
An E�cient and General Implementation of Futures onLarge Scale Shared-Memory MultiprocessorsA DissertationPresented toThe Faculty of the Graduate School of Arts and SciencesBrandeis UniversityDepartment of Computer ScienceJames S. Miller, advisorIn Partial Ful�llmentof the Requirements of the Degree ofDoctor of PhilosophybyMarc FeeleyApril 1993

This dissertation, directed and approved by the candidate's committee, has been ac-cepted and approved by the Graduate Faculty of Brandeis University in partial ful�ll-ment of the requirements for the degree ofDOCTOR OF PHILOSOPHYDean, Graduate School of Arts and SciencesDissertation CommitteeDr. James S. Miller (chair)(Digital Equipment Corporation)Prof. Harry MairsonProf. Timothy HickeyProf. David WaltzDr. Robert H. Halstead, Jr.(Digital Equipment Corporation)

Copyright byMarc Feeley1993

AbstractAn E�cient and General Implementation of Futures on Large ScaleShared-Memory MultiprocessorsA dissertation presented to the Faculty of the Graduate School ofArts and Sciences of Brandeis University, Waltham, Massachusettsby Marc FeeleyThis thesis describes a high-performance implementation technique for Multilisp's\future" parallelism construct. This method addresses the non-uniform memory access(NUMA) problem inherent in large scale shared-memory multiprocessors. The techniqueis based on lazy task creation (LTC), a dynamic task partitioning mechanism thatdramatically reduces the cost of task creation and consequently makes it possible toexploit �ne grain parallelism. In LTC, idle processors get work to do by \stealing"tasks from other processors. A previously proposed implementation of LTC is theshared-memory (SM) protocol. The main disadvantage of the SM protocol is thatit requires the stack to be cached suboptimally on cache-incoherent machines. Thisthesis proposes a new implementation technique for LTC that allows full caching ofthe stack: the message-passing (MP) protocol. Idle processors ask for work by sending\work request" messages to other processors. After receiving such a message a processorchecks its private stack and task queue and sends back a task if one is available. Themessage passing protocol has the added bene�ts of a lower task creation cost and simpleralgorithms. Extensive experiments evaluate the performance of both protocols on largeshared-memory multiprocessors: a 90 processor GP1000 and a 32 processor TC2000.The results show that the MP protocol is consistently better than the SM protocol.The di�erence in performance is as high as a factor of two when a cache is availableand a factor of 1.2 when a cache is not available. In addition, the thesis shows that thesemantics of the Multilisp language does not have to be impoverished to attain goodperformance. The laziness of LTC can be exploited to support at virtually no costseveral programming features including: the Katz-Weise continuation semantics withlegitimacy, dynamic scoping, and fairness.

AcknowledgementsCette th�ese est d�edi�ee �a mes grandparents Rose et �Emile Monna pour l'amourque j'ai pour eux.I wish to thank my family, my friends, and colleagues without whom this thesis wouldnot have been possible.Special thanks go to Jim Miller, my thesis advisor, for giving me the freedom to exploremy ideas at my own pace. He has gone beyond the call of duty to see me through withmy degree.Bert Halstead's words of encouragement gave me the con�dence that my ideas wereinteresting and worth writing about. Thank you Bert.Sabine Bergler deserves special thanks for taking care of me.To Chris, Mauricio, Harry, Emmanuel, Don, Shyam, Larry, Xiru, Mary and Paulo,thank you for making my stay at Brandeis so enjoyable.Finally, I wish to thank the National Science and Engineering Research Council ofCanada and the Universit�e de Montr�eal for �nancial support, and Michigan State Uni-versity, Argonne National Laboratory, Lawrence Livermore National Laboratory, andthe MIT AI Laboratory for the use of their computers.

Contents1 Introduction 11.1 Motivation : 21.2 Why Multilisp? : 31.3 Fundamental Issues : 41.4 Architecture : 41.4.1 Shared-Memory MIMD Computers : : : : : : : : : : : : : : : : : 51.4.2 Non-Uniform Memory Access : 61.4.3 Sharing Data : 71.4.4 Caches : 71.4.5 Memory Consistency : 91.5 The GP1000 and TC2000 Computers : 121.6 Memory Management : 131.7 Dynamic Partitioning : 151.7.1 Eager Task Creation : 181.7.2 Lazy Task Creation : 181.8 Overview : 202 Background 212.1 Scheme's Legacy : 212.2 First-Class Continuations : 252.2.1 Continuation Passing Style : 252.2.2 Programming with Continuations : : : : : : : : : : : : : : : : : : 262.3 Multilisp's Model of Parallelism : 282.3.1 FUTURE and TOUCH : 28i

2.3.2 Placeholders : 302.3.3 Spawning Trees : 302.4 Types of Parallelism : 312.4.1 Pipeline Parallelism : 312.4.2 Fork-Join Parallelism : 332.4.3 Divide and Conquer Parallelism : : : : : : : : : : : : : : : : : : : 342.5 Implementing Eager Task Creation : 362.5.1 The Work Queue : 372.5.2 FUTURE and TOUCH : 372.5.3 Scheme Encoding : 382.5.4 Chasing vs. No Chasing : 412.5.5 Critical Sections : 412.5.6 Centralized vs. Distributed Work Queue : : : : : : : : : : : : : : 422.6 Fairness of Scheduling : 432.7 Dynamic Scoping : 452.8 Continuation Semantics : 492.8.1 Original Semantics : 492.8.2 MultiScheme Semantics : 492.8.3 Katz-Weise Continuations : 512.8.4 Katz-Weise Continuations with Legitimacy : : : : : : : : : : : : 522.8.5 Implementing Legitimacy : 542.8.6 Speculation Barriers : 552.8.7 The Cost of Supporting Legitimacy : : : : : : : : : : : : : : : : : 562.9 Benchmark Programs : 592.9.1 abisort : 602.9.2 allpairs : 602.9.3 fib : 612.9.4 mm : 612.9.5 mst : 612.9.6 poly : 622.9.7 qsort : 632.9.8 queens : 632.9.9 rantree : 64ii

2.9.10 scan : 642.9.11 sum : 652.9.12 tridiag : 652.10 The Performance of ETC : 663 Lazy Task Creation 733.1 Overview of LTC Scheduling : 733.1.1 Task Stealing Behavior : 753.1.2 Task Suspension Behavior : 773.2 Continuations for Futures : 783.2.1 Procedure Calling Convention : 793.2.2 Unlimited Extent Continuations : : : : : : : : : : : : : : : : : : 793.2.3 Continuation Heapi�cation : 813.2.4 Parsing Continuations : 823.2.5 Implementing First-Class Continuations : : : : : : : : : : : : : : 823.3 The LTC Mechanism : 843.3.1 The Lazy Task Queue : 853.3.2 Pushing and Popping Lazy Tasks : : : : : : : : : : : : : : : : : : 863.3.3 Stealing Lazy Tasks : 883.3.4 The Dynamic Environment Queue : : : : : : : : : : : : : : : : : 923.3.5 The Problem of Overow : 933.3.6 The Heavyweight Task Queue : 953.3.7 Supporting Weaker Continuation Semantics : : : : : : : : : : : : 963.4 Synchronizing Access to the Task Stack : : : : : : : : : : : : : : : : : : 983.5 The Shared-Memory Protocol : 993.5.1 Avoiding Hardware Locks : 1013.5.2 Cost of a Future on GP1000 : 1043.6 Impact of Memory Hierarchy on Performance : : : : : : : : : : : : : : : 1073.7 The Message-Passing Protocol : 1123.7.1 Really Lazy Task Creation : 1143.7.2 Communicating Steal Requests : : : : : : : : : : : : : : : : : : : 1143.7.3 Potential Problems with the MP Protocol : : : : : : : : : : : : : 1163.8 Code Generated for SM and MP Protocols : : : : : : : : : : : : : : : : : 118iii

3.9 Summary : 1204 Polling E�ciently 1234.1 The Problem of Procedure Calls : 1254.1.1 Code Structure : 1254.1.2 Call-Return Polling : 1264.2 Short Lived Procedures : 1274.3 Balanced Polling : 1294.3.1 Subproblem Calls : 1294.3.2 Reduction Calls : 1314.3.3 Minimal Polling : 1324.4 Handling Join Points : 1354.5 Polling in Gambit : 1354.6 Results : 1364.7 Summary : 1395 Experiments 1415.1 Experimental Setting : 1425.2 Overhead of Exposing Parallelism : 1445.2.1 Overhead on GP1000 : 1455.2.2 Overhead on TC2000 : 1455.3 Speedup Characteristics : 1455.3.1 Speedup on GP1000 : 1575.3.2 Speedup on TC2000 : 1585.4 E�ect of Interrupt Latency : 1595.5 Cost of Supporting Legitimacy : 1625.6 Summary : 1636 Conclusion 1656.1 Future Work : 167A Source Code for Parallel Benchmarks 169A.1 abisort : 172A.2 allpairs : 175iv

A.3 fib : 176A.4 mm : 177A.5 mst : 178A.6 poly : 181A.7 qsort : 182A.8 queens : 183A.9 rantree : 184A.10 scan : 185A.11 sum : 186A.12 tridiag : 187B Execution Pro�les for Parallel Benchmarks 191B.1 abisort : 194B.2 allpairs : 195B.3 fib : 196B.4 mm : 197B.5 mst : 198B.6 poly : 199B.7 qsort : 200B.8 queens : 201B.9 rantree : 202B.10 scan : 203B.11 sum : 204B.12 tridiag : 205
v

vi

List of Tables1.1 Costs of memory hierarchy for the GP1000 and the TC2000. : : : : : : 132.1 Characteristics of parallel benchmark programs running on GP1000. : : 693.1 Size of closure for each future in the benchmark programs. : : : : : : : : 873.2 Cost of operations involved in task stealing. : : : : : : : : : : : : : : : : 1063.3 Measurements of memory access behavior of benchmark programs. : : : 1094.1 Overhead of polling methods on GP1000. : : : : : : : : : : : : : : : : : 1385.1 Performance of SM protocol on GP1000. : : : : : : : : : : : : : : : : : : 1465.2 Performance of MP protocol on GP1000. : : : : : : : : : : : : : : : : : : 1475.3 Performance of SM protocol on TC2000. : : : : : : : : : : : : : : : : : : 1485.4 Performance of MP protocol on TC2000. : : : : : : : : : : : : : : : : : : 1485.5 Performance of MP protocol on GP1000 with I = 2. : : : : : : : : : : : 1605.6 Performance of MP protocol on GP1000 with I = 50. : : : : : : : : : : : 1615.7 Overhead of supporting legitimacy, with and without speculation barrieron GP1000. : 163
vii

viii

List of Figures1.1 The shared-memory MIMD computer used in this thesis. : : : : : : : : : 62.1 Non-local exit using call/cc. : 262.2 Parallel map de�nition and spawning trees. : : : : : : : : : : : : : : : : : 322.3 Parallel \vector" map. : 352.4 Scheme encoding of Multilisp core. : 392.5 Procedures needed to support Multilisp core. : : : : : : : : : : : : : : : 402.6 Exception system based on dynamic scoping and call/cc. : : : : : : : : 462.7 Implementation of dynamic scoping with tail recursive call/cc. : : : : 482.8 MultiScheme's implementation of the future special form. : : : : : : : : 502.9 A sample use of futures and call/cc. : : : : : : : : : : : : : : : : : : : 512.10 A future body's continuation called multiple times. : : : : : : : : : : : : 522.11 Exception processing with futures. : 532.12 The Katz-Weise implementation of futures. : : : : : : : : : : : : : : : : 552.13 An application of speculation barriers. : : : : : : : : : : : : : : : : : : : 562.14 Fork-join algorithms and their legitimacy chain in the absence of chaincollapsing. : 582.15 General case of legitimacy chain collapsing for fork-join algorithms. : : : 592.16 Fib and a poor variant obtained by unrolling the recursion. : : : : : : : 703.1 The task stack. : 753.2 Continuation representation and operations. : : : : : : : : : : : : : : : : 803.3 Underow and heapi�cation algorithms. : : : : : : : : : : : : : : : : : : 833.4 Resuming a heavyweight task. : 88ix

3.5 The LTQ and the steal operation. : 903.6 The task stealing mechanism. : 913.7 The implementation of dyn-bind. : 933.8 The DEQ and its use in recovering a stolen task's dynamic environment. 943.9 Code sequence for a future under the SM protocol. : : : : : : : : : : : : 1013.10 Thief side of the SM protocol. : 1023.11 Victim side of the SM protocol. : 1023.12 Relative importance of stack and heap accesses of benchmark programs. 1103.13 Thief side of the MP protocol. : 1153.14 Victim side of the MP protocol. : 1153.15 Assembly code generated for fib. : 1194.1 The for-each procedure and its corresponding code graph. : : : : : : : 1264.2 Two instances of short lived procedures. : : : : : : : : : : : : : : : : : : 1274.3 The maximal delta method. : 1284.4 Procedure return invariants in balanced polling. : : : : : : : : : : : : : : 1304.5 Compilation rules for balanced polling. : : : : : : : : : : : : : : : : : : : 1334.6 Minimal polling for the recursive procedure sum and a tail recursive variant.1345.1 Speedup curves for fib, queens, rantree and mm on GP1000. : : : : : : 1505.2 Speedup curves for scan, sum, tridiag and allpairs on GP1000. : : : 1515.3 Speedup curves for abisort, mst, qsort and poly on GP1000. : : : : : 1525.4 Speedup curves for fib, queens, rantree and mm on TC2000. : : : : : : 1535.5 Speedup curves for scan, sum, tridiag and allpairs on TC2000. : : : 1545.6 Speedup curves for abisort, mst, qsort and poly on TC2000. : : : : : 1555.7 Task creation behavior of MP protocol on GP1000. : : : : : : : : : : : : 1565.8 Task suspension behavior of MP protocol on GP1000. : : : : : : : : : : 156
x

Chapter 1IntroductionThis work is about the design of an e�cient implementation strategy for Multilisp's \fu-ture" parallelism construct on large shared-memory multiprocessors. A strategy knownas \lazy task creation" is used as a starting point for this work. Two implementationsof lazy task creation, one based on a shared-memory paradigm and the other based on amessage-passing paradigm, are explained and compared by extensive experiments witha large number of benchmarks. The result can be summarized as followsAn implementation of lazy task creation based on a message-passing paradigmis superior to one based on a shared-memory paradigm because it is� simpler to implement,� more exible and� more e�cient in nearly all situations because it allows full caching ofthe stack on machines that lack coherent-caches (the di�erence in per-formance is as much as a factor of two on the TC2000 multiprocessor).In addition, this work shows how to e�ciently implement two importantlanguage features in the presence of futures: dynamic scoping and �rst-classcontinuations. An e�cient polling method designed to support message-passing is also described and evaluated.This thesis provides a detailed account of this result.1

2 CHAPTER 1. INTRODUCTION1.1 MotivationAs applications become bigger and more demanding, it is hard to resist the seductivequalities associated with parallel processing. All too often however, application writersare disillusioned when they discover that their carefully rewritten application runningon a parallel computer is barely faster, if not slower, than it was when running on acheaper uniprocessor machine.Poor performance can be caused by a combination of factors. The degree of par-allelism in the algorithms is one of the most important factors because it puts a strictupper bound on the performance achievable by the program. Some algorithms have alimited amount of parallelism and thus it is not possible to increase performance beyonda certain size of machine. Moreover, even algorithms that scale up well with the size ofthe machine, i.e. yield a speedup roughly equal to the number of processors, may stillhave poor absolute performance if the parallel algorithm's \hidden constant" is largewhen compared to a sequential algorithm.Another factor is the \technological lag" that the hardware of parallel machines oftensu�ers. This is due to the smaller market and longer design times of parallel machineswhen compared to mainstream uniprocessor machines. This lag can be expected todecrease as parallel systems become more common.The importance of these two factors can be minimized to some extent by carefulalgorithm design and coding and the use of state of the art hardware. However, therestill remains another hurdle to overcome: the inherent ine�ciency of the language im-plementation. Clearly, the language features needed to support parallelism must beimplemented well to exploit the concurrency available in the application. It is just asimportant, however, for the sequential constructs to be e�cient since they account for ahigh proportion of a program's code. There is little incentive to use a parallel machinewith 10 processors if the implementation runs sequential programs on one processor10 times slower than when a non-parallel language is used. This explains the lack ofpopularity of interpreter based implementations of Multilisp which run purely sequen-tial code much slower than compiler based implementations of Lisp. Interestingly, thelanguage implementations with poor absolute performance usually have excellent rela-tive performance (i.e. self-relative speedup). This is because the aspects of the systemthat are critical to performance, such as memory latency and task spawning costs, aremasked by the huge overhead of interpretation (usually a factor of 10 to 100 times slowerthan compiled code).

1.2. WHY MULTILISP? 3Absolute performance is a major concern in this thesis. For this reason, the Multilispimplementation techniques proposed here are evaluated in the context of a \productionquality" implementation. To perform experiments, a highly e�cient Scheme compilercalled Gambit [Feeley and Miller, 1990] is used as a platform into which the implemen-tation techniques are integrated and tested. This is to ensure that the setting is realisticand that performance-critical issues are not overlooked. Typically the code generated byGambit for sequential programs is only about 20 percent slower (but sometimes faster)than code generated by optimizing C compilers for equivalent C programs. Multilisp isa su�ciently general programming language to be considered as a substitute for con-ventional languages for many sequential programming tasks. The results of this thesiswill make it even more attractive to choose Multilisp over other languages since it alsoallows e�cient parallel programming.1.2 Why Multilisp?Supercomputers have traditionally been employed for scienti�c purposes so it isn't sur-prising that numerical applications have been the focus of most of the parallel processingresearch. However, the need for high-performance is no longer bound exclusively to sci-enti�c applications as time-consuming symbolic applications become more widespread.These include applications such as expert systems, databases, simulation, typesetting,compilation, CAD systems and user interfaces.The growing need for high-performance parallel symbolic processing systems is theinitial motivation for this work. Multilisp suggests itself naturally since it is a member ofthe Lisp family of symbolic processing languages. It was designed by Halstead [Halstead,1984] as an extension of Scheme with a few additional constructs to deal with parallelism.The most important of these is the future special form whose origin can be traced backto [Baker and Hewitt, 1978].From its inception, the purpose of Multilisp has been to provide a testbed for ex-perimentation in the design and implementation of parallel symbolic processing sys-tems. Through the years it has evolved along several distinct paths to accommodatenovel uses of the language. The �rst implementation of Multilisp was \Concert Multi-lisp" which ran on a custom designed multiprocessor [Halstead, 1987, Halstead et al.,1986]. Multilisp's model of parallel computation has become increasingly popular andsome of its features have now been adopted by other parallel Lisp systems. This in-cludes both academic research systems such as QLisp [Gabriel and McCarthy, 1984,Goldman and Gabriel, 1988], MultiScheme [Miller, 1987, Miller, 1988], Mul-T [Kranz et

4 CHAPTER 1. INTRODUCTIONal., 1989], Gambit [Feeley and Miller, 1990], PaiLisp [Ito and Matsui, 1990], Spur Lisp[Zorn et al., 1988], Buttery portable standard lisp [Swanson et al., 1988] and Concur-rent Scheme [Kessler and Swanson, 1990, Kessler et al., 1992] as well as commerciallyavailable systems such as BBN Lisp [Steinberg et al., 1986], Allegro Common Lisp [Fra,1990], and Top Level Common Lisp [Murray, 1990]. The future construct is actuallyquite general and it has been used in more conventional languages such as C [Callahanand Smith, 1989].1.3 Fundamental IssuesAssuming that speed of computation is the main objective, the job of a Multilisp im-plementor can be seen as an optimization problem constrained by three factors1. The semantics of the language.2. The characteristics of the target machine.3. The expected use of the system (i.e. applications).Each instance of these factors de�nes a particular implementation context . It is thetask of the designer to devise the most e�cient implementation strategies that correctlyrealize the given language semantics on the target machine. It is also important toconsider the target applications because it is through these that the features of thesystem that are most critical for high performance can be identi�ed. They also formthe ultimate measure of success of an implementation as a whole.To explore the entire spectrum of implementation contexts for Multilisp would be adaunting task well beyond the scope of this work. Rather, contexts that are most likelyto be useful in the present or the near future are examined. Emphasis is put on languagefeatures, multiprocessor architectures and programming styles that have acquired somepopularity. The semantics of Multilisp and applications are discussed in greater depthin Chapter 2.1.4 ArchitectureInherent limitations of the target machine are inevitable facts of life for the implementorof any language. To adequately address the issue of performance it is crucial to deter-

