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Outline of the Tutorial

1. Motivations and Scope

1. Feature / Representation learning

2. Distributed representations

3. Exploiting unlabeled data

4, Deep representations

5. Multi-task / Transfer learning

6. Invariance vs Disentangling

2. Algorithms

1. Probabilistic models and RBM variants
2. Auto-encoder variants (sparse, denoising, contractive)
3. Explaining away, sparse coding and Predictive Sparse Decomposition
4. Deep variants

3. Analysis, Issues and Practice
Tips, tricks and hyper-parameters
Partition function gradient
Inference

Mixing between modes
Geometry and probabilistic Interpretations of auto-encoders

Open questions

ounkswNE

See (Bengio, Courville & Vincent 2012)

“Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”
And fora
detailed list of references.



OLkimate Goals

e Al

e Needs knowledge

e Needs learning

* Needs generalizing where probability mass
concentrates

e Neeg

e NeecC
(Ima

s ways to fight the curse of dimensionality
s disentangling the underlying explanatory factors

King sense of the data”)



Representing data

In practice ML very sensitive to choice of data representation
— feature engineering (where most effort is spent)
- (better) feature learning (this talk):
automatically learn good representations

Probabilistic models:

* Good representation = captures posterior distribution of
underlying explanatory factors of observed input

Good features are useful to explain variations



Deep Representation Learhing

Deep learning algorithms attempt to learn multiple levels of representation of
increasing complexity/abstraction

When the number of levels can be data-
selected, this is a deep architecture



A Good 0Ld ‘Deap Architecture

Optional Output layer

Here predicting a supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer —

This has raw sensory inputs (roughly)



What We Are Fighting Against:
The Curse ofDimensionality

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting features

1 dimension:
10 positions

2 dimensions:
100 positions
(o]

> 3 dimensions:
1000 positions!



Easy Learning

learned function: prediction = f(x)




Local Swmookthwess Prior: Local.l.j
Capture the Variaktions

* = training example

YA

true functjgn: unknbwn

prediction

.-~""learnt = interpolat
f X I , .’ .
(x) oy




Real Data Are o Highly Curved
Manifolds

" [shrinking )

“transformation
1 wn
v

raw input vector space
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Not bime:nsionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Is there any ho pe to
generalize v\ov\%ocattv?

Yes! Need more pri.ors!
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Part 1

Six Grood Reasons ko Exptare.
Repre.sev\&aﬁov\ Leariing



# 1 Learning fea&ure.s , hot jus&
handerafting them

Most ML systems use very carefully hand-designed
features and representations

Many practitioners are very experienced — and good — at such
feature design (or kernel design)

In this world, “machine learning” reduces mostly to linear
models (including CRFs) and nearest-neighbor-like features/
models (including n-grams, kernel SVMs, etc.)

Hand-crafting features is time-consuming, brittle, incomplete

14



How can we automatically Learn good
features?

Claim: to approach Al, need to move scope of ML beyond
hand-crafted features and simple models

Humans develop representations and abstractions to
enable problem-solving and reasoning; our computers
should do the same

Handcrafted features can be combined with learned
features, or new more abstract features learned on top
of handcrafted features

15



# 2 The need for distributed
representations

e (lustering, Nearest-

Clusterin
N ne Neighbors, RBF SVMs, local
X > non-parametric density
s estimation & prediction,

decision trees, etc.

e Parameters for each
distinguishable region

LOCAL PARTITION

e # distinguishable regions
linear in # parameters

16



# 2 The need for distributed
representations

Multi-
i Sub—partition 3
CIUSterlng \pClzl Sub-—partition 2
e Factor models, PCA, RBMs, e e S
Neural Nets, Sparse Coding, o
Deep Learning, etc. Sub—partition 1 N

e Each parameter influences
many regions, not just local
neighbors Voo
e # distinguishable regions C osTmvmbRARITON
grows almost exponentially
with # parameters

e GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Cl1=0
C2=1 \

C1 C2 C3

input
17



# 2 The need for distributed
re.pre.se.h&alzious

Clustering e
. Sub—partition 3
CIUSterlng ‘\pm:l Sub—partition 2
)\ gé:(l) ‘\(Cj»z‘:('] i"l‘:
C3=0 \ /
Sub—partition 1 3 coel
X

Cl1=0

et \ Ci=0
C3=0 \ Co=1
\ C3=1

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than

nearest-neighbor-like or clustering-like models

18



# 3 Unsupervised feature Learning

Today, most practical ML applications require (lots of)
labeled training data

But almost all data is unlabeled

The brain needs to learn about 104 synaptic strengths

... in about 10° seconds
Labels cannot possibly provide enough information

Most information acquired in an unsupervised fashion

19



#3 How do humans generalize
from very few examples?

