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ABSTRACT
We present a novel distance-based algorithm for evolution-
ary tree reconstruction. Our algorithm reconstructs the
topology of a tree with n leaves in O(n2) time using O(n)
working space. In the general Markov model of evolution,
the algorithm recovers the topology successfully with (1 −
o(1)) probability from sequences with polynomial length in n.
Moreover, for almost all trees, our algorithm achieves the
same success probability on polylogarithmic sample sizes.
The theoretical results are supported by simulation experi-
ments involving trees with 500, 1895, and 3135 leaves. The
topologies of the trees are recovered with high success from
2000 bp DNA sequences.

1. INTRODUCTION
What is the largest evolutionary tree we can derive today?
The limits of large-scale phylogeny reconstruction are deter-
mined by the availability of useful molecular sequences, and
by the availability of useful reconstruction methods. With
current advances in bioinformatics, DNA sequencing is now
both fast and reliable enough that efficiency is becoming a
major concern for large-scale problems in phylogeny recon-
struction. Ambitious projects such as the Green Plant Phy-
logeny (GPP) project and the Ribosomal Database Project
(RDP) [22] involve phylogenies with hundreds and thou-
sands of homologous DNA sequences. When reconstruct-
ing a large tree, primary considerations for efficiency are
computational speed and statistical accuracy. For instance,
algorithms with exponential running time in the tree size
cannot be used with trees that have more than a few tens
of leaves. In fact, even algorithms that build trees with n
leaves in O(n4) time may be too slow if n is in the order of
thousands. On the other hand, algorithms that fail to ex-
tract topology information efficiently enough from the input
sequences may require inordinately large amounts of data,
preventing successful reconstruction of large trees. Recent
theoretical results on the statistical efficiency of distance-
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based algorithms [11, 9, 17] make them ideal candidates
for large-scale phylogeny reconstruction. Nonetheless, sim-
ulation studies corroborating the theoretical predictions for
trees of sizes comparable with those in GPP and RDP are
still needed.

This paper has two goals. First, it presents a novel distance-
based algorithm with provably high statistical and compu-
tational efficiency. Secondly, it reports the results of exper-
iments conducted with large, biologically-motivated model
trees with various ranges of mutation probabilities. In the
experiments, we simulated DNA sequence evolution in the
Jukes-Cantor [18] model on trees with 500, 1895, and 3135
leaves. These trees are unusually large for simulation stud-
ies. To our knowledge, the largest trees reconstructed from
simulated data have 256 leaves [19]. The methods we com-
pare include Neighbor-Joining [26], BioNJ [15], Weighbor [3],
our Harmonic Greedy Triplets algorithm, and parsimony.
Our results establish that even such large trees can be suc-
cessfully recovered from DNA sequences with 2000 nucleo-
tides. The experimental results support our theoretical re-
sults on the efficiency of our algorithm, called Harmonic
Greedy Triplets with the Four-Point Condition (HGT/FP).

1.1 The general Markov model of sequence
evolution

Mathematical models of sequence evolution play a funda-
mental role in providing a framework for developing evolu-
tionary tree reconstruction algorithms, and for analyzing the
algorithms’ computational and statistical characteristics. A
widely studied model is the general Markov model [27], in
which sequence characters evolve independently. The model
is formulated as follows. Let A = {1, 2, . . . , r} be a finite
alphabet of size r ≥ 2, and for every ` > 0, let A

` denote
the set of sequences over A with length `. An evolution-
ary tree T is defined by an underlying tree and a mutation
model. The underlying tree is a rooted binary tree repre-
senting the evolutionary ancestor-descendant relationships
between its nodes. For every length ` > 0, the mutation
model randomly associates sequences of A

` with the nodes.
The vector formed by the characters in the same position of
the sequences is called a site. In the general Markov model,
the sites are independent and identically distributed.

Let E be the set of tree edges, let V = 〈u1, . . . , uk〉 be the

ordered set of tree nodes, and let
�

= 〈ξ(u1), . . . , ξ(uk)〉 be a

site. For each node u ∈ V , the random variable ξ(u) is called



the label of u. The distribution of
�

is determined by a root
label distribution � = 〈π1, . . . , πr〉 and by a set of mutation
matrices {Me : e ∈ E} assigned to the tree edges. For each
edge e, Me is an r × r stochastic matrix. The root label is
distributed according to � . For all nodes u, v ∈ V , if v is
the child of u on edge e, then for all characters i, j ∈ V ,���

ξ(v) = j ��� ξ(u) = i � = Me[i, j].

In other words, labels evolve along the tree from the root
towards the leaves. For simplicity’s sake, we assume that

for every node u and character i ∈ A,
� �

ξ(u) = i � 6= 0, and

that for every edge e, 0 < |detMe| < 1.