1.4. ARCHITECTURE 5mine the salient features and weaknesses of the target architecture. This is especiallytrue for parallel machines because of the vast disparity in parallel architectures.1.4.1 Shared-Memory MIMD ComputersThe multiple instruction stream, multiple data stream (MIMD) shared-memory multi-processor computer is used as the target architecture for this work. This choice is fueledby on the one hand, the popularity and availability of these machines, and on the other,the similarity with the programming model adopted by Multilisp.There are two major architectural requirements imposed by Multilisp. The �rst isthe possibility for processors to act independently from one another. This is neededbecause Multilisp expresses parallelism through control parallelism, that is, it is possi-ble to express concurrency between heterogeneous computations. Separate instructionstreams operating on separate data are thus needed to execute these computations inparallel. The second requirement is the existence of a shared memory. In Multilisp,as in most other Lisps, all objects exist in a single address space that is visible to allparts of the program. There are no a priori restrictions on which procedure or taskscan access a given object.The shared-memory architecture has been severely criticized by some. The mostimportant objection is that the cost of accessing the shared memory must grow with thesize of the machine. Thus, large machines will su�er from high latencies for referencesto shared memory.This fact is duly acknowledged but must be put in perspective. Programs which o�era limited amount of parallelism only need to be run on machines whose size matches thatparallelism. Secondly, the existence of a shared memory does not imply that the pro-grams make an important use of it. Message-passing paradigms can easily and e�cientlybe implemented on top of a shared memory (for example, see [LeBlanc and Markatos,1992]). However, implementing shared memory on conventional message-passing ma-chines is impractical because shared-memory operations are usually �ne grained whereasmessage-passing operations are typically optimized to manipulate large chunks of data.Programs with irregular and dynamically changing communication patterns have a le-gitimate need for shared memory. These programs are often found in symbolic pro-cessing applications which need to traverse linked data structures such as lists, trees,and graphs. Implementing these programs on a message-passing machine would be pro-hibitively expensive. Finally, it is expected that scalable caching techniques will hidethe high latencies of large shared memory to some extent. Caching issues are explored

6 CHAPTER 1. INTRODUCTION
s ss CacheInterconnection NetworkSharedMemoryProcessorPrivateMemory SharedMemoryProcessorPrivateMemoryCache

Figure 1.1: The shared-memory MIMD computer used in this thesis.later in this chapter.1.4.2 Non-Uniform Memory AccessThe model of the shared-memory MIMD architecture used in this thesis is shown inFigure 1.1. A machine is composed of a number of processing nodes each of which has aprocessor and three forms of memory: cache memory, private memory and shared mem-ory. Each processor has direct access to its own private and shared memory (i.e. localmemory) and, through the use of the interconnection network, has access to the sharedmemory of other processors (i.e. remote memory). The shared memory is physicallydistributed across the machine while private memory is only visible to its associatedprocessor.This is a non-uniform memory access (NUMA) architecture because the cost ofmemory references is not constant. The cost depends on the type of memory beingreferenced and its distance from the processor. A reference to the cache is thus cheaperthan a reference to local memory, which in turn is cheaper than a reference to remotememory. The NUMA model is interesting because it reects realistic properties of thearchitecture as explained next.

1.4. ARCHITECTURE 71.4.3 Sharing DataAn important characteristic of data is the extent to which it must be shared. Thefollowing classi�cation will be used for the di�erent types of data� Private data is data that does not need to be communicated to other processors.A simple example of private data is temporary values which are produced andused by the same program section.� Single writer shared data is accessible to more than one processor but it isonly mutated by a distinguished processor, the owner of the data.� Multiple writer shared data is accessible to more than one processor and canbe mutated by any of these processors.These types of data have di�erent storage requirements. Private data is the leastrestrictive (it could reside in the same storage as shared data) and multiple writershared data is the most restrictive. These di�erences are a source of optimization forthe architecture which can implement each type in a di�erent way (and at a di�erentcost). Thus, computers are often designed with various forms of private storage. Sincea processor has exclusive access to this storage it can be implemented e�ciently becausethere is no need for an arbitration mechanism or multiple data paths. The processor'sregisters are an extreme instance of private storage. Shared data is more expensivebecause it must be stored in a location that is accessible to all processors. Single writerand multiple writer shared data are distinguished because they o�er di�erent cachingpossibilities.1.4.4 CachesCaches are a well known mechanism to enhance the performance of memory. A propertyshared by almost all programs is that memory references are unevenly distributed. Alarge proportion of all references are to a small proportion of the data. This observationhas lead to the design of multilevel memory systems. The idea is to place frequentlyaccessed data in a fast memory, a cache , in order to reduce the average time neededfor a reference. If the cache is large enough and the application's reference pattern iswell behaved then the cache will service most of the references. A memory hierarchycan have several levels of caches but only a single one will be considered here.

8 CHAPTER 1. INTRODUCTIONCaches are quickly becoming a necessity to fully harness the power of modern pro-cessors. Current RISC processors have a cycle time that is much smaller than the fastestmemory chips. Processors with a 1 nanosecond cycle time will soon be available but itis unlikely that the speed of large RAM chips will ever be close to that of the processor(for example DRAM chips currently have a 25 nanosecond cycle time at best). Cachememories are much faster than main memory because, due to their small size, they canbe put on the same chip as the processor (or at least close to it) and it is permissibleto use faster circuitry even if it is more expensive. The speed di�erence between thesetwo types of memories varies from system to system but it is not uncommon for cachememory to be 5 to 20 times faster than main memory. Clearly, it is a good idea todesign a system so that it maximizes cache usage. The bene�ts of caching on a rangeof programs is explored further in Chapter 3.An important feature of caches is that they operate automatically. The programmerdoes not have to explicitly state where a particular piece of data should go. The accessesto memory are monitored and a copy of the frequently accessed data is kept in the cache.The �rst reference to a piece of data that is not in the cache (i.e. a cache miss) actuallyreferences the memory but subsequent references are potentially much faster becausea copy has been put in the cache. When space is needed in the cache, older pieces ofdata are selectively purged from the cache according to a particular replacement policy(e.g. random or least-recently used (LRU)).The performance of a cache depends on h, the probability of a cache hit (also calledthe hit rate), and Lcache and Lmain , the latency of an access to the cache and to mainmemory respectively. The average access latency Lmem is given byLmem = hLcache + (1� h)LmainClearly, a high hit rate is advantageous since a value near one makes it appear as thoughthe memory can respond at the speed of the cache. There are many ways to improve thehit rate. The size of the cache can be increased. Given the high cost of cache memorythis may be a cost e�ective solution only up to a certain point. Another techniqueis to reorganize the program so that data references to a particular datum are closerin time. The probability of a datum being resident in the cache is higher if it hasbeen referenced recently (and even more so if LRU replacement is used). Finally, it issometimes preferable to disable the caching of data whose referencing pattern is suchthat it does not gain much by caching. Caching such data is detrimental because itcauses the frequently used data to be purged from the cache, thus decreasing the hitrate.

1.4. ARCHITECTURE 9Two caching strategies have been popular in uniprocessor computers: copy-back andwrite-through caching. These strategies di�er in how writes to memory are handled.� Copy-back caching handles a write by only modifying the copy in the cache.The memory will eventually receive the correct value when the datum is purgedfrom the cache after a cache miss (this is called a writeback). The expense of writesis thus attributed to cache misses. If there are very few cache misses, writes tomemory are essentially the same cost as reads.� Write-through caching bypasses the cache and performs the write to mainmemory. However, the state of the cache is modi�ed to reect the new contentof memory. If the address being written to is resident in the cache it is simplyupdated. Otherwise, the datum is added to the cache (most probably causing anentry to be purged)1. In addition to h, Lcache and Lmain , the performance ofwrite-through caching depends on the read ratio r (the proportion of all memoryreferences which are reads). The average access latency for write-through cachingis thus Lmem = r(hLcache + (1� h)Lmain) + (1� r)Lmain= rhLcache + (1� rh)LmainNote that here h is the hit rate for reads only. The two caching methods have thesame performance when r = 1 but write-through caching quickly degrades as thenumber of writes increases.1.4.5 Memory ConsistencyThe notion of a single monolithic shared memory is a convenient abstraction to writeand reason about programs. However, caching if not done properly may violate this ab-straction because memory consistency between processors is not preserved. For privatedata there is no consistency problem caused by caching since all references go throughthe cache. For single writer shared data it is possible to maintain consistency by us-ing write-through caching. The processor owning the data uses write-through cachingand the readers disable the caching of the data. Consistency is preserved because thememory always has the correct value for the datum and the readers always access the1The datum could also be disregarded (i.e. not entered in the cache). This might be preferable forapplications which rarely read the locations recently written to (such as when initializing or updatinga large data structure).

10 CHAPTER 1. INTRODUCTIONmemory when they reference the datum (of course, this means that only the ownerof the data bene�ts from the cache). Unfortunately, write-through caching by itself isnot su�ciently powerful to maintain consistency for multiple writer shared data. Theproblem is that the perception of the memory state can be di�erent from processor toprocessor if each one has cached the same datum in its own cache and mutated it ina di�erent way. For example, under copy-back and write-through caching, when twoprocessors A and B read variable x, a copy of x will exist in A's cache and another inB's. If A then mutates x, B still believes that x has the original value.There are two approaches to the memory consistency problem. The �rst is to putthe responsibility of consistency on the programmer or compiler by providing a less rigidconsistency model. At appropriate points in the program special operations must beadded to ush or invalidate some of the entries in the caches. In the terminology of[Gharachorloo et al., 1991], the strictest consistency model is sequential consistency . Inthis model, memory behaves as though only one access is serviced at a time (i.e. accessesare sequential). Thus any read request returns the last value written. In processorconsistency writes can be delayed an arbitrary (but �nite) amount of time as longas the writes from any given processor are performed in the same order as they wereissued by that processor (there is no ordering restrictions between processors). Thismodel can be implemented more e�ciently than sequential consistency because it allowssome form of pipelining and caching of the writes. Machines implementing processorconsistency usually have a \write barrier" instruction which waits until the memory hasprocessed all of that processor's writes. The weak consistency and release consistencymodels [Dubois and Scheurich, 1990] are still weaker and more e�cient. They guaranteeconsistency only at synchronization points in the program. In other words, lock andunlock operations (or similar synchronization operations) are barriers which wait untilthe memory has processed all pending transactions. In these models, reads and writescan be bu�ered between synchronization operations.An orthogonal approach to the consistency problem is to design specialized hardwarethat maintains consistency between the caches and memory. In the previous example,this would mean that when A mutates x, the new value for x is written to memory(as in write-through caching) and B's cache and any other cache holding a copy of xis noti�ed to either invalidate or update the appropriate entry. This is relatively easyto perform on bus-based architectures because all caches and memory are immediatelyaware of all transactions (they are directly connected to the shared bus). So calledsnoopy-caches [Goodman, 1983] are based on this principle. Unfortunately, bus-basedarchitectures do not scale well because the bus has a limited bandwidth. Typically,bus-based machines are designed with just enough processors to match the bandwidth

1.4. ARCHITECTURE 11of the bus. For example the bus in the Encore Multimax can support up to 20 fairlylow-power processors2.Maintaining consistency on scalable architectures is much harder. Currently, mostscalable cache designs are based on directories [Censier and Feautrier, 1978]. Witheach datum is kept a list of the caches that are holding a copy of the datum and thatmust be noti�ed of any mutation. If n processors are holding a datum in their cachethen a mutation by one processor will require at least n � 1 messages to be sent tonotify the caches. The moment at which these noti�cations are sent depends on theconsistency model being used. Scalable cache designs usually do not implement strictconsistency in order to exploit bu�ering and pipelining of writes. The main drawbacks ofdirectory based methods are the added memory needed for the directory and the addedinter-cache tra�c which reduces the e�ective bandwidth of the interconnection network.Fortunately, it seems that in typical applications most of the shared data is shared bya very small number of processors [Lenoski et al., 1992, O'Krafka and Newton, 1990].Limited directory caching methods, such as [Chaiken et al., 1991], take advantage ofthis fact to reduce the space for the directory by only allowing a small number of copiesof a datum to exist at any given point in time.However, there are certain forms of sharing that inevitably lead to poor cache perfor-mance. One such case is when two or more processors are very frequently writing to thesame memory location (perhaps to implement some kind of �ne-grain communicationthrough shared memory). This causes thrashing in directory based methods because asubstantial amount of time is spent sending messages between the caches. This poorperformance is not surprising since caches are helpful only if there is locality of referenceto exploit. If the goal is to exchange data as quickly as possible between the processors,caching is of little use since network latency will be unavoidable.The moral here is that specialized hardware for memory consistency is not thesolution to all data sharing problems. Specialized hardware can only help if the programhas well behaved data usage patterns. When designing algorithms it is unreasonable toassume an e�cient consistent shared memory simply because the machine supports itin hardware. The costs will vary according to how the data needs to be shared. As ageneral rule, algorithms should be designed to promote locality of reference and rely aslittle as possible on a strict consistency model and on multiple writer shared data.2It is interesting to note that even though it uses snoopy-caches the Multimax only implements weakconsistency.

12 CHAPTER 1. INTRODUCTION1.5 The GP1000 and TC2000 ComputersData sharing issues play a central role in this thesis. The multilevel memory systemof the architectural model chosen here (i.e. Figure 1.1) reects the importance of datasharing issues by making the costs of sharing explicit. In this model caches do notautomatically preserve consistency. It is only by segregating the various types of dataand using the appropriate caching policy that consistency is maintained. It is assumedthat the caches can operate in copy-back and write-through caching on selected areasof memory. Because private memory always contains private data, it is cached with themost e�cient caching policy: copy-back caching. Single writer shared data is cachedusing write-through caching by the owner of the data and is not cached by the otherprocessors. Finally, multiple writer shared data is not cached in any way.This model is attractive because building such a machine is relatively inexpensiveusing current technology yet it has a high potential performance. Each node in thearchitecture corresponds roughly to a modern uniprocessor computer. The only ex-tra hardware needed to build a complete machine is that for the interconnect and itsinterface to the processing nodes. The TC2000 computer [BBN, 1990], manufacturedby BBN Computers and introduced in 1989, matches this structure very closely. Ascalable multistage buttery network is used for the interconnection network. Thereis a single local memory per node that is partitioned into shared and private sectionsby system calls to the operating system. Other system calls allow the selection of thecaching policy for each memory block allocated. The GP1000 computer [BBN, 1989],also by BBN, has a very similar architecture but uses older technology (the TC2000uses M88000 processors rated at 20 MIPS whereas the GP1000 uses M68020 processorsrated at roughly 3 MIPS). The GP1000 also su�ers from a slower interconnection net-work (approximately half the bandwidth of the TC2000) and the lack of a data cache3.These two computers are used throughout the thesis to do measurements and to com-pare di�erent implementation strategies. Because scalability is an important issue, largemachines were used: a 94 processor GP1000 (at Michigan State University) and a 45processor TC2000 (at Argonne National Laboratory). To serve as a guide, the costs ofthe memory hierarchy for these computers is given in Table 1.1. The timings correspondto the latency for referencing a single word for each level of the hierarchy4. Note that the3However, each processor has a small instruction cache.4These costs were measured with benchmarks specially designed to test the memory. As reported in[BBN, 1990], the timing depends on many parameters such as the caching policy in use, the type of access(read or write), the size of machine and the contention on the interconnection network. The timings inthe table are the average time between reads and writes, caching was inhibited when measuring localand remote memory costs.

1.6. MEMORY MANAGEMENT 13Latency in �secs Relative latencyMachine Cache Local Remote Cache Local RemoteGP1000 .475 5.750 1.0 12.1TC2000 .150 .575 2.400 1.0 3.8 16.0Table 1.1: Costs of memory hierarchy for the GP1000 and the TC2000.cache on the TC2000 is faster than local memory by only a factor of 3.8. Many systemscurrently have caches that perform much better than this. Also note that the latencyof a buttery network grows logarithmically with the number of processors. Machineswith several hundred processors would thus have roughly the same relative costs for thememory hierarchy.1.6 Memory ManagementThe design of a high-performance Multilisp system is a complex task where many, oftenconicting, issues have to be addressed. Clearly an implementor must worry about howto best implement the parallelism constructs themselves, but it is important to realizethat the support of parallelism has an impact on the sequential parts of the languageas well. High-performance techniques used in uniprocessor implementations of Lispcannot always be carried over to Multilisp as is, either because they become ine�cientin a multiprocessor environment or, even worse, they do not work at all due to thepresence of concurrency.As should be clear from the previous section, one of the most important problemsto tackle for a NUMA architecture is that of memory management. Lisp, and symbolicprocessing in general, relies heavily on the manipulation of data structures and on theirdynamic creation. The costs of allocating, referencing and deallocating objects arethus major components of the overall performance of the system. For a language likeMultilisp where data is implicitly shared, memory management is tricky to implemente�ciently because, in general, data must be accessible to all the processors and bemutable by all the processors.In order to keep the reference costs low, a memory management policy for a NUMAarchitecture must strive to physically locate the shared data close to the processor thatneeds to access the data most frequently. For the TC2000, this means that data shouldreside in the cache or the local memory of the processor most frequently accessing the

14 CHAPTER 1. INTRODUCTIONdata. This is the proximity issue.Another important goal is to arrange the data so that contention is minimized.Contention occurs when more than one processor is trying to access the same shared re-source (such as a memory bank or a path in the interconnection network). The resourcebecomes a bottleneck to performance because requests must be serviced sequentially.Contention can be inherent in the algorithm (when expressed explicitly as a criticalsection) but it can also appear insidiously because of some particularity of the languageimplementation or target machine. For example, a simple allocation strategy for vectorsis to reserve the space for all elements in a given memory bank. In such a situation, thereferences to di�erent elements of the vector are forced to be done sequentially even ifthey are all logically concurrent. The same problem occurs when unrelated data val-ues are referenced simultaneously and they happen to have been allocated in the samememory bank. Certain shared-memory machines, such as the BBN Monarch [Rettberget al., 1990] and IBM RP3 [P�ster et al., 1985], avoid some contention problems byusing \combining" networks which combine similar requests to the same memory loca-tion (e.g. read, clear, add a constant). However, combining networks are ine�ective forcontention to unrelated data. A simple and general approach to minimize contention isto scatter the data among all the memory banks. If the referencing pattern is uniformlydistributed, the probability that two references are to the same memory bank (out of nmemory banks) is 1n . Unfortunately this strategy compromises proximity because theprobability that a reference is to remote memory is n�1n which approaches 1 for a largemachine.There are basically two extreme ways in which the proximity and contention issuescan be handled. The placement of objects in memory can be left to the user or bedone automatically by the implementation. User controlled placement can be expressedin several ways including declarations and the use of specialized data manipulationoperators. Automatic placement has the advantage of preserving the high-level natureof the language, that is, the user does not need to know the details of the target machine.However, there is just so much that can be expected of automatic techniques and, at leastfor special purpose applications, the user can have knowledge of the memory referencepatterns that are next to impossible for the compiler to infer automatically.It is important to distinguish two classes of data. User data is data explicitly createdand referenced by the data manipulation procedures of the language (e.g. cons, car andset-car!). Internal data corresponds to data used internally by the implementation

1.7. DYNAMIC PARTITIONING 15to support the language. Internal data includes� Environment frames� Continuation frames� Closures� Cells (for mutable variables)� Global variables� Tasks� Constants� Program codeBecause these data structures are used in well de�ned ways under the control of theimplementation, it is possible to design special purpose memory management policiesfor them. For instance, local, contention free accesses to the program code and constantsare possible if they are copied to the private memory of each processor when the programis loaded.Both user data and internal data are important to optimize in a system. However,this thesis concentrates on the management of internal data, and in particular the datastructures that are involved in dynamic partitioning. The placement of user data is notconsidered here.1.7 Dynamic PartitioningOne of the most fundamental operations performed by any parallel system is the distri-bution of work throughout the system. Each processor has to be aware of the compu-tations it is required to do and at what time. The overall goal is to have the best usageof the processing resources, that is to have the greatest number of processors doing use-ful things. Partitioning consists of dividing the program's total workload into smallertasks that can be assigned to the processors for concurrent execution. A prerequisite topartitioning is of course knowing which pieces of the program can be done concurrently.Since in Multilisp concurrency is stated explicitly by the user, it will be assumed herethat the only source of concurrency is the future construct5.5Thus, in the expression (+ (* x 2) (* y 2)), the concurrency possible in the evaluation of thearguments to + will be disregarded because it is not expressed with a future.

