)



F 3 Sharing Statistical Strength bj
Semi-Supervised Learning

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised
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H 4 Learhing multiple Levels
of representation

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and then compose
them to more complex ones
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#4 Sharing Compov\eu!:s N a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

3) 2X3) + (1374)
Sum-product
network
LYy

Theorems in
(Bengio & Delalleau, ALT 2011;

Delalleau & Bengio NIPS 2011)
xrs T4



#4- Learning mui.!:ipi.e levels FE %

X . jé,, =5 5
Of TQP‘“QSQ“EQ&LQV\ (Lee, Largman, Pham & Ng, NIPS 2009)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
to form objects

A LA TN AL VP
\\ \\ N \,"‘ Layer 1

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




#4“ Handling the compasi&i.onau&v
of human language and thought

e Human languages, ideas, and “ \ i -
artifacts are composed from £>

simpler components I

e Recursion: the same
operator (same parameters)
is applied repeatedly on
different states/components
of the computation

e Result after unfolding = dee
) 5 P (Bottou 2011, Socher et al 2011)
representations 5
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#E Mulli-Task Learning

e Generalizing better to new
tasks is crucial to approach Al

e Deep architectures learn good
intermediate representations
that can be shared across tasks

e Good representations that
disentangle underlying factors
of variation make sense for
many tasks because each task
concerns a subset of the factors

26



FHE sharing Statistical Stremgth

e Multiple levels of latent
variables also allow
combinatorial sharing of
statistical strength:
intermediate levels can also
be seen as sub-tasks

e E.g.dictionary, with
intermediate concepts re-
used across many definitions

Prior: some shared underlying explanatory factors between tasks
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#5 Cambm&ng Multiple Sources of
Evidence with Shared epresen&a&i.ovxs

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types
across data sources
e Shared learned representations help event ur' person
propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...
(Bordes et al AISTATS 2012) 8

e Traditional ML: data = matrix

history words url

P(person,url,event) '

P(url,words,history)
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#6 Different object types

represented i same space

DOLPHIN
OBAMA
—EIFFEL TOWER

) Google:

| S. Bengio, J.
Weston & N.
Usunier

Lo (1CAI 2011,

NIPS’2010,
JMLR 2010,
MLJ 2010)

100-dim
embedding space

Learn ®(<) and &,(-) to optimize precision@k.



#6 Invariance and “Di.sev\&avxgung

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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#6 Emergence of Disentangling

TR ;‘;—!
7 N
T

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

Bas St
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#6 Sparse Representations

e Just add a penalty on learned representation
e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information

Prior: only few concepts and attributes relevant per example

32



Deep Sparse Rectifier Neural Networlks
(

Glorot,Bordes and Bengio AISTATS 2011), following up on (Nair & Hinton 2010)

Neuroscience motivations
Leaky integrate-and-fire model

200 et
_—
N 150 -~
= - . : o
£ 100 / Machine learning motivations
: /
= 50 mm) Sparse representations
0 mm) Sparse and linear gradients
2 4 6 8 10
Input current (A) -9
x 10
Output
1 [—Sigmoid |
~——Tanh
0.5 Hidden layer 2
c) 0//
05 Hidden layer 1
' /
-1
2 1 0 1 2 3 -3 2 1 0 1 2 3 Input
Rectifier Commonly used functions
f(x)=max(0,x)
mm) One-sided
mm) Real zeros

mmp “default’ regime at 0




Deep Sparse Rectifier Neural Nets:

Can train deeper supervised nets!

Experiments and results
Stacked denoising autoencoder

4 image recognition and 1 sentiment analysis datasets
Better generalization than hyperbolic tangent networks

Rectifier networks achieve their best performance without
needing unsupervised pre-training

1 1111

Unsupervised pre-training is beneficial in the semi-
supervised setting

NISTP

Neuron

MNIST

CIFAR10

NISTP

NORB

L/ S5TIA Ly L O

With unsupervised pre-training
Rectifier| 1.20% | 49.96% |32.86% [16.46%
Tanh 1.16% | 50.79% |35.89% | 17.66%
Softplus | 1.17% | 49.52% |33.27% | 19.19%

Without unsupervised pre-training
Rectifier| 1.43% | 50.86% |32.64% [16.40%
Tanh 1.57% | 52.62% |36.46% | 19.29%
Softplus | 1.77% | 53.20% |35.48% | 17.68%

_________ T .
Tanh+pretraining ||
~~"Rect
- Rect+pre’_[raining |

10 20

i
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|
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i
50

i
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i
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Ratio of supervised examples (%)




