/

Good zwork -- but 7 think
we rmiight need a little
rmiore detail right fere.

53

'l"hen <

(=

‘» :

:

L miracic
DCCJJU'S

Part 2

Representation Learhing
Algorithms

A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide

ahead of time what variables
these logistic regressions are
trying to predict!

55

A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

56

A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

57

Back-—?rap

58

Compute gradient of example-wise loss wrt
parameters

Simply applying the derivative chain rule wisely

o
2= fly) y=glx) 5 =55

If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient

Simn Fl.e. Chain Rule

59

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z _ 9z dy

Ox ~ Oy Ox

Mut&ipte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox ~ Oy; Ox

60

Oys Ox

Mut&ipta Pabths Chain Rule - General

&

61

Chain Rule in Flow G-'mpk
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of T

0z 0vy;
Z 0y; Ox

62

Back-?mp TN Mutki‘.-—Lajer Net
NLL = —log P(Y = y|x)

63

Ba«ck'-?rr.ap i Greneral Flow G*mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of I

64

Back-Prop in Recurrent & Recursive

Nets

* Replicate a
parameterized function
over different time
steps or nodes of a DAG

* Qutput state at one
time-step / node is used
as input for another
time-step / node

65

Zt—l Zt zt+1
o () o
- ® >® 0L
o () >)
> @ ())
Xi-1 Xe | Xt+1
0000 0000 0000
A small crowd
quietly enters
the historic
eeDes church
VP S
"""" emantic
NP VP ,,,,,,, P Representations
A small quietly N P
crowd enters Det Adj. N.

i J i }
istoric church

Backpropagation Through Structure

* Inference - discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous. o
O______.

66

Automatic Differentiation

67

W

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping

Distributed Representations and Neural
Nets: How to do unsupervised training?

68

69

i CA code= latent features h

C0000

Linear Manifold / \
Linear Auto-Encoder
Lin

inear Graussian Factors 000 0@ 00 - O

nuu

input reconstruction
Input x, 0-mean Linear manifold
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x x x

W = principal eigen-basis of Cov(X)

Probabilistic interpretations:

1. Gaussian with full
covariance W' W+Al

2. Latent marginally iid
Gaussian factors h with
x = WT h + noise

Directed Factor Models

70

P(h) factorizes into P(h,) P(h.,)...

Different priors: 1 2 2]) 2 s e
* PCA: P(h;) is Gaussian

* ICA: P(h,) is non-parametric

* Sparse coding: P(h,) is concentrated near O
Likelihood is typically Gaussian x [h

with mean given by W' h
Inference procedures (predicting h, given x) differ

Sparse h: x is explained by the weighted addition of selected
filters h, — X W, A

h, ‘ h, h
Azgx / + .8 x + .7 x \

Sparse autoencoder illustration for
imaqges

Natural Images

Learned bases: }

Test example

[a, ..., ags] = [0,0,..,0,0.8,0,..,00.3,0, .., 0,0.5,0]
., (feature representation)

Stacking Single-Layer Learners

e PCAis great but can’t be stacked into deeper more abstract

representations (linear x linear = linear)
e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning

P e— — — — — — — —

10OCOO0O) h!

RBM |

..... >
'©oooooo) by

'(OOOOOOO) bl
!
!

©000000 !

| RBM

Cooo'ooo@ x

RBM for hy

RBM for x

" T ©0O00000) hy

' RBM '
| |

(O @OOOOOO) hal

(OOOOOOO) X

RBM for ¥ and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

72

Effective deep Learning became possible
through unsupervised pre-training

} g

test classification error (perc)
+H

number of layers

73

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

number of layers

Optimizing Deep Non-Linear
Composition of Functions Seems Hard

* Failure of training deep supervised nets before 2006

e Regularization effect vs optimization effect of
unsupervised pre-training

* |s optimization difficulty due to
* ill-conditioning?
* local minima?

° both?

74

Inikial E:xam'ates Matter More
(eritical pe.ri‘.od?)

Variance of the output

[os]

4 < =x 1-layer network without pretraining
€5 _“ ® @ 1-layer network with RBM pre-training
[} \ . N N . N N . .
£ \ 5
P20 N WS RV SO RS S SN S R
e N
= \\“
m5_ \. ..
gl A\
° b
%4_ %\ ..
o e : : : : : : ;
Solo S K S R S
5 s NIRRT : s e
> : Q : : X"'%----:-_X) !
) ' ' . H \ . -~
] IS R SN SRR S— SN S S
®.. y
g L R S ‘.-“---‘-____._“/

; ; i ; ; i
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction at which we vary the examples

(o)
o
o—-
=

75

Leariing Dynamics of Deep Neks

A
® As weights become larger, get trapped in basin of (\]_/1

attraction (sign does not change) S

® Critical period. Initialization matters. K ¥>

Order & Selection of Examples Ma!:!:ars

(Bengio, Louradour, Collobert & Weston, ICML2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan e
2009) e
e Start with easier examples |
e Faster convergence to a better local
minimum in deep architectures — curriculum

= =no-curriculum

e Also acts like a regularizer with
optimization effect?