16 CHAPTER 1. INTRODUCTIONPartitioning can be done once and for all before the program is run. This staticpartitioning has the advantage of being simple to conduct when the program naturallydecomposes into a �xed number of equal sized tasks. It also permits some compilationoptimizations because important information, such as the particular assignment of tasksto processors, the inter-task communication pattern, and the type of communication,can sometimes be known at compile time. Programs with a regular computationalstructure are good candidates for static partitioning.Dynamic partitioning relegates the partitioning decisions to when the program isrunning. This approach is more general because it can be applied to programs withcomplex concurrency structures and also to programs whose concurrency is dependenton the input data set. This generality is needed for Multilisp because the arbitraryconcurrency structures expressible with the future construct cannot be handled by staticpartitioning methods. Another advantage is that better partitioning decisions can bemade because more information is available at run time. The size of the machine(number of processors and memory size) is an important parameter that may not beknown at compile time. There are other equally important, but more subtle, partitioningparameters that are only available at run time. For example, the number of active tasksand idle processors at a given point in time are useful indicators of partitioning needs.In a way, dynamic partitioning has the ability to adapt to its execution environ-ment whereas static partitioning is stuck with irreversible compile time decisions thatare based on predictions of what the execution environment will be. Adaptability iscrucial to account for the varying computational nature of certain programs. Paral-lel sort is a good example to illustrate this point. The sort may have more or lessconcurrency depending on the data set size (i.e. the number of items to sort) and thecost of comparing two items. These parameters can vary in the same program if thesort is called multiple times. Concurrency can also be a�ected by the initial orderingof the items. The sort algorithm might degenerate to a sequential algorithm for someorderings and be perfectly parallel for others. Large programs add another dimensionto the argument. Large programs are typically composed of several smaller independentmodules. Concurrency can occur inside a module, between purely sequential modules,and also between internally concurrent modules. It is quite possible that an internallyconcurrent module, such as parallel sort, has to execute by itself at some point andconcurrently with other modules at some other point. The partitioning requirementsmay vary greatly between these two cases. At one extreme, no partitioning is needed forthe sort if the other modules are doing long sequential computations and there happento be n� 1 of them on an n processor machine.

1.7. DYNAMIC PARTITIONING 17The main inconvenience of dynamic partitioning is that it adds a run time over-head. Dynamic partitioning is \administrative" work that gets added to the oper-ations strictly required by the program (i.e. the mandatory work). Tasks are cre-ated to enable concurrent execution, but each task created adds a cost, in time andspace, because its state has to be maintained throughout its life (this includes task cre-ation, activation, suspension and termination). A dynamic partitioning strategy must�nd some compromise between the bene�t of added concurrency and the drawback ofadded overhead. Some have avoided this problem to some extent by relying on special-ized hardware to reduce the cost of managing tasks. Dataow machines [Srini, 1986,Arvind and Nikhil, 1990] and multithreaded architectures [Halstead and Fujita, 1988,Nikhil et al., 1991, Agarwal, 1991] fall in this category. However, software methodsare attractive because they o�er portability and low hardware cost. This thesis ex-plores software methods for lowering the cost of task management in the context of theMultilisp language.In a strict sense, partitioning only refers to the way the program gets divided upinto tasks. This de�nition is not very useful for Multilisp because each evaluation of afuture leads to the creation of a new task; there are no partitioning decisions to be made.However, choices are available at another level. There can be several representationsfor tasks, each having its own set of features and management costs. The appropriaterepresentation for a particular task will depend on many factors but as a general ruleit will be best to select the one with the lowest cost that has all the required features.Partitioning has a broad sense in this thesis. It refers to the choice of representationthat is used for the tasks in the program and the way that they are managed.An important parameter a�ecting the performance of dynamic partitioning is thegranularity of parallelism (G) of the program. G is de�ned as the average duration ofa task G = TseqNtaskHere Ntask is the total number of tasks created by the program and Tseq is the durationof the program when all task operations are removed (i.e. Tseq is the mandatory work).When the task operations are present, the work required for the program is Tseq plussome task management overhead (Ttask) for each task createdTpar = Tseq +Ntask TtaskTtask contains the time to create, start and terminate a task. The total work required

18 CHAPTER 1. INTRODUCTIONto run the program on an n processor machine, Ttotal (n), will be Tpar plus some amountthat accounts for all other parallelism overheads including the costs of transferring tasksbetween processors, synchronizing tasks, sharing user data, and being idle. The run timeon n processors is thus Ttotal (n)n . The e�ciency (E) of the processors is the proportionof the time they spend doing mandatory work. G and Ttask are important parametersbecause they put an upper bound on e�ciencyE = TseqTtotal (n) � TseqTseq +Ntask Ttask = 11 + TtaskGThis equation suggests that e�ciency is a function of the relative size of G with respectto Ttask . Higher e�ciency can be obtained either by increasing G or decreasing Ttask .1.7.1 Eager Task CreationA well known dynamic partitioning method is eager task creation (ETC). Its mainadvantage is simplicity. Only a single representation for tasks exists in ETC: the heavy-weight task object. Unfortunately, the task management cost for heavyweight tasks isrelatively high (on the order of hundreds of machine instructions). A coarse granular-ity is thus required to get good performance. For example, the granularity must beat least in the hundreds of machine instructions to achieve better than 50% e�ciency.This makes the programming task that much more di�cult because granularity mustbe taken into account when designing programs. Moreover, coarse grain programs haveless parallelism (fewer tasks) so there is a risk that they will only perform well on smallmachines. Finally, some programs are hard to express with coarse grain parallelism.1.7.2 Lazy Task CreationA more e�cient partitioning method called lazy task creation (LTC) is explored in thisthesis. In addition to the heavyweight task representation, LTC uses a much cheaperlightweight representation. The method is described in detail in Chapter 3 but a generaldescription is given here to explain some of the issues.LTC lowers the average task management cost by creating only as many heavyweighttasks as necessary to keep all processors working. To do this, each processor maintainsa local data structure, the lazy task queue (LTQ), that indicates the availability oftasks on that processor. When the program asks for the creation of a task, the LTQ is

1.7. DYNAMIC PARTITIONING 19updated to indicate the presence of this new task. This operation is e�cient because alightweight task representation is used. A lightweight task preserves enough informationto recreate the heavyweight task later on, if needed. Each entry in the LTQ is a pointerinto the stack, marking the boundary of that task's stack. The beauty of LTC is that,when the processor becomes idle it can get work from its own LTQ at a low cost andcompletely avoid the creation of a heavyweight task. When the LTQ is empty, theprocessor must instead �nd a task to resume from some other processor's LTQ. It isonly in this case that a high cost is paid to create a heavyweight task and transfer itbetween processors.Shared-Memory ProtocolBut how exactly does this interaction take place? The protocol adopted in [Mohr, 1991]uses a shared-memory paradigm. The stack and LTQ of all processors are directlyaccessible to all processors (i.e. they are shared data). When processor A needs to getwork from processor B, it directly manipulates B's LTQ and stack to extract a task.This approach has unfortunate consequences. First of all, access and mutation of theLTQ must be arbitrated because several processors may be competing for access. Thismeans that the cost of lightweight task creation is higher than might have been expectedbecause synchronization operations are needed to ensure that accesses to the LTQ aremutually exclusive. This may be tolerable in certain contexts since the overhead cost willbe high only for parallel programs with �ne grain parallelism. The second consequenceis much more serious. The protocol assumes that the stack and LTQ are in consistentmemory. Therefore, they cannot be cached as e�ciently as private data. This can havea severe impact on performance because the stack is one of the most intensively usedinternal data structures. The cost is also unrelated to the use of parallelism; sequentialprograms will su�er just as much as parallel ones. It is preferable for the stack to bea private resource so that copy-back caching can be used (as is the case for sequentialimplementations of Lisp).Message-Passing ProtocolThe stack and LTQ can be made private by adopting a message-passing protocol forwork distribution. When A needs to get work from B, it sends a request for work toB. Upon receiving this message, B checks its LTQ for an available task and, if one isavailable, sends it back to A. Since the LTQ and stack are only accessed locally there isno need for synchronization operations when updating them. Lightweight task creation

20 CHAPTER 1. INTRODUCTIONis thus cheaper than with the shared-memory protocol. This allows very �ne grainparallelism to be e�cient. Sequential code also bene�ts because copy-back caching cannow be used for the stack.Although it is promising, the message-passing protocol introduces some new issues.How is the communication mechanism implemented and what is its cost? The latency ofthe communication is also a factor. Can the processor respond fast enough to minimizethe idle time of the requesting processor?1.8 OverviewThe thesis is organized in 6 chapters. Chapter 2 gives a description of the Multilisplanguage and its traditional implementation using ETC. Some �ne points of its semanticsare discussed to clarify the constraints that must be met by the partitioning methods.Finally, the benchmarks used for later experiments are presented.Chapter 3 provides a detailed description of the shared-memory and message-passingimplementations of LTC. It is shown how support for dynamic scoping, continuationsand fairness can be added to LTC. This chapter also examines the memory usage char-acteristics of the benchmark programs to evaluate the bene�ts of caching.Chapter 4 concentrates on the communication mechanism required by the message-passing protocol. An e�cient software implementation is described and evaluated.Chapter 5 compares the two LTC protocols. The performance of both protocols ismeasured on several benchmarks and under numerous conditions.The closing chapter summarizes the results of the thesis and suggests some futurelines of research.

Chapter 2BackgroundBefore discussing the implementation of the future construct, it is necessary to establishthe set of features that must be supported by the implementation. This is particularlyimportant because there is no formal standard for the Multilisp language; nearly everyimplementation has its own peculiarities. This thesis takes the pragmatic view thatMultilisp is de�ned by the set of features common to a number of implementations.Choosing the set of supported features is a delicate process that is similar in manyways to language design itself. The set should not be limited to the features thatare strictly common to all implementations as this would be ridiculously restrictive.Features that have acquired a certain level of acceptance in the �eld should also beincluded. On the other hand, it is wise to select a small set of features that interact in acoherent, well de�ned way in order to provide a programming model with few surprises.The chapter starts o� by giving a de�nition of the Multilisp semantics targetted bythis work. This includes the future construct common to all Multilisp implementationsand also two useful features of sequential Lisps which pose special problems in a parallelsetting: dynamic scoping and �rst-class continuations. The ETC implementation ofthis semantics is then presented. The chapter ends with a description of some Multilispprograms later used to evaluate and compare various implementation strategies.2.1 Scheme's LegacyMultilisp inherits its sequential programming features from the Scheme dialect of Lisp[IEEE Std 1178-1990, 1991]. Scheme was designed to be a relatively small and simple21

22 CHAPTER 2. BACKGROUNDlanguage with exceptional expressive power. There are few rules and restrictions forforming expressions in Scheme, yet most of the major programming paradigms canconveniently be expressed with it. This is not surprising since the language is based onthe theory of the lambda calculus.There are six basic types of expressions in Scheme: constant, variable reference,assignment, conditional, procedure abstraction (lambda-expression) and procedure call.All the other types of expressions can be derived from the basic types and this is in facthow they are de�ned in the standard [IEEE Std 1178-1990, 1991, R4RS, 1991]. Beingable to reduce a program to the basic expressions is helpful both as an implementationtechnique and as a means to understand programs and prove some of their properties.It is also a considerable advantage for any extension e�ort, such as Multilisp, becausethe interaction of the extensions with the language can be more carefully analyzed bylimiting the study to the basic types of expressions.Scheme o�ers a rich set of data types including numbers, symbols, lists, vectors,procedures, characters and strings. There are also several prede�ned primitives to op-erate on these data types including procedures to create, destructure and mutate data.Although Lisp-like languages have a historical inclination towards symbolic processingapplications, the elaborate support of numerical types in Scheme makes it a candidatefor numerical applications as well.There has been an e�ort in Scheme to make the language as uniform as possible.All types of objects in Scheme share some basic properties that make them �rst-classvalues. Any object can be: used as an argument to procedures, returned as the resultof procedures, stored in data structures, and assigned to variables. Departing fromLisp tradition, Scheme evaluates the operator position of procedure calls like any otherexpression and does not impose any particular ordering on the evaluation of argumentsto procedures. The let and let* special forms are handy to force a particular orderingwhen it is needed (this is what is done in the examples).Objects have unlimited extent. They conceptually exist forever after they have beencreated. In general this means that objects must be allocated in the heap. When thereis no space left in the heap, the system automatically invokes the process of garbagecollection to reclaim the heap space allocated to objects that are no longer needed forthe rest of the computation. In certain circumstances it is possible at compile time todetect that an object is no longer needed past a certain point in the program. Thecompiler can then use a specialized allocation policy (such as a stack) and explicitlyperform the deallocation. This reduces the frequency and cost of garbage collection.

2.1. SCHEME'S LEGACY 23Scheme relies solely on static scoping as a method to resolve variable names. Anidenti�er refers to the variable with the same name in the innermost block that lexicallycontains the reference and declares the variable. If no such block exists, the identi�errefers to a variable in the global environment. This naming rule corresponds to thatof block structured languages such as Pascal and Algol 60. Dynamic scoping is analternative method that has been traditionally used in other Lisps. The identity ofvariables is not based purely on the lexical characteristics of the program (available atcompile time), but rather depends on the control path taken by the program at run time.Although dynamic scoping has its specialized uses (e.g. see Section 2.7), its pervasive useis not generally viewed as promoting modularity. In addition, e�cient implementationof dynamic scoping is often based on shallow binding, a strategy that is not well suitedfor parallel execution. Static scoping permits the use of certain compilation techniques,such as data ow analysis, that are di�cult or impossible to perform with dynamicallyscoped variables because the analysis would have to be done on the entire program.In Scheme, procedures are viewed as �rst-class values and thus have the same basicproperties as the other data types. With �rst-class procedures many programmingtechniques are easily implemented. Higher order functions, lazy evaluation, streams andobject-oriented programming can all be done using �rst-class procedures (for examplesee [Adams and Rees, 1988, Friedman et al., 1992]). Procedures created by lambda-expressions are usually called closures to distinguish them from prede�ned procedures.The static scoping rules require all closures to carry, at least conceptually, the set ofvariables to which they might refer (the closed variables). Consequently, variables haveunlimited extent and cannot generally be allocated in a stack-like fashion as in moreconventional languages. Closures pose additional problems in a parallel setting. Becauseclosures are just another data structure, contention may happen if several processorsare simultaneously calling the same closure. A typical situation would be the parallelapplication of a closure to a set of values. Some optimizations can avoid contentionin some cases. For example, closures with no closed variables, such as globally de�nedprocedures, are essentially constant so they can be created and copied to all processorswhen the program is loaded. Lambda-lifting can also eliminate the need to createclosures by explicitly passing the closed variables between procedures. Both of thesetechniques are used in Gambit. However, the general case remains hard to solve as itis equivalent to the problem of data sharing. For this reason, true closures have beenavoided as much as possible in the benchmarks.In accord with the goal of simplicity, the only way to transfer control in Scheme isthrough the use of procedure calls. All types of recursion, whether they correspond toan iteration or not, are expressed as procedure calls. There are two types of calls. If the

24 CHAPTER 2. BACKGROUNDvalue returned by a call is immediately returned by the procedure containing the callit is a reduction call. Otherwise the call is a subproblem call. All implementations arerequired to be properly tail recursive. That is, they must guarantee that loops expressedrecursively do not cause the program to run out of memory. In implementation terms,this means that reduction calls must not retain the current procedure's activation frame(the local variables and return address) past the actual transfer of control to the calledprocedure.Scheme is a call by value or applicative order language. The evaluation of the pro-gram is forced to follow an ordering that evaluates all arguments to a procedure beforethe procedure is entered. The opposite policy, call by need or normal order evaluation,doesn't evaluate any of the arguments to a procedure when the procedure is called.Evaluation occurs when a strict operator, such as addition, needs the actual value.Data transfer operations such as parameter passing and creation of data-structures arenot considered to be strict. Both policies have advantages. Programs using normalorder evaluation sometimes terminate when their applicative order counterparts do not.On the other hand, applicative order is often more e�cient. In Scheme, it is possible toget the equivalent of normal order evaluation by using the delay special form to delayevaluation and by rede�ning the primitive procedures so that they force the evaluationof the arguments in which they are strict1. The future construct is the dual of the delayspecial form giving eager evaluation instead of lazy evaluation.Scheme supports various avors of side-e�ects such as assignment, data structuremutation and input/output operations. Thus, it is considered to be an imperative pro-gramming language where sequencing of operations is a necessary concept. Nevertheless,Scheme contains a powerful functional subset which can be used for purely functionalprogramming. Some algorithms are naturally expressed in a functional way, some oth-ers are expressed better with the use of side-e�ects. In Scheme, both paradigms canappear in the same program and the programmer can choose which best matches hisneeds at any given point. It is however a good idea to limit the scope of side-e�ects byhiding them through abstraction barriers. For example, a sorting procedure can have afunctional speci�cation even if it uses side-e�ects internally. In practice, it seems thatScheme favors a \mostly" functional style of programming where side-e�ects are usedwith discretion. This style of programming lends itself well to parallelism because sub-problems are often independent and are thus possible targets for concurrent evaluation.1Delay only exists in R4RS [R4RS, 1991].

2.2. FIRST-CLASS CONTINUATIONS 252.2 First-Class ContinuationsPerhaps Scheme's most unusual features is the availability of �rst-class continuationobjects. Continuations have been used in the past to express the denotational se-mantics of programming languages such as Algol60 and Scheme itself [R3RS, 1986,Clinger, 1984]. Most programming languages use continuations but they are usuallyhidden whereas in Scheme they can be manipulated explicitly. First-class continuationsare useful to implement advanced control structures that would be hard to expressotherwise.Intuitively, a continuation represents the state of a suspended computation. Thepower of continuations stems from the ability to reinstate a computation at any momentand possibly multiple times. It is convenient to think of a continuation as a procedurethat restores the corresponding computation when it is called. Often it is necessary toinuence the computation that is being restored. This is done by passing parametersto the continuation. Continuations typically have a single parameter, the return value,but some continuations may take none or more than one parameter.2.2.1 Continuation Passing StyleContinuations are best understood by examining the underlying mechanism of evalua-tion. Each expression in the program is the producer of a value that is to be consumedby some computation: the expression's continuation. For example, in (f x), the pro-cedure f is the consumer of the value produced by the expression x. Each expressioncan be viewed as being implemented by an \internal" procedure whose purpose is tocompute the value of the expression and send it to the consumer computation. Thus,one of the parameters of this internal procedure is a continuation which takes a singleargument: the value of the expression.This model of evaluation gives rise to a programming style called continuation pass-ing style , or CPS. CPS was originally used as a compilation technique for Scheme [Steele,1978] but CPS is equally useful to explain how continuations work. The interest of CPSis that programs written in this style are expressed in a restricted variant of Schemeyet all Scheme programs can be converted to CPS. An important byproduct of CPSconversion is that procedure calls never have to return (they are always reductions) andcan thus be viewed as jumps that pass arguments.The CPS conversion process consists of adding a continuation as an extra argu-

26 CHAPTER 2. BACKGROUND(define (map-sqrt lst)(call-with-current-continuation(lambda (cont)(map (lambda (x) (if (negative? x) (cont #f) (sqrt x)))lst))))Figure 2.1: Non-local exit using call/cc.ment to each procedure call and adding a corresponding parameter to all procedures.Primitive procedures must also be rede�ned to obey this protocol. The continuationargument speci�es the computation that will consume the result of the procedure beingcalled. For subproblem calls, the continuation argument is a single argument closurerepresenting the computation that remains to be done by the caller when the calledprocedure logically returns. For reduction calls, the continuation argument is the sameas the caller's continuation (thus implementing proper tail recursion). Wherever a pro-cedure would normally return a value other than by a reduction call, a jump to thecontinuation argument is performed instead.In Scheme, access to the implicit continuation is provided by the prede�ned pro-cedure call-with-current-continuation, abbreviated call/cc. A single argumentprocedure must be passed as the sole argument of call/cc. When it is called, call/cctakes its own implicit continuation, converts it into a Scheme procedure and passes itto its procedure argument. The CPS de�nition of call/cc is simplyCPS-call/cc � (lambda (k proc) (proc k (lambda (dummy-k x) (k x))))Note that there are two ways in which the captured continuation k can be invoked.Either proc calls the continuation it was passed as an argument or proc returns nor-mally.2.2.2 Programming with ContinuationsSeveral control constructs can be built around call/cc. A typical application is for non-local exit and exception processing, which are normally done in Lisp using the specialforms catch and throw. In Scheme, this can be done by saving the current continuationbefore entering a block of code. An exit from the block occurs either when the blockterminates normally or when the saved continuation is called. An example of this isgiven in Figure 2.1. The procedure map-sqrt returns a list containing the square root