1.2 Efficient evolutionary tree reconstruction
For an evolutionary tree T , the topology Ψ(T ) is the un-
rooted binary tree, which is obtained from the underlying
tree by removing the direction of the edges, and by replacing
the root and its two incident edges with one single edge con-
necting the root’s children. The problem of evolutionary tree
reconstruction is that of finding Ψ(T ) from sequences asso-
ciated with the leaf set L, called a sample. An evolutionary
tree reconstruction algorithm outputs an unrooted tree Ψ∗

with the same leaf set L for an input sample. The algorithm
succeeds if Ψ∗ = Ψ(T ), i.e., if the topology is recovered. The
success rate of an algorithm on sample sequences of length `
is the probability that T generates a sample for which the
algorithm succeeds. The minimum sample length required
to achieve a given success rate (1 − δ), where 0 < δ < 1
is the error probability sought, defines the statistical effi-
ciency [19] of the algorithm. Let n denote the number of
leaves in Ψ(T ). An algorithm is statistically efficient if the
minimum sample length is polynomial in n and (1/δ). An
algorithm is computationally efficient if its running time is
polynomial in n and `.

Most popular evolutionary tree reconstruction algorithms
today fall short of achieving computational or statistical ef-
ficiency. The HGT/FP algorithm, however, is both compu-
tationally and statistically efficient. In fact, it is the fastest
statistically efficient algorithm to date, running in O(n2)
time. Previous theoretical results on efficiency include those
of Erdős et al. [12, 11], who started the study of statistical
efficiency in the context of topology recovery and who also
devised the first algorithms with provable computational
and statistical efficiency. Their algorithms run in O(n5 log n)
and O(n4 log n) time. Farach and Kannan [13] introduced
the study of sample sizes required by evolutionary tree re-
construction algorithms in probabilistic models of sequence
evolution, but their problem is slightly different from ours
since their primary focus was to estimate the distribution
of leaf labels based on a sample. Cryan et al. [7] gave a
polynomial-time solution to the problem and proved that
their algorithm is statistically efficient. The recently devel-
oped Disc Covering Method of Huson et al. [17] is statisti-
cally efficient but needs to solve an NP-hard problem at its
core, and its heuristic implementation runs in O(n4) time.
The statistically efficient Fast Harmonic Greedy Triplets al-
gorithm [9] also runs in O(n2) time but its efficiency is con-
tingent upon knowing of the highest mutation rate on a tree
edge. A major advantage of HGT/FP is that it does not rely
on any such input parameter. Warnow et al. [30] describe an
algorithm that turns a statistically efficient algorithm need-

ing such a parameter into an algorithm that is statistically
efficient without it. The transformation, however, increases
the running time of the original algorithm by O(n4).

1.3 Distance-based algorithms
A number of evolutionary tree reconstruction algorithms cal-
culate an n × n matrix in a preprocessing step from the
input sequences, and build the tree based on the matrix.
The input matrix estimates a matrix of evolutionary dis-
tances between leaves, defined as follows. Let T be an evolu-
tionary tree with n leaves. Evolutionary distances between
the nodes of Ψ(T ) arise by equipping the edges of Ψ(T )
with positive weights. The edge weights are also called edge
lengths. The distance between two nodes is the sum of the
edge lengths on the path between them. A tree metric D
over Ψ(T ) is the n×n matrix of pairwise distances between
leaves. The tree metric D is a functional of the site distri-
bution and uniquely determines the topology Ψ(T ).

Common tree metrics in the general Markov model include
paralinear distance [20] and LogDet distance [27, 21]. Define
the r×r matrix Muv for all nodes u, v of Ψ(T ) by its entries
as

Muv = � � � ξ(v) = j ��� ξ(u) = i � : i, j ∈ A � .
The paralinear distance is defined as

D[u, v] = − ln 	 (detMuv)(detMvu), (1)

for all leaves u, v. Since the expression on the right-hand side
is additive along any path in Ψ(T ), the paralinear distance is
a tree metric. Specifically, if the labels form a time-reversible
Markov chain along any path in Ψ(T ), which is a frequent
assumption in molecular evolutionary studies [29], then the
paralinear distance is realized by setting the length of each

edge e to 
 − ln |detMe| � . For all leaves u, v, let

Juv = � ��� ξ(u) = i, ξ(v) = j � : i, j ∈ A�
be the joint probability matrix of the leaf labels. The LogDet
distance between leaves u and v is defined by D[u, v] =
− ln |detJuv |.

There are many other tree metrics within various subclasses
of the general Markov model restricting the set of mutation
matrices. For example, the Neyman-model [23] imposes that
for every mutation matrix Me there exists a mutation prob-
ability 0 < pe < (1− 1/r), such that

Me[i, j] =  1− pe if i = j;

pe/(r − 1) if i 6= j.

Subsequently, D[u, v] = − ln(1 − r
r−1

���
ξ(u) 6= ξ(v) � ) is a

tree metric. This tree metric is known as the Jukes-Cantor
distance [18].

