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Disney Research Zürich and University of Toronto
IMAN SADEGHI and HENRIK WANN JENSEN
UC San Diego

We present two contributions to the area of volumetric rendering. We de-
velop a novel, comprehensive theory of volumetric radiance estimation that
leads to several new insights and includes all previously published estimates
as special cases. This theory allows for estimating in-scattered radiance
at a point, or accumulated radiance along a camera ray, with the standard
photon particle representation used in previous work. Furthermore, we gen-
eralize these operations to include a more compact, and more expressive
intermediate representation of lighting in participating media, which we
call “photon beams.” The combination of these representations and their
respective query operations results in a collection of nine distinct volumetric
radiance estimates.

Our second contribution is a more efficient rendering method for partici-
pating media based on photon beams. Even when shooting and storing less
photons and using less computation time, our method significantly reduces
both bias (blur) and variance in volumetric radiance estimation. This enables
us to render sharp lighting details (e.g. volume caustics) using just tens of
thousands of photon beams, instead of the millions to billions of photon
points required with previous methods.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing, and tex-
ture; Raytracing; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Raytracing; I.6.8 [Simulation and Modeling]: Types of Sim-
ulation—Monte Carlo; G.3.8 [Mathematics of Computing]: Probability
and Statistics—Probabilistic algorithms (including Monte Carlo)

General Terms: Theory, Algorithms, Performance

Additional Key Words and Phrases: global illumination, ray marching, ren-
dering, density estimation, photon map, particle tracing, participating media

1. INTRODUCTION

Participating media is responsible for some of the most visually
compelling effects we see in the world. The appearance of fire,
water, smoke, clouds, rainbows, crepuscular “god” rays, and all
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organic materials is due to the way these media “participate” in light
interactions by emitting, absorbing, or scattering photons. These
phenomena are common in the real world but, unfortunately, are
incredibly costly to simulate accurately. Because of this, computer
graphics has had a long-standing interest in developing more effi-
cient, accurate, and general participating media rendering techniques.
We refer the reader to the recent survey by Cerezo et al. [2005] for a
comprehensive overview.

The most general techniques often use a form of stochastic sam-
pling and Monte Carlo integration. This includes unbiased tech-
niques such as (bidirectional) path tracing [Lafortune and Willems
1993; Veach and Guibas 1994; Lafortune and Willems 1996] or
Metropolis light transport [Pauly et al. 2000]; however, the most
successful approaches typically rely on biased Monte Carlo com-
bined with photon tracing [Keller 1997; Jensen and Christensen
1998; Walter et al. 2006; Jarosz et al. 2008]. Like bidirectional path
tracing, photon tracing methods generate both camera and light
paths but, instead of coupling these two types of paths directly, they
trace and store a collection of paths from the lights first, and then
determine a way to couple these light paths with the camera paths
generated during rendering. Volumetric photon mapping [Jensen and
Christensen 1998; Jarosz et al. 2008] performs density estimation
on the vertices of these paths (the “photons”) to estimate volumetric
radiance. This process is energy preserving, but blurs the results,
introducing bias. However, this bias reduces noise and allows for
efficient simulation of a wider range of light transport paths, such as
caustics.

1.1 Motivation

One of the primary motivations for our work is that current pho-
ton tracing methods for participating media are limited by the data
representation used to store light paths. Current methods use a pho-
ton particle representation that only retains information about the
scattering event locations, discarding all other potentially important
information accumulated during photon tracing. We observe that by
retaining more information about the light paths during photon trac-
ing, we can obtain vastly improved rendering results, as illustrated
in Figure 1. In this example, retaining only light path vertices (pho-
ton points) results in a sparse sampling of the light field which, for
density estimation techniques, either requires a large search radius
with high bias or results in no photons being found within a fixed
radius (highlighted in blue). In contrast, if we store full light paths
(photon beams) and an approach for computing density estimation
using these paths existed, the density of data would be implicitly
higher. These benefits motivate the main contributions of our work.
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Photon Points Photon Beams

Fig. 1: Volumetric photon mapping (left) stores scattering events at points
(green) and performs density estimation. With photon beams (right), the full
trajectory (lines) of each photon is stored and density estimation is performed
on line segments. Photon beams increase the quality of radiance estimation
since the space is filled more densely (e.g. the blue search region does not
overlap any photon points, but does overlap two photon beams).

1.2 Contributions

In order to develop a complete algorithm utilizing photon beams,
we introduce a novel density estimation framework based around
line segments. This allows us to extend standard volumetric photon
mapping with a new data representation. We in fact go a step further
and develop a generalized theory of radiance estimation in partici-
pating media which allows the use of points or beams for either the
data or query representation, or both. Our main contribution is a
theory that subsumes existing radiance estimates [Jensen and Chris-
tensen 1998; Jarosz et al. 2008; Schjøth 2009] and also expands the
collection to nine estimates by including the new photon beam data
representation and query operation.

To validate our new theory we develop a number of prototype
volumetric rendering techniques utilizing these novel radiance esti-
mates. We demonstrate their effectiveness on a number of scenes,
and also discuss computational considerations, such as efficient data
structures, to make photon beams practical.

Lastly, our unified theory provides new insights into how seem-
ingly distinct volume rendering methods are in fact extremely simi-
lar. In addition to volumetric photon mapping, we show how virtual
point-light methods [Keller 1997; Walter et al. 2006], light beam
tracing methods [Nishita et al. 1987; Watt 1990; Nishita and Naka-
mae 1994], and deep shadow maps [Lokovic and Veach 2000] can
all be seen as special cases or slight modifications of our theory.

2. RELATED WORK

Our work is related to a number of previous techniques for coupling
light paths to camera paths in participating media.

2.1 Photon Mapping

We use volumetric photon mapping as the foundation for deriving a
novel density estimation framework using points and beams. The
original algorithm [Jensen and Christensen 1998] introduced a volu-
metric radiance estimate to approximate the in-scattered radiance
at any discrete point in the medium. Radiance towards the eye is
accumulated using ray marching, aggregating photon map queries
along camera rays. Jarosz et al. [2008] target the inefficiencies of
ray marching, formulating a new volumetric “beam radiance esti-
mate” to consider all photons around the length of a camera ray (the
“beam”) in a single query. Boudet et al. [2005] and Schjøth [2009]
derived a photon splatting procedure which is mathematically equiv-

alent for camera rays. These estimates change the query definition
from a point to a beam. In our work, we develop the tools necessary
to change the data representation from a photon point to a photon
beam. Moreover, we show how to couple any combination of point-
or beam-query with a point- or beam-photon representation (e.g. a
beam-query using photon-beams).

2.2 Ray Mapping

Previous researchers have proposed the use of beams or rays to
solve surface illumination problems. Lastra et al. [2002] stored
photon trajectories with each photon and used them to locate photons
that would have intersected the tangent plane of the query point
in order to reduce boundary bias in the surface radiance estimate.
Havran et al. [2005] developed a specialized data structure called
the “ray map” and formulated a number of other metrics to couple a
query location on a surface with photon paths. Herzog et al. [2007]
reformulated ray maps by splatting photon energy to all surface
measurement points along a photon’s trajectory. Zinke and Weber
[2006], on the other hand, discretely sampled the ray map back
into photon points to improve query performance. None of these
previous approaches, however, considered participating media.

Our concept of photon beams is very similar in spirit to that of
the ray map. However, we apply this concept to simulating lighting
in participating media, which is more challenging since radiance
does not remain constant along lines through a medium. Moreover,
the benefit of using beams as the data representation is much greater
for participating media than for surfaces since, in a volume, beams
not only reduce boundary bias but, as we will show, significantly
reduce variance by implicitly increasing photon density.

2.3 Beam Tracing

Our use of photon beams is also related to the concept of beam
tracing [Heckbert and Hanrahan 1984], where in place of infinites-
imal rays, polygonal geometry is extruded to form thick “beams”
which are reflected and refracted in the scene. The concept of beam
tracing was later applied in reverse to light paths for e.g. visualizing
caustics at the bottom of a swimming pool [Watt 1990]; however,
neither of these techniques considered participating media. Nishita
et al. [1987] used illumination volumes formed by spotlights to
simulate single scattering and subsequently extended this algorithm
to visualize underwater shafts of light [Nishita and Nakamae 1994].
Unfortunately, the resulting light beams have complicated bound-
aries and intensity profiles, which are approximated by sampling
and interpolation. These volumetric light beam tracing methods can
run interactively on the GPU in simple scenes [Iwasaki et al. 2001;
Ernst et al. 2005]. Krüger et al. [2006] suggest a related GPU tech-
nique where image-space photons create underwater lines of light
which are then blurred in image-space; however, they do not strive
for physical correctness and cannot handle absorption.

The use of light beams to represent shafts of light within par-
ticipating media is very similar to our concept of photon beams.
In fact, one of the new estimates we introduce can be seen as a
generalization of light beam tracing. Photon beams have a number
of additional practical benefits. Firstly, light beams are tied to scene
geometry and hence not well suited for scenes with high geometric
complexity. Photon beams, on the other hand, are independent of
the geometry, and can handle scenes with highly-tessellated or even
procedural geometry. Secondly, it is difficult to handle higher-order
scattering effects with light beams (e.g. multiple specular refrac-
tions) since subsequent bounces require non-trivial geometric light
beam clipping. Photon beams are based on standard ray tracing and
naturally handle multiple specular interfaces (for volumetric caus-
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Fig. 2: Radiance reaching the eye L(xc←~ωc) is the sum of surface radiance
L(xs←~ωc) and accumulated in-scattered radiance Li(xtc←~ωc) along a ray.

tics) and even multiple scattering effects, which are not considered
at all by light beam methods. Lastly, light beam tracing, unlike the
approaches developed in this article, cannot easily handle area light
sources.

2.4 Exact/Direct Techniques

Several techniques solve for the exact contribution of specific light
paths, without an intermediate representation. Mitchell and Hanra-
han [1992] solve for the exact reflection points off of curved surfaces
and the corresponding lighting contribution, and discuss, but do not
demonstrate, performing the same computation for refraction. This
technique could be used to directly simulate difficult light paths
within participating media, such as reflective caustics, but only with
a single bounce and geometry limited to implicit surfaces.

Recently, Walter et al. [2009] developed a similar technique for
computing refraction paths within triangle meshes. By using trian-
gles, the technique is similar to light beam tracing, and can likewise
produce light shafts within complex refractive volumetric bound-
aries. However, the solution is exact so it does not suffer from
blurring or approximation artifacts present in light beam tracing or
photon mapping methods. In contrast, volumetric photon mapping
could require extremely high photon counts to reconstruct similarly
sharp lighting features. Our photon beam estimates implicitly in-
crease the data density compared to photon particles, providing a
similar benefit. The accuracy of Walter’s technique, however, comes
at a price. Firstly, it requires an expensive numerical solver for
robustness, and performance is once again tied to the geometric
complexity of the boundary mesh, making it impractical for com-
plex scenes. Also, only a restricted class of light paths with a single
refractive boundary are considered, whereas our methods can be
used to simulate any number of bounces. Finally, Walter’s technique
solves for light contribution only at individual points in the volume,
so numerical integration using ray marching is still needed to com-
pute the contribution along a camera ray. This integration can be
expensive and, if not enough samples are taken, clamping is used to
avoid noise which introduces unbounded bias due to loss of energy.
We develop a theory to directly couple photon beams with entire
camera rays, thereby eliminating the need to perform ray marching.

