Issue: underfitting due to combinatorially many poor local minima

Culture vs Local Minima

arXiv paper 2012, Y. Bengio

Hypothesis 1

 When the brain of a single biological agent learns, it performs an approximate optimization with respect to some endogenous objective.

Hypothesis 2

 When the brain of a single biological agent learns, it relies on approximate local descent in order to gradually improve itself. Theoretical and experimental results on deep learning suggest:

Hypothesis 3

 Higher-level abstractions in brains are represented by deeper computations (going through more areas or more computational steps in sequence over the same areas).

Hypothesis 4

 Learning of a single human learner is limited by effective local minima.

Hypothesis 5

 A single human learner is unlikely to discover high-level abstractions by chance because these are represented by a deep sub-network in the brain.

Hypothesis 6

Curriculum learning

 A human brain can learn high-level abstractions if guided by the signals produced by other humans, which act as hints or indirect supervision for these high-level abstractions.

How is one brain transferring abstractions to another brain?

Shared input X

How do we escape Local minima?

- linguistic inputs = extra examples, summarize knowledge
- criterion landscape easier to optimize (e.g. curriculum learning)
- turn difficult unsupervised learning into easy supervised learning of intermediate abstractions

How could language/education/ culture possibly help find the better local minima associated with more useful abstractions?

Hypothesis 7

More than random search: potential exponential speed-up by divide-and-conquer combinatorial advantage: can combine solutions to independently solved sub-problems

 Language and meme recombination provide an efficient evolutionary operator, allowing rapid search in the space of memes, that helps humans build up better high-level internal representations of their world.

From where do new ideas emerge?

• Seconds: inference (novel explanations for current x)

Minutes, hours: learning (local descent, like current DL)

 Years, centuries: cultural evolution (global optimization, recombination of ideas from other humans)

Related Tutorials

- See "Neural Net Language Models" Scholarpedia entry
- Deep Learning tutorials: http://deeplearning.net/tutorials
- Stanford deep learning tutorials with simple programming assignments and reading list http://deeplearning.stanford.edu/wiki/
- ACL 2012 Deep Learning for NLP tutorial
 http://www.socher.org/index.php/DeepLearningTutorial/
- ICML 2012 Representation Learning tutorial http://www.iro.umontreal.ca/~bengioy/talks/deep-learning-tutorial-2012.html
- More reading: Paper references in separate pdf, on my web page

Software

- Theano (Python CPU/GPU) mathematical and deep learning library http://deeplearning.net/software/theano
 - Can do automatic, symbolic differentiation
- Senna: POS, Chunking, NER, SRL
 - by Collobert et al. http://ronan.collobert.com/senna/
 - State-of-the-art performance on many tasks
 - 3500 lines of C, extremely fast and using very little memory
- Recurrent Neural Network Language Model http://www.fit.vutbr.cz/~imikolov/rnnlm/
- Recursive Neural Net and RAE models for paraphrase detection, sentiment analysis, relation classification <u>www.socher.org</u>

Software: what's next

 Off-the-shelf SVM packages are useful to researchers from a wide variety of fields (no need to understand RKHS).

 To make deep learning more accessible: release offthe-shelf learning packages that handle hyperparameter optimization, exploiting multi-core or cluster at disposal of user.

The End

LISA team: Merci. Questions?

