Démonstration 6 (solution)

IFT2102

17 février 2006

1 Bonhomme Michelin à 5 pneus

Soit $\Sigma = \{0, 1, \#\}$ et

 $L := \{x_1 \# x_2 \# \dots \# x_{2k} | k \ge 1, x_1 = 1, \forall i, x_{2i} \text{ commence par 1 et } x_{2i} = (1 + x_{2i-1}) \text{ en binaire} \}.$

M.q. L n'est pas hors-contexte.

On observe que tout mot de L contient un nombre impair de #.

Supposons que L est hors-contexte, soit p le nombre donné par le lemme du bonhomme Michelin à 5 pneus. Considérons le mot

$$w = 1#10#10^p 10^p 0#10^p 10^p 1,$$

on a alors que $w \in L$ et $|w| \ge p$. D'après le lemme, il existe $u, v, x, y, z \in \Sigma^*$ tels que w = uvxyz et

- 1. |vy| > 0,
- $2. |vxy| \leq p,$
- 3. $uv^i xy^i z \in L, \forall i$.

Considérons toutes les décompositions possibles de w en u, v, x, y, z.

- Cas 1 v ou y contiennent le troisième #. Puisque $|vxy| \le p$, on a $|vxy|_{\#} = 1$. Ainsi, pour i = 0, $uv^ixy^iz = uxz$ et $|uxz|_{\#} = 2$, ce qui n'est pas impair et donc $uxz \notin L$.
- Cas $2 \ v$ ou y contiennent le premier et deuxième #. (Si v ou y ne contenaient qu'un des deux, nous aurions une contradiction comme dans le

premier cas.) Ainsi, pour i=0, $uv^0xy^0z=uxz$ et $|uxz|_\#=1$. Posons $uxz=y_1\#y_2$, alors, puisque $|vxy|\leq p$ on sait que y_1 est de la forme $ux0^{p-a}10^p0\neq 1$. Ainsi, $uxz\not\in L$.

- Cas 3 v ou y couvrent en partie x_1 ou x_2 (mais ne contiennent pas de #). Ainsi, pour $i=0, uv^0xy^0z=uxz$ et
 - 1. si soit v ou soit y couvrent en partie $x_1(=1)$, alors uxz commence par #,
 - 2. sinon, v ou y couvrent en partie x_2 , alors uxz commence par 1#1# ou par 1#0#.

Dans les deux cas, on a $uxz \notin L$.

- Cas 4 v ou y sont tous les deux dans x_3 ou dans x_4 . Ainsi, pour i=0, $uv^0xy^0z=uxz$. Posons $uxz=y_1\#y_2\#y_3\#y_4$, on a alors deux cas possible:
 - 1. si v ou y sont tous les deux dans x_3 , alors $x_3 \neq y_3$ et $x_4 = y_4$ et donc $y_4 = x_4 = 1 + x_3 \neq y_3$ (en binaire),
 - 2. si v ou y sont tous les deux dans x_4 , alors $x_3 = y_3$ et $x_4 \neq y_4$ et donc $y_4 \neq x_4 = 1 + x_3 = 1 + y_3$ (en binaire).

Dans les deux cas, on a $uxz \notin L$.

- Cas 5 v est contenu dans x_3 et y est contenu dans x_4 . Ainsi, pour i=0, $uv^0xy^0z=uxz$. Posons $uxz=y_1\#y_2\#y_3\#y_4$, on a alors deux cas possible:
 - 1. si y contient le premier 1 de x_4 , alors $uxz = 1\#10\#10^p10^{p+1-a}\#0^{p-b+1}10^p1$ avec a+b < p. Ainsi, y_4 est plus petit que y_3 et n'est donc pas son successeur.
 - 2. sinon, alors $uxz = 1\#10\#10^p10^{p+1-a}\#10^{p-b}10^p1$ avec a+b>0 or il faut que a=b=0 pour que $y_3+1=y_4$.

Dans les deux cas, on a $uxz \notin L$.

Donc, dans tous les cas (on en a trouvé cinq), le mot $uxz \notin L$. Il nous faut donc rejeter l'hypothèse que le langage L soit hors-contexte.