3. BACKGROUND

We will derive a novel theory of density estimation in participating
media combining points and beams. In this section we describe
the technical details of light transport in participating media and
establish a consistent notation used throughout our exposition. Since
we base our derivations on density estimation used in volumetric
photon mapping, we also review the details of this algorithm.

3.1 Light Transport in Participating Media

In a vacuum, photons travel unobstructed until they interact with a
surface. In participating media, photons interact with the surround-
ing medium. At any point, a photon traveling through a medium
may be scattered or absorbed, altering its path, and reducing the
contribution in the original direction. This process is described by
the radiative transfer equation (RTE) [Chandrasekar 1960].

In its integral form, the RTE recursively defines radiance reaching
the eye xc from direction ~ωc as a sum of reflected radiance from the
nearest visible surface and accumulated in-scattered radiance from
the medium between the surface and the camera (see Figure 2):

L(xc←~ωc) = Tr(xc↔xs)L(xs→~ωc)

+
∫ s

0
Tr(xc↔xtc)σs(xtc)Li(xtc→~ωc)dtc, (1)

where Tr is the beam transmittance, s is the distance through the
medium to the nearest surface at xs = xc− s~ωc, and xtc = xc− tc~ωc
with tc ∈ (0,s). We summarize our notation in Table I.

In-scattered radiance, Li, recursively depends on radiance arriving
at xtc from all directions ~ωtc over the sphere of directions Ω4π :

Li(xtc→~ωc) =
∫

Ω4π

f (θtc)L(xtc←~ωtc)d~ωtc , (2)

where f is the normalized phase function, and θtc is the angle be-
tween the incident and outgoing directions at xtc : cosθtc = ~ωc ·~ωtc .
The surface radiance, L(xs→~ωc), governed by the rendering equa-
tion [Kajiya 1986], serves as the boundary condition for the RTE.

In heterogeneous media, the scattering properties may vary
throughout the medium. In this case, we denote the scattering and
absorption coefficients of the medium as σs(x) and σa(x), and the
extinction coefficient is σt(x) = σs(x)+σa(x).

The beam transmittance, Tr, gives the fraction of radiance that
can be transported between two points along a ray, and is defined as:

Tr(x↔x′) = e−
∫ ‖x′−x‖

0 σt (x+t~ω)dt . (3)

In homogeneous media, σt , σs, and σa do not depend on position,
and a number of mathematical simplifications can be made. Specifi-
cally, the integral in Equation 3 can be replaced by a simple product:

Tr(x↔x′) = e−σt‖x′−x‖, (4)

Table I. : Definitions of quantities used throughout this article.

Symbol Description

x, ~ω Position, direction
Ω4π Sphere of directions

t Distance along a ray or beam
�c Quantity associated with a camera ray, (e.g. xc, ~ωc, tc)
�p Quantity associated with photon particle p, (e.g. xp, ~ωp, Φp)
�b Quantity associated with photon beam b, (e.g., xb, ~ωb, tb)

σs,σa,σt Scattering, absorption, and extinction coefficients
θb Angle between photon beam and camera ray

f (θ) Normalized phase function
R, Rb Abstract query/blurring region, aligned with photon beam b

Tr Beam transmittance: e−σt t

Φ Flux (power) or a photon particle or beam
L(x←~ω) Incident radiance arriving at x from direction ~ω
Li(x→~ω) Excitant in-scattered radiance leaving x in direction ~ω

Lb(x←~ω,s) “Beam radiance”: incident integrated in-scattered radiance
arriving at x from media from direction ~ω .

ξ A canonical random number between 0 and 1
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which allows us to simplify the RTE in Equation 1 to:

L(xc←~ωc) = e−σt sL(xs→~ωc)+σs

∫ s

0
e−σt tc Li(xtc→~ωc)dtc. (5)

3.2 Volumetric Photon Mapping

Jensen and Christensen [1998] solve the RTE using a combination
of photon tracing, ray marching, and density estimation.

In a preprocess, packets of energy, or “photons,” are shot from
light sources, scattered at surfaces and within the medium, and
their interactions are stored in a global data structure. This photon
tracing stage is typically implemented using a Markov random-walk
process, though a number of other sampling strategies are possible.

During rendering, ray marching is used to numerically integrate
radiance seen directly by the observer. For a homogeneous medium,
this involves approximating Equation 5 as:

L(xc←~ωc)≈ e−σt sL(xs→~ωc)+σs

S−1

∑
tc=0

e−σt tc Li(xtc→~ωc)∆tc, (6)

where ∆tc is the length of segments along the ray and x0, . . . ,xs−1
are the segment sample points (x0 and xs−1 are the first and last
points within the medium, and xs is a surface point past the medium).

The most expensive part to compute in Equation 6 is the in-
scattered radiance Li, because it involves accounting for all light
arriving at each point xt along the ray from any other point in the
scene. Instead of computing these values independently for each lo-
cation, photon mapping gains efficiency by reusing the computation
performed during the photon tracing stage. The in-scattered radi-
ance is approximated using density estimation by gathering photons
within a small spherical neighborhood around each sample location.

3.3 Notation

This article deals with a wide variety of quantities, expressing all of
which with absolute precision and generality would make equations
unmanageably verbose. For conciseness, we will use the homo-
geneous RTE for most of the remainder of this article. When not
immediately obvious, we discuss algorithmic changes needed to han-
dle heterogeneous media. However, to make the meaning of terms
more obvious in context, we will typically denote quantities relating
to camera rays with a subscript c (e.g., xc, ~ωc, tc), relating to photon
particles with a subscript p (e.g., xp, ~ωp, Φp), and relating to photon
beams with a subscript of b (e.g., xb, ~ωb, tb). We use superscripts
sparingly to denote other dependencies. We also make a notational
distinction between incident/incoming and excitant/outgoing radi-
ance using arrow notation (see Table I). Our illustrations use green
for quantities relating to the data (photon points and photon beams),
red for quantities relating to the query (query point or camera ray),
and blue to visualize query regions or blurring kernel.

3.4 Overview

In Sections 4-7, we explore volumetric radiance estimation with
photon mapping in more detail. In particular, we derive a compre-
hensive theory of volumetric radiance estimation, which leads to
significant new insights and encompasses all previously published
volumetric radiance estimates as special cases.

We first examine radiance estimation using photon points in Sec-
tion 4 and then show how to generalize this concept to volumetric
photon beams. Section 5 overviews the photon beams concept and
sets the mathematical foundation for radiance estimation using this
representation. In Section 6 we derive two ways to estimate in-
scattered radiance in a volume using photon beams, and in Section 7

Point × Point (3D) Beam × Point (3D) Beam × Point (2D)

Point × Beam (3D) Point × Beam (2D) Beam × Beam (3D)

Beam × Beam (2D)1 Beam × Beam (2D)2 Beam × Beam (1D)

Fig. 3: Single-scattering in a Cornell box rendered with each of the nine
estimates (see Table II). We only visualize media scattering and intentionally
use a small number of photons and a constant kernel to highlight each
method’s artifacts and blurring behaviors. 100k photon points (top row) and
5k photon beams (bottom two rows) are used to represent the illumination.

we derive four ways to estimate the accumulated in-scattered radi-
ance along a camera ray directly using photon beams. In total, these
generalizations result in nine distinct radiance estimates. We catego-
rize these estimates based on the type of query (point or beam), the
photon data representation (point or beam), and the dimensionality
of the blur coupling these two terms (3D, 2D, or 1D). We demon-
strate each of these estimators in Figure 3 and aggregate all the
estimator formulae derived throughout the manuscript in Table II.

In Section 8 we provide practical details needed to implement
several of the novel radiance estimates, and in Section 9 show and
discuss rendered results using these methods. In Section 10 we
discuss how our method fits into the larger scope of volumetric ren-
dering, and how our theory sheds light on connections between other,
seemingly disparate volume rendering approaches. Limitations and
areas of future work are discussed in Section 11.
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4. RADIANCE ESTIMATION USING PHOTON POINTS

We detail all the possible ways to estimate radiance with photon
points. Standard volumetric radiance estimation is reviewed in Sec-
tion 4.1, we then present novel derivations for two different radiance
estimates computed along the length of the eye ray.

4.1 Point Query × Point Data, 3D Blur

The original volumetric radiance estimate computes the in-scattered
radiance at a query point by searching for photon points stored
within the medium. In this estimate, the query is a point, x, and the
data are points, xp. The resulting estimate blurs the values stored at
the points xp in three dimensions [Jensen and Christensen 1998]:

Li(x→~ω) =
∫

Ω4π

f (θ ′)L(x←~ω ′)d~ω ′≈ 1
σs µR(r3) ∑

p∈R
f (θp)Φp, (7)

where the summation loops over all photons p found within a three-
dimensional query region R. This sum is divided by the measure
of the query region. For the typical spherical query the measure
is simply the volume of a sphere µR(r3) = 4

3 πr3, but other three-
dimensional queries are possible, as well as weightings by non-
constant kernels. We illustrate this radiance estimate in Figure 4(a).

Our notation may seem to suggest a restriction to spatially con-
stant (i.e. non-adaptive) query regions, by not explicitly specifying
a dependence on x or xp. This is only for simplicity and brevity of
notation and is not a limitation of the methods described. We discuss
the application of spatially adaptive blurring kernels in Section 8.1.

4.2 Beam Query × Point Data, 3D Blur

It is also possible to directly compute the accumulated in-scattered
radiance along a camera ray, which we call “beam radiance”:

Lb(xc←~ωc,s) = σs

∫ s

0
e−σt tc Li(xtc→~ωc)dtc. (8)

The standard volumetric radiance estimate can be thought of as
the convolution of the radiance at a point xtc with a spherical 3D
volumetric kernel. Substituting Equation 7 into Equation 8 yields:

Lb(xc←~ωc,s)≈ σs

∫ s

0
e−σt tc 1

σs µR(r3) ∑
p∈R(tc)

f (θp)Φp dtc,

≈ 1
µR(r3)

∫ s

0
e−σt tc ∑

p∈R(tc)
f (θp)Φp dtc, (9)

where R(tc) indicates that the 3D query region moves with tc along
the beam integral domain.

Unfortunately, Equation 9 is not immediately useful as it involves
convolving the query region with the line integral. We can instead
look at the density estimation problem from the dual perspective
where each photon is the center of a volumetric 3D kernel. This inter-
pretation allows us to swap the order of the integral and summation,
yielding the following radiance estimate:

Lb(xc←~ωc,s)≈
1

µR(r3) ∑
p∈R

f (θp)Φp

∫ t+p,c

t−p,c
e−σt tc dtc, (10)

where the summation loops over all photons whose volumetric
(typically spherical) kernels overlap the camera ray, tc is the distance
from xc along the camera ray, and the integration bounds t−p,c and
t+p,c are determined by the intersection of the camera ray with the
kernel for photon p. We illustrate these quantities in Figure 4(b).