Tem Fo'mt Coherence and Scales

e One of the hints from nature about different explanatory
factors:

e Rapidly changing factors (often noise)

* Slowly changing (generally more abstract)
* Different factors at different time scales

e We should exploit those hints to disentangle better!

e (Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &
Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al
2009, Bergstra & Bengio 2009)



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Bypassing the curse by sharing
statistical strength

e Besides very fast GPU-enabled predictors, the main advantage
of representation learning is statistical: potential to learn from
less labeled examples because of sharing of statistical strength:

* Unsupervised pre-training and semi-supervised training
* Multi-task learning

* Multi-data sharing, learning about symbolic objects and their
relations

37



Nkv NOw ¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful

(except for convolutional neural nets when used by people who speak French)

What has changed?

*  New methods for unsupervised pre-training have been
developed (variants of Restricted Boltzmann Machines =
RBMs, regularized autoencoders, sparse coding, etc.)

* Better understanding of these methods

* Successful real-world applications, winning challenges and

beating SOTASs in various areas
38
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Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

Sparse coding variants

WA  Bengi
Montréal
Torontg 7R
Hinto -
%8 Le Cun
212 New York



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Ckal:&_gvxge: ‘Deeﬂgwg,eamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




More Successful Applications

41

Microsoft uses DL for speech rec. service (audio video indexing), based on
Hinton/Toronto’s DBNs (Mohamed et al 2011)

Google uses DL in its Google Goggles service, using Ng/Stanford DL systems

NYT talks about these: http://www.nytimes.com/2012/06/26/technology/in-a-
big-network-of-computers-evidence-of-machine-learning.html?_r=1

Substantially beating SOTA in language modeling (perplexity from 140 to 102
on Broadcast News) for speech recognition (WSJ WER from 16.9% to 14.4%)
(Mikolov et al 2011) and translation (+1.8 BLEU) (Schwenk 2012)

SENNA: Unsup. pre-training + multi-task DL reaches SOTA on POS, NER, SRL,
chunking, parsing, with >10x better speed & memory (Collobert et al 2011)

Recursive nets surpass SOTA in paraphrasing (Socher et al 2011)
Denoising AEs substantially beat SOTA in sentiment analysis (Glorot et al 2011)
Contractive AEs SOTA in knowledge-free MNIST (.8% err) (Rifai et al NIPS 2011)

Le Cun/NYU'’s stacked PSDs most accurate & fastest in pedestrian detection
and DL in top 2 winning entries of German road sign recognition competition



More aboul de.p!:k
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Architecture bap&k

output

element

SRIESIE AR




‘De.e.p Architectures are Mcre
Expresswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproxima’ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio &

Delalleau 2011, Braverman 2011)

Functions compactly represented
with k layers may require
exponential size with 2 layers




N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



9 TR3 a8°

* A ov SK.O' 5 A ~EATER
COMNECTION ADNTS SEE
BELow FOR NEATR CRCUT

COMPLETE CIRCUIT DIAGRAM, SERIES 420




“Shallow” circuit

iInput

123 n

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture



Sum~Produck Nebworlkes

0.5x1 4+ x9 + 3.1x3

0.5

Depth 2 suffices to represent any finite
polynomial (sum of products)

(Poon & Domingos 2010) use deep sum-
product networks to efficiently parametrize
partition functions



?otvmwmmts Ehak Need ‘Dep%k

2 gl gl g
(3 =0+ U5 = x129 + 2374 = f1(21, 22, 73, 24)

e 2; layers and n = 4' input variables
e alternate additive and multiplicative units

o unit (" takes as inputs (5! -1 and féj_ !

Need O(n) nodes with depth log(n) circuit
Need O(2'") nodes with depth-2 circuit



More ‘Poi.jmcmmts Ehobk Need "bep&k

(3 =22 + 23 + 22 + 3(2179 + 7173 + T973)

(2 = 23+ xy79
+ri1r3 + Tok3

(3 = 22 + x179
+2171173 + Tols

I 9 T3

e 2; + 1 layers and n variables (n independent of 7)
e alternate multiplicative and additive units
o unit (¥ takes as inputs {(¥|m # j}



More ‘Deep T‘heory

Poly-logarithmic Independence Fools Bounded-
Depth Boolean Circuits

Braverman, CACM 54(4), April 2011.

If all marginals of the input distribution involving
at most k variables are uniform, higher depth
makes it exponentially easier to distinguish the
joint from the uniform.



