Auto-Encoders & Variawnks



Auto-Encoders

code= latent features h

* MLP whose target output = input 00000
* Reconstruction=decoder(encoder(input)), V \wr
e.g. "Y ford 000 - O
h = tanh(b+ W) reconstruction
reconstruction = tanh(c+ WTh) rix)
Loss L(z,reconstruction) = ||reconstruction — z||?

e With bottleneck, code = new coordinate system
e Encoder and decoder can have 1 or more layers
e Training deep auto-encoders notoriously difficult
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Link Between Contrastive Divergence
and Aublo-Encoder Recownstruction
Error Gradient

(Bengio & Delalleau 2009):

e CD-2k estimates the log-likelihood gradient from 2k
diminishing terms of an expansion that mimics the Gibbs
steps

e reconstruction error gradient looks only at the first step, i.e.,
is a kind of mean-field approximation of CD-0.5
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Traditional Directed X|0 Models
P(X.0) = P(X|0)P(6)
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What are reqularized auto-encoders
Learning exactly?

e Any training criterion E(X, 8) interpretable as a form of MAP:
e JEPADA: Joint Energy in PArameters and Data (sengio, counville, vincent 2012)

—E(X,0)

/

This Z does not depend on 6. If E(X, 0) tractable, so is the gradient
No magic; consider traditional directed model:

E(X, 9) — E@(X) + log Zy — log P(Q)

P(X,0) = =

Application: Predictive Sparse Decomposition, regularized auto-encoders, ...
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Joint Parameter-Data Energy (IEPADA)

e Getting rid of the partition function problem

e Sampling X given 0, even when previously there was no
probabilistic interpretation to E(X, 9)

e Sampling B given X (Bayesian)

* |nference and decision based on the model for which 6 was
really tuned.

e BUT WHAT MATHEMATICAL FORMS MAKE SENSE?

Reconstruction error and pseudo-likelihood-like things seem to
work well. What else?
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I think I finally understand
what auto-encoders do!

e Tryto carve holes in ||r(x)-x||? at training examples

e Vector r(x)-x points in direction of increasing prob., i.e. estimate
score = d log p(x) / dx: learn score vector field = local mean

e Generalize (valleys) in between above holes to form manifolds

e drlx)/dx estimates the local covariance and is linked to the
Hessian d?log p(x) / dx?

e Regularized AEs estimate 1%t and 2"9 local moments of the
density (imagine a ball around each x), which allows to sample
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Stacking Auto-Encoders
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Auto-encoders can be stacked successfully (Bengio et al NIPS’2006) to form !
highly non-linear representations, which with fine-tuning overperformed i
purely supervised MLPs
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Greedy Layerwise Supervi,sad Training

s
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Generally worse than unsupervised pre-training but better than ordinary
training of a deep neural network (Bengio et al. NIPS’2006). Has been used
successfully on large labeled datasets, where unsupervised pre-training did
not make as much of an impact.



Supervised Fine-Tuning is Important

e Greedy layer-wise
unsupervised pre-

0.10

1Nt 1 —— No AA, hidden supervised fine-tuning
traln | ng phase Wlth ------ No AA, no hidden supervised fine-tuning
_ ---- AA, hidden supervised fine-tuning
RBMS or aUtO enCOderS - - AA, no hidden supervised fine-tuning

on MNIST

e Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

e (Cantrain all RBMs at the °® 5 160 150 700
same time, same results

0.05F
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(Auto-Encoder) Reconstruction Loss

e Discrete inputs: cross-entropy for binary inputs
* -2 x log r(x) + (1-x.) log(1-r,(x)) (with 0<r,(x)<1)
or log-likelihood reconstruction criterion, e.g., for a
multinomial (one-hot) input

* -2 x logri(x) (where 2.r(x)=1, summing over subset of inputs
associated with this multinomial variable)

e |In general: consider what are appropriate loss functions to
predict each of the input variables, typically —log P(x|r(x)) or the
equivalent KL divergence.
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anifold Learning

Additional prior: examples concentrate near a lower
dimensional “manifold” (region of high density with only few

operations allowed which allow small changes while staying on
the manifold)

variable dimension locally?
- Soft # of dimensions?