20

They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

Previous learning from: unlabeled data
+ labels for other tasks

Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)



F 3 Sharing Statistical Strength bj
Semi-Supervised Learning

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised

21



#4‘ Learning muﬂ:i.pl.e Llevels
of representation

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and then compose
them to more complex ones

22



4 Sharing Compov\ev\!:s M a ‘Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(1‘1T2)(X2X3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(IWX\ (x2X3) 2X3 (2324)

Sum-product
network
51?11‘2 X2X3



#‘4- Learning muitipi.e levels PG %

. - B
°¥ TQPTQSQV\EQ!:LOV\ (Lee, Largman, Pham & Ng, NIPS 2009)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
to form objects

A AN TN ALV VP
b SIS U SPIA L A b Laverd

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




#4“ Handling the compasi&iohau&v
of human Language and thought

e Human languages, ideas, and “ \ i -
artifacts are composed from £>

simpler components I

e Recursion: the same
operator (same parameters)
is applied repeatedly on
different states/components
of the computation

e Result after unfolding = dee
) 5 P (Bottou 2011, Socher et al 2011)
representations 5

25



#E Mulli-Task Learning

e Generalizing better to new
tasks is crucial to approach Al

e Deep architectures learn good
intermediate representations
that can be shared across tasks

e Good representations that
disentangle underlying factors
of variation make sense for
many tasks because each task
concerns a subset of the factors

26



FE sharing Statistical Stremgth

e Multiple levels of latent
variables also allow
combinatorial sharing of
statistical strength:
intermediate levels can also
be seen as sub-tasks

e E.g.dictionary, with
intermediate concepts re-
used across many definitions

Prior: some shared underlying explanatory factors between tasks

27



HE Combining Mulkiple Sources of
Evidence with Shared Representations

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types
across data sources
e Shared learned representations help event ur' person
propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...
(Bordes et al AISTATS 2012) 8

e Traditional ML: data = matrix

history words url

P(person,url,event) '

P(url,words,history)

28



#6 Different object types

represented in same space

DOLPHIN
OBAMA
—EIFFEL TOWER

) Google:

| S. Bengio, J.
Weston & N.
Usunier

Lo (1CAI 2011,

NIPS’2010,
JMLR 2010,
MLJ 2010)

100-dim
embedding space

Learn ®(<) and &,(-) to optimize precision@k.



#6 Invariance and Disen&ahgtihg

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

30



#6 Emergence of Disentangling

TR ;‘;—!
7 N
T

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

Bas St

31



#6 Sparse Representations

e Just add a penalty on learned representation
e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information

Prior: only few concepts and attributes relevant per example

32



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently

33



Bypassing the curse by sharing
statistical strength

e Besides very fast GPU-enabled predictors, the main advantage
of representation learning is statistical: potential to learn from
less labeled examples because of sharing of statistical strength:

* Unsupervised pre-training and semi-supervised training
* Multi-task learning

* Multi-data sharing, learning about symbolic objects and their
relations

34



ka NOW ¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful

(except for convolutional neural nets when used by people who speak French)

What has changed?

*  New methods for unsupervised pre-training have been
developed (variants of Restricted Boltzmann Machines =
RBMs, regularized autoencoders, sparse coding, etc.)

* Better understanding of these methods

* Successful real-world applications, winning challenges and

beating SOTASs in various areas
35



36

Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

Sparse coding variants

WA  Bengi
Montréal
Torontg 7R
Hinto -
%8 Le Cun
212 New York



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Cha%ﬁvxgez ‘De.e,gwg‘.aamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




More Successful Applications

38

Microsoft uses DL for speech rec. service (audio video indexing), based on
Hinton/Toronto’s DBNs (Mohamed et al 2011)

Google uses DL in its Google Goggles service, using Ng/Stanford DL systems

NYT today talks about these: http://www.nytimes.com/2012/06/26/technology/
in-a-big-network-of-computers-evidence-of-machine-learning.html?_r=1