Table II. : The nine radiance estimates described in this article, categorized
by the query type, the data representation, and the dimensionality of the blur.
A rendering resulting from each of these estimates is shown in Figure 3.

Query × Data (Blur) Radiance Estimate Equation Number

Point × Point (3D)
1

σs µR(r3) ∑
p∈R

f (θp)Φp (7)

Beam × Point (3D)
1

µR(r3) ∑
p∈R

f (θp)Φp

∫ t+p,c

t−p,c
e−σt tc dtc (10)

Beam × Point (2D)
1

µR(r2) ∑
p∈R

f (θp)Φp e−σt tp,c (12)

Point × Beam (3D)
1

µR(r3) ∑
b∈R

f (θb)Φb

∫ t+b

t−b
e−σt tb dtb (21)

Point × Beam (2D)
1

µR(r2) ∑
b∈Rb

f (θb)Φbe−σt tx,b (25)

Beam × Beam (3D)
σs

µR(r3) ∑
b∈R

f (θb)Φb

∫ t+c

t−c

∫ t+b (tc)

t−b (tc)
e−σt tc e−σt tb dtb dtc (27)

Beam × Beam (2D)1
σs

µR(r2) ∑
b∈Rb

f (θb)Φb

∫ t+c

t−c
e−σt tc e−σt tb dtc (29)

Beam × Beam (2D)2
σs

µR(r2) ∑
b∈R

f (θb)Φb

∫ t+b

t−b
e−σt tb e−σt tc dtb (33)

Beam × Beam (1D)
σs

µR(r)
∑

b∈Rb

f (θb)Φb e−σt tc
b e−σt tb

c

sinθb
(38)

In a homogeneous medium, the integral of the transmittance term
can be computed analytically as:∫ t+p,c

t−p,c
e−σt tc dtc =

e−σt t−p,c − e−σt t+p,c

σt
. (11)

4.2.1 Discussion. An important distinction between the radi-
ance estimates in Equations 10 and 7 is that they estimate differ-
ent radiometric quantities: Li(x→~ω) is an excitant quantity while
Lb(xc←~ωc,s) is an incident quantity. To compute the incident ra-
diance reaching the eye using the standard approach, numerical
integration would need to be used by inserting Equation 7 into the
ray marching process of Equation 6 (even for homogeneous media).
In contrast, Equation 10 computes the camera ray integral directly
and, in homogeneous media, does not require ray marching. In effect,
multiple ray marching evaluations of Equation 7 can be replaced
with a single evaluation of Equation 10. Furthermore, as the number
of ray marching samples increases to infinity, these two approaches
will provide identical results. Note that even though these estimates
compute different quantities, they can use the same photon map.

4.3 Beam Query × Point Data, 2D Blur

Recently, Jarosz et al. [2008] introduced the so-called “beam radi-
ance estimate,” where the contributions from all photons along a
camera ray are queried at once, similarly to Equation 10. Expressed
in our notation, this beam radiance estimate can be written as1:

Lb(xc←~ωc,s)≈
1

µR(r2) ∑
p∈R

f (θp)Φp e−σt tp,c , (12)

where tp,c = (xc− xp) · ~ωc is the projected distance along the ray
from the origin xc to photon p. The sum is over all photons within
a region R and, to enforce integration bounds along the beam, only

1Jarosz et al. [2008] use a different definition of photon contribution and
so their equations contain an additional σs factor. Here we use notation to
remain consistent with other sources [Jensen and Christensen 1998].
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(a) Point × Point (3D) (b) Beam × Point (3D) (c) Beam × Point (2D)

Fig. 4: Illustrations of the three possible radiance estimates using photon points. Radiance estimate (a) queries at a point and blurs in 3D, corresponding to the
standard estimate introduced by Jensen and Christensen [1998]. Estimator (c) queries along a camera beam, only blurs in 2D, and corresponds to the beam
radiance estimate introduced by Jarosz et al. [2008]. An estimator (b) which blurs in 3D along a camera beam is also possible.

considers photons with 0≤ tp,c ≤ s. This blurs each photon into a
“photon disc” perpendicular to the query ray, as in Figure 4(c).

As with the previous estimate, this beam radiance estimate com-
putes the 1D beam integral directly; however, it only blurs the con-
tributions of each photon in 2D, perpendicular to the ray. Therefore
we divide by the 2D measure of the region to compute the density.
For a cylinder with a circular cross-section, µR(r2) = πr2. This is
an important distinction, which may initially seem unintuitive, and
which is unfortunately hidden in the definition of the blurring kernel
in the original expressions presented by Jarosz et al. [2008].

Jarosz et al. [2008] derived Equation 12 using a reformulation of
photon mapping in terms of the measurement equation [Veach 1997].
For completeness, we will show that it is possible to derive the exact
same estimate without this reformulation by starting from Equa-
tion 10. This derivation also allows us to examine the relationship
between the 3D and 2D beam radiance estimates more precisely.

4.3.1 Derivation. Equation 10 blurs photons with an abstract
3D kernel. The shape of this kernel does not influence the algo-
rithm’s correctness, only the behavior of bias and variance. In fact,
this fact has been exploited previously by aligning kernels with
structures in the lighting to minimize bias [Schjøth et al. 2006;
Schjøth et al. 2007; Schjøth et al. 2008]. Consequently, we could
choose a 3D region other than a sphere to perform our blur (e.g. a
cylinder). This only requires changing µR to express e.g. the volume
of a cylinder, µR(r2,h) = πr2h.

We start by expressing Equation 10 using a cylindrical kernel:

Lb(xc←~ωc,s)≈
1

πr2h ∑
p∈R

f (θp)Φp

∫ t+p,c

t−p,c
e−σt tc dtc. (13)

If we also align cylinders with the camera ray, the extent of the
integration bounds always equals the cylinder height: t+p,c− t−p,c = h.
With this alignment, we express t−p,c = tp,c− h

2 , and t+p,c = tp,c +
h
2 .

Integrating over a distance h and dividing by h (from the measure
of the cylinder), we effectively compute the average transmittance
through the cylinder. In the limit, reducing the cylinder’s height to
integrate smaller regions, this average becomes a simple evaluation:

Lb(xc←~ωc,s)≈ lim
h→0

(
1

πr2h ∑
p∈R

f (θp)Φp

∫ t+p,c

t−p,c
e−σt tc dtc

)
,

=
1

πr2 ∑
p∈R

f (θp)Φp e−σt tp,c . (14)

Note that if we use a circular cross section with µR(r2) = πr2,
this is identical to the beam radiance estimate in Equation 12.

4.3.2 Discussion. We will discuss the relationship between the
2D and 3D beam radiance estimates. In Equation 10, transmittance

is integrated across the 3D kernel’s depth, whereas in Equation 12,
transmittance is simply evaluated since the 2D kernel has no depth.
However, in the 3D version we divide by an extra dimension.

Equation 14’s derivation solidifies the connection: combining
the extra division and integral along the ray effectively averages
the transmittance through the kernel. In the limit, we obtain a 2D
blur, and this average becomes an evaluation of transmittance at
the intersection of the kernel and camera ray. Strictly speaking,
Equation 10 and Equation 12 produce very similar, but not identical
results. The difference lies in the averaging of the transmittance term
across depth in the 3D kernel. Since transmittance is non-linear,
averaging is not equivalent to evaluation at the 3D kernel’s center.

It is also instructive to discuss the connection between these beam
radiance estimates and the photon splatting approach developed by
Boudet et al. [2005] and Schjøth [2009]. The splatting approaches
consider a 3D region around each photon, and integrate each pho-
ton’s contribution onto the image plane as a splat. This integration,
however, only considers the value of the kernel through the 3D
region, and not the transmittance which is evaluated at the center
of the kernel. The resulting radiance estimate divides by the vol-
ume of the region, but multiplies by the 1D integral of the kernel
along the ray. These two operations combined produce an effective
2D kernel surrounding each photon. Hence, the splatting estimates
are mathematically equivalent to the 2D beam radiance estimate in
Equation 12.

In homogeneous media both these estimates can be evaluated
analytically, so the benefit of one over the other is not immediately
obvious. In heterogeneous media, however, using Equation 12 is
more practical, since we only need to evaluate the transmittance
(using ray marching) instead of averaging the transmittance through
each photon. Equation 12’s beam radiance estimate is computation-
ally much more efficient than the point-wise volumetric radiance
estimate in Equation 7 with ray marching (see Jarosz et al. [2008]).
In heterogeneous media the beam radiance estimate requires ray
marching, but only to compute transmittance to each photon. This
allows us to find all photons around the beam in one query, and take
a weighted sum of their powers with Equation 12. Equation 7 is
wasteful, requiring many queries per camera ray, which may result
in the same photons being found multiple times.

5. PHOTON BEAMS OVERVIEW

We now generalize the concept of photon mapping to use photon
beams, resulting in several novel radiance estimates.

The most commonly described photon shooting method is based
on random-walk sampling where each emitted photon traces a
Markov-chain of scattering events through the scene; however, other
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approaches are possible as well2. Here we describe a different form
of photon shooting, which resembles ray marching from the lights,
and call this process “photon marching.” This approach can be much
more effective in certain scenarios (e.g. light through a stained-glass
window). Though this technique is not new (it was, for instance,
used to generate volumetric water beams by Jensen and Christensen
[1998]), it is not widely known and, to our knowledge, not described
in the literature. More importantly, our definition of photon beams
is based on the concept of photon marching, so we describe this
process here in more detail. However, we only use this process to
derive a mathematical definition of photon beams, and in practice
photon beams are still created using a random-walk process.

5.1 Photon Marching

Photon marching is identical to ray marching with rays originating
at the lights. At each step, instead of sampling the in-scattered light,
a photon is deposited. The distinction between photon tracing using
a Markov random-walk or a photon marching process is analogous
to the difference between synthesizing an image using random-walk
volumetric path tracing and ray marching from the camera.

Ray marching numerically solves 1D integrals using a Riemann
sum. A step-size ∆t is chosen and the ray is sampled at discrete loca-
tions. We assume a uniform step size for simplicity of the derivations,
which implies the medium is assumed to have finite extent.

To employ ray marching in photon tracing, the propagation dis-
tance is no longer chosen once for a single photon (as in a random-
walk), but instead the power of each photon passing through the
medium is distributed among photons deposited at uniform intervals
along the length of the ray through the medium. We call this discrete
collection of photons along a single photon marching ray a “discrete
photon beam.” Mathematically, this is expressed as:

Φpb = σs e−σt‖xb−xt‖Φb ∆t, (15)

where Φb is the power of the photon beam upon entering the medium
(the emitted photon power if the light is within the medium), the ex-
ponential computes transmittance from the ray origin to the current
photon xt , and Φpb is the power of each photon. This scheme stores
a photon at each xt = xb+ t~ωb, with t = (ξ +[0, . . . ,N−1])∆t. The
total number of photons deposited along the discrete beam, N, de-
pends on the step-size and extent of the beam through the medium.
Each beam uses a different random offset ξ to avoid aliasing, but
this is inconsequential for our derivations.