“ fshrinking
'trgnsfonnation

4 ,,

raw input vector space




Denoising Auto-Encoder

(Vincent et al 2008)

e Corrupt the input
e Reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)
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Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder

prior: examples

e Learns a vector field pointing towards concentrate near a
higher probability direction lower dimensional
“manifold”

r(x)-x = dlogp(x)/dx
e Some DAEs correspond toa kmd of

Corrupted inQut

Matching (Vincent 2011)
[equivalent when noise—>0]

e No partition function,
can measure training
criterion




Stacked Denoising Auto-Encoders

Budget of 10 million iterations

1 layer w/o pre-training
3 layers w/o pre-training

1 layer with RBM pretraining
3 layers with RBM pre-training
1 layer with denoising AA pre-training [4
3 layers with denoising AA pre-training :

Infinite MNIST

Note how
advantage of
better
initialization
does not vanish
like other
regularizers as
#texemples—> oo

Online classification error

0 1 2 3 4 5 6 7 8 9 10
Number of examples seen 10"



Auto-Encoders Learn Salienk
Variakions, Like a non-linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Lom&ra&wa Aubto-Encoders

. e (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
A Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

reconstruction(x) = g(h(x)) = decoder(encoder(z))

Training criterion:

2
Jcar(0) Z )\Z 8:1: ) + L(z, reconstruction(x))

xeD, 1] |

wants contraction in all cannot afford contraction in
directions manifold directions

If h;=sigmoid(b;+W; x)

(dh,(x)/dx)? = h2(1-h)2W,2



LOM&T‘&&&LV& Aubto-Encoders

(Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

Most hidden units saturate:
few active units represent the
active subspace (local chart)

Each region/chart = subset of active hidden units
Neighboring region: one of the units becomes active/inactive
SHARED SET OF FILTERS ACROSS REGIONS, EACH USING A SUBSET



1.5

O
in

Jacobian singular values

CIFAR-10

o AE
o CAE

- -
-

Jacobian’s spectrum is peaked =
RN local low-dimensional
: _>.representation / relevant factors

[E—

100 200 300 400 500 600 700 800
# singular values
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Cownkractive Auto-Encoders

Benchmark of medium-size datasets on which several deep learning
algorithms had been evaluated (Larochelle et al ICML 2007)

Data Set | SVM, ;| SAE-3| RBM-3|DAE-b-3| CAE-1| CAE-2
basic 3.03:015| 3.46x016| 3.11x015| 2.84x015] 2.83:015| 2.48:014
rot I1.11+02s8|10.30+027]| 10.30x027| 9.532026| 11.59+028] 9.66=026
bg-rand 14.582031| 11.28z028| 6.73x022| 10.30x027| 13.57+030] 10.90 2027
bg-img 22.6120379|23.00x037| 16.312032| 16.68+033| 16.70+033| 15.50+0.32
bg-img-rot| 55.18+0.44|51.93+044(47.39+0.44| 43.760.43|48. 102044 | 45.2320.44
rect 2.15:013| 2.41+013| 2.60x014 1.99+012| 1.48+010] 1.2120.10
rect-img | 24.04+037|24.05+037]22.50+037| 21.59+036| 21.86036 | 21.5420.36




Input Point Tangents

MNIST

133



Input Point Tangents

MNIST Tangents
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Distributed vs Local
(CIFAR-10 unsupervised)

Input Point Tangents

Contractive Auto-Encoder
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Denoising auto-encoders
are also contractive!

e Taylor-expand Gaussian corruption noise in reconstruction

error.

El(z,r(z+¢€))]

Q

E

(zz: — (r(m) +

E|

or(x)
oz

N’ (- (mmggu))]

or(x)

e Yields a contractive penalty in the reconstruction function
(instead of encoder) proportional to amount of corruption noise
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Learhed Tangent Pro &P:
the Manifold Tangent Classifier

3 hypotheses:

1. Semi-supervised hypothesis (P(x) related to P(y|x))

2. Unsupervised manifold hypothesis (data
concentrates near low-dim. manifolds)

3. Manifold hypothesis for classification (low density
between class manifolds)



Learhed Tangent Pro &P:
the Manifold Tangent Classifier

Algorithm:

1. Estimate local principal directions of variation U(x)
by CAE (principal singular vectors of dh(x)/dx)

2. Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||

Makes f(x) insensitive to variations on manifold at x,
tangent plane characterized by U(x).