Distance-based algorithms thus have to estimate the tree
metrics in a preprocessing step, which typically entails sub-
stituting probabilities in the tree metric’s definition with rel-
ative frequencies calculated from the sample. We call such
estimators empirical tree metrics and discuss them further
in §2.3. An important feature of empirical tree metrics is



that estimation error increases with evolutionary distance
between the leaves in question. In order to achieve statistical
efficiency, a topology reconstruction algorithm has to strive
to use leaves that are close to each other. The HGT/FP
algorithm is designed with that goal in mind. The tech-
niques we use to achieve that goal are based on analyzing
the convergence rate of empirical tree metrics.

1.4 Recovering the topology from a tree metric
If an exact tree metric is known, then the problem of re-
constructing the topology can be reduced to the problem of
obtaining an unrooted tree with positive edge weights from
distances between its leaves. A basic technique for that pur-
pose uses triplets. A triplet uvw comprises three leaves u,
v, and w of Ψ(T ). Every triplet defines an internal node at
which the three pairwise paths between the leaves intersect,
with the four nodes forming a star. This internal node is the
center of the triplet. Using the tree metric’s definition, the
distance between the center o and a leaf u in the triplet uvw
can be calculated as

Duo = ∆(u, uvw) =
D[u, v] + D[u, w]−D[v, w]

2
,

where ∆(u, uvw) denotes the triangle-star transformation
formula on the right-hand side. This formula can be used
repeatedly to reconstruct the topology with the edge lengths
by adding one leaf and one internal node at a time [31]. The
main idea of such a reconstruction is fairly simple. Let Ψ∗

be a subtree of Ψ(T ) spanned by a subset of the leaves, and
let each edge of Ψ∗ be weighted by the distance between its
endpoints in Ψ(T ). If u and v are two leaves in Ψ∗ and w
is a leaf of Ψ(T ) missing from Ψ∗, then the center o of uvw
in Ψ∗ is on the path P between u and v, and its exact loca-
tion can be found by comparing ∆(u, uvw) to the distances
between u and the nodes on P . If that location falls prop-
erly on an edge e in Ψ∗, then o can be added on e, and w
can be connected to it with an edge of length ∆(w, uvw).
The edge lengths for the newly created edges between o and
the endpoints of e can be calculated as the difference be-
tween ∆(u, uvw) and the distances from u to the endpoints.
This approach is complicated only by the fact that the cen-
ter of uvw may be a node that is already in Ψ∗. In other
words, there may be a node z on the path P between u
and v that is at distance ∆(u, uvw) from u. In that case w
should be connected to Ψ∗ through an internal node in the
subtree rooted at w that contains neither u nor v, by using
a different triplet. The reconstruction starts by selecting an
arbitrary triplet uvw and initializing Ψ∗ as the star formed
by uvw and its center.

2. THE HGT/FP ALGORITHM
Using the algorithm outlined in §1.4 with an estimated tree
metric D̂ almost certainly leads to failure. The main rea-
son is that D̂ is usually not a tree metric, due to random
estimation errors. As a consequence, Ψ(T ) is not deter-

mined by D̂. We describe two specific measures to deal with
the fact that D̂ may not be a tree metric. These general
measures are helpful for any algorithm following the out-
line of §1.4 and do not make assumptions about the exact
way D̂ is calculated. We address the problem of estimat-
ing edge lengths in §2.1. In §2.2 we address the problem of
determining whether a triplet defines a new internal node
in Ψ∗. These measures do not ensure statistical efficiency

on their own, and we analyze their error in §2.3 in conjunc-
tion with empirical tree metrics. The results of the analysis
suggest a greedy selection of triplets, which is employed in
HGT/FP. It is this greedy selection that leads not only to
statistical efficiency but also to the O(n2) running time. The
techniques for achieving the fast running time are described
in §2.4.

2.1 Estimating edge lengths
The HGT/FP algorithm follows the general outline of the
algorithm in §1.4 with specific techniques for dealing with
estimated tree metrics. Let D̂ be the estimated tree metric
and let ∆̂(u, uvw) = (D̂[u, v] + D̂[u, w]− D̂[v, w])/2 denote
the corresponding triangle-star transformation formula for
every triplet uvw. In order to prevent the accumulation
of error in edge length estimates, the HGT/FP algorithm
stores a triplet def(z) for each internal node z in Ψ∗, which
is the triplet used for adding z to Ψ∗. For notational unifor-
mity, let def(z) = {z} if z is a leaf. In order to add a new
internal node o on an edge z1z2 in Ψ∗, o must be the center
of a triplet u1v2w for which the following conditions hold:
u1 ∈ def(z1), v2 ∈ def(z2), w is not in Ψ∗, and the edge z1z2

is on the path between u1 and v2 in Ψ∗. Such an edge-
triplet pair 〈z1z2, u1v2w〉 is called relevant. Assume that z1

is an internal node, and def(z1) = u1v1w1. The value d1 =��� ∆̂(u1, u1v1w1)−∆̂(u1, u1v2w) ��� is an estimate of the distance

between the centers of u1v1w1 and u1v2w in Ψ(T ). Similarly,

d2 = ��� ∆̂(v2, u2v2w2)− ∆̂(v2, u1v2w) ��� estimates the distance

between the centers of u2v2w2 and u1v2w. Let D∗

z1z2
be

the length of the edge z1z2 in Ψ∗. The edge lengths for
inserting o on z1z2 are calculated by