2.2. FIRST-CLASS CONTINUATIONS 27of every item in a list but only if they are all non-negative. The value #f is returnedif any item is negative. To do this, map-sqrt binds its continuation to cont. A call tocont thus corresponds to a return from map-sqrt. When a negative value is detectedby map-sqrt the processing of the rest of the list is bypassed by the call (cont #f)which immediately causes map-sqrt to return #f.Call/cc however is more versatile than Lisp's catch and throw because it does notrestrict the transfer of control to a parent computation. Thus it is possible to directlytransfer control between two di�erent branches of the call tree. This characteristic canbe exploited to implement specialized control structures such as backtracking [Haynes,1986], coroutines [Haynes et al., 1984] and multitasking [Wand, 1980]. A less frequent,but possible, use of continuations is to reenter a computation that has already completed(see [Rozas, 1987] for an application).The generality of �rst-class continuations comes at a price: a more complex pro-gramming model. In many languages, including Lisp, procedure calls have dynamicextent. This means that every entry of a procedure is balanced by a corresponding exit(normal or not). This is not the case in Scheme because the computation performed ina procedure can be restarted multiple times, and thus a procedure can exit more thanonce even if it is called only once. Because the programmer's intuition often fails whendealing directly with continuations it is sometimes helpful to build abstraction barriersthat o�er restricted versions of call/cc (for example see [Friedman and Haynes, 1985]).First-class continuations also cause an implementation problem. If procedures havedynamic extent, continuations can easily be represented by a single stack of controlframes (i.e. return addresses). Control frames get allocated when procedures are calledand deallocated when procedures return in a last-in �rst-out (LIFO) fashion. Thisform of garbage collection is possible because control frames cannot be referenced afterthe corresponding procedure returns. The unlimited extent of continuations in Schememeans that a more general garbage collection mechanism for control frames must be usedbecause a procedure's control frame might still be needed after the procedure returns.At least in some cases, control frames must be allocated on the heap. A commonimplementation strategy is to allocate all control frames on the stack as though theyhad dynamic extent and to move them to the heap only when their extent is no longerknown to be purely dynamic (usually at the moment a continuation is captured by acall/cc). This way, the e�ciency of stack allocation is obtained for programs thatdo not make use of �rst-class continuations. This strategy is described in detail inSection 3.2.The next section examines the problems that arise when continuations are used in

28 CHAPTER 2. BACKGROUNDa parallel setting.2.3 Multilisp's Model of ParallelismParallel programming languages can be classi�ed according to the level of awareness ofparallelism required by the programmer when writing programs. At one end of the scale,there are languages with implicit parallelism that rely exclusively on the ability of thesystem to detect and exploit the parallelism available in programs. In these languagesthe compiler must analyze the program to determine what parts can and should beexecuted concurrently. In general this is a hard task for imperative languages becauseof the existence of side-e�ects. Even in the absence of side-e�ects, the compilation maybe di�cult if an algorithmic transformation is required to obtain a su�ciently parallelalgorithm.Multilisp is at the other end of the scale. Parallelism is explicitly introduced by theprogrammer through the use of the \future" construct. The future construct marks theparts of the program where concurrent evaluation is allowed. Of course this style has itsprice: the burden put on the programmer for specifying concurrency and the possibilityof error (i.e. incorrectly specifying concurrency). The advantage of this approach is thatit provides more control over the program's execution. The programmer can specifyconcurrency at places which might escape an automatic analysis and can choose todisregard some forms of concurrency if it is judged that the cost of exploiting theconcurrency is greater than what is gained.This level of control is useful for the programmer wanting to experiment with variousways of parallelizing a program. It is also appropriate when Multilisp is considered asthe \object code" of a compiler for a higher level parallel language. Such a compilercould be aware of where parallelism is both possible and desirable and emit code withappropriately placed futures ([Gray, 1986] is a good example of this application).2.3.1 FUTURE and TOUCHFutures are expressed as (FUTURE expr) where expr is called the future's body . Thefuture construct behaves like the identity function in the sense that its value is thevalue of its body. However, the body is conceptually evaluated concurrently with thefuture's continuation. The only restriction to this concurrency comes as a result of theordering dependencies imposed by the strict operations in the program. When the value

2.3. MULTILISP'S MODEL OF PARALLELISM 29of a future is used in a strict operation, the operation can only be performed after theevaluation of the future's body. For example, in the expression(let ((x (FUTURE (f 1))))(g (+ x (f 2))))the evaluation of (f 1) is done concurrently with the evaluation of (f 2)2. Because +is a strict operation in both of its arguments, the addition and the call of the procedureg can only occur after the evaluation of (f 1) has completed.As long as they respect the temporal ordering imposed by the strict operations, theoperations required to compute the body of a future are subject to arbitrary interleavingwith the operations performed by the future's continuation. Because Multilisp allowsunrestricted side-e�ects, it is an indeterminate language. Separate runs of the sameprogram can potentially generate di�erent results. As a simple example consider theexpression (let ((x 0))(FUTURE (set! x 1))x)The evaluation of this expression can either return 0 or 1 depending on whether thereference to x happens to be done before or after the assignment to x3.In certain circumstances a program needs to impose special control dependencies inaddition to those given by the data dependencies of the program. Such control depen-dencies are only required in imperative parts of the program to enforce a certain orderingof side-e�ects. For example, it might be important to guarantee that some restructuringof a database has completed before some other processing of the database is performed.For this purpose, Multilisp provides the primitive procedure TOUCH that behaves like astrict identity function. TOUCH can be viewed as the fundamental \strictness" operation.All other strict operations use TOUCH internally.In order to show clearly where the TOUCH operations are needed, the code examplesand benchmark programs that follow include explicit calls to TOUCH.2To be precise, the steps required to bind x, evaluate g, + and x, and enter the + procedure can alsobe done concurrently with the evaluation of (f 1).3Indeterminacy also exists in Scheme, but at a di�erent level. In a procedure call, arguments andthe operator position can be evaluated in any order, but sequentially (that is with no overlap in time).The following expression has 2 possible values: 0 and 1.(let ((x 0))(car (cons x (set! x 1))))

30 CHAPTER 2. BACKGROUND2.3.2 PlaceholdersA more traditional description of futures consists of introducing a new type of object,the placeholder , that is used to synchronize the computation of a future's body with thetouching of its value [Miller, 1987]. When a future is evaluated it returns a placeholderas a representative of the value of the body. A placeholder can be in one of two states.It is undetermined initially and for as long as the evaluation of the future's body has notcompleted. When the evaluation of the body is �nished, the resulting value is stored inthe placeholder object which is then said to be determined . Using placeholder objects,TOUCH has an obvious de�nition: if the argument is not a placeholder just return it,otherwise, wait until the placeholder is determined and then return its value.It is important to understand that placeholders are used here as an arti�ce to explainhow futures work. Although placeholders are commonly used in Multilisp systems,an implementation is free to choose any method that gives the same result. Even ifplaceholders are present in the system, the user can be totally unaware of their existenceif the implementation does not provide constructs to manipulate them directly. This isthe view adopted by Gambit.2.3.3 Spawning TreesIt is sometimes useful to represent the e�ects of evaluating futures and touching place-holders by a diagram, the spawning tree , which shows the state of the concurrent com-putations as a function of time. A spawning tree resulting from the evaluation of asingle future looks like | {z }BodyContinuationz }| {. . . s . . . Time���� -A computation is represented by a horizontal line whose extent corresponds to its du-ration. A dashed vertical line marks the evaluation of the future. At that point, a newcomputation corresponding to the body of the future is started. Arrows are used toexpress the data dependencies introduced by the TOUCH operation. An arrow links thecomputation that determined a placeholder with the computation(s) that touch(es) it(a computation can point to several others). The tail of an arrow indicates the pointwhere a placeholder was determined whereas the head indicates the point where the

2.4. TYPES OF PARALLELISM 31TOUCH was requested. If an undetermined placeholder was touched, the arrow will pointbackwards in time (indicating that the touching computation had to wait).A second representation of spawning trees used here is as a rooted tree. Each nodeof the tree represents a future and the children of a node are the futures dynamicallynested in the body of the corresponding future. The root of the tree corresponds to avirtual future in which the program is executed.2.4 Types of ParallelismParallelism comes in many avors. Control parallelism occurs when di�erent parts ofan algorithm can be done simultaneously. Data parallelism occurs when di�erent datavalues can be processed concurrently. The advantage of data parallelism is that it scaleswell. Larger data sets will o�er more parallelism and thus provide better opportunitiesfor speedup. In control parallelism the degree of parallelism is in principle limited bythe structure of the algorithm. For this reason data parallelism is more useful thancontrol parallelism for large scale computations.The future construct is appealing because it can be used to express several types ofparallelism.2.4.1 Pipeline ParallelismPipeline parallelism is a special case of control parallelism where the processing of datais overlapped with the processing of the result. Pipeline parallelism is the primitiveform of parallelism provided by the future construct. It enables the production of avalue by the future's body to be done concurrently with the consumption of the valueby the future's continuation.Pipeline parallelism is particularly useful when processing a data structure builtincrementally (such as a list of values). At any given point in time, the part of thedata structure that has been computed by the producer is available for processing bythe consumer computation. An example of this is the procedure pmap as de�ned in

32 CHAPTER 2. BACKGROUND(define (pmap proc lst)(if (pair? lst)(let ((tail (FUTURE (pmap proc (cdr lst)))))(let ((val (proc (car lst))))(cons val tail)))'())) a) basic de�nition((((f 1)(f 2)(f 3) s s scontinuationz }| {))))(cons . . .conscons. . . ��������������*�����b) spawning tree for basic de�nition(f 2)(f 3)consconscons s s s s s s(((())))
continuationz }| {(f 1).ZZ}������3 �������������������������������������c) spawning tree for variant with (FUTURE (proc (car lst)))(((((f 1)(f 2)(f 3)))))consss s consconscontinuationz }| {.HHHHY XXXXXXXy�����1d) spawning tree for variant with (cons val (TOUCH tail))Figure 2.2: Parallel map de�nition and spawning trees.

2.4. TYPES OF PARALLELISM 33Figure 2.24. Pmap is a parallel version of map which applies a procedure to each elementof a list and returns the list of results. Parallelism has been introduced by allowing thetail of the resulting list to be generated while the �rst element is computed and usedby pmap's caller. Because cons is a non-strict operator, it immediately returns a pairwith a placeholder as its tail (after proc has been called on the �rst element). The �rstelement is thus immediately available for processing by the consumer. It is only whenthe consumer needs to access the tail that a synchronization must take place, possiblysuspending the consumer until the next pair in the list is generated.A variant of pmap with even more potential for parallelism is obtained by also wrap-ping a future around the call to proc. This allows the computation of the �rst elementto overlap pmap's continuation. The di�erence in behavior is best visualized by exam-ining the spawning tree for these two variants of pmap. Figure 2.2 shows the spawningtrees for the call (pmap f '(1 2 3)). Parentheses have been added in these diagramsto indicate entry and exit of pmap. As is clear from the two upper spawning trees, theextra future allows more computations to overlap. Whether this added parallelism isactually bene�cial will depend on the task granularity, the spawning cost, the numberof processors and the way in which pmap's result is used by the continuation.Pmap's parallelism is not easy to classify. At �rst glance it seems that it is aninstance of control parallelism because it expresses concurrency between two di�erentcomputations (the continuation and the application of the procedure to an element ofthe list). However, this control parallelism is not static. Pmap calls itself recursively sothe parallelism varies with the length of the list. When viewed globally, pmap exhibitsdata parallelism because it expresses the parallel application of a procedure to a set ofvalues. If the task granularity is large enough, the processing of longer lists will o�ermore parallelism.2.4.2 Fork-Join ParallelismThe above variants of pmap are said to export concurrency because some of the worklogically started \inside" pmap may be in progress after the procedure has returned.4The shorter de�nition(define (pmap proc lst)(if (pair? lst)(cons (proc (car lst)) (FUTURE (pmap proc (cdr lst))))'()))is not equivalent because the two possible orderings of the evaluation of the arguments to cons do notgive the same parallelism behavior.

34 CHAPTER 2. BACKGROUNDExported concurrency is a nuisance for some programming styles. If proc performssome side-e�ects on a global state, the computation following pmap cannot assume thatthey have all been done. Some explicit synchronization is needed to guarantee thatall of pmap's futures are done. In the simple case where proc does not itself exportany concurrency, this synchronization can be done by walking the resulting list andtouching all values that are the result of a future. A more elegant solution is to includethe required synchronization inside pmap. This is easily achieved by having the future'sextent match that of the procedure's body. In other words, the procedure is written sothat each future (the fork) is balanced with a corresponding TOUCH (the join) executedbefore the procedure returns. This is a trivial change to pmap: a TOUCH is added aroundthe second argument to cons (i.e. (cons val (TOUCH tail))). The spawning treeresulting from this variant of pmap is shown in Figure 2.2 (d).2.4.3 Divide and Conquer ParallelismAn unfortunate characteristic of pmap is that it scales poorly due to the inherently se-quential nature of lists. The processing of an n element list requires at least n sequentialsteps just to traverse the list. No matter how quickly each element can be processed,the time required to process n elements will be
(n). This may be of little consequencewhen task granularity is large and lists are short but massively parallel applications arebound to su�er more.For this reason, it is preferable to use scalable data structures such as trees andarrays when lists would create a bottleneck. But this is not the only step to take. Aslong as futures are started sequentially, such as in a loop, a bottleneck will be present.A divide and conquer paradigm (DAC) can be used to start futures faster, allowing nfutures to be started in
(logn) time. This is actually the best that can be expected ofthe future construct because each future splits a thread of computation into two.Pvmap!, shown in Figure 2.3, is a DAC version of pmap that works on vectors. Theinput elements are stored in a vector which is mutated to construct the result. Thevector is divided in two and the mapping is performed recursively on both parts. Whena single element is obtained, the mapped procedure is applied to the value and the resultis stored back in the vector. To avoid allocating new vectors, subvectors are representedby two indices, lo and hi, which denote the subvector's extent. Because it uses a fork-join paradigm, all side-e�ects will be �nished when pvmap! returns. Note also that theTOUCH is used only for synchronization. The actual value of sync is irrelevant.Multilisp programs are frequently organized around DAC parallelism. Not only is it

2.4. TYPES OF PARALLELISM 35
(define (pvmap! proc vect)(define (map-range! proc lo hi)(if (= lo hi)(vector-set! vect lo (proc (vector-ref vect lo)))(let ((mid (quotient (+ lo hi) 2)))(let ((sync (FUTURE (map-range! proc (+ mid 1) hi))))(map-range! proc lo mid)(TOUCH sync)))))(map-range! proc 0 (- (vector-length vect) 1))vect) a) de�nition(((((((((((((()))))))))))))() . . .)(f 1)(f 8).�..........................�..........................� ������ �����..........................�b) spawning tree for (pvmap! f v) with v = #(1 2 3 4 5 6 7 8)Figure 2.3: Parallel \vector" map.

36 CHAPTER 2. BACKGROUNDa fundamental technique for constructing parallel algorithms [Mou, 1990], it also blendsnaturally with the recursive algorithms and data structures commonly found in Lispand symbolic processing. Several of the parallel benchmarks used in this thesis (seeSection 2.9) are based on DAC parallelism.2.5 Implementing Eager Task CreationThis section describes the eager task creation (ETC) implementation of futures. It willserve both as a reference implementation and as a basis on which lazy task creation isbuilt. A few implementation details have been omitted for the sake of clarity. A moreelaborate description can be found in [Miller, 1987].As might be expected, the implementation of a Multilisp system is in many wayssimilar to that of a multitasking operating system. At the heart of both are utilities tosupport the management of various processing resources. For the management of theprocessors, an important concept is that of the task which is an abstract representationof a computation in progress. A program �rst starts out with a single root task incharge of performing the computation required by the program. Tasks are created andterminated dynamically as the computation progresses, possibly causing the number oftasks to exceed the number of processors in the machine.The task abstraction is supported by the scheduler whose job is to run tasks byassigning them to processors. A task can be in one of three states. It is running whenit is being executed by some processor. It is ready or runnable if it is only waiting forthe scheduler to assign it to a processor. Finally, it is blocked if some event must occurbefore it is allowed to run.Eager task creation (ETC) is a straightforward dynamic partitioning method thathas been used in several implementations of Multilisp [Halstead, 1984, Miller, 1988,Swanson et al., 1988, Kranz et al., 1989]. With ETC there is a single representationfor tasks: the heavyweight task object5. This is a heap allocated object with a numberof �elds that describe the state of the computation associated with the task. Whenthe task needs to be started or resumed its state is restored by reading the �elds ofthe corresponding task object. When a task needs to be suspended, the task objectis updated to reect the current state of the task. The most important information5The de�nition of heavyweight tasks used here is not the same as the common meaning in operatingsystems (i.e. a process with its own address space). Here heavyweight task simply means a representationthat is more expensive than the one used for lazy task creation.

2.5. IMPLEMENTING EAGER TASK CREATION 37retained in a task object is the continuation. It indicates where control must returnwhen the task is resumed. Task continuations di�er from �rst-class continuations inthat they do not need to be given a \result" to continue with. They are zero argumentprocedures. Also, the full generality of �rst-class continuations is not necessary fortask continuations since they are invoked at most once. Other �elds can be added totask objects to support special language features but they are not strictly required forimplementing futures. In fact, an implementation could simply use continuations torepresent tasks. Nevertheless, task objects will be used here to make the algorithmsmore general.2.5.1 The Work QueueETC lends itself well to self scheduling , where each processor is responsible for schedul-ing tasks to itself. All processors share a global queue, the work queue , that containsthe set of runnable tasks. When a processor becomes idle, typically after a task blocksor terminates, it removes a task from the work queue and starts running it. If there arenone available, the processor just keeps on trying until one is added to the work queueby some other processor. Self scheduling has the advantage of automatically balancingthe load across the processors. As explained in Section 2.5.6, the work queue can bedistributed but for now it is assumed to be a single centralized queue.2.5.2 FUTURE and TOUCHTasks are created through the evaluation of futures. When a task, the parent , evaluates(FUTURE expr), it creates a placeholder object to represent the value of expr and thencreates a child task whose role is to compute expr and determine the placeholder withthe resulting value. The child task is added to the work queue to make it runnable andthe placeholder is returned as the result of the future. Thus, the parent task immediatelystarts working on the continuation using the placeholder as a substitute for the valueof expr while the child task waits in the work queue until it can be started by an idleprocessor.Placeholder objects can be represented by a structure containing three slots: thestate, the value and the waiting queue. The meaning of the state and value slots isobvious. The waiting queue is used to record the tasks that have become blockedbecause they need to wait until the placeholder has a value. When the placeholder getsdetermined, the tasks that are in the waiting queue are transferred to the work queue

38 CHAPTER 2. BACKGROUNDbecause they are now ready to run. When a task touches an undetermined placeholderit is suspended and added to the placeholder's waiting queue. The processor is now idleand must �nd a new task to run from the work queue. When the blocked task laterresumes (inside the TOUCH), the placeholder's value is fetched and returned.2.5.3 Scheme EncodingA Scheme encoding of these algorithms is given in Figure 2.4 and the de�nition of thesupport procedures is given in Figure 2.5. Note that the code in Figure 2.4 is schematicand does not address all atomicity issues.Idle is the procedure that is run by processors in need of work. When the programstarts up, all processors call idle, except for the single processor that is running theroot task. Idle continually tries to remove a ready task from the work queue. Toimplement TOUCH, each processor must keep track of its currently running task. Whena task is found, resume-task is called. The task becomes the \current task" of thatprocessor and it is restarted by calling its associated continuation. It is assumed thateach processor has a private storage area to store the currently running task. Theprocedures current-task and current-task-set! access this storage.The future special form can be thought of as a derived form that expands into a callto make-FUTURE. Its only argument is a nullary procedure (a thunk) that contains thefuture's body. The expression (FUTURE expr) is really an abbreviation for the procedurecall (make-FUTURE (lambda () expr)). Make-FUTURE �rst creates an undeterminedplaceholder to represent the body's value and then creates a child task. The child taskis set up so that its continuation, when called by resume-task, will compute the valueof the body by calling the thunk. The procedure end-body contains the work to bedone after the body is computed. End-body calls test-and-determine! to determinethe result placeholder with the body's value. Control then goes back to idle. Notethat end-body signals an error when a placeholder is determined more than once. Thismight happen if a continuation captured by a call/cc in the body is invoked after thebody has already returned.Test-and-determine! is an atomic operation similar in spirit to the traditional\test-and-set" operation. It tests if a placeholder is determined and if it isn't, the place-holder gets determined to the second parameter and true is returned to indicate success.Otherwise the placeholder remains as is and false is returned. When a placeholder is de-termined, the tasks on its waiting queue are transferred to the work queue, thus makingthem runnable.