Manifold Tangent Classifier Resulbs

e Leading singular vectors on MNIST, CIFAR-10, RCV1:

Trading +gilt -slow +matur -percent | +bin -anti +interest -sen
& +yen -term +auction -sent +coupon  -predict | +calcul -californ
Markets +usda -debt +treasur -pressure | +discount -belgian | +overnight -introduc

e Knowledge-free MNIST: 0.81% error

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 095% 0.95% 0.81%

° -
Semi-su P. NN SVM CNN TSVM DBN-INCA EmbedNN CAE MTC
100 | 25.81 2344 2298 16.81 - 16.86 1347 12.03
600 | 1144 885 7.68 6.16 8.7 5.97 6.3 5.13
1000 | 10.7  7.77  6.45 5.38 - 5.73 477  3.64
3000 | 6.04 421  3.35 3.45 3.3 3.59 3.22  2.57

SVM  Distributed SVM MTC

* Forest (500k examples)
4.11% 3.46% 3.13%




Inference and Explaining Away

e Easy inference in RBMs and regularized Auto-Encoders
e But no explaining away (competition between causes)

e (Coates et al 2011): even when training filters as RBMs it helps
to perform additional explaining away (e.g. plug them into a
Sparse Coding inference), to obtain better-classifying features

e RBMs would need lateral connections to achieve similar effect

e Auto-Encoders would need to have lateral recurrent

connections
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SPQT$€. COdﬂhg (plshausen et al 97)

e Directed graphical model:

P(h) x e M z|h ~ N(WTh,o?I)
e One of the first unsupervised feature learning algorithms with
non-linear feature extraction (but linear decoder)

|z — WTh|?
2

min
h o

+ Alh|1

MAP inference recovers sparse h although P(h|x) not concentrated at O

e Linear decoder, non-parametric encoder
e Sparse Coding inference, convex opt. but expensive
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Predictive Sparse ﬁecomroseki,ou
r ol s
e Approximate the inference of sparse coding by E S :

an encoder:
Predictive Sparse Decomposition (kavukcuoglu et al 2008)

e Very successful applications in machine vision
with convolutional architectures

I
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A
I

=N

142 |Z‘1




Predictive Sparse. 'ﬁecomposilzioh

e Stacked to form deep architectures F“EE-

 Alternating convolution, rectification, pooling ﬁ‘ilﬁ““

 Tiling: no sharing across overlapping filters I.Iﬂ‘nh.ii.nili

e Group sparsity penalty yields topographic Sl Frar
maps

N
Overlapping ‘ .
i bl
i 1 i N~
)
~ [ ~
|z — 2[5 EIER
— ¥
D (2)
T
K
/\Z wjzj2
R L i=1 \| jeP
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Deep Varianks



Level-Local Learning is Important

* Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

e |nitializing each layer of a supervised neural network as an
RBM, auto-encoder, denoising auto-encoder, etc helps a lot

e Helps most the layers further away from the target

e Not just an effect of unsupervised prior

e Jointly training all the levels of a deep architecture is
difficult

e |nitializing using a level-local learning algorithm is a useful
trick



Staclke of RBMs / AEs
> Deep MLY

 Encoder or P(h|v) becomes MLP layer
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Stack of RBMs / AEs
= Deer Auto-Encoder

(Hinton & Salakhdtdinov 2006)

e Stack encoders / P(h|x) into deep encoder
e Stack decoders / P(x|h) into deep decoder

o
"
j—
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Stack of RBMs / AEs
> Deep Recurrent Auto-Encoder

(Savard 2011) S —
N, 5

e Each hidden layer receives input from below and h,
above h, $Wz

 Halve the weights
h
e Deterministic (mean-field) recurrent computation ' ::wl
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Stack of RBMs
9 DQQF BQL‘:@.{ NQ‘: (Hinon e\aI2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down
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Stack of RBMs ll

> Deeﬁ Bolkzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

h;mees e y E— T—
Ya 3 2
h, —— Ms
2 2 2
h, ? A
T

!
2 2VV5

. S s

x‘wzl —ZT 2%

:
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Stack of Auto-Encoders
> Deep Greherative Auto-Encoder