D∗

oz1
= (d1 + D∗

z1z2
− d2)/2;

D∗

oz2
= (d2 + D∗

z1z2
− d1)/2.

If zi is a leaf for i = 1 or for i = 2, then di = 0 but otherwise
the calculations are the same.

The theoretical importance of this procedure is that it re-
sults in edge length estimation errors that depend only on
the error in estimating the center of individual triplets. As-
sume that Ψ∗ is correct (i.e., it is topologically equivalent
to the subtree of Ψ(T ) spanned by the leaves of Ψ∗) and
the center of u1v1w falls onto the path between z1 and z2

in Ψ(T ). Assume further that the triplet centers are esti-
mated within ε error, i.e., that for every triplet x1x2x3 ∈
{u1v1w1, u2v2w2, u1v2w} and leaf xi,

��� ∆̂(xi, x1x2x3)−∆(xi, x1x2x3) ��� < ε.

If |D∗

z1z2
− Dz1z2

| = 4ε′, where Dz1z2
is the distance be-

tween z1 and z2 in Ψ(T ), then |D∗

oz1
−Doz1

| < 2ε′ + 2ε and
|D∗

oz2
−Doz2

| < 2ε′ + 2ε. Similar bounds hold if z1 or z2 is
a leaf. If ε′ ≤ ε, then the error of the newly created edge
lengths is bounded by 4ε. Consequently, if the maximum
error in estimating triplet centers used by the algorithm is
bounded by ε, then all edge lengths are estimated within 4ε
error, given that the topology is recovered correctly.



2.2 Finding triplet centers
While in the case of tree metrics, we can always tell whether
a triplet defines a new internal node in the partially built
topology Ψ∗, this is not so in the case of estimated tree
metrics, where triplet centers may appear to define a new
internal node due to estimation error. For example, even if
the triplets uvw and uv′w′ have the same center in Ψ(T ),

it is possible that ∆̂(u, uvw) 6= ∆̂(u, uv′w′) and thus the
techniques in §1.4 for choosing triplets are likely to be inad-
equate.

A safeguarding measure in HGT/FP for dealing with an es-
timated tree metric is based on the four-point condition [5],
which is defined as follows. An evolutionary tree with four
leaves {u, v, w, z} has three possible topologies denoted by
uv|wz, uw|vz and uz|vw, depending on which leaf pairs are
separated by the internal edge in the topology. The four-
point condition states that by distance additivity, the topol-
ogy is uv|wz if and only if

D[u, v] + D[w, z] < D[u, w] + D[v, z] = D[u, z] + D[v, w].

Since the equality of the two larger sums is unlikely when
using an estimated tree metric, the HGT/FP algorithm em-
ploys the relaxed four-point condition [2], which for uv|wz is
defined as

D̂[u, v] + D̂[w, z] < D̂[u, w] + D̂[v, z];

D̂[u, v] + D̂[w, z] < D̂[u, z] + D̂[v, w].
(2)

Let 〈z1z2, uvw〉 be a relevant pair. The relaxed four-point
condition is used to determine whether the center of uvw
falls onto z1z2 in the following manner. Let z1 be an in-
ternal node in Ψ∗, let def(z1) = u1v1w1, and assume that
z2 lies on the path between u1 and z1 in Ψ∗ without loss
of generality (see Figure 1). Recall that w is not a leaf
in Ψ∗. HGT/FP tests whether the relaxed four-point condi-
tion holds for u1w|v1w1. If so, then for the center o of uvw,
the paths from z1 to o and to z2 overlap. The condition is
used similarly with z2 if it is an internal node, in order to
decide if the paths from z2 to o and to z1 overlap. If zi is
a leaf, then the condition for zi is not tested. If the tested
conditions hold for the pair 〈z1z2, uvw〉, then it is called a
good relevant pair. If 〈z1z2, uvw〉 is a good relevant pair,
then HGT/FP concludes that the center of uvw can be in-
serted on the edge z1z2. HGT/FP uses only good relevant
pairs for adding new nodes. This way it tolerates some error
in the estimated tree metrics, since Equation (2) may hold
for the correct topology even if the distances between the
leaves are estimated within a small error.