77

Understanding the difficully of
training deep feedforward neural
networlkes

(Glorot & Bengio, AISTATS 2010)

Study the activations and gradients
e wrt depth
* as training progresses
 for different initializations = big difference
 for different activation non-linearities

Layer-wise Uhsupervised Learning

Input 000 .. O

79

Layer-Wise Unsupervised Pre-training

features O00©® ... @

80

Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %

81

Layer-Wise Unsupervised Pre-training

features O00©® ... @

82

Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..

83

Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y

84

Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..

85

Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..

86

Supervi.sad Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)

87

Reskricted Bolbtzmann Machines

Undirected Models:

the Restricted Pl Boltzmann Machine
[Hinton et al 2006] R

e Probabilistic model of the joint distribution of
the observed variables (inputs alone or inputs

and targets) x

hy hy hy

e Latent (hidden) variables h model high-order
dependencies

e Inference is easy, P(h|x) factorizes

X1 X

e See Bengio (2009) detailed monograph/review: ﬂ
“Learning Deep Architectures for Al”.

e See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”

Bolkzmann Machines & MRFs

e Boltzmann machines:

- 1 1 1 S oo —
(Hinton 84) P(CE) _ Ze—Energy(m) _ ZecTzz:-{—a:TWm _ Eezz 'L-'L'z'*‘zz.’j z;Wijxj

e Markov Random Fields:
Undirected

graphical

1 i o models
P(x) = Eezi ’Lfi.(\)

Soft constraint / probabilistic statement

® More interesting with latent variables!

Restricted Boltzmann Machine
(RBMm)

P(m h) — lebTh-i-cT:L’-i-hTWm — lezz bihi+2j Cjil}j-i-zi,j hiW;;x;
) 7 7
e A popular building
block for deep
architectures

O - ¢ n hidden

e Bipartite undirected
graphical model

x Observed

Gribbs Sampling & Block Gibbs Sampling

* Want to sample from P(X,,X,,...X,)
e Gibbs sampling
* |terate or randomly chooseiin {1...n}
e Sample X, from P(X. | X;,X,,..X. 1, X.,1,---X,)
can only make small changes at a time! = slow mixing
Note how fixed point samples from the joint.

e Block Gibbs sampling
* X’s organized in blocks, e.g. A=(X,,X,,X3), B=(X,,Xs,X¢), C=...
* Do Gibbs on P(A,B,C,...), i.e.
e Sample A from P(A|B,C)
e Sample B from P(B|A,C)
e Sample C from P(C|A,B), and iterate...

* Larger changes = faster mixing
92

Gribbs Sampling in RBMs

h; ~P(h|x) h, ~P(h|x,) hs ~P(h|x;)

N~

C
X; X, ~ P(x]h) X3~ P(x|h)y)

pum—

® Fasy inference

P(h]x) and P(x|h) factorize = ' . p 1\ Gibbs

P(h|x)=T1 P(h,|x) sampling x>h=>x->N...

“—

T T T
P(a:,h) — %eb h+c” z+h” Wx

Problems with Gibbs Sampling

In practice, Gibbs sampling does not always mix well...
RBM trained by CD on MNIST
DDODEDDDDEOERER
n n n n n n n n n n Chains from random state
HDNNNDEEEENEN

Chains from real digits
UG ErAvAvAY o

(Desjardins et al 2010)

RBM with (imaqe, Label) visible uniks

hidden

OCOOO OO0

A
@XXX) 00000

label

Y

(Larochelle & Bengio 2008)

RBMs are Universal Approximators

(Le Roux & Bengio 2008)

e Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

e With enough hidden units, can perfectly model any discrete
distribution

e RBMs with variable # of hidden units = non-parametric

RBM Conditionals Factorize

exp(b’x + c’h + h'Wx)

P(h|x) = —
() > rexp(b’x + c’h + h'Wx)

I, exp(c;h; + h; W;x)
H,L- Zfli eXp(Cifli + EZWZX)
H exp(h;(c; + W;x))

205, exp(hy(c; + Wix))

= H P(h;|x).

RBM Energy Gives Binomial Neurons

With h; € {0,1}, recall Energy(x,h) = —b’x — c’h — h'Wx

elci +1W;x+other terms

P(hz = 1|X) - elci—{—lwix—i—other terms + eOc,-+OW,-x—|—other terms

eci +W;x

eci+Wix + 1
1
1 _|_ e_ci_Wix
= sigm(c; + W;x).