(Rifai et al ICML 2012)

e MCMC on top-level auto-encoder
* h,,; = encode(decode(h,))+o noise
where noise is Normal(0, d/dh encode(decode(h,)))
e Then deterministically propagate down with decoders
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Manifold Learnin Interpretation
Allows Sampling from Au&o—Ev\coders

e Reconstruction function captures geometry of the input
distribution

e reconstruction(x)-x points towards high-density (score)

e Jacobian of reconstruction(x) has large singular values in
directions of local factors of variation (manifold tangents)

e Gives rise to an implicit density estimator and a sampling
algorithm for contractive and denoising auto-encoders (Rifai et

al ICML 2012) l "
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Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder
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Sampling from o
Reqularized Auto-Encoder

In practice: some thickness around tangent plane..
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Samples from a 2-level DAE

» TFD.
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Sam Le's From Table 1. Log-Likelihoods from Parzen density estimator

a 2,_. QVQL C AE using 10000 samples from each model

| DBN-=2 CAE-2
(ICML 2012) TFD ‘ 1908.80 = 65.94 2110.09 = 49.15

MNIST | 137.89 + 2.11 121.17 £ 1.59

a5 5 2 3 3 3 N-a-Saeey
oo L%%’fb%‘?e

MNIST

 Not using local covariance estimator, just isotropic noise: bad

RS

159



MCMC Asymptotic Distribution:
Uncountable Graussion Mixture

e Each step samples next x from Gaussian with mean and
covariance a function of previous x

e Asymptotic distribution (if exists):

r(z) = / (&N (@; 1(3), 5(&))di

= uncountable gaussian mixture with weights = the density itself

e Thm: If £(x) is full-rank and p(x) in bounded region, then i exists.
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Cov\si.s&e.v\cj: Samples & Local Moments
(Bengio et al 2012, arXiv paper, “Implicit Density Estimation by Local
Moment Matching to Sample from Auto-Encoders”)

P()1)|5—z0||<6 X

e Inside-ball density:  ps(z|zo) = Z(0) s
e Ball size 620 around each x,, MCMC steps of size 0<<6

my= Ex[z|zo] =

Z(SB )d.’l? 1||:c $O||<5d.’17

- 7 / p(@ /” x_m0|l<6:cj\/'(m;u(m),E(:E))d:cd:i.
p(Z
N/Z(x))lﬂu(w) zo||<s M(Z)dT

= Elp(z)|zo]
* i.e.thelocal mean m, = expected value of MCMC mean in the
ball, and similarly for local covariance C, & MCMC covariance.

e Step size o controls quality of approximation, which corresponds
to a smooth of the estimated density.
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Cownsistency: Now-Paramebric /
Asymptotic” Minimizer of Criterion

2
dSU()
F

* Training criterion rewritten:
or(x
Lot = [ plao) (nxo ~ r(eo)|? +a | 20E0)

85130

o 2
= %i_rf%)/P(ﬂfo) ((/w ||z — T($)||2p5(x|a:o)d:c) + 2(500) F) dzo
e Local (non-parametric) parametrization around x,
or
r(x) =r(zg) + —| (x— o) =10+ Jo(z — x0)

ox

Zo

Liocal(Zo,6) = / |z — (ro + Jo(z — x0))||°ps(z|z0)dz + | Jo|| 7

Lglobal — %I_I)I(l)/ p($0)£local($03 5)d$0
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Cownsistency: Now-Paramebric /
Asymptotic” Minimizer of Criterion

8£local (370 . 5)

e Solving: 5 =0
0
8AC'local (5307 5) L
.7, —0
yields:
ro = (I — J())mo + Joxo
Jg = C()(OAI—I— Co)_l.

i.e. when 620 (i.e. J,20), <X means lhs / rhs 2 1:
To < MMy
J() = Cv_lco
e Reconstruction and its Jacobian estimate local mean & covariance
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Impi.ici.& ‘De.vxsi.&y Estimatlion

* In general, no explicit analytic formulation of the estimated
density, only of its local moments and 15t & 2" derivatives

e Can obtain samples by MCMC (of a smooth of estimated density)

e Alternatively, can parametrize r(x)-x = derivative of an energy
function energy(x) which provides an explicit analytic formulation
of the estimated density.

e We have avoided the partition function and introduced

a novel(?) alternative to maximum likelihood
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AE sampling: open questions
e Effects of parametric non-asymptotic setting?

e Training energy-based models as regularized AE

e Why better results when training as CAE vs DAE?
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