2.3 The Harmonic Greedy Triplets principle
The Harmonic Greedy Triplets (HGT) principle provides
a guideline for the triplet selection mechanism when em-
pirical tree metrics are used. The empirical tree metrics
for the discussed distances are calculated as follows. The
empirical Jukes-Cantor distance is computed by D̂[u, v] =
− ln(1− r

r−1
p̂uv) where p̂uv is the relative frequency of the

event {ξ(u) 6= ξ(v)} observed in the sample. (If the rela-
tive frequency is larger than (1 − 1/r), then the distance
is set to ∞ or a large positive constant.) The empirical
LogDet distance is calculated by computing the matrices
Ĵuv = [p̂uv,ij ] where p̂uv,ij is the relative frequency of the

event {ξ(u) = i, ξ(v) = j} in the sample, and by setting

o

z1

w

z2

u1

w1v1

u

v

Figure 1: Using the four-point condition with rele-
vant triplets.

D̂[uv] = − ln |det Ĵuv |. Finally, in the case of empirical par-

alinear distance, we calculate M̂uv = [p̂uv,ij/p̂u,i] where p̂u,i

is the relative frequency of the event {ξ(u) = i}, with the

convention that if p̂u,i = 0, then M̂uv[i, j] = 1 for i = j and

M̂uv[i, j] = 0 for i 6= j. The matrices M̂uv and M̂vu are
used in place of Muv and Mvu in Equation (1) to compute
the empirical paralinear distance.

Lemma 1. Let D be one of the tree metrics over Ψ(T )
discussed, i.e., let D be the paralinear, the LogDet, or the
Jukes-Cantor distance. Let D̂ be the corresponding empirical
tree metric. There exist constants a, b > 0 such that for all
leaves u, v and 0 < ε < 1,� �

D[u, v]− D̂[u, v] ≥ − ln(1− ε) � ≤ ae−b`ε2S2

uv ;� �
D[u, v]− D̂[u, v] ≤ − ln(1 + ε) � ≤ ae−b`ε2S2

uv ,
(3)

where Suv = e−D[u,v].

Proof. The lemma is proven for the Jukes-Cantor dis-
tance in [13, 9], and for the LogDet distance in [11]. For the
paralinear distance, and for exact values of a and b in all
cases, see [8].

Definition 1. An estimated tree metric D̂ for which
Equation (3) holds is called an (a, b)-regular estimator for D.

The value Suv in Lemma 1 is called the similarity between u
and v. The HGT principle originates from Theorem 2 be-
low, which relates the error in triplet center estimation with
regular estimators to a harmonic average of similarities. For
every triplet uvw, define the average similarity

Suvw =
3

S−1
uv + S−1

uw + S−1
vw

=
3

eD[u,v] + eD[u,w] + eD[v,w]
.



Theorem 2. Let D̂ be an (a, b)-regular estimator for the
tree metric D. For every triplet uvw, and 0 < ε < 1,���

∆̂(u, uvw)−∆(u, uvw) ≥ − ln(1− ε)

2 �
≤ 3a exp 
 − b

9
`ε2S2

uvw � .

Proof. We reported the theorem for the Jukes-Cantor
distance in [10, 9]. For our detailed proof, see [8].

The novel principle of HGT is that the selection of triplets
in an algorithm following the outline of §1.4 with regular
estimators should be a greedy selection of the triplet uvw
with the largest average estimated similarity defined by

Ŝuvw =
3

eD̂[u,v] + eD̂[u,w] + eD̂[v,w]
.

2.4 Fast topology reconstruction
The HGT/FP algorithm uses good relevant pairs to add new
nodes to Ψ∗. For every edge e ∈ Ψ∗ and leaf w 6∈ Ψ∗, there
are O(1) relevant pairs of the form 〈e, uvw〉. Maintaining the
set of all O(n2) good relevant pairs while constructing Ψ∗

would be possible: whenever a new leaf is added, O(n) rel-
evant pairs are eliminated, O(n) new relevant pairs are cre-
ated, and the new relevant pairs can be tested as described
in §2.2. By the HGT principle, however, it is enough to con-
sider one good relevant pair for every leaf w 6∈ Ψ∗, namely,
the one in which the triplet has the largest average simi-
larity. Denote the set of those pairs by R. The HGT/FP
algorithm maintains R by updating it every time new nodes
are added. The set R is implemented as a vector of size n
indexed by the leaves. Each entry of R contains either null
or a good relevant pair. In order to add a new internal node
and a new leaf, the HGT/FP algorithm uses the relevant
pair from R in which the triplet has the largest average em-
pirical similarity. The use of the HGT principle and relevant
triplets results in the following theorem.

Theorem 3. The running time of the HGT/FP algorithm
on a tree with n leaves is O(n2). The algorithm uses O(n)
work space.