2.5. IMPLEMENTING EAGER TASK CREATION 39(define (idle)(if (queue-empty? (work-queue))(idle)(resume-task (queue-get! (work-queue)))))(define (resume-task task)(current-task-set! task)((task-continuation task)))(define (make-FUTURE thunk)(let ((res-ph (make-ph)))(let ((child (make-task(lambda () (end-body res-ph (thunk))))))(queue-put! (work-queue) child)res-ph)))(define (end-body res-ph result)(if (test-and-determine! res-ph (TOUCH result)) ; 1(idle)(error "placeholder previously determined")))(define (test-and-determine! ph val)(if (ph-determined? ph)#f(begin(determine! ph val)#t)))(define (determine! ph val)(ph-value-set! ph val)(ph-determined?-set! ph #t)(queue-append! (work-queue) (ph-queue ph)))(define (TOUCH x)(if (ph? x)(if (ph-determined? x) (ph-value x) (TOUCH-undet x)) ; 2x))(define (TOUCH-undet ph)(call-with-current-continuation(lambda (cont)(let ((task (current-task)))(task-continuation-set! task(lambda ()(cont(if (ph? ph) (ph-value ph) ph)))) ; 3(queue-put! (ph-queue ph) task)(idle)))))Figure 2.4: Scheme encoding of Multilisp core.

40 CHAPTER 2. BACKGROUND
Operations on queues:(queue-empty? q) Tests if q is empty.(queue-get! q) Removes and returns the item at q's head.(queue-put! q x) Adds x to q's tail.(queue-append! q1 q2) Transfers all items from q2 to q1's tail.Operations on placeholders:(make-ph) Creates and returns an undetermined placeholder.(ph? x) Tests if x is a placeholder.(ph-determined? ph) Tests the state of ph.(ph-determined?-set! ph x) Sets the state of ph.(ph-value ph) Returns the value of ph.(ph-value-set! ph x) Sets the value of ph.(ph-queue ph) Returns the waiting queue of ph.Operations on tasks:(make-task c) Creates and returns a task whose continuation is c.(task-continuation t) Returns t's continuation.(task-continuation-set! t c) Sets t's continuation to c.Operations on the processor's local state:(current-task) Returns the task currently running on the processor.(current-task-set! t) Sets the task currently running on the processor to t.Other operations:(work-queue) Returns the work queue.Figure 2.5: Procedures needed to support Multilisp core.

2.5. IMPLEMENTING EAGER TASK CREATION 41Touching is implemented by TOUCH and TOUCH-undet. TOUCH-undet handles thecase where the value to be touched is an undetermined placeholder. When an unde-termined placeholder is being touched, the current task must be suspended and puton the placeholder's waiting queue. This is done by a call to call/cc which capturesTOUCH's continuation. Note that since this continuation is guaranteed to be called atmost once, a less general but more e�cient version of call/cc could be used. The taskis then put on the placeholder's waiting queue so that it can later be made runnableby test-and-determine!. As the current task is now blocked, control is transferred toidle to move on to some other piece of work. When the task is resumed, the place-holder's value will be returned to TOUCH's continuation.2.5.4 Chasing vs. No ChasingAn interesting issue is whether placeholders should be allowed to be determined withother placeholders. If this is permitted, the touching of a placeholder must perform therecursive touching of its value. This chasing process can be expensive if the chain ofplaceholders is long. This happens in programs where the future bodies often returnplaceholders and placeholders are touched multiple times.The alternative strict method requires that placeholders be only determined withnon-placeholders. The code in Figure 2.4 implements the strict method. A chasingimplementation is obtained by removing the TOUCH on line 1, adding a TOUCH aroundline 2 and replacing line 3 by ph. The drawback of the strict method is that the numberof blocked tasks will increase in the cases where chasing would be required. It may alsorestrict concurrency because it has an additional control dependency. None of thesemethods is clearly superior to the other in all contexts. Fortunately, both methods cancoexist in the same system as long as the two types of placeholders are distinguishedand the appropriate touching and determining mechanisms are called. Having two typesof placeholders is useful to implement legitimacy (see Section 2.8.4).Unless otherwise noted, the strict method will be assumed because it is conceptuallysimpler (i.e. determined placeholders are guaranteed to have a non-placeholder value)and it gives a shorter code sequence for inline calls to TOUCH.2.5.5 Critical SectionsVarious implementation details have been omitted from the above description. Oneproblem that must be addressed is the possible race conditions in these algorithms.

42 CHAPTER 2. BACKGROUNDSeveral processors may simultaneously attempt to mutate the work queue or a place-holder. To preserve the integrity of these data structures, some operations must appearto be mutually exclusive. This is usually done by introducing locks in the data struc-tures to control access to them. Spin locks are su�cient because the critical sectionsconsist of only a few instructions. The operations that must be protected are1. Testing and removing a task from the work queue (when a processor is idle).2. Adding a task to the work queue (when a future is evaluated).3. Checking the state of a placeholder and adding a task to a placeholder's waitingqueue (when an undetermined placeholder is touched).4. Changing the state and value of a placeholder (when a placeholder gets deter-mined).Garbage collection adds another complication. If the value of placeholders is assumedto be immutable, it is perfectly valid to replace any reference to a determined placeholderby the placeholder's value. This optimization, called splicing , can in principle be doneat any moment but usually it is performed by the garbage collector. The advantageof splicing is that subsequent calls to TOUCH will be faster because the dereferencing ofthe placeholder is avoided (this is particularly helpful to reduce the cost of chasing).Consequently, the implementation must prevent the splicing of the placeholder currentlybeing manipulated. Several techniques are possible such as temporarily disabling thegarbage collector or temporarily marking the placeholder as non-spliceable. The test atline 3 in TOUCH-undet is needed to account for the splicing of the touched placeholder.Aside from this test, the code in Figure 2.4 does not include the operations required toprevent splicing.2.5.6 Centralized vs. Distributed Work QueueA potential source of ine�ciency in the scheduler is caused by the centralized workqueue accessed by all processors. The contention for the work queue may become animportant bottleneck as the number of processors is increased. Each access to the workqueue is mutually exclusive so all operations on the work queue get sequentialized. Thetime it takes to add and remove a task from the work queue puts an upper bound onthe rate at which tasks can be created and resumed. Clearly, it would be preferable ifthis rate scaled up with the number of processors.

2.6. FAIRNESS OF SCHEDULING 43A common solution is to distribute the work queue. Each processor has its own workqueue which it uses to make tasks runnable. These work queues are accessible from allprocessors. When a processor is looking for work, it �rst looks for runnable tasks inits own work queue and goes on to search the work queue of other processors only ifits work queue is empty. This reduces contention and remote memory tra�c and alsoimproves locality since tasks restarted from the local work queue are likely to have beencreated locally.2.6 Fairness of SchedulingAnother important consideration is fairness of scheduling. In a fair system, a task'scomputation is guaranteed to progress as long as the task is runnable. In other words,there is a �nite amount of time between a task becoming runnable and it actuallyrunning on a processor.Fairness can be implemented by preventing a task from running longer than a certainstretch of time (quantum) without giving all other runnable tasks a chance to run aswell. The scheduler e�ectively cycles through all runnable tasks giving each of them aquantum of time to advance their computation. At regular time intervals all processorsreceive a preemption interrupt to signal that the quantum has expired. Upon receivingthis interrupt, a processor suspends the currently running task, puts it at the tail of thework queue and then resumes the task at the head.In a system with a centralized work queue at least min(n; r) tasks are resumed everyquantum (where n is the number of processors and r is the number of runnable tasks)6.It follows that a task will start running in no more than br0=nc quantums, where r0 isthe number of runnable tasks at the time the task was made runnable. If r0 does notvary much, the tasks will get an even share of the processors (roughly the power of n=r0processor per task if r0 > n).In a system with a distributed work queue at least one task is resumed from everywork queue every quantum. A task will thus start running in no more than q + 1quantums, where q is the length of the local work queue at the time the task was maderunnable. Thus, the processing power given to tasks residing on a processor is evenlydistributed but the processing power of tasks residing on di�erent processors may besubstantially di�erent.6It is assumed that the quantum is large enough so that the e�ects of contention on the work queueare negligible.

44 CHAPTER 2. BACKGROUNDThe original Multilisp semantics [Halstead, 1985] had a scheduling policy that wasfair as long as all tasks were of �nite duration. The only guarantee made by the schedulerwas that a runnable task would run if there were no other runnable tasks. Under the�nite task assumption, this implies that all tasks will eventually run. Finiteness isa reasonable assumption for Multilisp programs since it is common to design parallelprograms by annotating terminating sequential programs with futures. In sequentialprograms, all expressions evaluated correspond to mandatory work that needs to bedone to compute the result of the program. Any execution order for the tasks willcompute the correct result as long as it respects the basic ordering imposed by thestrict operations. However, there are special situations where true fairness is useful.Programs are sometimes organized around tasks that conceptually never terminate.One example is the client/server model where each task implements a particular servicefor some clients. Server tasks receive requests from the clients and send back a reply foreach request serviced. Each server task is in an in�nite receive-compute-respond loop.Without a fair scheduler, a set of server tasks could monopolize all the processors ifthey continually have requests to service. Other server tasks would never get a chanceto run. A multi-user Multilisp system can be viewed as an instance of this model (theclients are the users and the server tasks are the read-eval-print loops).Another application of fairness is to support speculative computation. A computa-tion is speculative if it is not yet known to contribute to the program's result. Speculativecomputation arises naturally in search problems where multiple solutions may exist butonly one is needed. Several search paths can be explored in parallel and as soon as asolution is found the search can be stopped. This form of computation, which Osborne[Osborne, 1989] calls multiple approach speculative computation, is known in parallellogic programming as OR-parallel . If the likelihood of �nding a solution in any givenpath is fairly similar, then it is reasonable to spend an equal e�ort searching each path.This is easily approximated by a fair scheduler which timeslices tasks from a centralizedwork queue.However the solutions are typically not distributed equally among the search paths.The paths that are likely to lead quickly to a solution should be searched more eagerlythan others. Thus a system aimed at general speculative computation should providesome �ner level of control over the scheduler (such as a mechanism to assign prioritiesto the speculative tasks). Because there is currently no consensus as to which levelof control is best, this thesis does not investigate the implementation of such prioritymechanisms. Fairness of scheduling plays a minor role in this thesis. Chapter 3 showsthat lazy task creation can support fairness.

2.7. DYNAMIC SCOPING 452.7 Dynamic ScopingMultilisp uses static scoping as its primary variable management discipline. Staticscoping has the advantage of clarity because the identity of a variable only depends onthe program's local structure, not its runtime behavior. With the exception of globalvariables, a variable can only be accessed by an expression textually contained in thebinding form that declares the variable.Static scoping is not well suited for certain applications. Sometimes it is necessaryto pass an argument to one or several procedures far down in the call tree (such as thedefault output port or the exception handler). Such arguments must either be passed inglobal variables or be passed as explicit arguments from each procedure to the next inthe call chain. The �rst solution is not appropriate in a parallel system because of thepossible conict between tasks. The second solution clearly lacks modularity becauseeach procedure must be aware of the arguments passed from parent procedures to allits descendants.Dynamic scoping o�ers an elegant solution. A dynamically scoped variable can beaccessed by any computation performed during the evaluation of the body of the bindingform that declares the variable. In a sense, dynamic variables are implicit parametersto all procedures. The set of bindings (the dynamic environment) is passed implicitlyby each procedure to its children in the call tree. A given binding is thus only visible inthe call tree that stems from the binding form with the exception of the subtrees wherethe binding is shadowed by a new binding to the same variable.There are several possible constructs to express dynamic scoping. For the sakeof simplicity two special forms are used here7. The form (dyn-bind id val body)introduces a new binding of the dynamic variable id to the value val for the durationof the body. The form (dyn-ref id) returns the value of the dynamic variable id inthe current dynamic environment. Note that id is not evaluated and that lexicallyscoped variables and dynamic variables exist in separate namespaces. Figure 2.6 showsa typical use of dynamic scoping to implement a simple exception system. The dynamicvariable EXCEPTION-HANDLER contains a single argument procedure that is called withan error message when an error is detected. The procedure catch-exceptions takes athunk as argument and calls it in a dynamic environment where EXCEPTION-HANDLERis bound to the continuation of catch-exceptions. Thus, the call to the exceptionhandler in raise-exception will immediately exit from catch-exceptions with theerror message as its result (for example, the call (map-sqrt '(1 -2 5)) returns the7An obvious extension would be an assignment construct.

46 CHAPTER 2. BACKGROUND(define (catch-exceptions thunk)(call-with-current-continuation(lambda (abort)(dyn-bind EXCEPTION-HANDLER abort (thunk)))))(define (raise-exception msg)((dyn-ref EXCEPTION-HANDLER) msg))(define (square-root x)(if (negative? x)(raise-exception "domain error")(sqrt x)))(define (map-sqrt lst)(catch-exceptions(lambda () (map square-root lst))))Figure 2.6: Exception system based on dynamic scoping and call/cc.string "domain error").An implication of the above semantics is that dynamic environments are associatedwith continuations. All continuations carry with them the dynamic environment thatwas in e�ect when they were created (i.e. due to the evaluation of some subproblemcall). When a continuation is invoked, the captured dynamic environment becomesthe current dynamic environment. Dyn-bind creates a new dynamic environment forthe evaluation of the body simply by adding a new binding to the current dynamicenvironment. This new binding remains in e�ect only for the duration of the bodybecause the continuation invoked to exit the body (normally dyn-bind's continuationbut possibly some continuation captured with call/cc outside the body) will restore thedynamic environment to the appropriate value. In implementation terms, this impliesthat each subproblem call must save the dynamic environment on the stack prior to thecall and restore it upon return.Because the save/restore pair is added to all subproblem calls, this may result in anunacceptably high overhead. Notice that in normal situations the dynamic environmentdoes not actually change when a continuation is invoked. Only dyn-bind's continuationand continuations captured by call/cc might be invoked from a di�erent dynamicenvironment. An alternative approach is thus to put the save/restore pair only aroundthe evaluation of dyn-bind's body and around calls to call/cc. This approach o�ers

2.7. DYNAMIC SCOPING 47more e�cient subproblem calls but also has the unfortunate consequence that call/ccand dyn-bind are no longer properly tail-recursive. Call/cc's procedure argumentand dyn-bind's body are not reductions because their continuation contains a newcontinuation frame8. The loss of proper tail recursion for dyn-bind is probably notvery troublesome (most Lisp systems implement the dynamic binding construct withsimilar save/restore pairs). However it is harder to justify for call/cc.To preserve call/cc's tail recursive property, call/cc can be rede�ned as shownin Figure 2.7. It is assumed that the state of the dynamic environment is maintainedin a global data structure accessible through the procedures current-dyn-env andcurrent-dyn-env-set!. The implementation exploits the invariant that procedures al-ways invoke their implicit continuation with the same dynamic environment that existedwhen they were called. Thus a normal return from the call to proc in call/cc invokesthe captured continuation with the correct dynamic environment. An abnormal returnto cont is only possible by calling the closure passed to proc. This closure explicitlyrestores the correct dynamic environment before invoking the captured continuation.Parallel processing raises additional implementation issues. In order for the futureconstruct's semantics to be as non-intrusive as possible, the dynamic environment usedfor the evaluation of the future's body should be the same as the one in e�ect whenthe future itself was evaluated. Consequently, the parent task must save the dynamicenvironment into the child task and the child task must restore this environment whenit starts running. This adds an overhead to task creation, suspension and resumption.Another issue is the representation of dynamic environments. A popular approach inuniprocessor Lisps is shallow binding . The environment is represented as a table of cells.Each cell holds the current value of a dynamic variable. A new binding is introducedby saving the current value of the cell on a stack and assigning the new value to thecell. Upon exit from the binding construct, the previous binding is restored by poppingthe old value o� the stack. Thus dyn-bind and dyn-ref are constant time operations.However, saving the entire dynamic environment (i.e. the operation current-dyn-env)is expensive because it implies a copy of the binding table. An alternative approach(shown in Figure 2.7) is deep binding . The dynamic environment is represented as astack of bindings (i.e. an association list). Dyn-bind simply adds a new binding at thehead of the list and dyn-ref searches the list for the most recent binding of the variable.Unfortunately the cost of dyn-ref is O(b) where b is the number of bindings in theenvironment. This may be expensive if b is large and the variables looked up are those8The following procedure will thus run out of memory when it is called(define (loop) (call-with-current-continuation (lambda (k) (loop))))

48 CHAPTER 2. BACKGROUND
(define (call-with-current-continuation proc)(primitive-call-with-current-continuation(lambda (cont)(proc (let ((env (current-dyn-env)))(lambda (val)(current-dyn-env-set! env)(cont val)))))))The special forms dyn-ref and dyn-bind expand into:(dyn-ref id) �! (current-dyn-env-lookup 'id)(dyn-bind id val body) �! (begin(current-dyn-env-push! 'id val)(let ((result body))(current-dyn-env-pop!)result))De�nitions for deep binding:(define (current-dyn-env-lookup id)(cdr (assq id (current-dyn-env))))(define (current-dyn-env-push! id val)(current-dyn-env-set! (cons (cons id val) (current-dyn-env))))(define (current-dyn-env-pop!)(current-dyn-env-set! (cdr (current-dyn-env))))Figure 2.7: Implementation of dynamic scoping with tail recursive call/cc.

2.8. CONTINUATION SEMANTICS 49that were bound early9. On the other hand, current-dyn-env only requires a singlepointer copy so the overhead for call/cc and task operations is minimal. Deep bindingis adequate when dynamic variables are referenced infrequently, for example if theirmain purpose is to support the exception processing system. Yet another approach is torepresent environments with 2-3 or AVL search trees, thus permitting O(logn) cost fordyn-bind and dyn-ref, where n is the number of variables bound in the environment,and constant cost for current-dyn-env and current-dyn-env-set!. It isn't clearwhich of these last two representations is most e�cient in practice. The deep bindingapproach has been used in this work for simplicity but the implementation strategiesexplained in the next chapter are equally applicable to the search tree representation.2.8 Continuation SemanticsContinuations also present special problems in a parallel setting. It isn't clear what theterminal continuation of a child task should be. This continuation is the one that ispassed to the body of the future. In other words, what should be done with the valuereturned by the body? This is an important question because the approach chosen willspecify the behavior of �rst-class continuations in the presence of futures.2.8.1 Original SemanticsSeveral approaches have been proposed. In the original Multilisp de�nition [Halstead,1985] the body's value was used to determine the placeholder created for the futureand the task was simply terminated. This is the semantics implemented by the code inFigure 2.410.2.8.2 MultiScheme SemanticsMultiScheme adopted a subtly di�erent model for continuations. The child task andplaceholder created by a future are conceptually linked. The placeholder is called thegoal of the task and the task is the placeholder's owner 11. This linkage was introduced9E�ciency can be improved somewhat by adding a cache to hold the value of recently accessedvariables (for example see [Rozas and Miller, 1991]).10Multilisp was not designed to support �rst-class continuations so it isn't surprising that the originalsemantics does not interact well with them.11The term \motivated task" was used in [Miller, 1987].