5.2 Multiple Scattering

Any photon entering the medium induces a discrete photon beam
through the entire length of the medium. To simulate multiple scatter-
ing, photon marching can be combined with random-walk sampling.

This is accomplished by scattering a new discrete beam off of the
current beam. For discrete beam b0, a random propagation distance
ts is first chosen for the scattering event location. In homogeneous
media we compute this analytically based on the mean-free path
as ts =− log(1−ξ )

σt
with pdf (ts) = σt e−σt ts . For heterogeneous me-

dia, the inversion method [Pharr and Humphreys 2004] or delta-
tracking [Coleman 1968; Raab et al. 2008] can be used. After the
location is chosen, a new discrete beam is initiated with origin
xb1 = xb0 + ts~ωb0 , direction ~ωb1 (sampled from f (θ)), and a starting
power of Φb1 =

σs
σt

Φb0 . The scattering albedo, σs
σt

, can be used for

2Any strategy is valid as long as the joint probability density of the photon
powers, positions, and directions satisfies certain conditions [Veach 1997].

Russian-roulette [Arvo and Kirk 1990], in which case the starting
power of an accepted beam simplifies to Φb1 = Φb0 (in grey media).
Even though the scattered beam is initiated at a distance ts along the
parent b0, photon marching of b0 continues to the media’s boundary
(see Figure 1). This simplifies our remaining derivations and pro-
vides the added benefit of increased photon density throughout the
medium.

6. IN-SCATTERED RADIANCE ESTIMATION
USING PHOTON BEAMS

In this section we generalize the theory of radiance estimation to
compute in-scattered radiance at a point using photon beams.

6.1 Point Query × Beam Data, 3D Blur

We derive our first in-scattered radiance estimate at a point in the
medium due to photon beams by combining the photon marching
concept with the volumetric radiance estimate in Equation 7. Each
discrete photon beam contains photons Φpb deposited with photon
marching. Re-writing Equation 7 in terms of these photons yields:

Li(x→~ω)≈ 1
σs µR(r3) ∑

b∈R
∑

pb∈R
f (θpb)Φpb , (16)

where the outer sum iterates over all discrete beams b overlapping
region R, and the inner sum finds all photons within the search
region belonging to beam b. Note that this is exactly equivalent to
Equation 7, we have just split up the single summation into two.

As the step size of a discrete photon beam goes to zero, we call the
limit a “continuous photon beam.” Conceptually, a photon resides at
each point along a continuous beam. Mathematically, we substitute
the photon power expression (Equation 15) into Equation 16 and
move the phase function and power out of the inner sum, since
discrete photons on a beam share incident directions:

Li(x→~ω)≈ 1
σs µR(r3) ∑

b∈R
∑

pb∈R
f (θpb)σs Φb e−σt tp,b ∆t,

=
1

µR(r3) ∑
b∈R

f (θb)Φb ∑
pb∈R

e−σt tp,b ∆t, (17)

where ~ωb and Φb are the direction and power of discrete beam b,
θb is the angle between the eye ray and the beam (cosθb = ~ωc ·~ωb),
and tp,b is the distance from the start of the beam xb to photon pb.
To arrive at continuous beams, we take the limit as ∆t goes to zero:

Li(x→~ω)≈ 1
µR(r3)

lim
∆t→0

∑
b∈R

f (θb)Φb ∑
pb∈R

e−σt tp,b ∆t,

=
1

µR(r3) ∑
b∈R

f (θb)Φb lim
∆t→0

∑
pb∈R

e−σt tp,b ∆t. (18)

In the limit, a Riemann sum computes an integral,

lim
∆x→0

∑
x∈R

f (x)∆x =
∫

x∈R
f (x) dx, (19)

hence, as we increase the number of photons along a beam to infinity,
the inner sum in Equation 18 becomes a continuous 1D integral
along each beam:

Li(x→~ω)≈ 1
µR(r3) ∑

b∈R
f (θb)Φb

∫
tb∈R

e−σt tb dtb, (20)
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⇒ ⇒

(a) Point × Beam (3D) (b) Limit of Discrete Photon Marching (c) Point × Beam (2D)
Fig. 5: In-scattered radiance estimation with photon beams. Radiance estimator (a) computes in-scattered radiance at a point using photon beams with a 3D blur.
Taking the limit of discrete photon marching (b) while shrinking the cylindrical kernel’s height, we can obtain a similar estimator (c) which only blurs in 2D.

where tb is the parametric distance along beam b. The integral
bounds tb ∈ R represent the range along beam b that overlaps with
region R. Defining overlap endpoints, t−b and t+b , Li is expressed:

Li(x→~ω)≈ 1
µR(r3) ∑

b∈R
f (θb)Φb

∫ t+b

t−b
e−σt tb dtb. (21)

In homogeneous media, the integral of transmittance can be solved
analytically (Equation 11). We illustrate this estimate in Figure 5(a).

6.1.1 Discussion. Equation 21 is a true volumetric estimate,
averaging over a 3D region and dividing by the volume measure
µR(r3). This can be thought of as the convolution of the continuous
photon beam function with a 3D blurring kernel. It is interesting to
note that the point query of a 3D-blurred photon beam in Equation 21
and the beam query of 3D-blurred photon point in Equation 10 are
nearly identical. They differ only in the direction transmittance is
computed. The estimate in this section evaluates transmittance from
the query point to the start of the beam and integrates it around
the query point; in contrast, the estimate in Section 4.2 evaluates
transmittance from the photon point towards the eye and integrates it
around the photon point. In a sense, these estimates are radiometric
“complements” of each other and, due to the bidirectionality of light
transport, end up being nearly identical mathematically. This concept
of complementary radiance estimates will appear several more times
in our derivations. More precisely, it occurs anytime we swap query
and data representations but maintain the blur dimensionality.

6.2 Point Query × Beam Data, 2D Blur

Photon mapping can be viewed as computing random samples of
the energy distribution in the scene [Veach 1997; Jarosz et al. 2008].
The value at each photon point is exact, but a blur is required to
utilize these samples for estimating radiance at arbitrary points in the
scene. With the standard volumetric radiance estimate (Equation 7)
we blur the photon energy in three dimensions to obtain a valid
estimate at all points within the volume. Equation 21 also blurs in
3D. Continuous photon beams, however, express the exact value
of the lighting at all points along the photon beam, not just at a
single point. Hence, blurring along the length of the beam only
serves to introduce bias. We can exploit this observation to obtain
another radiance estimate for photon beams which only blurs in 2D,
perpendicular to the beam.

We utilize the dual interpretation of density estimation, where
a blurring kernel is placed at each data “point”: in this case, the
standard volumetric radiance estimate places a spherical kernel at
each photon point and the in-scattered radiance is accumulated from
the energy of all photon-spheres that overlap the query point.

As mentioned earlier, the blurring kernel shape only influences
the bias and variance behavior, not the correctness of the algorithm.
We exploit this fact, and again employ a cylindrical blurring region
(this time aligned with the photon beam) to derive the next radiance
estimate. The cylindrical blur can be expressed using the discrete
photon beams with only a slight modification to Equation 17:

Li(x→~ω)≈ 1
πr2h ∑

b∈Rb

f (θb)Φb ∑
pb∈Rb

e−σt tp,b ∆t, (22)

where the first sum loops over beams that pass near the query loca-
tion x, and the second finds all photon-marching photons for that
discrete beam that fall within the oriented cylindrical region Rb. The
orientation of the cylindrical blur depends on the beam, denoted Rb.

To obtain continuous photon beams, we could repeat a similar
procedure as in the previous section by taking the limit as ∆t goes
to 0 and arrive at an expression analogous to Equation 21. However,
we can reduce bias by simultaneously reducing the blur along the
length of the beam to zero, as illustrated in Figure 5(b). To do so,
we set the cylinder height to the photon-marching step size, h = ∆t:

Li(x→~ω)≈ lim
∆t→0

1
πr2∆t ∑

b∈Rb

f (θb)Φb ∑
pb∈Rb

e−σt tp,b ∆t. (23)

To simplify this expression, we note that none of the kernels for
a single beam overlap because the photon spacing and size of the
kernels are equal (see Figure 5(b)). This means that for any query
point x, at most one photon (the one closest to x) from each discrete
beam contributes to the estimate. This allows us to eliminate the
inner summation. After solving for the limit behavior, we have:

Li(x→~ω)≈ 1
πr2 ∑

b∈Rb

f (θb)Φb e−σt tx,b , (24)

where tx,b = (x−xb) ·~ωb is the scalar projection of x onto beam b.
Even though we start with a volumetric blur, the limit process

collapses the cylinder to a disc resulting in a 2D blur normalized by
the cylindrical cross-section area, πr2, as illustrated in Figure 5(c).

We used a circular cross-section for convenience of derivation,
but an estimate using an arbitrary cross-section can be expressed as:

Li(x→~ω)≈ 1
µR(r2) ∑

b∈Rb

f (θb)Φb e−σt tx,b . (25)

6.2.1 Discussion. It is informative to compare this radiance
estimate to the other ones presented so far. When compared to
Equation 21, we observe that the main differences are that here we
divide by the 2D area measure instead of the 3D volume measure,
and we also only need to evaluate the transmittance term along
the beam, instead of integrating it along an overlapping region.
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Though different mathematically, these expressions estimate the
same radiometric quantity (the two differences effectively cancel
each other out). Roughly speaking, if we integrate the transmittance
and divide by an extra r term, this is approximately equal to simply
evaluating the transmittance. The extra division can be thought
of as computing the “average” transmittance through the region.
In the limit, this is equivalent to evaluating the transmittance and
only dividing by the area measure. Note that if the function being
integrated (transmittance) were linear, these two formulations would
in fact be mathematically identical. The 2D estimate presented here
has a number of advantages. Firstly, it is simpler to evaluate since it
does not involve integrating along the length of beams. Secondly,
since no blurring is performed along the beam, this radiance estimate
introduces less bias for the same radius. It can be thought of as the
limit case of an anisotropic density estimation.

Comparing Equation 25 to the beam radiance estimate (Equa-
tion 12), we see that even though these compute very different quan-
tities (in-scattered radiance at a point vs. accumulated in-scattered
radiance along an eye ray), they have a very similar structure and are
in fact complementary. Both estimates divide by the cross-sectional
area of either the camera beam or the photon beam, and both weight
the photon contributions by a transmittance term (though computed
in different directions). This elegant similarity is not coincidental,
arising again due to the bidirectionality of light transport.

Equation 25 is also similar to the surface radiance estimates
developed by Herzog et al. [2007] and can be seen as a generalization
of their photon ray splatting estimate to participating media.

7. BEAM RADIANCE ESTIMATION USING
PHOTON BEAMS

We now consider direct computation of the beam radiance integral
using photon beams; hence, all remaining estimates apply beam
queries to photon beams.