Substantially beating SOTA in language modeling (perplexity from 140 to 102
on Broadcast News) for speech recognition (WSJ WER from 16.9% to 14.4%)
(Mikolov et al 2011) and translation (+1.8 BLEU) (Schwenk 2012)

SENNA: Unsup. pre-training + multi-task DL reaches SOTA on POS, NER, SRL,
chunking, parsing, with >10x better speed & memory (Collobert et al 2011)

Recursive nets surpass SOTA in paraphrasing (Socher et al 2011)
Denoising AEs substantially beat SOTA in sentiment analysis (Glorot et al 2011)
Contractive AEs SOTA in knowledge-free MNIST (.8% err) (Rifai et al NIPS 2011)

Le Cun/NYU'’s stacked PSDs most accurate & fastest in pedestrian detection
and DL in top 2 winning entries of German road sign recognition competition



/

Good zwork -- but 7 think
we rmiight need a little
rmiore detail right fere.

39
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Part 2

Representation Learhing
Algorithms



A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide
ahead of time what variables

these logistic regressions are
trying to predict!

41



A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

42



A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

Ow 9
XL SH NS
O <A\
9 e S 4 P
oS
) / & -

Layer L, Layer L,

How to do unsupervised training?



i CA code= latent features h

C0000

= Linear Manifold / \
= Linear Auto-Encoder
=L

ear Gaussian Factors 000 @ @0 - O

input reconstruction
Input x, 0-mean Linear manifold
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x x x

W = principal eigen-basis of Cov(X)

Probabilistic interpretations:

1. Gaussian with full
covariance W' W+Al

2. Latent marginally iid
Gaussian factors h with
x = WT h + noise

44




Directed Factor Models

45

P(h) factorizes into P(h,) P(h.,)...

Different priors: 1 2 2]) 2 s e
* PCA: P(h;) is Gaussian

* ICA: P(h,) is non-parametric

* Sparse coding: P(h,) is concentrated near O
Likelihood is typically Gaussian x [ h

with mean given by W' h
Inference procedures (predicting h, given x) differ

Sparse h: x is explained by the weighted addition of selected
filters h, — X W, A

h, ‘ h, h
Azgx / + .8 x + .7 x \




Stacking Single-Layer Learners

e PCAis great but can’t be stacked into deeper more abstract

representations (linear x linear = linear)
e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning

P e— — — — — — — —

10OCOO0O) h!

RBM |

..... >
'©oooooo) by

'(OOOOOOO) bl
!
!

©000000 !

| RBM

Cooo'ooo@ x

RBM for hy

RBM for x

" T ©0O00000) hy

' RBM '
| |

(O @OOOOOO) hal

(OOOOOOO) X

RBM for ¥ and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)
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Effective deep Learning became possible
through unsupervised pre-training

} g

test classification error (perc)
+H

number of layers

47

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

number of layers




Layer-wise Uhsupervised Learning

Input 000 .. O

48



Layer-Wise Unsupervised Pre-training

features O00©® ... @

49



Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %

50



Layer-Wise Unsupervised Pre-training

features O00©® ... @

51



Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..

52



Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y

53



Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..

54



Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..

55



Supervi.se.d Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)

56



Reskricted Bolkzmann Machines



Undirected Models:

the Restricted Il Bolkzmann Machine
[Hinton et al 2006] R

e Probabilistic model of the joint distribution of
the observed variables (inputs alone or inputs

and targets) x

hy hy hy

e Latent (hidden) variables h model high-order
dependencies

e Inference is easy, P(h|x) factorizes

X1 X

e See Bengio (2009) detailed monograph/review: ﬂ
“Learning Deep Architectures for Al”.

e See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Bolkzmann Machines & MRFs

e Boltzmann machines:

- 1 1 1 S oo —
(Hinton 84) P(CE) _ Ze—Energy(m) _ ZecTa:-{—a:TWm _ Zezz z‘”ﬂin,j z;Wijxj

e Markov Random Fields:

1 Wi; J:\T
P(x) = Eezi f,.(\)

Soft constraint / probabilistic statement

® More interesting with latent variables!