50 CHAPTER 2. BACKGROUND(define (make-FUTURE thunk)(let ((res-ph (make-ph)))(let ((child (make-task(lambda () (end-body (thunk)))res-ph)))(queue-put! (work-queue) child)res-ph)))(define (end-body result)(let ((res-ph (task-goal-ph (current-task))))(if (test-and-determine! res-ph (TOUCH result))(idle)(error "placeholder previously determined"))))Figure 2.8: MultiScheme's implementation of the future special form.to permit the garbage collection of tasks. Finding the value of the future's body is seenas the task's sole reason of existence. Since the goal placeholder is the representativeof this value, the owner task can safely be terminated if the placeholder is known to beunnecessary for the rest of the computation.The implementation of this semantics is given in Figure 2.8. Note that the proce-dure make-task now takes two arguments: the continuation and the goal placeholder.Also note that end-body takes only one argument because the placeholder to determineimplicitly comes from the task executing end-body (i.e. the current task). The goalplaceholder is now embeded in the child task instead of the terminal continuation (asis done in the original semantics). This is an important distinction because a task canreplace its current continuation by a completely di�erent one by calling a continuationcreated by call/cc. However, the goal placeholder never changes. Interestingly, theoriginal and MultiScheme implementations are equivalent in the absence of call/cc.This is because in such a case the only task that can execute a given continuation isthe task created with that continuation. Taking the placeholder to determine from thecontinuation (as in the original semantics) or from the task object (as in MultiScheme)will give the same placeholder because of the one-to-one correspondence between con-tinuations and tasks.Figure 2.9 gives an example where the two implementations di�er. Here two tasks(T1 and T2) are involved in addition to the root task. The corresponding placeholders arePh1 and Ph2. The call to call/cc binds k to T1's continuation. Thus, k corresponds toa call to end-body. With the original implementation of futures, k contains an implicit

2.8. CONTINUATION SEMANTICS 51(define x(TOUCH (FUTURE1(call-with-current-continuation(lambda (k)(+ 1 (TOUCH (FUTURE2 (k 0)))))))))Figure 2.9: A sample use of futures and call/cc.reference to Ph1. When T2 calls k, Ph1 gets determined to 0. Following this, the roottask can return from the �rst TOUCH and consequently x gets bound to 0. Note that T1is suspended inde�nitely on the second TOUCH because Ph2 never gets determined.With MultiScheme's implementation of futures, a call to k determines the goal place-holder of the current task. Since it is T2 that is calling k, Ph2 gets determined to 0. T1then proceeds from the second TOUCH, adds 1 and calls k with 1 (the lambda-expression'sbody implicitly calls k). This time, it is T1 that is calling k, so Ph1 gets determined to1. Finally, the root task can return from the �rst TOUCH, binding x to 1.2.8.3 Katz-Weise ContinuationsA nice feature of futures is that, in typical purely functional programs, they can be addedaround any expression without changing the result of the program. In other words,futures are equivalent to an identity operator when only the result of the computationis considered. Futures only a�ect the order of evaluation. This suggests an attractivemode of programming: �rst write a correct functional program without any futures andthen explore various placements of futures to turn the program into an e�cient parallelone.Unfortunately the original and MultiScheme semantics for continuations do not per-mit this for all purely functional programs because inserting futures in a program thatuses call/cc can alter the result computed. For MultiScheme, this should be clearfrom the previous example. For the original semantics all is �ne as long as the futurebody's continuation is invoked at most once, including the normal return from the body.To explain what happens when the continuation is called multiple times, consider thecontrived expression in Figure 2.10. In this expression, the continuation created bycall/cc is called exactly twice. Assume for the moment that the TOUCH and FUTUREoperations are not present. Y will get bound to the continuation created by call/cc;the continuation that takes a value and binds y to it. Since at this point y is not a

52 CHAPTER 2. BACKGROUND(define x(let ((y (TOUCH (FUTURE(call-with-current-continuation(lambda (k) k))))))(if (number? y)y(y 123))))Figure 2.10: A future body's continuation called multiple times.number, the continuation is restarted with 123 thus binding y to 123. Since y is now anumber it is returned and x gets de�ned to 123.When TOUCH and FUTURE are present, an undetermined placeholder will be createdand a child task created to evaluate the call/cc. The continuation captured here(i.e. k) corresponds to the task's continuation, that is a call to end-body. The place-holder will get determined to this continuation and, through the TOUCH, y gets boundto it. However, when this continuation is called an attempt is made to determine theplaceholder a second time (this time with 123) and then to terminate the current task.This is clearly an error because a placeholder cannot represent more than one value anddeadlock would occur (since all tasks would have terminated).An interesting implementation of futures that solves this problem was proposed byKatz and Weise [Katz and Weise, 1990]. The idea is to preserve the link between thefuture body's continuation and the future's continuation. On the �rst return to thebody's continuation, the placeholder gets determined and the task is terminated (as inthe original semantics). However, on every other return the body's continuation actsexactly like the future's continuation, as if the future had never existed.2.8.4 Katz-Weise Continuations with LegitimacyUnfortunately, this approach does not solve all interaction problems between �rst-classcontinuations and futures. It is still possible to write purely functional programs that donot return the same value when futures are added. Consider the program in Figure 2.11which is a simpli�ed form of exception processing. If the future special form is notpresent, a value of 0 is returned because the call (abort 0) is done �rst, bypassing thebody of the let and the binding of dummy. With the future, a child task is createdto evaluate (abort 0) and the parent task implicitly returns 1 to abort. Each task

2.8. CONTINUATION SEMANTICS 53(call-with-current-continuation(lambda (abort)(let ((dummy (FUTURE (abort 0))))1)))Figure 2.11: Exception processing with futures.exits the call/cc with its own belief of the result: the parent task with 1 and the childtask with 0. In general, this means that multiple tasks may return to the program'sroot continuation. One of these tasks has the right result (i.e. the same result as asequential version of the program) but which task? Choosing the �rst task to arrive atthe program's root continuation is not a valid technique because of the race conditioninvolved.The solution proposed in [Katz and Weise, 1990] introduces the concept of legiti-macy . A particular sequence of evaluation steps (a thread) is legitimate if and only if itis executed by the sequential version of the program. Legitimacy is thus a characteristicthat depends on the control ow of the program. It can be derived from 1) the fact thatthe root thread is legitimate and 2) the causality rules inherent in the sequential subsetof the language. In particular, if a thread is legitimate and it returns from expr withthe value v, then the thread corresponding to the execution of expr 's continuation withthe value v is also legitimate. This rule naturally extends to the future special formby attaching legitimacy to tasks: after a child task is spawned by (FUTURE expr), theparent task is legitimate if and only if the corresponding placeholder gets determinedby a legitimate task. The parent task's legitimacy is thus equal to the legitimacy ofthe task that gets to determine the placeholder. Note that the child task inherits thelegitimacy of its parent at the moment of the task spawn. As an example, consider thefollowing program which involves three tasks (T1, T2, and the root task Troot)(let* ((x (FUTURE1 expr1))(y (FUTURE2 expr2)))expr3)After spawning the tasks T1 and T2 the root task will evaluate expr3. The root taskis legitimate if and only if the �rst task to return from expr2 is legitimate. This factcan be expressed by the constraintLegit(Troot) = Legit(Det(PhT2))That is, the legitimacy of the root task is equal to the legitimacy of the task that

54 CHAPTER 2. BACKGROUNDdetermines the placeholder created for T2. Similarly, task T2 is legitimate if and only ifthe �rst task to return from expr1 is legitimateLegit(T2) = Legit(Det(PhT1))In the event that it is T2 that returns �rst from expr2 (i.e. Det(PhT2) = T2), theroot task's legitimacy will become equal to the legitimacy of the �rst task returningfrom expr1. That is Legit(Troot) = Legit(T2) = Legit(Det(PhT1))This illustrates that a task's legitimacy at a given point in time is represented by achain that models the legitimacy dependencies inferred up to that point. Initially thelinks between tasks are unknown and, as tasks terminate (and determine placeholders),the links get �lled in. The gaps in the chain correspond to future bodies that have notyet returned normally. Abnormal exits from the body of a future can create independentchains that never get connected to the legitimate chain. Note that there is at all timesexactly one legitimate task in the system. All other tasks can be viewed as beingspeculative tasks because there is no guarantee that they actually contribute to thecomputation at hand. At the moment of its death, the legitimate task will turn one ofthe speculative tasks into the legitimate task.2.8.5 Implementing LegitimacyAn implementation of the Katz-Weise semantics with legitimacy is shown in Figure 2.12.The legitimacy chain is conveniently implemented with placeholders. Each task has alegitimacy ag represented by a placeholder. The root task is initially legitimate so itslegitimacy ag is a non-placeholder. When a child task is created its legitimacy ag istaken from the parent task. Since the parent task is going to invoke the future's con-tinuation, its legitimacy ag is replaced by a newly created undetermined placeholder,leg-ph, which represents the as of yet unknown legitimacy of the �rst task to returnfrom the future's body (which might not be the child). Leg-ph must also be embededin the body's continuation. When this continuation is returned to, which correspondsto a call to end-body, the result placeholder gets determined and the legitimacy chainis extended by unifying leg-ph with the current task's legitimacy ag.

2.8. CONTINUATION SEMANTICS 55(define (make-FUTURE thunk)(call-with-current-continuation(lambda (k)(let ((res-ph (make-ph))(leg-ph (make-ph))(parent (current-task)))(let ((child (make-task(lambda () (end-body k res-ph leg-ph (thunk)))(task-legitimacy parent))))(task-legitimacy-set! parent leg-ph)(queue-put! (work-queue) child)res-ph)))))(define (end-body k res-ph leg-ph result)(if (test-and-determine! res-ph (TOUCH result))(begin(determine! leg-ph (task-legitimacy (current-task))) ; 1(idle))(k result)))(define (speculation-barrier)(TOUCH (task-legitimacy (current-task))))Figure 2.12: The Katz-Weise implementation of futures.2.8.6 Speculation BarriersA straightforward use of legitimacy is to prevent speculative tasks from terminatingthe program and only allowing the legitimate task to do this. This speculation barriercan be accomplished simply by touching the task's legitimacy ag at the program'sterminal continuation. Conceptually, this touch walks down as far as it can in thetask's legitimacy chain and blocks until the task is known to be legitimate. Only thelegitimate task is allowed to proceed beyond the touch, the other tasks are suspendedinde�nitely.Using a speculation barrier at the very tail of a program guarantees that the correctresult will be returned but it does little to prevent speculative tasks from consumingprocessing resources. It is possible to add speculation barriers at well chosen places inthe program to limit the extent of speculative parallelism. Even though this reduces theamount of parallelism in the program, it may yield a more e�cient program because ahigher proportion of the time will be spent doing mandatory work. A case where thismight be useful is given in Figure 2.13. For simplicity, it is assumed that map processes

56 CHAPTER 2. BACKGROUND(define (map-sqrt lst)(call-with-current-continuation(lambda (abort)(map (lambda (x)(FUTURE(if (negative? x) (abort x) (sqrt x))))lst))))(define (map-sqrt-with-barrier lst)(let ((result (map-sqrt lst)))(speculation-barrier)result))Figure 2.13: An application of speculation barriers.the values from head to tail12. For each value in the list, map-sqrt spawns a task tocompute the square root of the value and returns a list of the results. In a sequentialversion of the program (i.e. if the future is absent), the �rst negative value is returned bymap-sqrt. In the parallel version, the root task and all tasks processing negative valueswill return from map-sqrt. Map-sqrt-with-barrier obtains the same result as thesequential version by using a speculation barrier after the call to map-sqrt. Only thetask processing the �rst negative value will be legitimate and will cross the barrier. Sincethis task bypasses the determining of its result placeholder, its parent's legitimacy agwill remain undetermined forever. All the tasks spawned by the parent and its childrenafter the legitimate task will have undetermined legitimacy ags. Consequently, thesetasks will get suspended when they reach the barrier.2.8.7 The Cost of Supporting LegitimacyThe cost of supporting legitimacy is an important issue. Speculation barriers are cer-tainly useful to express some programs, but many programs have no need for them, inparticular those that only contain mandatory tasks. Consequently, it is important toevaluate the cost of supporting legitimacy in both contexts.For programs which contain speculation barriers, one concern is the space occupiedby tasks suspended at barriers. A careful study of Figure 2.12 reveals that these tasks areonly retained if they might become legitimate. These tasks are suspended on leg-ph12The Scheme language does not impose a particular ordering.

2.8. CONTINUATION SEMANTICS 57which is only accessible through the child's terminal continuation. In the previousexample (Figure 2.13) this continuation was discarded when abort was called by thechild. Since leg-ph is unreachable it will eventually get garbage collected along with thetasks suspended on it. On the other hand, if the child's continuation had been savedprior to the call to abort (by calling call/cc and saving the continuation away), itwould not be possible to garbage collect the suspended tasks because leg-ph would stillbe reachable. This is clearly the correct behavior since any number of the suspendedtasks could still become legitimate (for example, if the saved continuation is invoked bythe legitimate task).Two other costs are legitimacy testing and propagation. The cost of legitimacypropagation is particularly important because it is paid even by programs that do notuse legitimacy (or that use it infrequently). In Figure 2.12, the current task's legitimacyplaceholder is propagated directly to the next task in the chain (line 1 in end-body).Legitimacy propagation is thus constant cost but legitimacy testing can be expensive.A program which spawns n mandatory tasks, thus creating a legitimacy chain with nplaceholders, will require O(n) time to test legitimacy at the program's termination (thetask spawning strategy, whether it is a sequential loop or DAC loop, is irrelevant).Another approach is to touch the current task's legitimacy (on line 1) before propa-gating it to the next task. In other words the task waits to be legitimate before markingthe next task as legitimate. Legitimacy testing is then constant cost but legitimacy prop-agation is expensive for two reasons: it is inherently sequential and it produces frequenttask switches. Because of the touch, a particular legitimacy placeholder in the chaincan only be determined after the previous legitimacy placeholder has been determined.This implies that the last task will at best be marked as legitimate
(n) time after the�rst task. Also, any task terminating before its predecessor in the chain will have to besuspended and eventually resumed, just to set the next legitimacy placeholder.A better strategy is to shrink the legitimacy chain as the computation progresses.All the links in the chain will have to be followed but this can be done in parallel.The method uses a \collapse" operation that walks a chain of placeholders and returnsits tail element (i.e. either an undetermined placeholder or a non-placeholder). Thisoperation is added to line 1 so that the current task propagates its collapsed legitimacychain to the next task. Nothing is gained if a task terminates before its predecessorbut if it terminates afterwards, one or more links in the chain will get removed for thebene�t of the successor tasks. But how frequently will it be possible to collapse thechain?Clearly, the order of task termination has a direct inuence on the collapsing of the

58 CHAPTER 2. BACKGROUND(define (fj1 n)(if (= n 0)1(let* ((l (FUTURE (fj1 (- n 1))))(r (fj1 (- n 1))))(+ (TOUCH l) r)))) (define (fj2 n)(if (= n 0)1(let* ((l (FUTURE (fj2 (- n 1))))(r (FUTURE (fj2 (- n 1)))))(+ (TOUCH l) (TOUCH r)))))~ ~~~ ~~ ~~........��� �SSw HHHHHY ��� �SSw2 341 86 75 {{{{ { { {{ {{{ { { {{�AAU ZZZ} �AAUZZ~ SSSPPPPi XXXXXz ZZ~ AAU�ZZZ}AAU�...........1 23 47 8 910 11 121314156 5Figure 2.14: Fork-join algorithms and their legitimacy chain in the absence of chaincollapsing.chain. An important case to consider is fork-join parallel algorithms which impose astrict termination order on tasks. In fork-join algorithms, a parent task P sequentiallyspawns a certain number of children (C1 to Ck) and later touches the result of the chil-dren before terminating. In the absence of collapsing, the legitimacy chain correspondsto a post�x walk of the spawning tree. Figure 2.14 illustrates this for two fork-joinprocedures (fj1 and fj2). Each node corresponds to a task in the spawning tree. Thenodes are numbered according to a post�x walk of the tree (the left child is spawned�rst) and the arrows represent links of the legitimacy chain (e.g. task 8 is legitimate iftask 7 is legitimate). Note that the link coming out of task i+ 1 is only �lled in whentask i terminates. Due to the fork-join nature of the program, all tasks in the spawningtree rooted at task i will have terminated when task i terminates. This implies thatwhen task i terminates, all links of the legitimacy chain enclosed in task i's spawningtree are known and can be collapsed. In the worst case, this collapsing will stop at Li,the leftmost task in task i's spawning tree. In other words, task i will set task i + 1'slegitimacy link to Li. But, as shown in Figure 2.15, if i = Cj (i.e. i is the jth child of P),then either i+ 1 = P or i+ 1 = LCj+1 . It follows that the collapsing of the links in thelegitimacy chain between P and LP takes at most k sequential steps after all childrenare done. Given that the spawning of the children by P takes
(k) time anyway, thecost of propagating legitimacy does not change the complexity of the program. There isonly a constant overhead per task created. This overhead is rather low since it amounts

2.9. BENCHMARK PROGRAMS 59
~ ~ ~

~~ ~ ~q q q������ BBBBBB ������ BBBBBB ������ BBBBBB
.................��..........................I
@@@@@@@@BBBBBN��..........................IC1 Ck�1 CkP

Figure 2.15: General case of legitimacy chain collapsing for fork-join algorithms.to following one link of the legitimacy chain per task spawned. This result holds for anyfork-join algorithm regardless of how well balanced the spawning tree is (including thefork-join DAC procedures fj1 and fj2 above as well as the \linear" fork-join procedurepmap in Section 2.4.2).2.9 Benchmark ProgramsIn order to guide the design process and provide a basis for evaluating and compar-ing the performance of the implementation strategies, it is important to identify thesalient characteristics of the target applications. Following common practice, a set ofbenchmark programs were selected as representives of \typical" applications of Multil-isp. These benchmark programs are used throughout the thesis for various evaluationpurposes.The biggest aw of these benchmarks is their small size. Real applications willprobably be much longer and more complex. Characteristics such as locality of reference,paging, task granularity and available parallelism may be substantially di�erent. Smallprograms are no substitute for the real thing. They can only serve as rough models ofreal applications. The main advantage of small programs is that they usually stress awell de�ned part of the system, so the measurement can be interpreted more readily.Both sequential and parallel benchmarks were used. The sequential benchmarks aremostly taken from the Gabriel suite [Gabriel, 1985] which has traditionally been used

60 CHAPTER 2. BACKGROUNDto evaluate implementations of Lisp. To these benchmarks were added four sequentialbenchmarks: compiler (the Gambit compiler), conform (a type checker), earley (aparser) and peval (a partial evaluator). These are sizeable programs that achieve someuseful purpose (compiler contains more than 15,000 lines of Scheme code). Note thatfor some measurements it was not possible to run compiler due to lack of memory.There are twelve parallel benchmarks. Half of these were originally written in Mul-T by Eric Mohr as part of his PhD thesis work [Mohr, 1991]. To these were addeda few classical parallel programs (matrix multiplication, parallel pre�x and parallelreduction) and programs based on pipeline parallelism (polynomial multiplication andquicksort). A general description of the parallel benchmarks is given next. None of thebenchmarks require the Katz-Weise continuation semantics or legitimacy (Chapter 5evaluates their cost in another way). Appendix A contains some additional detailsincluding the source code and compilation options. Appendix B contains executionpro�les for the benchmarks. These indicate the activity of the processors as a functionof time, thus allowing a better visualization of the program's behavior.2.9.1 abisortThis program sorts n = 16384 integers using the adaptive bitonic sort algorithm [Bilardiand Nicolau, 1989]. This algorithm is optimal in the sense that, on the PRAM-EREW13theoretical model, it runs in O(n lognp) time, where p is the number of processors and1 � p � n2blog log nc . To achieve this performance, abisort stores the sequence of elementsin a bitonic tree which is a full binary tree with the property that many elements can belogically exchanged by a small number of pointer exchanges. To sort a tree, both subtreesare �rst sorted recursively in parallel and then they are merged. The advantage of thisalgorithm over mergesort is that the merging of bitonic trees can be done in parallel.Both the recursive sorting phase and the merging phase are based on parallel fork-joinDAC algorithms. Abisort puts high demands on the memory interconnect because itfrequently references and mutates the shared bitonic tree data structure.2.9.2 allpairsThis program computes the shortest paths between all pairs of n = 117 nodes using aparallel version of Floyd's algorithm. The input is a square distance matrix D whereDij is the length of the edge between nodes i and j. The algorithm goes through n13Parallel Random Access Machine with Exclusive Read Exclusive Write memory.