7.1 Beam Query × Beam Data, 3D Blur

To directly estimate the beam radiance integral with 3D blurred pho-
ton beams, we substitute Equation 21 for the in-scattered radiance
in the beam radiance integral along the camera ray (Equation 8):

Lb(xc←~ωc,s) = σs

∫ s

0
e−σt tc Li(xtc→~ωc)dtc,

≈ σs

µR(r3)

∫ s

0
e−σt tc ∑

b∈R
f (θb)Φb

∫ t+b (tc)

t−b (tc)
e−σt tb dtbdtc. (26)

Note that the bounds of the inner integral depend on the location
along the camera ray tc.

After moving the integral inside the summation, and defining
per-beam integration bounds, we arrive at:

Lb(xc←~ωc,s)≈
σs

µR(r3) ∑
b∈R

f (θb)Φb

∫ t+c

t−c

∫ t+b (tc)

t−b (tc)
e−σt (tc+tb)dtb dtc,

(27)

where t−c and t+c are the overlap of the camera ray with the extruded
3D kernel along the photon beam, and at each point in this range we
integrate along the length of the photon beam from t−b (tc) to t+b (tc).

7.1.1 Discussion. Unfortunately, this radiance estimate is fairly
complicated since it involves the integral of a 3D convolution. This
computation may be possible to express analytically for homoge-
neous media if we were to write out the expressions for the integra-
tion bounds more explicitly. However, for heterogeneous media, this

estimate is fairly impractical and included simply for completeness.
Practically, the remaining estimates we derive are much more useful.

7.2 Beam Query × Beam Data, 2D Blur

As discussed earlier, reducing the blur dimensionality (and replacing
integration with evaluation) increases radiance estimate efficiency.

We can derive a radiance estimate which directly computes the
beam radiance along a camera ray, blurring each photon beam with
a 2D kernel. Two possible routes to derive this type of estimate
exist. We could take the 2D continuous photon beam estimate for
in-scattered radiance at a point (Equation 25) and integrate along the
eye ray by substituting into Equation 8. Alternatively, we could start
with the beam radiance estimate using photon points in Equation 12,
substitute the photon points with the photon-marching process, and
take this discrete marching process to the limit to obtain continuous
photon beams. We derive both approaches and discuss their their
similarities and differences.

7.2.1 Integral of Continuous Photon Beams. Integrating Equa-
tion 25 along the eye ray by inserting into Equation 8 yields:

Lb(xc←~ωc,s) = σs

∫ s

0
e−σt tc Li(xtc→~ωc)dtc,

≈ σs

µR(r2)

∫ s

0
e−σt tc ∑

b∈Rb

f (θb)Φb e−σt tb dtc. (28)

This continuous 2D photon beam estimate blurs the energy of each
photon beam along a 2D kernel perpendicular to the direction of the
beam. The extent of this kernel along the beam forms the region Rb.
Using the dual-interpretation of density estimation, we can swap the
order of integration and summation, and define integration bounds
per beam to arrive at:

Lb(xc←~ωc,s)≈
σs

µR(r2) ∑
b∈Rb

f (θb)Φb

∫ t+c

t−c
e−σt tc e−σt tb dtc. (29)

The integration is along the length of the camera ray, and the bounds
t−c and t+c are the intersection distances of the camera ray with each
photon beam region. The integrand is a product of two transmittance
terms: one along the length of the camera ray and the other along
the length of the photon beam. For beam regions that vary along
the length of the beam (such as cones), the region measure µR(r2)
is a function of tb and needs to be moved inside the integral. We
illustrate this estimate in Figure 6(a).

In homogeneous media, the integral of the two transmittance
terms can be computed analytically. For conical shaped beams,
the integral becomes the well-known airlight integral [Sun et al.
2005; Pegoraro and Parker 2009]. For beams with a constant cross-
section area, this can be simplified even further. To do this, we must
express the projected distance along the photon beam tb in terms
of the integration variable tc. The relationship between these two
terms, illustrated by the triangle formed in Figure 6(a), is: tb = t−b −
|cosθb|(tc− t−c ), where t−b is the scalar projection of the integration
start point t−c , expressed as a distance along the photon beam, and
cosθb = ~ωc ·~ωb. This allows us to solve the integral analytically as:∫ t+c

t−c
e−σt tc e−σt tc

b dtc =
∫ t+c

t−c
e−σt tc e−σt (t−b −(tc−t−c )|cosθb|)dtc,

=
e−σt (t−c −t+c )(|cosθb|−1)−1

eσt (t−c +t−b )σt(|cosθb|−1)
. (30)
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(a) Beam × Beam (2D)1 (b) Beam × Beam (2D)2 (c) Beam × Beam (1D)

Fig. 6: Illustrations of beam radiance estimation using photon beams. We describe two possible alternatives for blurring beams in 2D. Estimator (a) blurs
perpendicular to the photon beam, expanding each photon beam into a cylinder. Estimator (b) blurs perpendicular to the camera ray, resulting in a skewed
cylinder about the photon beam. The final estimator (c) simplifies these to a simple 1D blur by compressing the cylinder into a camera-aligned rectangle.

7.2.2 Limit of Discrete Photon Beams. Alternatively, discrete
photon-marching beams may be inserted into Equation 12:

Lb(xc←~ωc,s)≈
σs

µR(r2) ∑
b∈R

∑
pb∈R

f (θpb)Φpb e−σt tp,c , (31)

where tp,c = (xc− xpb) · ~ωc is the scalar projection of the photon
position onto the camera ray. Expanding the discrete photon beam
power Φib into Equation 31 and re-arranging terms, we get:

Lb(xc←~ωc,s)≈
σs

µR(r2) ∑
b∈R

∑
pb∈R

f (θb)Φbe−σt tp,b e−σt tp,c ∆t,

=
σs

µR(r2) ∑
b∈R

f (θb)Φb ∑
pb∈R

e−σt tp,b e−σt tp,c ∆t. (32)

Note that, as in the previous derivation, this results in two transmit-
tance terms: one which computes the transmittance from the photons
towards the origin of the photon beam and one which computes the
transmittance from the photons towards the origin of the camera ray.

To obtain continuous beams, we take the limit of discrete beams:

Lb(xc←~ωc,s)≈
σs

µR(r2) ∑
b∈R

f (θb)Φb lim
∆t→0

∑
pb∈R

e−σt tp,b e−σt tp,c ∆t,

which replaces the inner summation with an integral:

Lb(xc←~ωc,s)≈
σs

µR(r2) ∑
b∈R

f (θb)Φb

∫ t+b

t−b
e−σt tb e−σt tc dtb. (33)

Here the integration is performed along the length of the beam b,
not the camera ray. The integration bounds t−b and t+b are deter-
mined by the overlap between the camera ray and the extrusion of
the 2D blur kernel along the continuous photon beam. The second
transmittance term uses tc, the projected distance along the cam-
era ray of the point at tb. The relation between these distances is
tc = t−c −|cosθb|(tb− t−b ), where t−c is the scalar projection of the
integration start point, t−b , expressed as a distance along the eye ray,
and cosθb = ~ωc ·~ωb (see Figure 6(b)). We can use this relationship
to compute the integral analytically by following a similar procedure
as in Equation 30.

7.2.3 Discussion. The estimates in Equations 29 and 33 appear
nearly identical and are indeed complements of each other (recall
that complementary estimates have the same blur dimensionality,
with swapped query and data representations). However, unlike
previous complementary estimates, these actually compute the same

radiometric quantity, making them even more similar. Though nearly
identical, we highlight a number of conceptual differences.

Both estimates weight photon powers with an integral of two
transmittance terms: one towards the origin of the photon beam and
another towards the origin of the camera ray. The main difference
between these integrals is that, in Equation 29, the integration is
performed along the camera ray, whereas in Equation 33 the inte-
gration is performed along the photon beam. This difference comes
about from the fact that in Equation 29 the energy of the photons is
always blurred perpendicular to the photon beam (forming a cylin-
der around the beam, as in Figure 6(a)), whereas in Equation 33 the
energy of the photons is always blurred perpendicular to the camera
ray (forming a sheared cylinder about the beam, as in Figure 6(b)).
This results in slightly different bias between these estimates.

This can be better understood by examining the behavior of both
estimates in the same situation. When the camera ray and the photon
beam are perpendicular, cosθb = 0 and in Equation 33 the trans-
mittance towards the camera is computed exactly (not integrated)
since t+c − t−c = 0. On the other hand, the situation is reversed for
the radiance estimate in Equation 29: when cosθb = 0, the trans-
mittance towards the origin of the photon beam can be pulled out
of the integral in Equation 30. The two estimates effectively make
different bias tradeoffs when computing the two transmittance terms:
equal bias is introduced in both estimates if the same radius is used,
but depending on the relative orientation of the camera ray and
photon beam, this bias is distributed differently between the two
transmittance terms. Note, however, despite this slight difference,
both estimates converge to the same answer in the limit. We did
not find a noticeable difference between the results of these two
estimates in our comparisons.

Of all the radiance estimates presented in this paper, the two pre-
sented in this section are the most related to the beam tracing volume
caustics approach developed by Nishita and Nakamae [1994].

7.3 Beam Query × Beam Data, 1D Blur

When we use beams for both the query and the photons, the blur
dimensionality can be reduced even further. In this section we show
how to obtain a one-dimensional beam × beam blur.

To derive Equation 33 we took the 2D beam radiance estimate for
photon points to the limit using photon marching. In the resulting es-
timate, the 2D kernels around each photon-marching photon overlap
when projected onto the camera ray, and the integral is necessary
to compute the amount of overlap in the limit. In Section 6.2 we
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were faced with a similar situation: 3D kernels would overlap when
replicated along a discrete photon beam. In that situation, we were
able to construct the kernels to never overlap, and in the limit the
integration was eliminated, resulting in a new radiance estimate. We
apply this same principle to obtain a new beam × beam estimate.

We proceed similarly to Section 7.2.2, but design our 2D ker-
nels to never overlap by construction. We again start with Equa-
tion 12 and insert the discrete photon-marching beams as we did
in Equation 31; however, this time we will use rectangular kernels
perpendicular to the camera ray and oriented with the photon beam:

Lb(xc←~ωc,s)≈
σs

hw ∑
b∈Rb

∑
pb∈Rb

f (θpb)Φpb e−σt tp,c , (34)

where w is the width of the rectangular kernel perpendicular to the
photon beam and h is the height of the kernel parallel to the photon
beam. Expanding the discrete photon beam power Φpb yields:

Lb(xc←~ωc,s)≈
σs

hw ∑
b∈Rb

∑
pb∈Rb

f (θb)Φb e−σt tp,b e−σt tp,c ∆t,

=
σs

hw ∑
b∈Rb

f (θb)Φb ∑
pb∈Rb

e−σt tp,b e−σt tp,c ∆t. (35)

In order to prevent the photon kernels from overlapping dur-
ing this expansion, the height h must be a function of the photon-
marching step size ∆t. Since the kernels are always perpendicular to
the camera, they will not overlap when h = ∆t sinθb. This is illus-
trated in Figure 7. Since only one kernel ever overlaps the ray, this
eliminates the need for the inner summation:

Lb(xc←~ωc,s)≈
σs

∆tw ∑
b∈Rb

f (θb)Φb e−σt tp,b e−σt tp,c

sinθb
∆t. (36)

We again take the limit of discrete beams to obtain continuous beams

Lb(xc←~ωc,s)≈ lim
∆t→0

σs

∆tw ∑
b∈Rb

f (θb)Φb e−σt tp,b e−σt tp,c

sinθb
∆t, (37)

and, after expressing the kernel bandwidth w with the abstract nota-
tion used for the previous radiance estimates, we arrive at:

Lb(xc←~ωc,s)≈
σs

µR(r)
∑

b∈Rb

f (θb)Φb e−σt tc
b e−σt tb

c

sinθb
. (38)

In this continuous 1D formulation, tc
b is the distance along the photon

beam to the point closest to the camera ray, and tb
c is the distance

along the camera ray to the point closest to the photon beam. We
illustrate this radiance estimate in Figure 6(c).