1
l+e—a"

since sigm(a) =

G—Energy(x,h)

RBM Free Energy Pxh=—7p

* Free Energy = equivalent energy when marginalizing

—Energy(x,h) e—FreeEnergy(X)

€

P(x) = Eh: = = =

e Can be computed exactly and efficiently in RBMs
FreeEnergy(x) b'x — Z log Z ehi(ci +Wix)

e Marginal likelihood P(x) tractable up to partltlon function Z

Factorization of the Free Energy

Let the energy have the following general form:

Energy(x.h) = —f(x) + >, 7i(x, h;)
Then
1

P(x) = E o~ FreeEnergy(x) _ ;Z —Energy(x,h)

— _S‘;‘ S‘eﬂ(X)ZV(Xh)_ S‘S‘ S‘eﬂ(X)H —7i(x,h;)

eﬂ(x)
— ~ Z e~ 71(x;h1) Z e—72(x;h2) Z e~ Yk (x;hy)
h, ho hy
— Pt HZ —7i(x,h;)

FreeEnergy(x) = — log P(x) — log Z = —3(x) — Zlogz o vi(x.hy)
: —

Energy-Based Models Gradient

e —Energy(x) -
_ _ —Energy(x)
P(x) = 7 Z = Z e sy
Olog P(x) OEnergy(x) 0OlogZ
00 B 06 00
dlogZ Jlog) e~ Energy(x)
00 B 00
10 ZX e—Energy(x)
- Z 90
— _i Energy(x) 8EnergY()
Z 06

_ _Z P(x (9Energy()

Bolkzmawnn Machine Gradient

P(.T) =~ Zh e—Energy(m h) _

e Gradient has two components:

0log P(x)

o6

[“posiﬂve phose”]

—FreeEnergy(:c)

[“negaﬂve phase”]

Vs

| OFreeE ~ 6FreeEnergy(5:)\
(b My, P02
OE h OE h
— 3 P(h|z) negriat) Zg{;ﬁp(h) S=Re (L.)
o J

® |n RBMs, easy to sample or sum over h|x
m Difficult part: sampling from P(x), typically with a Markov chain

Positive & Negative Samples

 Observed (+) examples push the energy down

e Generated / dream / fantasy (-) samples / particles push
the energy up

X- Equilibrium: E[gradient] =0

Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k
(CD-k) Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while
(PCD) weights slowly change

Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring
modes

Herding: Deterministic near-chaos dynamical system defines
both learning and sampling

Tempered MCMC: use higher temperature to escape modes

Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase

block Gibbs chain at observed x, run k Gibls steps
(Hinton 2002)

h™ ~P(h|x") h™~P(h|x)
é c
Observed x* k=2steps Sampledx
positive phase negative phase
push down

Free Energy

push up

Persistent CD (PCD) / Stochastic Max.

Likelihood (SML)

Run negative Gibbs chain in background while weights sloy¥s
change (Younes 1999, Tieleman 2008).

* Guarantees (Younes 1999; Yuille 2005)

* |f learning rate decreases in 1/t,

chain mixes before parameters change too much,

chain stays converged when parameters change

h*~P(h|x")

Observed x*
(positive phase)

previous X

new x

PCD/ASML + large learning rate

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push
FreeEnergy down l

Sowme RBM Variawks

e Different energy functions and allowed
values for the hidden and visible units:

* Hinton et al 2006: binary-binary RBMs
Welling NIPS’2004: exponential family units)

Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no
conditional covariance), propose mcRBM

e Ranzato et al NIPS’2010: mPoT, similar energy function
Courville et al ICML’2011: spike-and-slab RBM

108

Convolubionally Trained
Spilke & Slab RBMs Samples

ssRBM is not Cheating

Samples from p-ssRBM:

T:
9
o
£
©
(%)
©
Q
)
O
| -
()]
C
()
OF

Nearest examples in CIFAR:
(least square dist.)

Training examples

‘Spiw@_ &% Slab RBMs
E(v,s,h) = Zv Wisihi + = v <A+Z<I>h>

1=1

N
—|—%;ais- Zaz,uzsz th —I—Z%MZ iy

Model conditional covariance of pixels (given
hidden units) Copn = (AJFZﬁV:l S Oéi_lhiWiWiT)_l
Hidden representation decomposed into a
product s*h, h is binary, s is real
s*h is often O (naturally sparse)

Spike &% Slab RBMs

1

P(hi=1]v) = 0o(bi = 5(v = &n,) Cypp, (v = Euin,))
N

p(s|v,h)= HN ((aflvTWi —|—,uz-> hi . ozi_l)
i=1

N
p(U | 8, h): N (Cvs,hZWiSihi) Cvs,h)
=1

Can use efficient 3-way Gibbs sampling