Restricted Boltzmann Machine
(RBM)

P(m h) — lebTh-i-cT:L’-i-hTWm — lezz bihi+2j Cjil}j-i-zi,j hiW;;x;
) 7 7
e A popular building
block for deep
architectures

O - ¢ n hidden

e Bipartite undirected
graphical model

x Observed



Gribbs Sampling in RBMs

h; ~P(h|x) h, ~P(h|x,) hs ~P(h|x;)

N~

C
X; X, ~ P(x]h) X3~ P(x|h)y)

pum—

® Fasy inference

P(h]x) and P(x|h) factorize = ' . p 1\ Gibbs

P(h|x)=T1 P(h,|x) sampling x>h=>x->N...

“—

T T T
P(a:,h) — %eb h+c” z+h” Wx



Problems with Gibbs Sampling

In practice, Gibbs sampling does not always mix well...
RBM trained by CD on MNIST
DDODEDDDDEOERER
n n n n n n n n n n Chains from random state
HDNNNDEEEENEN

Chains from real digits
UG ErAvAvAY o

(Desjardins et al 2010)



RBM with (imaqe, Label) visible uniks

hidden

OCOOO OO0

A
@XXX) 00000

label

Y

(Larochelle & Bengio 2008)



RBMs are Universal Approximators

(Le Roux & Bengio 2008)

e Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

e With enough hidden units, can perfectly model any discrete
distribution

e RBMs with variable # of hidden units = non-parametric



REBM Conditionals Factorize

b/ / /
P(hix) — exp(b’x + c’h + h/Wx)

St exp(b/x + ¢/h + h/Wx)
I, exp(c;h; + h; W;x)
H,L- Zfli eXp(Cifli + EZWZX)

B H exp(h;(c; + W;x))
2 exp(hy (s + Wix)

= H P(h;|x).




RBM Energy Gives Binomial Neurons

With h; € {0,1}, recall Energy(x,h) = —b’x — c’h — h'Wx

elci +1W;x+other terms

P(hz = 1|X) - elci—{—lwix—i—other terms + eOc,-+OW,-x—|—other terms

eci +W;x

eci+Wix + 1
1
1 _|_ e_ci_Wix
= sigm(c; + W;x).

1
l+e—a"

since sigm(a) =



G—Energy(x,h)

RBM Free Energy Pxh=—7p

* Free Energy = equivalent energy when marginalizing

—Energy(x,h) e—FreeEnergy(X)

€

P(x) = Eh: = = =

e Can be computed exactly and efficiently in RBMs
FreeEnergy(x) b'x — Z log Z ehi(ci +Wix)

e Marginal likelihood P(x) tractable up to partltlon function Z



Factorization of the Free Energy

Let the energy have the following general form:

Energy(x.h) = —f(x) + >, 7i(x, h;)
Then
1

P(x) = E o~ FreeEnergy(x) _ ;Z —Energy(x,h)

— _S‘;‘ S‘eﬂ(X)ZV(Xh)_ S‘S‘ S‘eﬂ(X)H —7i(x,h;)

eﬂ(x)
— ~ Z e~ 71(x;h1) Z e—72(x;h2) Z e~ Yk (x;hy)
h, ho hy
— Pt HZ —7i(x,h;)

FreeEnergy(x) = — log P(x) — log Z = —3(x) — Zlogz o vi(x.hy)
: —



Energy-Based Models Gradient

e —Energy(x)

_ _ —Energy(x)
P(x) = 7 Z = Z e sy
Olog P(x)  OEnergy(x) 0OlogZ
00 B 00 00
dlogZ  dlog). e Eneray(®)
oo B 00
10 ZX e—Energy(x)
- Z 0
— _i Energy(x) 8EnergY( )
Z 00

B Z P(x (9Energy( )




Bolkzmann Machine Gradient

P(.T) =~ Zh e—Energy(m h) _

e Gradient has two components:

0log P(x)

o6

[“posiﬂve phose”]

—FreeEnergy(:c)

[“negaﬂve phase” ]

Vs

| OFreeE ~ 6FreeEnergy(5:)\
(b My, P02
OE h OE h
— 3 P(h|z) negriat) Zg{;ﬁp( h) S=Re (L. )
o J

® |n RBMs, easy to sample or sum over h|x
m Difficult part: sampling from P(x), typically with a Markov chain




Positive & Negative Samples

 Observed (+) examples push the energy down

e Generated / dream / fantasy (-) samples / particles push
the energy up

X- Equilibrium: E[gradient] =0



Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k
(CD-k) Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while
(PCD) weights slowly change

Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring
modes

Herding: Deterministic near-chaos dynamical system defines
both learning and sampling

Tempered MCMC: use higher temperature to escape modes



Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase

block Gibbs chain at observed x, run k Gibls steps
(Hinton 2002)

h™ ~P(h|x") h™~P(h|x)
é c
Observed x* k=2steps Sampledx
positive phase negative phase
push down

Free Energy

push up



Persistent CD (PCD) / Skochastic Max.