7.3.1 Discussion. As in Section 6.2, we started with a radiance
estimate of dimensionality d and, due to the limit behavior of the
anisotropic blurring kernel, obtained a new estimate of reduced
dimension d − 1. In Section 6.2 we went from an estimate that
blurs in 3D to one that blurs in 2D along the beam. In this final
beam × beam radiance estimate (Equation 38), the power of the
photon beams are blurred in only one dimension, along the direction
perpendicular to both the camera ray and photon beam.

It is useful to discuss the connection between the 2D Beam ×
Beam radiance estimates in Equations 29 and 33 with the one just
derived in Equation 38. Equation 29 can be thought of as construct-
ing a volumetric cylinder around each continuous photon beam,
and integrating the power of each cylinder along the eye ray, i.e.,
individual photon beams would look like smoky volumetric cylin-
ders when rendered on the screen. Equation 38 on the other hand,
does not involve any integration and only divides by a 1D length
measure µR(r). Conceptually, this can be thought of as replacing

Side view Front view Side view Front view

Fig. 7: To obtain the Beam× Beam (1D) estimate in Figure 6(c), we consider
the limit of non-overlapping, rectangular kernels facing the camera ray.

Adaptive-width beams

Fixed-width beams

Fig. 8: Fixed-width beams (top) give sub-optimal results since the amount
of blur is not adapted to the local beam density. Adaptive-width beams based
on photon differentials (bottom) successfully reduce the blurring in focused
regions such as the caustic, while simultaneously eliminating artifacts (e.g.
banded lines emanating from the caustic) due to insufficient blur.

all the cylinders with flat rectangles which always face the camera
(i.e., billboards). This conceptual interpretation is quite useful for
implementation, which we discuss in more detail in Section 8.

Another aspect which deserves some discussion is the 1/sinθb
term. By replacing the cylinders with billboards, the integration
is eliminated and replaced by a simple evaluation. However, the
bounds of this integration (i.e., the distance the camera ray travels
through each beam) depend on the relative orientation of the camera
ray and the photon beams. If these are perpendicular, the extent of
the integration will be roughly the width of the photon beam, but
as they stray from perpendicularity, the extent of the camera ray
through the photon beam cylinder will increase. The sinθb factor
takes this change into account at a differential level, similar to the
cosθ foreshortening term in the surface reflectance integral.

Unfortunately, the sinθb term is in the denominator, which may
initially seem problematic due to the potential singularity at θb = 0,
when the photon beam and camera ray are parallel. Furthermore,
the transmittance terms are undefined when the beams are parallel,
because in this configuration there is no single point closest between
two parallel lines. However, we found that in practice this estimate
does not suffer from any such numerical problems.

8. IMPLEMENTATION

To validate and analyse the nine radiance estimates, we implement
each within a simple C++ ray tracer. We followed the details of
Jensen [2001] and Jarosz et al. [2008] for efficiently implementing
the standard Point × Point 3D and Beam × Point 2D beam radiance
estimates (BRE). Only a minor modification to the BRE is required
to obtain our Beam × Point 3D estimate from Section 4.2.

Photon beams can also be easily integrated into an existing volu-
metric photon mapping implementation. The photon shooting pre-
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process remains almost completely unchanged: beam segments are
stored wherever standard volume photons are stored, with initial
beam start points originating at a light source. The only difference
occurs at the intersection of photon paths with solid objects: while
standard volumetric photon tracing discards a photon if it intersects
an object prior to reaching its propagation distance, photon beam
tracing stores a beam with an end point at the object intersection.
The photon beams map contains a super-set of the information in a
standard photon map, as illustrated by the photon paths in Figure 1.

8.1 Adaptive Beam Width

In order to estimate the radiance from a photon beams map, we need
to be able to compute the local density of beams. For simplicity,
the theory in the previous sections has assumed an abstract, fixed
blurring kernel. A fixed-width blur can easily be implemented by
interpreting each photon beam as a cylinder of a specified radius
(Figure 8 top). However, choosing a single blurring width that works
well for the whole domain is often impossible, a problem that has
been well-studied in density estimation literature [Silverman 1986].
A better technique is to adjust the kernel width based on the local
photon beam density. Standard photon mapping uses the k-nearest
neighbors to locally adjust the search radius, while Jarosz et al.
[2008] used the variable kernel method with a pilot density estimate
to assign radii to photon points. Unfortunately, reusing either of these
techniques is challenging in our context since photon beams are
higher dimensional and we would like the blur radius to potentially
vary along the length of the photon beams according to the local
density.

We explored several approaches for adapting beam widths, includ-
ing pdf-based methods [Herzog et al. 2007; Suykens and Willems
2000; Suykens and Willems 2001], and techniques based on pilot
density estimates at beam vertices [Jarosz et al. 2008]. Unfortunately,
these approaches did not produce satisfactory results. Instead, we
found that photon differentials [Schjøth et al. 2007] provide an effec-
tive and automatic solution for estimating the divergent spreading
and convergent focusing of photon beams as they propagate within
a scene.

Photon Differentials. Photon differentials are the analogue of
ray differentials [Igehy 1999] from the direction of the light. Ray
differentials were originally developed to estimate the footprint of
camera rays for improved texture filtering, but have also been ap-
plied in “reverse” to estimate desired photon footprints or blur-radii
for surface-based [Schjøth et al. 2007; Fabianowski and Dingliana
2009] as well as volumetric photon mapping [Schjøth 2009]. We use
photon differentials to determine the size and shape of each photon
beam.

A photon differential consists of the photon beam position and
direction, (x, ~ω), as well as two auxiliary rays, (xu, ~ωu) and (xv, ~ωv),
with offset origins and directions. Together, the central beam ray and
its two differential rays form a truncated cone, or conical frustum,
which defines the size and shape of each photon beam for density
estimation. At any point t along the beam, the elliptical cross-section
of the frustum has semi-major and semi-minor axis lengths equal to
the Euclidean distance between the point on the central ray, r(t) =
x+t~ω , and the corresponding points on the differential rays, ru(t) =
xu + t~ωu and rv(t) = xv + t~ωv.

At reflective and refractive surface interactions, we modify dif-
ferential rays according to Igehy [1999]. For example, in Figure
8, photon beam differentials are modified to focus and spread the
beams of light according to the refraction into, and out of the glass
sphere. We found that this approach works very well, handling

extreme spreading and focusing caused by caustic light paths.

Light Source Emission. Light source emission affects the ini-
tial position, direction, and width of each emitted beam’s differential
rays. Generally, we aim to set differentials so as to create a tight
packing of beams over the spatial and angular extent of the light
source. We adopt different emission schemes for different light
sources. More specifically, the position and orientation of differen-
tial rays is determined by the spatial and directional PDFs of photon
emission, and the total number of emitted photons from a light.

For singularity lights, such as point-, spot-, and cosine-lights, the
differential ray origins are set to the location of the light source. We
set the differential ray directions such that the entire angular extent
of the source is covered by the number of emitted beams, while
minimizing the amount of overlap between beams. More precisely,
if we emit N photon beams, the solid angle spanned by a beam’s
footprint is set to 1/(pdf(~ω) ·N), where pdf(~ω) is the probability
density of emitting a photon with direction ~ω . For instance, for an
isotropic point-light, each photon beam footprint would be allotted
4π/N steradians. Since each beam forms a cone, we can therefore
solve for the necessary apex angle between the central ray and
the photon differentials. This process is similar to the one used
by Fabianowski and Dingliana [2009], but extended to work with
general angular distribution. We illustrate this in Figure 9.

Our implementation also supports area light sources. In this case,
the surface area PDF must also be considered. As with directions, we
allot a portion of the light’s surface area to each of the emitted photon
differentials. Conceptually, we discretize the light’s surface into a
jittered grid and assign central and differential ray origins based
on the jittered grid centers and edges, respectively. Differential and
central beam directions are set according to the PDF of the angular
emission of the source (see Figure 9). Figure 10 shows a scene that
uses photon differentials for area light source emission.

With this photon differential scheme, the radiance estimate would
correctly return infinity at the position of a singularity light source
(since the width would be zero), while this singularity would be cor-
rectly avoided for area light sources due to the finite cross-section.

Multiple Scattering. Just as multiple scattering photons can
be deposited during standard photon shooting, multiple scattering
beams can also be deposited with a random-walk shooting process.

We have investigated several differential modulation schemes
for multiple scattering beams, including one inspired by the re-

Fig. 9: We use photon differentials to compute the conical blurring frustum
around each photon beam. For point light emission (left), the differential ray
directions determine the spread of the cone, whereas, for area lights (mid-
dle), the positional differentials are also considered. Specular interactions
propagate the differentials. Multiple scattering beam differentials (right) are
always parallel to the parent beam and spaced at a distance equal to the
parent’s radius at the scattering location x.
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Fig. 11: We compare the error convergence of photon beams vs. photon points on a log-log scale in a test scene containing a focused lighting effect similar to a
volumetric caustic. Our method requires 10,000 times fewer photon beams than photon points to obtain the same RMS error. A crop of the reference solution
(top) is shown, as well as the photon points (middle) and photon beams (bottom) reconstruction using 100 photon point and beams respectively.

5k Beams - 0:34 25k Points - 0:41 10M Points - 9:12

Fig. 10: Adaptive photon beam width for an area light source rendered using
our photon differentials (left), compared to a roughly equal-time (middle)
and roughly equal quality (right) renderings with photon points.

cent “absorb-and-reemit” analogy suggested by Fabianowski and
Dingliana [2009] for diffuse inter-reflections, as well as pdf-based
approaches [Suykens and Willems 2000; Suykens and Willems 2001;
Herzog et al. 2007; Schjøth 2009]. Unfortunately, we did not find
these techniques to work well with photon beams since the extreme
spreading of beams resulted in visibly biased results. Instead, for
multiple scattering, beams are always cylinders with widths set ac-
cording to the footprint of the parent beam at the multiple scattering
event location (see Figure 9). We found that this automatic process
produces reasonable results. Figure 13 compares photon beams to
standard photon mapping in a scene with two bounces of multiple
scattering.