2.9. BENCHMARK PROGRAMS 61steps, each of which updates D in place based on its current state. At the beginning ofthe kth step, Dij represents the length of the shortest path from i to j that does notgo through any node greater or equal to k. The update operation consists of replacingfor each possible i and j, Dij by Dik +Dkj if that value is smaller. Since Dkk is always0, neither row k or column k of D will change during the kth step. Consequently, allupdate operations of a given step can be done concurrently. Parallelizing both the loopon i and j would have resulted in an unnecessarily �ne task granularity so only theoutermost of the two loops was done in parallel (by a parallel fork-join DAC loop).The computation thus consists of a sequence of 117 steps, each of which contains 117tasks. The execution pro�le for this program looks like a \comb" where each \tooth"corresponds to one step of the outer loop. Allpairs has the coarsest task granularityand the highest run time of all the benchmarks.2.9.3 fibThis program computes F25, the 25th �bonacci number, using the straightforward (butobviously ine�cient) doubly recursive algorithm. It is a very compute intensive bench-mark which does not reference any heap allocated data. Fib is interesting to examinebecause it can serve as a model for �ne grain fork-join DAC algorithms. Fib has the�nest task granularity of all the benchmarks. The spawning tree is fairly bushy butis not perfectly balanced. The imbalance follows the golden ratio: each subtree hasroughly 62% more tasks on the fat branch than on the other branch.2.9.4 mmThis program multiplies two matrices of integers (50 by 50). The standard algorithmwith three nested loops is used. All these loops can be parallelized but only the twooutermost loops were turned into parallel fork-join DAC loops. The program thusinvolves 2500 fairly coarse grain tasks, each of which is in charge of computing one ofthe entries in the result matrix.2.9.5 mstThis program computes the minimum spanning tree of an n = 1000 node graph. Aparallel version of Prim's algorithm is used. The input is a symmetric distance matrixD where Dij is the length of the edge between node i and node j. The algorithm

62 CHAPTER 2. BACKGROUNDconstructs the minimum spanning tree incrementally in n� 1 steps. It starts with a setof nodes containing a single node and at each step it adds to this set the node not yetin the set that is closest to one of the nodes in the set. In order to �nd the closest nodequickly, each node not yet in the set remembers the shortest edge that connects it to theset. This \shortest connecting edge" must be recomputed when a new node is addedto the set. The kth step is a loop over n � k nodes that �rst recomputes each node'sshortest connecting edge based on the last node added to the set and then �nds theshortest of these edges. Mst performs this loop in parallel using a parallel fork-join DACloop. Note that the degree of parallelism decreases with time (this is clearly visible inthe execution pro�le). The kth step involves n � k tasks.2.9.6 polyThis program computes the square of a 200 term polynomial of x (with integer coe�-cients). The resulting polynomial is then evaluated for a certain value of x. This en-sures that the computation of all coe�cients has �nished. Polynomials are representedas a list of coe�cients. The product of two polynomials P and Q with coe�cients(P1; : : : ; Pn) and (Q1; : : : ; Qm) is obtained by �rst computing the product of P andQ0 = (Q2; : : : ; Qm) and then adding the result shifted by one position to P scaled byQ1. The following diagram shows the unfolded recursion for computing R = PQ whenn = 4 and m = 3 P1Q3 P2Q3 P3Q3 P4Q3P1Q2 P2Q2 P3Q2 P4Q2P1Q1 P2Q1 P3Q1 P4Q1HHHjP �Q1 HHHj HHHj HHHH?HHHHHHHH?HHHjHHHjHHHj.....................j.....................j ? ? ? ?00 R1 R2 R3 R4 R5 R6P �Q3P �Q2This algorithm is coded with two loops. The inner loop does the operations cor-responding to a row in the above diagram. It combines the scaling and summing op-erations in a single multiply-and-add step. The result of the inner loop is the list ofcoe�cients to be added by the next row. Poly exploits the parallelism available in theinner loop in a way similar to the procedure pmap of Figure 2.2. The multiply-and-addstep corresponding to PiQj is done after spawning a task to process the rest of row j.Consequently, there is one task per multiply-and-add step. Moreover, the processing

2.9. BENCHMARK PROGRAMS 63of the rows is pipelined (the processing of row j + 1 can start before the processing ofrow j is �nished). An alternative algorithm is to spawn a task for each coe�cient of R.Task k computes Rk = min(k;m)Xj=max(1;k�m)Pk�j+1QjBecause it spawns fewer tasks (O(n+m) instead of O(nm)), this algorithm is prob-ably more e�cient. However, the �rst algorithm was chosen because it is more repre-sentative of applications with �ne grain pipeline parallelism.2.9.7 qsortThis program sorts a list of 1000 randomly ordered integers using a parallel versionof the Quicksort algorithm. The list's head element is used to construct two sublistswith the remaining elements: a list of the smaller values and a list of the not smallervalues. The two partitions are then sorted in parallel. The partitioning procedure usesa pipeline parallelism technique similar to the procedure pmap. The beginning of thepartition is available to the continuation before the rest of the list has been partitioned.This means that the sorting of the partition can start as soon as the �rst element ofthe partition is generated. Although there are more e�cient parallel sorting algorithms(e.g. abisort), qsort is interesting to consider because it combines pipeline parallelismand DAC parallelism.2.9.8 queensThis program computes the number of solutions to the n-queens problem, with n = 10.It is based on a recursive procedure which, given a placement of k queens on the �rstk rows, computes the number of legal ways the remaining n � k queens can be placed(a queen must not be on the same row, column or diagonal as another queen). Foreach valid position of a queen on row k + 1, the procedure spawns a task that calls theprocedure recursively with the new placement. The number of solutions in each branchis �nally summed up. Bit vectors are used to e�ciently encode the current placementof queens. As a consequence, queens does not access any heap allocated data structure.The call tree is not well balanced. Most branches of the search tree lead to dead endsquickly. Queens is a good model for combinatorial search problems such as the travelingsalesman problem and the searching of game trees.

64 CHAPTER 2. BACKGROUND2.9.9 rantreeThis program models the traversal of a random binary tree with on the order of 32768nodes. The branching factor is 50%. This means that the subnodes of a node are uni-formly distributed in the left and right branches. The average length of the paths fromthe root is 36. Path length roughly follows a normal curve distribution extending froma length of 1 to a length of 73. Like queens, rantree uses fork-join DAC parallelism,it does not access any heap allocated data and the call tree is not well balanced.2.9.10 scanThis program computes the parallel pre�x sum of a vector of 32768 integers. The vectoris modi�ed in place. A given element is replaced by the sum of itself and all preced-ing elements in the vector. Scan is based on the \odd-even" parallel pre�x algorithmillustrated by the following diagram? AAAU AAAU AAAU? ? ?? ? ? ?? ? ? ?AAAU ? AAAU ? AAAU ?
AAAU0 1 2 3 4 5 6 70 1 2 5 4 9 6 130 1 2 6 4 15 6 280 1 3 6 10 15 21 28Parallel Pre�x SumThe �rst step is to sum every element at an odd index with its immediate predecessor.The parallel pre�x algorithm is then applied recursively to the subvector consisting ofthe elements with an odd index. Finally every element with an even index is summedwith the preceding element (if it exists). When the recursion is unfolded, this algorithmconsists of two passes over the vector using tree-like reference patterns. In the Multilispencoding, the �rst pass is performed by the combining phase of a parallel fork-join DACloop whereas the second pass is performed by the dividing phase of a second parallelfork-join DAC loop. These two passes are clearly visible on the execution pro�le.

2.9. BENCHMARK PROGRAMS 652.9.11 sumThis program computes the reduction (using +) of 32768 integers stored in a vector.A parallel fork-join DAC algorithm is used. The vector is logically subdivided in two,both halves are then processed recursively in parallel and �nally the two resulting sumsare added. Sum is the �nest grain program that accesses heap allocated data. It servesas a model for �ne grain data parallel computations such as the reduction of a set ofvalues or the mapping of a function on a set of values.2.9.12 tridiagThis program solves a tridiagonal system of 32767 equations. The computation proceedsin two sequential phases: the reduction of the system by the method of cyclic reduction[Hockney and Jesshope, 1988] followed by backsubstitution. Cyclic reduction takes atridiagonal system of order n = 2k�1 (i.e. n equations over the variables x0 to xn�1) andproduces a reduced tridiagonal system of order (n+ 1)=2� 1. For each odd numberedequation i, the equations i� 1, i and i+ 1 are combined in such a way as to eliminatevariables xi�1 and xi+1. The resulting equation only contains variables xi�2, xi andxi+2 as shown hereTridiagonal system Reduced system0 + B0x0 + C0x1 = Y0A1x0 + B1x1 + C1x2 = Y1 =) 0 + B01x1 +C 01x3 = Y 01A2x1 + B2x2 + C2x3 = Y2A3x2 + B3x3 + C3x4 = Y3 =) A03x1 + B03x3 +C 03x5 = Y 03A4x3 + B4x4 + C4x5 = Y4... ...An�2xn�3 + Bn�2xn�2 +Cn�2xn�1 = Yn�2 =) A0n�2xn�4 +B0n�2xn�2 + 0 = Y 0n�2An�1xn�2 + Bn�1xn�1 + 0 = Yn�1The reduction process is applied to the reduced system until a single equation ofthe form bx(n+1)=2�1 = y is obtained (this takes k � 1 reductions). Note that becauseequation i will not be needed later it can be replaced by the new equation (in otherwords, the k� 1 reductions produce an equivalent set of n� 1 equations). The solutionto x(n+1)=2�1 is then backsubstituted to �nd the value of x(n+1)=4�1 and x3(n+1)=4�1 andso on recursively. After k backsubtitutions, the value of all variables is obtained.

66 CHAPTER 2. BACKGROUNDThe backsubstitution is implemented with a single tree-like DAC method. The re-ductions could be directly parallelized by performing a sequence of k�1 parallel fork-joinDAC loop, but tridiag uses a clever tree-like method that has fewer synchronizationconstraints.2.10 The Performance of ETCThe main problem with ETC is the high cost of manipulating heavyweight tasks. Thissection evaluates the best performance that can be expected of ETC for typical pro-grams.The total work performed by a Multilisp program when run on an n processormachine (i.e. the product of the run time and n) isTtotal (n) = Tseq Oexpose Oexploit (n)Tseq , Oexpose and Oexploit (n) all depend on the program. Tseq corresponds to therun time of a sequential version of the program (the parallel program with futures andtouches removed). The overhead of parallelism is split into two components14. Oexposerepresents the overhead of exposing the parallelism to the system. It reects the extrawork performed by the futures and touches in the program with respect to the sequentialversion. The product Tseq Oexpose is thus the run time of the parallel program on oneprocessor (i.e. Tpar). The extra work is the sum of the costs for each future and touchexecuted by the programOexpose = 1 + PNfuturei=1 Tfuture i +PNtouchi=1 Ttouch iTseqNfuture and Ntouch are respectively the number of futures and touches evaluatedby the program. Tfuture i and Ttouch i are respectively the cost of the ith future andtouch operations when only one processor is being used. In general, the costs of theseoperations are not constant because they depend on several factors including the taskscheduling order (which might vary from one run to the next), the compiler's ability to14 Overheads are expressed as multipliers. An overhead of x indicates that the amount of work (orother measure) is larger by a factor of x. Consequently, an overhead below 1 indicates a decrease. Theterm \an overhead of x%" is used to denote small overheads. It means an overhead of 1 + x100 .

2.10. THE PERFORMANCE OF ETC 67generate special case code for the operation given its particular location in the program,and the complexity of the task to be created, suspended or resumed. For evaluatingbest case performance, it is useful to de�ne a minimum cost for futures and touches:Tfuture min and Ttouch min respectively. This leads to the following lower bound onOexpose (expressed as a function of Tfuture min and the program's granularity)Oexpose � 1 + Nfuture Tfuture min +Ntouch Ttouch minTseq � 1 + Tfuture minGG is a measure of the program's granularity. It is the average amount of computationperformed by each task (G = TseqNfuture).The second part of the parallelism overhead, Oexploit (n), indicates how well theprogram's parallelism is exploited by the system. It corresponds to the additional workperformed when running the parallel program on an n processor machine. Oexploit (n)contains the following costs not present in Oexpose : memory interconnect contention andprocessor starvation (i.e. lack of tasks to run). Processor starvation is both dependent onthe program's degree of parallelism and on the scheduler's speed at assigning runnabletasks to idle processors. In addition, Oexploit (n) reects the variation in schedulingorder which might cause an increase or decrease in the number of tasks suspended andresumed. By de�nition, Oexploit (1) = 1.In ETC, Tfuture min is relatively high. If it is assumed that all tasks created even-tually run and terminate, Tfuture min is the cost of creating, starting and terminatinga heavyweight task15. The bare minimum work caused by the evaluation of a futurecorresponds to the following sequence(1) Creating a closure for the future's body.In make-FUTURE:(2) Creating the result placeholder, associated lock and waiting queue.(3) Creating the child's initial continuation.(4) Creating the child task object.(5) Locking the work queue.(6) Enqueuing the child on the work queue.(7) Unlocking the work queue.15 All tasks terminate in programs with mandatory tasks (those that perform all the work of theirsequential counterpart). This is the case for all the parallel benchmarks.

68 CHAPTER 2. BACKGROUNDIn idle:(8) Locking the work queue.(9) Dequeuing the child from the work queue.(10) Unlocking the work queue.(11) Restoring the child's continuation.In determine!:(12) Locking the result placeholder.(13) Setting the placeholder's value and determined? ag.(14) Checking for suspended tasks to reactivate.(15) Unlocking the placeholder.This sequence does not include the operations for dynamic scoping, Katz-Weisecontinuation semantics and legitimacy. A few tricks can be used to improve the e�ciencyof this sequence. The heap allocations of steps 1 through 4 can be combined to reducethe cost of checking for heap overow. In fact, nothing prevents the closure, placeholder,task object and initial continuation to be the same physical object. This reduces thee�ectiveness of garbage collection (all objects are retained for as long as any of themis reachable) but it does lessen the object formatting overhead. The use of local workqueues also permits some optimization of the locking and unlocking of the work queue.To simplify step 2, 13 and the touch operation, a special value can be assigned to theplaceholder's value slot to indicate that it is undetermined.Even with all these optimizations, the sequence and the associated control owinstructions will translate into a moderate number of instructions, probably around 50 to100 machine instructions. The performance of previous implementations of ETC seem tocon�rm this lower bound. The Mul-T system was carefully designed to minimize the costof ETC [Kranz et al., 1989]. When run on an Encore Multimax, Mul-T requires roughly130 machine instructions to implement the sequence (the actual cost depends on thenumber of closed variables, their location, etc.). Other compiler based systems requireeven more instructions. Portable Standard Lisp on the GP1000 [Swanson et al., 1988]takes 480 �secs (about 1440 instructions given that each processor gives out 3 MIPS)and QLisp on an Alliant FX/8 [Goldman and Gabriel, 1988] takes 1400 instructions.With this lower bound on Tfuture min it is possible to get a lower bound on Oexposefrom the value of G. The left part of Table 2.1 gives the value of G, Tseq , Nfuture andNtouch measured for the benchmark programs when run on the GP1000 with a singleprocessor. The benchmarks have been ordered by increasing granularity. Note that the

2.10. THE PERFORMANCE OF ETC 69Lower bound on Oexpose whenTfuture min in �sec isProgram G in �secs Tseq Nfuture Ntouch 1 5 25 125 625fib 7 .819 121392 121392 1.15 1.74 4.71 19.54 93.69sum 12 .392 32767 32767 1.08 1.42 3.09 11.45 53.24qsort 16 .210 13318 27637 1.06 1.32 2.59 8.94 40.71scan 16 1.061 65534 65534 1.06 1.31 2.54 8.72 39.60queens 31 1.092 34814 34814 1.03 1.16 1.80 4.99 20.93rantree 42 .394 9487 9487 1.02 1.12 1.60 4.01 16.05abisort 44 4.734 106496 106496 1.02 1.11 1.56 3.81 15.06poly 58 2.308 39801 40200 1.02 1.09 1.43 3.16 11.82mst 94 23.414 249001 249001 1.01 1.05 1.27 2.33 7.65tridiag 161 3.958 24574 24574 1.01 1.03 1.16 1.78 4.88mm 624 1.558 2499 2499 1.00 1.01 1.04 1.20 2.00allpairs 1831 24.852 13572 13572 1.00 1.00 1.01 1.07 1.34Table 2.1: Characteristics of parallel benchmark programs running on GP1000.number of futures is equal to the number of touches for all benchmarks based on fork-join parallelism (all benchmarks except qsort and poly). The right part of the tablegives the lower bound on Oexpose computed from G and various values of Tfuture min .According to this table, an optimized version of ETC (i.e. one with Tfuture min =25�secs = 75 machine instructions) will have an overhead that spans a range fromessentially nonexistent to fairly sizeable. As the granularity decreases, the overheadincreases and almost reaches a factor of 5 for �ne grain programs. This overhead isa conservative estimate. Mul-T's implementation of ETC gives a measured value ofOexpose = 8:9 for fib [Mohr, 1991]. Whether this is an acceptable overhead or notfor \typical" programs is of course a subjective matter. However, it is clear that ahigh overhead for �ne grain programs will have an impact on the style of programmingadopted by users.There will be a high incentive to design programs with coarse grain parallelismeven if there exists a natural �ne grain solution. Frequently it is possible to manuallytransform a �ne grain program into a coarser grain program by grouping several smalltasks into a single one that executes them sequentially (this is akin to unrolling loopsby hand in sequential languages to reduce the loop management overhead). This typeof transformation has several drawbacks. If the task grouping is arti�cial, the program

70 CHAPTER 2. BACKGROUND(define (fib n)(if (< n 2)n(let* ((x (FUTURE (fib (- n 1))))(y (fib (- n 2))))(+ (TOUCH x) y)))) (define (fib n)(if (< n 2)n(+ (fib2 (- n 1)) (fib2 (- n 2)))))(define (fib2 n)(if (< n 2)n(let* ((x (FUTURE (fib (- n 1))))(y (fib (- n 2))))(+ (TOUCH x) y))))
File: "fib.elog" Processors: 32

interrupt working idle touch determine stealing

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 5 10 15 20 25 30 35 40 msec

File: "fib.elog" Processors: 32 File: "fib-unroll.elog" Processors: 32

interrupt working idle touch determine stealing

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 msec

File: "fib-unroll.elog" Processors: 32Figure 2.16: Fib and a poor variant obtained by unrolling the recursion.becomes more complex and harder to maintain. An overhead cost must also be expectedif task grouping is managed dynamically by user code (as is the case for the depth andheight cuto� methods proposed for tree-like computations by Weening [Weening, 1989]).The transformation is also error prone. Logical bugs as well as performance problemscan be introduced by the user. For example, the recursion of fib can be unrolled onceas shown in Figure 2.16 to double the task granularity. One might expect the programto be more e�cient because of the lower task management overhead but in reality itperforms poorly because a sequential dependency has been introduced (this can be seenclearly in the execution pro�les). Finally, the program will be less portable because theselection of an appropriate granularity depends on several parameters of the run timeenvironment (number of processors, task operation costs, shared memory costs, etc).The problem with a high task management cost is not so much that it preventsthe user from attaining good performance. The problem is that the language cannotrealistically be viewed as a high-level language because the user must program at alow-level to attain good performance. Selecting the right granularity for a program canquickly become the user's overriding concern.The next chapter explores a more e�cient approach to task management calledlazy task creation . The cost of evaluating a future with this approach is very small(Tfuture min on the order of 1 �sec on the GP1000). Table 2.1 can be used to approximate

2.10. THE PERFORMANCE OF ETC 71the overhead of this approach. The �nest grain program (i.e. fib) should have a valueof Oexpose close to 15%. Note that the table gives a lower bound and that the actualoverhead will be somewhat larger. Chapter 5 contains the measured value of Oexposefor the benchmarks. With such a small overhead, the user has virtually no incentive toavoid �ne grain tasks and thus has added liberty in the programming styles that can beused.