Likelihood (SML)

Run negative Gibbs chain in background while weights sloy¥s
change (Younes 1999, Tieleman 2008).

* Guarantees (Younes 1999; Yuille 2005)

* |f learning rate decreases in 1/t,

chain mixes before parameters change too much,

chain stays converged when parameters change

h*~P(h|x")

Observed x*
(positive phase)

previous X

new x



PCD/ASML + large learning rate

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push
FreeEnergy down l




Sowme RBM Variawks

e Different energy functions and allowed
values for the hidden and visible units:

* Hinton et al 2006: binary-binary RBMs
Welling NIPS’2004: exponential family units )

Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no
conditional covariance), propose mcRBM

e Ranzato et al NIPS’2010: mPoT, similar energy function
Courville et al ICML’2011: spike-and-slab RBM

76



Convolubionally Trained
Spilke & Slab RBMs Samples




ssRBM is not Cheating

Samples from p-ssRBM:

T:
9
o
£
©
(%)
©
Q
)
O
| -
()]
C
()
OF

Nearest examples in CIFAR:
(least square dist.)

Training examples




Auto-Encoders & Variawnks



Aubto-Encoders

code= latent features

* MLP whose target output = input 00000
e Reconstruction=decoder(encoder(input)), V Wr
e.8. o 8puct> - @ O0O@0 ~ O
h = tanh(b+ W) reconstruction
reconstruction = tanh(c+ W7h)
Loss L(z,reconstruction) = ||reconstruction — z||?

e Probable inputs have small reconstruction error
because training criterion digs holes at examples

e With bottleneck, code = new coordinate system
e Encoder and decoder can have 1 or more layers

e Training deep auto-encoders notoriously difficult
80



Stacking Auto-Encoders

r

U
hz@OOQOOO) hz@OOQOOO)
W, w;' W,
llelelelelelel0) h;@OOOOO>OOOOOOO)HI nOOOO000)
W, Wy W;A W:A
x ©O000CO000D x©OO0O x ©O000)

Auto-encoders can be stacked successfully (Bengio et al NIPS’2006) to form !
highly non-linear representations, which with fine-tuning overperformed i
purely supervised MLPs

81



Auto-Encoder Varianks

82

Discrete inputs: cross-entropy or log-likelihood reconstruction
criterion (similar to used for discrete targets for MLPs)

Regularized to avoid learning the identity everywhere:
* Undercomplete (eg PCA): bottleneck code smaller than input
e Sparsity: encourage hidden units to be at or near O
[Goodfellow et al 2009]

e Denoising: predict true input from corrupted input
[Vincent et al 2008]

e Contractive: force encoder to have small derivatives
[Rifai et al 2011]




anifold Learning

Additional prior: examples concentrate near a lower
dimensional “manifold” (region of high density with only few

operations allowed which allow small changes while staying on
the manifold)

Q
§°
§

)
X
§

~
¥
&
9
§
O
§
§
&
$
<
g
S

“.fshrinking L)
transformation

4 "
ay

raw input vector space




Denoising Auto-Encoder

(Vincent et al 2008)

e Corrupt the input
e Reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder

e Learns a vector field towards higher
probability regions

e Some DAEs correspond to a kind of

Gaussian RBM with regularized Score ¢
Matching (Vincent 2011) ‘




Stacked Denoising Auto-Encoders

Budget of 10 million iterations

1 layer w/o pre-training .
3 layers wio pre-training .
1 layer with RBM pretraining 1
3 layers with RBM pre-training

1 layer with denoising AA pre-training
3 layers with denoising AA pre-training

Infinite MNIST

Online classification error

0 1 2 3 4 5 6 7 8 9 10
Number of examples seen 10"



Auto-Encoders Learn Salienk
Variakions, Like a non-Linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Lom&ra&wa Aubto-Encoders

. e (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
A Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