8.2 Global Beam Width and Smoothing Kernels

In addition to using photon differentials to automatically predict
the spreading and focusing of photon beams, we provide the user
with a width multiplication factor, α , which can globally increase
or decrease the computed beams widths. This serves the same pur-
pose as the k parameter used in standard k-nearest neighbor density
estimation, and allows the user to adjust the tradeoff between band-
ing and blur in the rendered image. Furthermore, since we allow
the user to choose a smooth weighting kernel, some amount of
overlap (α > 1) is desirable for optimal results. We experimented
with several blur widths and smoothing kernels (including constant,

cone, 3rd- and 5th-order smoothstep, biweight, and Gaussian) and
found the biweight kernel [Silverman 1986] (K(x) = 15

16 (1− x2)2

for x ∈ [0,1]) with an α = 3.0 strikes a good balance between kernel
overlap, blurring and banding. We used this kernel in all our results.

8.3 Photon Beam Storage

To compute the beam radiance estimate, we need an efficient way
to intersect a camera ray with the collection of photon beams in
the scene. Inspired by work in ray-hair intersection [Nakamaru and
Ohno 2002; Apodaca and Gritz 1999], we have explored several
acceleration schemes (including KD-Trees, BVHs and grids). After
experimenting with these techniques we found that, for our problem
domain, a BVH with some modifications performs quite well.

We store photon beams in a BVH constructed using the surface
area heuristic [MacDonald and Booth 1990]. Unfortunately, since
many beams may overlap the same region of space (and in fact
may share a common vertex such as all beams emanating from a
point light source) a naı̈ve application of a BVH is inefficient. To
improve partitioning by the BVH, we split beams into sub-beams.
The splitting length is set automatically by our construction algo-
rithm to produce sub-beams with approximately unit aspect ratio. At
run-time, we are able to quickly obtain all beams intersected with
an eye ray, allowing rapid radiance estimation.

9. RESULTS

We have implemented all nine radiance estimates to validate the
theory, and demonstrate the effectiveness of photon beams. All
render times for these estimates were measured on a MacBook Pro
with a 3.06 GHz Intel Core 2 Duo processor and 4 GB of RAM. Note
that our current implementation uses only one core; however, since
radiance estimation is a read-only operation, all estimates could
easily be parallelized in an optimized implementation. The Cornell
box, bumpy sphere, and sphere caustic images are 512 pixels across
their larger dimension while all other images are 1024 pixels. All
results were rendered with up to 16 samples per pixel.

Figure 3 shows a Cornell box rendered with each of the estimators.
Note that even though the query domains and data representations
are vastly different among the estimators, the resulting images all
faithfully approximate the same solution. Here our intent is to verify
the correctness of all the derived estimators, and not on performance,
so we omit render times.

In our remaining results we demonstrate the benefits of photon
beams over photon points. We compare to the previous state-of-
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Fig. 12: A progression of renderings of a glass sphere forming a volume caustic. We compare the convergence of radiance estimation using photon beams (left
half), and photon points (right half of each image). In each image pair we compare photon beams to a result generated using 16× as many photon points. Photon
beams achieve higher quality in less time than photon points, even when using a significantly smaller number of beams than points.

17.3k Beams - 1:48 280k Points - 1:49 9.3M Points - 17:34

Fig. 13: Cornell box with an area light and multiple scattering. Left to right:
photon beams, photon points with roughly equal-time and equal-quality.

the-art Beam × Point 2D estimate in terms of image quality and
performance. We found that for this estimator the extra cost of
computing photon radii using a pilot density estimate [Jarosz et al.
2008], as opposed to using photon differentials [Schjøth 2009],
is negligible and produces superior results. We therefore use this
approach for all photon points results in our comparisons. For photon
beams, we focus on the Beam × Beam estimators since they avoid
ray marching. From a theoretical perspective, all Beam × Beam
estimates provide a benefit over photon points in terms of image
quality. However, as mentioned in Section 7.1, the Beam × Beam
3D estimate is fairly expensive to implement since it requires a 3D
convolution. The 2D and 1D variants are much more practical from
an implementation perspective, while retaining all the benefits. We
believe the Beam × Beam 1D estimate (Equation 38) and Beam ×
Beam 2D1 estimate (Equation 29) are the most promising choices.
The remaining results focus on the 1D version because it retains the
benefits of a Beam × Beam estimate and is computationally simpler
to evaluate.

Figure 10 illustrates the ability of photon beams to efficiently
handle area light sources. We render an artifact-free image with just
5k photon beams, whereas using 25k photon points in roughly equal
time results in over-blurring (near the light source) and no visible
volumetric shadow from the tall box. With 10M photon points, over-
blurring artifacts vanish, but the render time is over 16 times longer
and variance is still present in the estimate, resulting in a slightly
bumpy appearance. Note also that our use of photon differentials
works well, even for area light sources, to adaptively blur the photon
beams based on the expected local density. The benefits of photon

beams for multiple scattering are clearly visible in Figure 13.
In Figure 11 we perform a quantitative convergence comparison

between photon points and photon beams. Unfortunately, there are
currently no algorithms which can generate unbiased reference so-
lutions for general caustics from point lights. To circumvent this
problem we constructed a focused lighting feature similar to a vol-
ume caustic (but which has a readily computable reference solution)
using single scattering from a Phong-light with a high exponent.
The reference solution was computed using ray marching with a
very small step-size. We plot the RMS error, on a log-log scale,
when reconstructing using photon beams and photon points. We
also compute and plot the perceptual error based on the structural
similarity index (SSIM) [Wang et al. 2004]. Both graphs show that
we would need between 1M and 10M photon points to obtain the
same error as just 100 photon beams, an improvement of over 4
orders of magnitude. These photons not only need to be traced, but
also stored explicitly in the photon map. Photon beams provide a
benefit in both execution time and storage requirements since they
are a more compact representation of the photon tracing stage.

For the remaining scenes, we compute ground truth images with
volumetric photon mapping using billions of photons. To obtain
reference quality results, we set the projected radius of each photon
to be smaller than a pixel (to minimizes bias), and, to avoid the
memory requirements for storing billions of photons, we compute
several hundred independent renderings and average the results. We
include the averaged, converged results as ground truth and report
RMSE and SSIM values for each image.

In Figure 12 we show a sequence of renderings of a volume
caustic from a glass sphere (inspired by the scene from Jensen and
Christensen [1998]) to examine the qualitative and quantitative con-
vergence behavior of photon beams and photon points. We increase
the number of photons from left to right and split each image ver-
tically to compare beams and points. Each split image compares
photon beams to 16 times as many photon points. We provide a
ground truth image for comparison (using around 1 billion effective
photon points) and report RMSE and SSIM values. Even with 16
times as many points as beams, in each case, using photon beams is
faster and results in less blur and noise. Photon beams are a perfect
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SSIM: 0.9591 / RMSE: 5.03e-3 SSIM: 0.9392 / RMSE: 9.04e-3SSIM: 0.9933 / RMSE: 4.39e-3

90k Beams - 1:43 90k Points - 0:40 1.3M Points - 1:41 Walter et al. '09 - 5:04*Ground Truth

Fig. 14: An equal-time, and equal number-of-photons comparison of photon points and photon beams in the bumpy sphere test scene Walter et al. [2009].
Photon beams accurately capture complex focusing patterns within the sphere with only 90k beams. The same number of photon points renders faster but
with excessive blurring. At 1.3M photon points (equal time), blurring and variance still remain. We also provide a ground truth image (left) computed using
several billion photons. For reference, we also compare our result with a rendering using Walter’s method (right), which takes 3 times as long to render (∗using a
different implementation on a machine with 8 cores), and still contains noise due to the need for ray marching.

0.7k Photon Beams - 0:25 10k Photon Points - 0:31Ground Truth

SSIM: 0.9985 / RMSE: 7.29e-3 SSIM: 0.9835 / RMSE: 3.14e-2

Fig. 15: A re-creation of the lighthouse scene from Jarosz et al. [2008]. Using photon beams we can render a higher quality image, using fewer photons and in
less time when compared to the beam radiance estimate using photon points.
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Fig. 16: False-color visualizations of the per-pixel structural similarity index for equal-time renderings of the bumpy sphere and lighthouse scenes.

representation for this type of focused illumination and can therefore
converge to a crisp and noise-free solution using only 32k beams in
43 seconds, whereas even with 512k photons and almost twice the
time, the caustic is over-blurred and noisy. In Figure 8 we showed
the improvement in reconstruction for this scene due to using an
adaptive beam width based on photon differentials. Fixed-width
beams result in over-blurring and banding, whereas differentials
allow for a small beam width in the focused regions of the volume
caustic and avoid potential banding issues in sparse regions.

Figure 14 replicates the bumpy sphere scene from Walter et al.
[2009] rendered with photon beams, photon points, and Walter’s
direct algorithm. We also provide a ground truth image rendered
using 2.5 billion photons. In about 100 seconds, we are able to re-
construct extremely sharp lighting features using only 90k photon
beams while with the same number of photon points, the BRE can-
not resolve these features, suffering from over-blurring. Given equal
render time, we can render the scene using 1.3M photon points;
however, the resulting image still cannot resolve the small features
and suffers from a bumpy or noisy appearance. Moreover, when
using photon points, the stochastic photon tracing process results in
distracting flickering as this scene is animated, whereas this flicker-
ing is not present when using photon beams (see the accompanying

video). The last image was kindly provided by Bruce Walter and
rendered using his and his colleagues’ approach [Walter et al. 2009].
One of the strengths of this method is that it directly solves for valid
refracted light paths without the need for an intermediate lighting
representation, so it does not suffer from blurring and can resolve
fine details not possible with standard photon mapping. This image
was rendered in a different renderer, and timing was measured on
an 8-core, 2.83 Ghz machine with dual Intel Xeon 5440 chips. We
see that Walter’s method is about 3 times as slow rendering on 8
cores compared to photon beams on only one core. Though part of
this performance penalty could be attributed to differences in imple-
mentation framework, this great disparity also suggests algorithmic
factors in performance. Part of this could be due to Walter’s method
requiring ray marching to solve for the accumulated in-scattered
radiance along a ray (so a small amount of noise is still visible)
whereas our method solves for the beam radiance explicitly without
the need for ray marching, resulting in a completely noise-free solu-
tion. Walter’s method also has a number of practical limitations. The
method is currently restricted to a single specular bounce, so while
it can handle a single refraction in this bumpy sphere scene, it could
not render a volume caustic from a sphere as seen in Figure 12. Even
in the bumpy sphere scene, there are valid light paths which refract
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25k Photon Beams - 2:44 100k Photon Points - 2:40Ground Truth

SSIM: 0.9477 / RMSE: 1.34e-2SSIM: 0.9611 / RMSE: 8.64e-3

Fig. 17: An animation frame of underwater sun rays refracting through an ocean surface. Photon beams (left) accurately reconstruct this lighting with only 25k
beams. In equal time, 100k photon points (middle) could be stored, but the resulting reconstruction suffers from noisy and over-blurred lighting features.

more than once within the medium due to total internal reflection,
which we take into account with photon beams, but which Walter’s
method cannot simulate. Note also that although Walter’s method is
in theory unbiased, in practice it requires clamping to avoid bright
pixels, which can lead to an arbitrary amount of energy loss. Our
method does not require such clamping. Lastly, Walter’s method
only operates on triangle meshes (admittedly a fairly reasonable
restriction). Photon beams can be used with any arbitrary surface
representation, including implicit surfaces and procedural geometry.