Proof. (Sketch.) The algorithm stores the tree Ψ∗,
the vector R, and O(1) local variables, resulting in the O(n)
space requirement. Line F1 runs in O(n2) time. Since
there are O(1) relevant pairs for every edge e ∈ Ψ∗ and
leaf w 6∈ Ψ∗, Lines F3 and F8 take O(n) time. Since there
are O(n) entries in R, Lines F5 and F7 take O(n) time also.
Lines F2 and F6 update Ψ∗ in O(1) time. Thus, initializa-
tion in Lines F1–F3 takes O(n2) time, and the repeat loop
of Line F4 is executed (n − 3) times, taking O(n) time in
each step, which results in the O(n2) total running time.

The statistical efficiency of the HGT/FP algorithm is stated
by the following theorem, for which the proof is sketched in
the appendix.

Theorem 4. Let T be an arbitrary evolutionary tree that
has n leaves. Let D be a tree metric over the topology Ψ(T ),

and D̂ be an (a, b)-regular estimator. Let Dmin be the mini-
mum, and Dmax be the maximum distance between endpoints
of edges in Ψ(T ), and define S0 = e−Dmax , S1 = 1−e−Dmin .
For every error probability 0 < δ < 1, there exists

` = O � log a
δ

+ log n

bS
O(%)
0 S2

1 � , (4)

with % ≤ 1 + log2(n − 1), such that the success rate of
HGT/FP is at least (1 − δ) on samples of length `. More-
over, for almost every tree topology under the uniform or
Yule-Harding distributions, % = O(log log n).

Remark. The value % in the theorem is the tree depth first
studied in the context of evolutionary tree reconstruction by
Erdős et al. [12] under different topology distributions.

3. SIMULATION EXPERIMENTS
We simulated DNA sequence evolution with 2000 nucleo-
tides along three large trees in the Jukes-Cantor model. The
500-leaf tree has the topology of a seed plant phylogeny from
Chase et al. [6]. The 1895-leaf tree is derived from the evolu-
tionary tree of Eukaryotes in RDP [22]. The 3135-leaf tree is
based on the subtree of Proteobacteria within the phylogeny
of Prokaryotes in RDP. We scaled the edge lengths of the
original trees using a linear transformation. We evaluated
the accuracy of the reconstruction by the Robinson-Foulds
error [25] RF%, which measures the percentage of misplaced
internal edges in the tree.

The distance-based algorithms we used included BioNJ [15],
Weighted Neighbor-Joining (Weighbor) [3], and Neighbor-
Joining (NJ) [26]. The two former algorithms were recently
developed, and are related to NJ. The NJ algorithm is ar-
guably the most popular distance-based algorithm to date.
All three algorithms run in O(n3) time [28], and their sta-
tistical efficiency is not proven. Atteson [1] derives sample
length bounds for Neighbor-Joining and BioNJ similar to
those of Equation (4), but the bounds use the diameter of
the topology instead of %. For Weighbor and BioNJ, we used
the implementations provided by their authors; for NJ, we
used its implementation in qclust [4]. We also included a
heuristic parsimony method, called DNAPARS [14]. Parsi-
mony algorithms aim at deriving a topology that gives rise
to sample sequences with a minimal number of character
changes along the edges, which is an NP-hard optimization
problem [16]. It is known that the exact optimization is not
statistically efficient for certain trees. In simulation experi-
ments, however, they often perform very well [24].

Figure 3 shows the results of the simulations. In our experi-
ments parsimony performs the best on the 500-leaf tree. Un-
fortunately, its running time increases rapidly with the tree
size and the mutation probabilities, so that in some cases it
takes several hours on a desktop computer1 to recover the
topology of the 500-leaf tree. In contrast, HGT/FP takes
less than two minutes to reconstruct the topology of the

1We used a PC with Pentium III 500 MHz CPU and 256M
memory, running Windows NT 4.0.



Algorithm Harmonic Greedy Triplets with Four Point Condition

Input: An n× n estimated tree metric.

Output: Ψ∗.

F1 Select an arbitrary leaf u and find a triplet uvw with the maximum Ŝuvw .

F2 Let Ψ∗ be the star with three edges formed by uvw and its center o.

F3 Initialize R using the good relevant pairs for edges uo, vo, wo.

F4 repeat

F5 Find 〈z1z2, uvw〉 ∈ R with the maximum Ŝuvw.

F6 Add a new internal node z on z1z2 and connect w to it.

F7 Delete the pairs from R that contain the edge z1z2.

F8 Update R using the good relevant pairs for edges z1z, z2z, wz.

F9 until all leaves are inserted to Ψ∗; i.e., this loop has iterated (n− 3) times.

F10 Output Ψ∗.

Figure 2: The HGT/FP algorithm. Calculations pertaining to edge length estimation are sketched in §2.1. Good relevant
pairs are discussed in §2.2. The set R of good relevant pairs is discussed in §2.4.