Most hidden units saturate:
few active units represent the
active subspace (local chart)

reconstruction(x) = g(h(z)) = decoder(encoder(z))

_ Ohy(z) ) .
Jcae(0) = Z A 9z, ) + L(zx, reconstruction(z))

€D, ¥ T

wants contraction in all cannot afford contraction in
directions manifold directions



1.5

O
in

Jacobian singular values

CIFAR-10

o AE
o CAE

-~ -
-
-
p— -—
- -
-

Jacobian’s spectrum is peaked =
~o local low-dimensional
: _>.representation / relevant factors

[R—

100 200 300 400 500 600 700 800
# singular values
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Cownkractive Auto-Encoders

Data Set | SVM, ;| SAE-3| RBM-3|DAE-b-3| CAE-1| CAE-2
basic 3.03+015| 3.46+016| 3.11x015| 2.84x015] 2.83x015| 2.48+014
rot [1.11x028|10.302027| 10.30x027| 9.53+026| 11.59+028| 9.66026
bg-rand 14.58+031| 11.282028| 6.732022| 10.302027| 13.57 2030 10.90 027
bg-img 22.61+0379(23.00+037] 16.312032| 16.68+033] 16.70+033| 15.50=032
bg-img-rot| 55.18+044]51.93+044|47.39+044| 43.7620.43| 48.10x0.44| 45.23 2044
rect 2.15:013| 2.41x013| 2.60+014| 1.99:012] 1.48+010] 1.21x010
rect-img | 24.04+037|24.05+037]22.50+037| 21.59+036| 21.86036 | 21.54+0.36




Input Point Tangents

MNIST
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Input Point Tangents

MNIST Tangents
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Diskributed vs Local
(CIFAR-10 unsupe.rvised)

Input Point Tangents

Contractive Auto-Encoder
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Learhed Tangent Pro &P:
the Manifold Tangent Classifier

3 hypotheses:
1. Semi-supervised hypothesis (P(x) related to P(y|x))

2. Unsupervised manifold hypothesis (data concentrates near
low-dim. manifolds)

3. Manifold hypothesis for classification (low density between
class manifolds)

Algorithm:

1. Estimate local principal directions of variation U(x) by CAE
(principal singular vectors of dh(x)/dx)

2. Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||



Manifold Tangent Classifier Resulbs

e Leading singular vectors on MNIST, CIFAR-10, RCV1:

Trading +gilt -slow +matur -percent | +bin -anti +interest -sen
& +yen -term +auction -sent +coupon  -predict | +calcul -californ
Markets +usda -debt +treasur -pressure | +discount -belgian | +overnight -introduc

e Knowledge-free MNIST: 0.81% error

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 095% 0.95% 0.81%

° -
Semi-su P. NN SVM CNN TSVM DBN-INCA EmbedNN CAE MTC
100 | 25.81 2344 2298 16.81 - 16.86 1347 12.03
600 | 1144 885 7.68 6.16 8.7 5.97 6.3 5.13
1000 | 10.7  7.77  6.45 5.38 - 5.73 477  3.64
3000 | 6.04 421  3.35 3.45 3.3 3.59 3.22  2.57

SVM  Distributed SVM MTC

* Forest (500k examples)
4.11% 3.46% 3.13%




Inference and Explaining Away

e Easy inference in RBMs and regularized Auto-Encoders
e But no explaining away (competition between causes)

e (Coates et al 2011): even when training filters as RBMs it helps
to perform additional explaining away (e.g. plug them into a
Sparse Coding inference), to obtain better-classifying features

e RBMs would need lateral connections to achieve similar effect

e Auto-Encoders would need to have lateral recurrent

connections
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SPQT'SQ COdﬂhg (plshausen et al 97)
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Directed graphical model:

P(h) x e M z|h ~ N(WTh,o?I)
One of the first unsupervised feature learning algorithms with
non-linear feature extraction (but linear decoder)

|z — WTh|?
2

min
h o

+ Alh|1

MAP inference recovers sparse h although P(h|x) not concentrated at O

Linear decoder, non-parametric encoder
Sparse Coding inference, convex opt. but expensive



Predictive Sparse Decomposition
r P, &
e Approximate the inference of sparse coding by E S ..'

an encoder:
Predictive Sparse Decomposition (kavukcuoglu et al 2008)

e Very successful applications in machine vision
with convolutional architectures