In Figure 15 we show a frame from an animated re-creation of
the lighthouse scene [Jarosz et al. 2008]. In 25 seconds we render
a frame with no artifacts using 700 photon beams, while even with
10k photon points and slightly greater render time, low-frequency
noise is clearly visible, which also flickers when animated.

Figure 16 visualizes false-color per-pixel structural similarity for
the bumpy sphere and lighthouse scenes and reports RMSE and
SSIM values. Photon points have difficulty reconstructing sharp
lighting features like the start of the lighthouse beam, or the intricate
light patterns inside the bumpy sphere, resulting in noticeable error.

Finally, Figure 17 visualizes underwater beams of light refracting
through an animated ocean water surface. The ground truth image
required around 8 billion photon points for a converged result. Here,
the sun beams are much more efficiently represented with photon
beams, resulting in a more faithful, noise-free reconstruction without
temporal flickering. In contrast, with an equal-time photon point
rendering, the individual beams of light are barely discernible. The
accompanying video shows an animated comparison.

10. DISCUSSION

In addition to providing a practical rendering algorithm for partici-
pating media, the radiance estimates we present also offer interesting
insights into connections between otherwise fairly distinct rendering
algorithms. In this section we discuss how photon beams can be
seen as a generalization of a number of other algorithms.

10.1 Generalization of Photon Mapping

Photon beams can clearly be seen as a generalization of standard
photon mapping where a more compact data representation is used
to connect the photon tracing and radiance estimation stages. Our
theory of photon beams can also be interpreted as a generaliza-
tion of the ray mapping algorithm [Lastra et al. 2002; Havran et al.
2005; Herzog et al. 2007] to participating media. This suggests
the possibility of applying photon beams to other related problems
where photon maps and ray maps have been applied, including the
rendering of hair [Moon and Marschner 2006] and subsurface scat-
tering [Jensen 2001]. Moreover, a single collection of photon beams
can be used to estimate lighting within media using our estimators,
and lighting on surfaces using ray mapping density estimation. This

eliminates the need to store distinct representations for these two
types of lighting simulations.

10.2 Generalization of Beam Tracing Methods

Light beam tracing [Watt 1990; Iwasaki et al. 2001; Ernst et al.
2005] simulates reflective or refractive caustics by extruding beams
or prisms by the bending light at vertices of a triangle mesh. This has
been applied to participating media as well [Nishita and Nakamae
1994], and in fact the computation of in-scattered radiance with
these methods is nearly mathematically identical to the radiance
estimates in Equations 29 and 33. In this sense, photon beams can be
viewed as a generalization of beam tracing methods, where the beam
representation is no longer dictated by the geometric representation.
Instead, emitted photons implicitly define beams, whereas mesh
triangles defines beams/prisms in beam tracing methods. This is
a significant benefit since photon beam complexity depends on
induced radiometric complexity, not geometric complexity.

10.3 Generalization of Shadow Maps

Photon beams can also be viewed as a direct generalization of
shadow maps in participating media. This connection can be seen
by observing individual beams in Figure 3. When simulating single
scattering from a spot-light, photon beams contain the same infor-
mation as a shadow map – the visibility from surface points back
to the light source. If the photons were emitted on a regular grid
from the spot-light, then these two data representations would have
a one-to-one mapping: each photon beam corresponds to a single
shadow map pixel. Hence, for situations where a shadow map could
be used, we could treat the shadow map as an implicit representation
of the photon beams and, without any acceleration structure, could
perform camera ray intersection with all shadow map beams by
stepping through the shadow map pixel grid. Note, however, that
photon beams are more flexible than shadow maps since they allow
for area light sources and multiple specular and diffuse bounces.

10.4 Connection to VPL-Methods and Final Gather

Virtual point-light methods such as Instant Radiosity [Keller 1997]
and Lightcuts [Walter et al. 2006] interpret a photon map’s photons
as point-light sources that illuminate other, potentially distant, re-
gions of the scene. In this interpretation, the contribution of each
photon or VPL includes an inverse-squared distance term which
needs to be clamped to avoid singularities near the VPL. In con-
trast, in the density estimation interpretation, this clamping is not
necessary and each photon’s contribution is spread within a small
spatial neighborhood around the photon, inducing a blurring of the
illumination. The generalization of photon points to photon beams
provides another way to arrive at this dual interpretation.
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With photon beams, much like VPL methods, a photon’s power
contributes to a large region in space, potentially far away from
the start of the beam. In effect, the point at the start of the photon
beam is a photon point (see Figure 1) that illuminates the scene with
a beam of light in a particular direction. Furthermore, if we use a
conical blur around the beam with the estimate in Equation 25,

Li(x→~ω)≈ ∑
b∈Rb

f (θb)Φbe−σt tx,b

µR(t2
x,b)

, (39)

we re-introduce the familiar inverse-squared falloff term present in
VPL methods since the cross-section of the cone goes to zero as
we approach the start of the photon beam. Note that this radiance
estimate is identical to looping over a collection of VPLs with power
Φb. Hence, by simulating each photon beam as a photon “cone”,
photon beams effectively compute a VPL solution where the VPLs
are beam- or spot-lights, and would obtain mathematically similar
results to unclamped VPL methods for participating media.

The connection to VPL methods goes even further. The main
motivation for Lightcuts is to reduce the number of shadow rays
necessary to evaluate lighting from VPLs. Given that Equation 39
is effectively a VPL estimate, we can further note that it actually
requires no shadow rays. The visibility information established
during the photon tracing stage is re-used within each beams’ search
region during radiance estimation, thereby eliminating the need for
any shadow rays. Photon beams can therefore be thought of as a
form of Instant Radiosity without the need for any shadow rays,
plus with the added ability to estimate the integrated in-scattered
radiance along the length of an entire camera ray.

Recently, Hašan et al. [2009] introduced the concept of the virtual
sphere-light (VSL) as a way to avoid the problems with the inverse
squared falloff term in surface-based VPL methods. Essentially, each
VSL’s energy is spread across a finite area on nearby surfaces by
expanding a sphere, and the corresponding energy “splat” is treated
as an area light source when evaluating the indirect illumination at
other scene locations. The singularity is avoided since the lighting
contribution is integrated over a finite solid angle. We implicitly
benefit from this same enhancement with the photon beams frame-
work. With a conical blur region, the beam width falls off to zero at
the start of the beam and induces an infinite radiance; however, the
cross-section at the start of a beam need not be zero. In our imple-
mentation, beams emitted from area lights have a finite cross-section
and, for secondary scattering, we use the photon differentials’ foot-
print to compute the cross-section at the start of the child beam.
This induces a conical frustum shape and avoids the division by
zero. Hence, photon beams can be seen as a generalization of VPLs
where the clamping is avoided by always forcing non-zero starting
cross-sections (replacing potentially unbounded energy loss with
blurring), and allows for computing the beam radiance directly using
the Beam × Beam estimates (without the need for ray marching).

Finally, using similar reasoning, the photon beam radiance esti-
mates can also be interpreted as a selective form of final gathering.
For instance, Equations 25 and 39 compute the value of in-scattered
radiance at a point x by examining all photon points (beam start
points) which “send energy” towards x. This could instead have
been computed by tracing final gather rays out from x to find these
photons. However, as mentioned above, in contrast to final gathering
or VPL methods, the beam radiance estimate does not require any
ray intersections with the scene to determine visibility. The visibil-
ity between the query location and all photon points is encoded in
the beams themselves. Furthermore, the Beam × Beam radiance
estimates effectively compute final gathering from all points along
the length of a camera ray without the need for ray marching.

11. LIMITATIONS & FUTURE WORK

The connections discussed above suggest a number of interesting
avenues of future work. In addition, our prototype implementation,
though effective, does still have a number of limitations which
provides opportunities for further improvement and investigation.

11.1 Heterogeneous Media

One of the limitations of our current implementation is the restriction
to homogeneous media. This, however, is not a theoretical restriction
of photon beams, but simply of our prototype implementation. The
theory applies equally well to heterogeneous media.

To handle heterogeneous media, we would need to numerically
compute the transmittance along camera rays and photon beams.
Heterogeneous media along the camera ray could easily be inte-
grated into the current framework without much modification; how-
ever, handling heterogeneous transmittance along photon beams
is potentially more costly. To do so efficiently, the photon beams
data representation could be extended to store a 1D transmittance
function along each beam. This is analogous to the generalization
of shadow maps to deep shadow maps [Lokovic and Veach 2000],
which store a 1D transmittance function over depth instead of just
binary visibility. This transmittance would be computed and stored
during the photon tracing stage for efficient evaluation during render-
ing. As with deep shadow maps, these 1D transmittance functions
could be significantly compressed for efficient storage.

11.2 Efficient Beam × Beam Query

We currently use a BVH over all beams to accelerate the Beam ×
Beam queries (Section 8.3). Although the BVH performs reasonably
well, there is still room for improvement. We are currently exploring
ways to develop a tailored data structure for beam storage and
intersection, taking into account the unique geometric properties
and access patterns of this particular problem domain.

Furthermore, we handle adaptive blur kernels by defining beam
widths using photon differentials. This worked quite well for single
scattering and caustics, but was not as successful for multiple scatter-
ing. Another interesting avenue of future work could explore the use
of a true k-nearest-neighbor approach to adapting the blurring kernel
with photon beams. This is a challenging geometric problem since
an appropriate definition of “nearest” would need to be derived.

12. CONCLUSION

We have developed a novel, comprehensive theory of volumetric
radiance estimation. This theory allows for estimating in-scattered
radiance at a point, or the accumulated in-scattered radiance along a
camera beam. Both of these operations can be performed using the
standard photon map representation as done in previous work. More-
over, our theory generalizes both of these operations by introducing
the concept of photon beams, a more compact, and expressive in-
termediate representation of lighting in participating media. The
combination of these two data representations and two query opera-
tions results in a collection of nine distinct radiance estimates for
computing complex lighting in participating media.

Due to the increased expressiveness of this new lighting repre-
sentation, photon beams have a significant performance and quality
benefit over standard volumetric photon mapping, while requiring
less photons. This representation can also be viewed as a way to im-
plicitly increase the effective “resolution” of a photon map, thereby
reducing bias (blur) and also significantly reducing variance. Using
this representation, we are able to render extremely sharp details
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(such as volume caustics) using just tens of thousands of photon
beams, whereas this would have required millions or billions of
photons points with previous methods.
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CEREZO, E., PÉREZ, F., PUEYO, X., SERON, F. J., AND SILLION, F. X.
2005. A survey on participating media rendering techniques. The Visual
Computer 21, 5.

CHANDRASEKAR, S. 1960. Radiative Transfer. Dover Publications, NY.
COLEMAN, W. 1968. Mathematical verification of a certain Monte Carlo

sampling technique and applications of the technique to radiation transport
problems. Nuclear Science and Engineering 32, 76–81.
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