3135-leaf tree. Weighbor proves to be even slower than par-
simony despite its good asymptotic running time. It is also
the least successful in recovering the topology among all al-
gorithms considered. We omitted Weighbor and DNAPARS
from the experiments with the larger trees because their
running time increased to more than a day, and also omit-
ted BioNJ because its performance is very similar to that
of NJ. In the case of high mutation probabilities, HGT/FP
performs better than NJ and BioNJ, while the neighbor-
joining methods are better for low mutation probabilities,
even though they do not recover the topology completely
either.

Figure 4 shows the results of a different set of experiments
comparing the effect of sample length on the recovery for
HGT/FP and NJ. We simulated sequence evolution along
the 1895-leaf tree with sample lengths ranging from 200 to
10000, for two edge scalings. In the case of high mutation
probabilities, HGT/FP recovers the tree completely from
5000 bp sequences, while NJ misses more than 200 edges
even for 10000 bp sequences. In the case of low mutation
probabilities, NJ performs better than HGT/FP, but the
difference is not so striking between the two algorithms as
in the case of high mutation probabilities. In particular, the
convergence rate of HGT/FP seems to be close to that of
NJ.

4. CONCLUDING REMARKS
When working with trees with over one thousand leaves, the
algorithms’ running time becomes crucial. Existing O(n4)-
time evolutionary tree building algorithms may take days to
finish on today’s desktop computers and slower algorithms
are virtually unusable without having considerable insight
into biological features of the data set at hand.

In addition to the computational issues, statistical charac-
teristics of algorithms also become more stressed as one
builds larger trees. Neighbor-Joining and most other al-
gorithms have not been proven to require asymptotically
polynomial sample sizes to correctly recover the topology,
while HGT/FP is provably statistically efficient. Neighbor-
Joining calculates edge lengths from an average that involves

distances between arbitrarily remote nodes in T , which may
cause the estimation error to be very large. When the mu-
tation probabilities are small, the averaging approach may
be justified, as shown in the experiments with low muta-
tion probabilities. On the other hand, the error committed
while calculating the average is governed by the error in es-
timating the largest distance in the expression, which may
be significant when mutation probabilities are large. In this
case a greedy algorithm such as HGT/FP is more successful,
as shown by our experimental results.

Many possible applications of evolutionary tree building al-
gorithms may need to build large trees. Examples include
large projects in evolutionary biology such as the ones cited
and problems in molecular epidemiology. It will be of practi-
cal importance to determine which of the existing algorithms
are the most suitable for the ranges of mutation probabilities
and tree topologies defined by the application at hand.
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APPENDIX
A. PROOF OF THEOREM 4
This appendix outlines auxiliary lemmas leading to the proof
of Theorem 4. In order to obtain the sample length bounds
of the theorem, we bound the algorithm’s success probabil-
ity. Let 0 < Ssm < Slg < 1 be two threshold values on
similarities with Ssm = Slg/

√
2 (we specify Slg later). The



thresholds define three sets of triplets: every triplet uvw is
either a large triplet, if Suvw ≥ Slg, or a medium triplet if
Ssm < Suvw < Slg, or a small triplet if Suvw ≤ Ssm. We
show that with high probability, the HGT/FP algorithm
recovers the tree correctly using only large and medium
triplets. Let Ψ∗

k be the version of Ψ∗ with k leaves at the
beginning of the repeat loop in line F4 for k = 3, . . . , n− 1,
and let Ψ∗

n = Ψ∗, the algorithm’s output. We prove for all k
by induction that with high probability, Ψ∗

k is built correctly
by using only large and medium triplets. Establishing the
base case and the induction step relies on the following three
arguments.

1. With high probability, the greedy selection favors large
triplets over small triplets.

2. With high probability, HGT/FP correctly determines
whether any relevant pair 〈z1z2, uvw〉, for which uvw
is not small is a good relevant pair.

3. There is always a relevant pair 〈z1z2, uvw〉 for which
the triplet uvw is a large triplet and its center falls
onto the edge z1z2.

The first argument follows from Lemma 5, which states that
if a regular estimator is used, then the probability of a small
triplet appearing better than a large triplet is exponentially
small in the sample sequence lengths.

Lemma 5. Assume that D̂ is an (a, b)-regular estimator
for D calculated from sample sequences of length `. Let E3

denote the random event that Ŝuvw < Ŝu′v′w′ for every small
triplet uvw and every large triplet u′v′w′.���

E3 � ≥ 1− a

6
n3 exp � −b

(
√

2− 1)2

72
`S2

lg � .

Proof. (Sketch.) Define the midpoint Smd = (Ssm +
Slg)/2. For every small triplet uvw, the bound���

Ŝuvw ≥ Smd � ≤ a exp 
 −b
(
√

2− 1)2

72
`S2

lg �
holds since D̂ is (a, b)-regular. Similarly, for every large
triplet u′v′w′,� �

Ŝu′v′w′ ≤ Smd � ≤ a exp 
 −b
(
√

2− 1)2

72
`S2

lg � .