I
~ |
o — 2|13 |z =2l

A
I

=N

N 2|1




Predictive Sparse. ‘be.composikioh
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Stacked to form deep architectures F“EE-

Alternating convolution, rectification, pooling ﬁ‘ilﬁ““
Tiling: no sharing across overlapping filters I.Iﬂ‘nh.ii.nili
Group sparsity penalty yields topographic Sl Frar

maps

Overlapping — ) .
Neighborhoods v = ,/2 w; 2} fx\\ Fo(z; K) ()
Pi P1 'P\ls JEPR; U e ) v
~ | ~
e — &2 NN
D (2)
oY
K
/\Z wjzj2
. _ i=1 \| jeP




Deep Varianks



Stack of RBMs / AEs
> Deep MLY

 Encoder or P(h|v) becomes MLP layer
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Staclke of RBMs / AEs
= Deer Auto-Encoder

(Hinton & Salakhdtdinov 2006)

e Stack encoders / P(h|x) into deep encoder
e Stack decoders / P(x|h) into deep decoder

o
"
j—
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Stack of RBMs / AEs
> Deep Recurrent Auto-Encoder

(Savard 2011) S —
N, 5

e Each hidden layer receives input from below and h,
above h, 5W2

 Halve the weights
h
e Deterministic (mean-field) recurrent computation ' ::wl
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Skack of RBMs
- DQQF BQLLE{: Neb (Hinton et al 2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down

104

hs

h,

X




Stack of RBMs [=]e ]

> Dee.e Bolkzmawnn Machine

(Salakhutdinov &™Hinton AISTATS 2009)

 Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

hysss  s—— y —  —
iz 3 2

h, — M 3

h, ? _

g
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Stack of Auto-Encoders
> Deep Grenerative Auto-Encoder

(Rifai et al ICML 2012)

e MCMC on top-level auto-encoder
* h,,; = encode(decode(h,))+o noise
where noise is Normal(0, d/dh encode(decode(h,)))
e Then deterministically propagate down with decoders
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Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder




Sampling from o
Reqularized Auto-Encoder




Sampling from a
Regztar?z.ed Auto-Encoder
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Sampling from o
Reqularized Auto-Encoder
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Part 3

Practice, Issues, Questions

112




Deep Learning Tricks of the Trade

* Y.Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
113



Stochastic Gradient Descent (SGD)

e Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

8L(Zt, 0)
00

* L=loss function, z,= current example, © = parameter vector, and
g, = learning rate.

H(t) < H(t_l) — €4

e Ordinary gradient descent is a batch method, very slow, should
never be used. 2" order batch method are being explored as an

alternative but SGD with selected learning schedule remains the
method to beat.
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Learning Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning

rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g.,

€E0T

T max(t, 7)

with hyper-parameters g, and t.
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Long-Term Dependencies Bl
“"‘d Clipping Trick

In very deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L = L(sr(s7—1(...8t+1(5¢,--.))))
8_L B 0L Ost 0St11 |
Osy  Osp Osp—1 ~ Osy ﬁ

A e

e The solution first introduced by Mikolov is to clip gradients @;)
to a maximum value. Makes a big difference in Recurrent Nets
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Early Stopping

117

Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

Monitor validation error during training (after visiting #
examples a multiple of validation set size)

Keep track of parameters with best validation error and report
them at the end

If error does not improve enough (with some patience), stop.



Parameter Initializakion

118

Initialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g. mean target or
inverse sigmoid of mean target).

Initialize weights ~ Uniform(-r,r), r inversely proportional to fan-
in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units (and 4x bigger for sigmoid units)
(Glorot & Bengio AISTATS 2010)

Ao




Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have huge output space.

code= latent features

C0000
I JoRdt 00® O
sparse input dense output probabilities

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights "N

categories

* Decompose output probabilities hierarchically (Mo
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton words within each category

2007,2009; Mikolov et al 2011) ﬂn. n
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Automatic Differentiation

* The gradient computation can be
automatically inferred from the symbolic
expression of the fprop.

* Makes it easier to quickly and safely try
new models.

e Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output.

* Theano Library (python) does it
symbolically. Other neural network

packages (Torch, Lush) can compute
gradients for any given run-time value.
(Bergstra et al SciPy’2010)
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Random Sampling of Hyperparameters
(Bergstra & Bengio 2012) &
e Common approach: manual + grid search b
e Grid search over hyperparameters: simple & wasteful
e Random search: simple & efficient
* Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])
e Each training trial is iid
e IfaHPisirrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
(@)
O

“O O O

121 Important parameter Important parameter



Issues and Questions
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Why is Unsupervised Pre-~Training
Working So Well?

e Regularization hypothesis:
* Unsupervised component forces model close to P(x)
* Representations good for P(x) are good for P(y|x)

e Optimization hypothesis:
e Unsupervised initialization near better local minimum of P(y|x)

e Can reach lower local minimum otherwise not achievable by random initialization
* Easier to train each layer using a layer-local criterion

(Erhan et al IMLR 2010)




Learining Tra jectories in
Function Space

e Each point a model in
function space

e Color=epoch .
i

e Top: trajectories w/o
pre-training

e Each trajectory é
converges in differen@%@ |
local min. T

 No overlap of regions
with and w/o pre-
training



Dealing with a Partition Function

o 7= ZX ) e-energy(x,h)
e |ntractable for most interesting models
e MCMC estimators of its gradient

e Noisy gradient, can’t reliably cover (spurious) modes

e Alternatives:

e Score matching (Hyvarinen 2005)

* Noise-contrastive estimation (Gutmann & Hyvarinen 2010)
Pseudo-likelihood

Ranking criteria (wsabie) to sample negative examples (Weston et al.
2010)

Auto-encoders?
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Dealing with Inference

e P(h|x)in general intractable (e.g. non-RBM Boltzmann machine)
e But explaining away is nice
* Approximations
e Variational approximations, e.g. see Goodfellow et al ICML 2012
(assume a unimodal posterior)
e MCMC, but certainly not to convergence

e We would like a model where approximate inference is going to be a good
approximation

* Predictive Sparse Decomposition does that
* Learning approx. sparse decoding (Gregor & LeCun ICML’2010)

e Estimating E[h]|x] in a Boltzmann with a separate network (Salakhutdinov &
Larochelle AISTATS 2010)
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For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes
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Poor Mixing: Depth to the Rescue

e Deeper representations can yield some disentangling
e Hypotheses:

* more abstract/disentangled representation unfold manifolds
and fill more the space

e can be exploited for better mixing between modes

e E.g. reverse video bit, class bits in learned object
representations: easy to Gibbs sample between modes at
Layer abstract level

o EEEEEEEE
q99999999
299999999 3 3

Points on the interpolating line between two classes, at dlfferent levels of representation
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Poor Mixing: Depth to the Rescue

e Sampling from DBNs and stacked Contrastive Auto-Encoders:
1. MCMC sample from top-level singler-layer model

2. Propagate top-level representations to input-level repr.

e Visits modes (classes) faster Toronto Eace Database

=
o S '
= = =
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What are reqularized auto-encoders
learning exactly?

e Any training criterion E(X, 8) interpretable as a form of MAP:
e JEPADA: Joint Energy in PArameters and Data (sengio, counville, vincent 2012)

—E(X,0)

/

This Z does not depend on 6. If E(X, 0) tractable, so is the gradient
No magic; consider traditional directed model:

E(X, 9) — E@(X) + log Zy — log P(Q)

P(X,0) = =

Application: Predictive Sparse Decomposition, regularized auto-encoders, ...
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What are reqularized auto-encoders
learning exactly?

* Denoising auto-encoder is also contractive

Ell(z,r(z+e)] ~ E (-’” - (’”(x) N aggu) 6))T (m ) (r(m) " 622?) e))]

or(z) 2]

ox
e Contractive/denoising auto-encoders learn local moments

= E[|z—r@)|? +o%E [

* r(x)-x estimates the direction of E[X|X in ball around x]
or(x)

* Jacobian estimates Cov(X|X in ball around x)

T
e These two also respectively estimate the score and (roughly) the
Hessian of the density
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More Ope.vx Questions

e What is a good representation? Disentangling factors? Can we
design better training criteria / setups?

e Can we safely assume P(h|x) to be unimodal or few-modal?If
not, is there any alternative to explicit latent variables?

e Should we have explicit explaining away or just learn to produce
good representations?

e Should learned representations be low-dimensional or sparse/
saturated and high-dimensional?

 Why is it more difficult to optimize deeper (or recurrent/
recursive) architectures? Does it necessarily get more difficult as
training progresses? Can we do better?
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The End
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