The two bounds imply the lemma, since there are � n
3 � <

n3/6 triplets.

For the second argument, assume that Ψ∗

k has the correct
topology, and that def(z) is a large or a medium triplet for
every internal node z. Assume furthermore that 〈z1z2, uvw〉
is a relevant pair in Ψ∗

k. We take advantage of the fact that
if uvw is not small, then the leaves for which the relaxed
four-point condition is tested cannot be arbitrarily far from
each other. Specifically, the distance between two leaves

within the quartets is bounded from above by −2 ln 
 2
3
Ssm � ,

based on the fact that for every triplet uvw with center o,
Suo ≥ 2

3
Suvw.

Lemma 6. A quartet is a short quartet if each pairwise

distance between its leaves is less than −2 ln 
 2
3
Ssm � . Let E4

denote the random event that for every short quartet uv|wz
the relaxed four-point condition of Equation (2) holds.� �

E4 � ≥ 1− an2 exp 
 − b

81
`S4

lgS
2
1 � .

Proof. Using the technique of [12, 11], the probability of
the complementary event Ē4 is bounded by the probability

that there is a leaf pair (u, v) for which ���D[u, v]− D̂[u, v] ��� ≥
(− ln(1 − S1))/2. The lemma follows from the fact that D̂

is (a, b)-regular, and that there are � n
2 � < n2

2
leaf pairs.

The third argument is based on Lemma 7. Lemma 7 depends
on how large the defining triplets are for the internal nodes
of Ψ(T ), and determines the value of Slg.

Definition 2. Define the tree depth % as the smallest
number such that for every edge e ∈ Ψ(T ), there is a path
from each endpoint to a leaf with at most % edges, which does
not go through e.

Lemma 7. Assume that Ψ∗

k has the correct topology, and
that for every internal node z, def(z) is not small. If

Slg ≤
3
√

2

2
� √2− 1√

2 + 1
� 2

S2%+4
0 � ≈ S2%+4

0

16
� ,

then the following statement holds. For every edge z1z2 ∈
Ψ∗

k, if z1 and z2 are not connected by one edge in Ψ, then
there exists a relevant pair 〈z1z2, uvw〉 such that uvw is
large, and the center of uvw falls onto the path between z1

and z2 in Ψ(T ).

Proof. The full proof of this lemma can be found in [8]; a
similar claim is proven in [9] for the Jukes-Cantor model.

Proof of Theorem 4. (Sketch.) We prove by induc-
tion that E3 and E4 imply that for all k, Ψ∗

k has the correct
topology and is built using only large and medium triplets.
By E3, a medium or large triplet is selected to initialize Ψ∗,
and thus the claim holds for k = 3. Assume that it holds
for 3 < k < n. By Lemma 7, there is a large triplet uvw in
a relevant pair 〈z1z2, uvw〉 for which the center of uvw falls
onto z1z2. By E4, 〈z1z2, uvw〉 is a good relevant pair. By E3,
HGT/FP selects a good relevant pair with a medium or large
triplet in Line F5, and by E4, the new nodes are added to Ψ∗

k

correctly.

By Lemmas 5 and 6, if

` ≥ max
�
420

3 lnn + a
3δ

bS2
lg

, 81
2 ln n + 2a

δ

bS2
1S4

lg � ,

then both E3 and E4 hold with probability at least (1 −
δ). The theorem follows from setting Slg = S2%+4

0 /17 as
suggested by Lemma 7.
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Figure 3: Simulation of DNA sequence evolution in the Jukes-Cantor model along large trees with different
mutation probabilities. The plots show the percentage of misplaced internal edges (Robinson-Foulds error) as a function
of the largest edge length Dmax in the tree after linear scaling. The graphs are calculated from generating ten set of samples
with 2000 bp long sequences. The graphs go through the median values. On the left-hand side, the minimum edge length
equals Dmax/10. On the right-hand side, it is set to Dmax/100. For reference, Dmax = 0.5 corresponds to maximum
mutation probability 0.30; on the left-hand side the minimum mutation probability equals 0.037 and on the right-hand side
it equals 0.0037 for that scaling. Most edge lengths in the trees are very close to the minimum edge length.
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Figure 4: Simulation of DNA sequence evolution in the Jukes-Cantor model along the 1895-leaf tree with
different sample lengths. The plots show the percentage of misplaced internal edges (Robinson-Foulds error) as a function
of the sample lengths. The graphs are calculated from generating ten set of samples for each sequence length. The graphs go
through the median values. The edge lengths on the top are linearly scaled to fall into the interval [0.1, 1]. The edge lengths
on the bottom fall into the interval [0.01, 1].