72 CHAPTER 2. BACKGROUND

Chapter 3Lazy Task CreationSeveral plausible semantics for Multilisp were compared in the preceding chapter. TheKatz-Weise semantics with legitimacy is attractive because it provides an elegant inter-action between futures and continuations. In addition, dynamic scoping and fairness ofscheduling are desirable features. Unfortunately, ETC is not an adequate implementa-tion of futures because its performance is poor on �ne grain programs.This chapter explores lazy task creation (LTC), an alternative task creation mech-anism that is more e�cient than ETC; especially for �ne grain programs. The LTCmechanism described here supports the Multilisp semantics given above. Two variantsof LTC are examined: one that assumes an e�cient shared memory and one that doesnot. As con�rmed in Chapter 5, both variants have roughly the same performance whenconsistent shared memory is e�cient but when this is not the case, for example on largescale multiprocessors, the later variant permits a more e�cient execution (faster by asmuch as a factor of 2 on the TC2000).In this chapter, algorithms are given in pseudo-C. Assembly code is also used toexplain the details of the code sequences generated by the compiler.3.1 Overview of LTC SchedulingThis section explains the scheduling policy adopted by LTC and its bene�ts.Task execution order has a direct impact on performance. The implementationmust choose an ordering that minimizes the task management overheads. There are73

74 CHAPTER 3. LAZY TASK CREATIONfour places where an implementation has liberty as to which task to run next� Task spawning.� Task termination.� Task suspension.� Preemption interruption.Only the �rst two situations are examined here (the last two are discussed in latersections). Any runnable task can be run next in these four situations. However, onlythe subsets of runnable tasks that are most promising are considered in the followingdiscussion. In particular, the task to run next is preferentially selected from the localwork queue because this will promote locality and reduce contention. When the lo-cal work queue is empty a task must be stolen from another processor's work queue.Task stealing is the only way for work to get distributed between processors. The twoprocessors involved in a task steal are the thief processor and the victim processor.When a task is spawned, one of two tasks can be run next by the spawning processor:the child task or the parent task. The ETC implementation described in the precedingchapter uses parent �rst scheduling. When a future is evaluated the child task is madeto wait for an available processor whereas the parent task immediately starts executingthe future's continuation. LTC uses the reverse scheduling order, child �rst scheduling.The child's execution is started immediately by the spawning processor and the parentis delayed until a processor is ready to run it.The use of child �rst scheduling in Multilisp has important advantages. First, ittends to reduce the number of task suspensions caused by touches. The child is com-puting a value that is used by the future's continuation. Since the parent gets delayedwith respect to the child there is a higher likelihood that the child will have completedwhen its result is �rst touched by the parent or one of its other descendants.When a task terminates however, there is no incentive to delay its parent any further.In fact, now that the task's result is known, it makes sense to execute the parent next.Since the parent consumes the value just computed, it is less likely that it will getsuspended. This policy will be called parent next scheduling.Child �rst scheduling combines naturally with parent next scheduling to give ane�cient stack-like scheduling policy: LIFO scheduling. The set of runnable tasks ona processor is kept in a stack, the task stack , associated with that processor (see Fig-ure 3.1). The main operations available on the task stack are: task push, task pop, and

3.1. OVERVIEW OF LTC SCHEDULING 756 ? Youngest taskPOPPUSH Oldest taskFigure 3.1: The task stack.task steal. When a task is spawned, the parent is simply pushed onto the task stackand control goes to the child. When a task terminates, the parent is necessarily on topof the task stack if it hasn't been run yet (this assumes that processors can steal butcannot push a task onto another processor's task stack). If the parent is still there, itgets popped from the task stack and executed by the same processor that pushed it.LIFO scheduling yields a task execution order very similar to that of the programwith futures removed. In fact, the execution order is identical when no task is everstolen from the task stack. This happens for example when the machine has a singleprocessor or when all processors have enough local work to keep them busy. In thissituation, there are no task suspensions because the only computation that might touchthe task's placeholder (i.e. the continuation) necessarily follows the termination of thetask.3.1.1 Task Stealing BehaviorUnder LIFO scheduling, tasks could be stolen from either end of the task stack. Tasksare always stolen from the task stack's bottom in LTC. It is interesting to see why thisbottom stealing is preferable to top stealing . Top stealing might seem better for thesame reason as child �rst scheduling. Favoring the execution of younger tasks shouldreduce the likelihood of suspension in older tasks.However, this analysis does not take into account that older tasks generally runlonger before termination or suspension than younger tasks. For DAC programs withbalanced spawning trees, the task size will decrease geometrically with the task stackdepth. When a child task is pushed onto the task stack, the amount of work it containsis a fraction (f) of the amount remaining in the parent1. Thus, in a DAC program, the1 The amount of work remaining in a task is all the work remaining before its termination includingthe work contained in the tasks that it will spawn. In a well balanced binary DAC program, such as

76 CHAPTER 3. LAZY TASK CREATIONith removed child from a task has f i times the work of that task and collectively, a taskand the d descendants below it on the task stack have Pdi=0 f i = 1�fd+11�f the amount ofwork. This means that the amount of work in the oldest task is approximately equal tothat of its youngest d0 = d + 1 � logf(1 � f) descendants2. Consequently, the amountof work Toldest remaining in the oldest task is equal to the work in all other tasks onthe task stack except a constant number of the oldest tasks. The task stealing overheadwill be higher for top stealing because it requires at least d0 times more task steals thanbottom stealing to distribute Toldest units of work. In reality, the number of steals willbe higher than d0 because the victim is continuously replenishing the task stack withsmall tasks as the thief is stealing them. The probability of stealing a task close to theleaves of the spawning tree is relatively high.Individual task steals are also faster with bottom stealing because there are twonearly independent ways to access the task stack. A processor can push or pop a taskfrom its local task stack while some other processor is simultaneously stealing a task.This parallelism, which is no more than a degree of 2, enables tasks to be created andstarted faster. In addition, better caching of the task stack top is possible because it issingle writer shared data (as opposed to multiple writer shared data for top stealing).Mohr [Mohr, 1991] has analyzed the task stealing behavior of bottom stealing fortree-like DAC parallel programs. He has derived an upper bound of p2h task stealsfor programs with binary spawning trees of height h running on a machine with pprocessors. This upper bound relies on the use of polite stealing . In polite stealing aprocessor whose last steal was from victim V must try to steal from all other processorsbefore stealing again from V . An outline of Mohr's proof follows.At any given point in time, a processor i is either idle (and is trying to steal a task)or is in charge of running the tasks in some subtree of the spawning tree. Call hi theheight of processor i's subtree (hi = 0 when it is idle) and H the maximum height of allsubtrees (H = maxpi=1 hi). After a task is stolen from processor i, both the victim andthe thief will be in charge of subtrees of height hi�1. Note that to decrease H by one itis necessary to steal a task from all processors i with hi = H . Polite stealing guaranteesthat all these processors will have been tried by a given processor in no more than psteals (or steal attempts). Because up to p processors might be attempting to stealtasks, it will take no more than p2 steals to steal at least one task from each processorwith hi = H . When H reaches zero no tasks are left to steal. Consequently, no moresum, f will be close to 12 . For fib, which has an imbalanced spawning tree, f is about :618. An f closeto 1 approximates loop based parallel algorithms such as pmap.2This result is obtained by solving for d0 = d�k in 1 =Pdi=k+1 f i = 1�fd+11�f � 1�fk+11�f = fk+1�fd+11�f .

3.1. OVERVIEW OF LTC SCHEDULING 77than p2h steals can occur.In the absence of polite stealing O(2h) steals can occur (potentially all tasks arestolen). Although polite stealing insures the upper bound of p2h steals it isn't clear thatthis makes a di�erence in practice. Mohr ran programs with and without polite stealingfor a wide range of values of h and p. The number of steals was comparable (usuallywithin 10% to 30%) and only in extreme cases was there a noticeable advantage to usepolite stealing (a factor of 2 to 3 for high h and p). Gambit uses polite stealing withthe particularity that each processor has a probing order generated randomly when thesystem is loaded. This was done in an e�ort to reduce interference between competingthief processors. With a sequential probing order there is a potential loss of parallelismbecause several thieves might become synchronized, following each other in lockstep.3.1.2 Task Suspension BehaviorBottom stealing also leads to fewer task suspensions. To simplify the analysis, it isassumed that tasks touch the value of their children just before termination and thatthere are only two processors.When bottom stealing, Toldest time units will elapse before the �rst touch that mightcause a suspension. The d0 youngest tasks are not a�ected by the steal so in this timeperiod they will have a suspension-free execution. When f � 12 there is necessarilyno task suspension because all the descendants have terminated when the touch isperformed. A single suspension occurs when f > 12 and the steal happened not too lateafter the �rst descendant was spawned.When top stealing, there are d0 tasks (at least) that might suspend in the sametime period. The likelihood of suspension increases with the depth of the task due to acombination of two factors. First, deeper tasks have less work and second, it is fasterto remove tasks from the local task stack than to steal them from other processors (thecosts are respectively Tlocal and Tsteal). Let Ttask be the amount of work remainingin the stolen task and Tchild the work remaining in its currently running child. Thestolen task will terminate (or get suspended) in Tsteal + Ttask time whereas its parentwill touch its value in Tchild +Tlocal + Ttaskf time (the processor will �nish executing thechild and then locally resume the stolen task's parent). A suspension occurs in eitherof the following cases1. Tsteal + Ttask < Tchild) stolen task gets suspended2. Tsteal + Ttask > Tchild + Tlocal + Ttaskf) stolen task's parent gets suspended

78 CHAPTER 3. LAZY TASK CREATIONThe second case is highly likely for �ne grain DAC programs because, as the depthof the task increases, Ttask and Tchild become negligible when compared to Tsteal and itis always the task closest to the leaves of the spawning tree that is being stolen.3.2 Continuations for FuturesContinuations play a central role in the implementation of futures. A task's state ismostly composed of a continuation. In addition, the Katz-Weise semantics as de�nedin Figure 2.12 requires that the future's continuation be captured and shared betweenthe child and parent tasks. Consequently, the e�ciency of continuation operations andfutures are intimately tied. This section describes the implementation of continuationson top of which LTC will be implemented.Conceptually, a continuation is a chain of frames. Each frame corresponds to somesubproblem call that is currently pending completion. A frame contains the contextrequired to perform the computation that follows the corresponding subproblem call.The frame includes temporary values and variables (or alternatively an environmentpointer) and also contains a parent continuation. The parent continuation is used whenthe procedure containing the subproblem call exits (by a normal return or a reductioncall). This link is what gives the stack structure to continuations. Note that in somesituations the parent continuation is never used and could be removed from the frame bya smart compiler3. For simplicity, it is assumed that the parent continuation is alwayspresent in the frame. The oldest frame's parent is the root continuation which is specialin that it has no parent. The root continuation symbolizes the end of the program.Several strategies for implementing continuations have been described and comparedby [Clinger et al., 1988]. Their results suggest that the incremental stack /heap strategyis more e�cient than the other strategies in most cases and not noticeably slower thanthe other strategies in extreme cases. With the exception of a few details, this is thestrategy used by Gambit.3This is permissible if the subproblem call is done inside an in�nite loop. For example, in thefollowing de�nition, the frame for the subproblem call to g need not contain f's continuation because fnever returns. (define (f)(g)(f))

3.2. CONTINUATIONS FOR FUTURES 793.2.1 Procedure Calling ConventionSince continuations are manipulated at every procedure call and return, it is importantto have e�cient support for these common operations. The incremental stack/heapstrategy puts very few constraints on procedure calling conventions. This means thatthe presence of unlimited extent continuations in the language does not impose a specialruntime overhead4.Parameters can be passed in any location (typically in registers and/or on the stack)and a procedure can return simply by jumping to the return address passed to theprocedure by the caller. Within a procedure, the stack can be used freely to allocatetemporary values and local variable bindings.Continuation frames, created at subproblem calls, are always allocated from the runtime stack (as is normally done for other languages). The procedure that allocated aframe is responsible for its deallocation from the stack. Deallocation occurs at somepoint before the procedure is exited (by a normal return or a reduction call). Thisinsures that at the subproblem call's return point, the continuation frame created forthe call is still topmost on the stack. A procedure's continuation is thus a combinationof two values: the return address and the value of the stack pointer. Note that thereturn address passed to a procedure is always contained in any continuation frame itcreates.3.2.2 Unlimited Extent ContinuationsThis implementation can be extended to support unlimited extent continuations. Thecontinuation is split into two parts. The most recently created frames of a continuationare on the stack and the oldest frames reside in the heap. This situation is depictedin Figure 3.2 (where frame i is created by procedure pi and reti is the return addressinto pi). The implicit continuation passed to a procedure is represented by a triplet:(SP,RET,UNDERFLOW_CONT). The stack pointer SP points to the topmost frame on thestack and the return register RET contains the return address5. UNDERFLOW_CONT cor-responds to the heap continuation and it contains two �elds: link (a pointer to the4Note that the semantics of continuations in Scheme require that there be only one instance ofany variable allocated. To support this, it is common to create a cell in the heap for each mutablevariable. The extra dereference needed to access mutable variables adds an overhead whose importancewill depend on the program. However, there is no overhead for functional programs.5RET could also be passed on the stack but it is simpler to think of it as being contained in a dedicatedregister. Gambit actually dedicates a register for the return address.

80 CHAPTER 3. LAZY TASK CREATION

(define (p1) ... (p2) ...)(define (p2) ... (p3) ...)(define (p3) ... (p4) ...)(define (p4) ... (p5) ...)(define (p5) ... (p6) ...)(define (p6) ...) qq qqq
qqq6?

@@R AAAU
6?@@R@@R? 6? @@R

..........................���..........................���..........................@@@.............@@@
6?@@R?
6?
6?q

?....?....
Continuation on entry to p6 UNDERFLOW

HEAPIFICATIONSP RET SP RETUNDERFLOW CONTSP RETUNDERFLOW CONTUNDERFLOW CONT HEAP
STACK HEAPSTACKHEAP

STACK5432 52 ret1underflowret2ret4flowunder
ret1ret2underflowret3ret4ret5 ret5

Figure 3.2: Continuation representation and operations.

3.2. CONTINUATIONS FOR FUTURES 81topmost heap frame) and ret (the return address for the topmost heap frame). Notethat the stack frames are only linked conceptually; in reality they are allocated con-tiguously on the stack. On the other hand, heap frames are independent objects in aformat suitable for garbage collection and explicit links between them are maintained.The link between the stack frames and the heap frames is preserved in a specialway. This link is traversed when a procedure returns to its continuation and the stackis empty. This is called a stack underow . When the stack underows, the topmostheap frame must be copied back to the stack so that the return point can access thecontent of the continuation frame in a normal manner. This is the only frame that isimmediately needed. The older heap frames get restored one at a time by subsequentunderows.A special mechanism is used to avoid having to check explicitly for stack under-ow at every procedure return. The return address logically attached to the oldeststack frame is stored in UNDERFLOW_CONT.ret. In its place, the continuation framecontains a pointer to the underow handler . This handler consequently gets calledby the normal procedure return mechanism when the stack underows. The handlerperforms the following sequence of steps: the correct return address is extracted fromUNDERFLOW_CONT.ret, the topmost heap frame is copied to the stack, UNDERFLOW_CONTis updated to represent the parent heap frame, the return address in the stack frameis replaced by the underow handler to prepare it for underow, and �nally control isreturned to the correct return address. The cost for an underow is thus dependenton the frame size which in typical cases is fairly small. For example, the largest framesize for the parallel benchmarks is 10 slots and the average, measured statically, is justbelow 4. An underow should thus be fairly cheap for these programs (between 10 and20 instructions if the underow handler and heap frame format are chosen carefully).3.2.3 Continuation Heapi�cationHeap continuations are created by the process of heapi�cation . Heapi�cation trans-forms the current continuation into one that only contains heap frames. The stackframes are transferred one by one to the heap with the appropriate links between them.The oldest stack frame must be handled specially. When it is copied, its return ad-dress is �rst recovered from UNDERFLOW_CONT.ret and its parent link is obtained fromUNDERFLOW_CONT.link. Finally, the stack is cleared by resetting SP to the bottom ofstack, and RET and UNDERFLOW_CONT are updated to reect the new location of the con-tinuation. The current continuation before and after heapi�cation are logically equiva-

82 CHAPTER 3. LAZY TASK CREATIONlent; only the representation changes.3.2.4 Parsing ContinuationsOne complication with the underow and heapi�cation mechanisms is that it must bepossible to parse the stack to know where each frame begins and ends, and also whichframe slot contains the return address6. One way to achieve this is to associate thedescription of a frame's layout (length and return address location) with the returnaddress of the subproblem call that created the frame. The frame descriptor can forexample be stored just before the return point, as is done in [Hieb et al., 1990]. RET canthen be used to get the size of the topmost stack frame and the location of its returnaddress. The return address in this frame in turn gives the size of the next frame andso on.The heapi�cation and underow mechanisms can now be described in detail. Thealgorithms are given in Figure 3.3. In these algorithms two functions are used to parsethe continuation: frame_size(r) and ret_adr_offs(r) return respectively the sizeand return address o�set of the continuation frame associated with return address r.It is assumed that all data structures grow towards higher addresses and that, in alldrawings, addresses grow towards the top of the page.3.2.5 Implementing First-Class ContinuationsFirst-class continuations can easily be implemented with the heapi�cation mechanism.Call/cc �rst heapi�es its implicit continuation and then packages up UNDERFLOW_CONTin a new closure. When called, this closure discards the current continuation by resettingSP to the bottom of stack, restores the new continuation by setting UNDERFLOW_CONTto the saved value, and then jumps to the underow handler to transfer control to thereturn point. Support for dynamic scoping is a simple addition to this mechanism. Thecurrent dynamic environment is saved in the closure at the moment of the call/cc andis restored just before jumping to the underow handler.Heapi�cation might seem to be doing more work than strictly required by call/cc.By leaving the stack in its original state after its content is copied to the heap, somereturns would become cheaper because the restoration of the frames by the underowmechanism would be avoided. However, new costs in space and time would be introduced6The ability to parse the stack is also useful to implement introspective tools such as debuggers andpro�lers.

3.2. CONTINUATIONS FOR FUTURES 83typedef struct frm /* heap frame format */{ struct frm *link; /* parent frame pointer */value slots[]; /* content of frame */} frame;value *SP;instr *RET;struct { frame *link; instr *ret; } UNDERFLOW_CONT;underflow(){ frame *f = UNDERFLOW_CONT.link; /* get topmost heap frame */instr *r = UNDERFLOW_CONT.ret; /* get return address */for (i=0; i<frame_size(r); i++) /* copy frame to stack */SP[i] = f->slots[i];UNDERFLOW_CONT.link = f->link; /* prepare for underflow */UNDERFLOW_CONT.ret = SP[ret_adr_offs(r)];SP[ret_adr_offs(r)] = underflow;SP += frame_size(r); /* update stack pointer */jump_to(r); /* jump to return point */}heapification(){ if (RET != underflow) /* check for empty stack */heapify_frame(SP, RET);SP = bottom_of_stack; /* clear stack */RET = underflow;}heapify_frame(s, r)value *s;instr *r;{ value *b = s - frame_size(r); /* compute frame's base */frame *f = alloc(frame_size(r)); /* allocate heap frame */instr *p = b[ret_adr_offs(r)]; /* get parent ret adr */if (p == underflow) /* oldest frame? */b[ret_adr_offs(r)] = UNDERFLOW_CONT.ret;elseheapify_frame(b, p);for (i=0; i<frame_size(r); i++) /* copy frame content */f->slots[i] = b[i];f->link = UNDERFLOW_CONT.link; /* link frame to parent */UNDERFLOW_CONT.link = f; /* update UNDERFLOW_CONT */UNDERFLOW_CONT.ret = r;} Figure 3.3: Underow and heapi�cation algorithms.

84 CHAPTER 3. LAZY TASK CREATIONsince there could now be multiple copies of the same stack frame. This occurs whenmultiple continuations which share the same tail are captured. Programs with nestedcalls to call/cc, such as those typically found in backtracking algorithms and exceptionprocessing, exhibit this behavior. As an example, consider this de�nition for f(define (f n)(if (zero? n)0(+ 1 (call-with-current-continuation(lambda (cont)(f (- n 1)))))))Note that the call (f n) calls call/cc n times. If there are k stack frames in thecontinuation for the call (f n), n(k + n+12) heap frames will be created. The sharingproperties of heapi�cation are much better because there is at most one heap copy ofany continuation frame. In the example, only k + n heap frames will be created (asavings of a factor of O(n)). The same reasoning holds for nested futures when theyare implemented with call/cc (as is the case for the implementation of the Katz-Weisesemantics shown in Figure 2.12).3.3 The LTC MechanismAn important bene�t of combining LIFO scheduling and bottom stealing is that it pro-motes stack-like execution. For fork-join DAC programs, entire subtrees of the spawningtree get executed in an uninterrupted stack-like fashion because it is the older tasks thatget stolen (those closer to the spawning tree's root). Since the tasks in these subtreesare exactly those that are not stolen, they will be called non-stolen tasks. Stack-like ex-ecution stops only when the oldest non-stolen task terminates (the one at the non-stolensubtree's root).LTC presupposes that this stack-like execution is the predominant execution order.In other words, LTC speculates that most tasks are not stolen. Several task spawningsteps are only required if the task is stolen. Referring to Figure 2.12, these steps include:the heapi�cation of the parent continuation (the call to call/cc), and the creation andmanipulation of the task's result and legitimacy placeholders (the calls to make-ph).LTC postpones these steps until it is known that the task is stolen (this explains thename \lazy task creation"). In summary, non-stolen tasks completely avoid these stepswhereas stolen tasks perform these steps when the task is stolen.To achieve this, LTC uses a lightweight task representation. When a future is

3.3. THE LTC MECHANISM 85evaluated, a lightweight task representation of the parent task is pushed on the taskstack. The task stack push and pop operations, which are the only operations neededfor a purely stack-like execution, can be implemented at a very low cost with thisrepresentation. Moreover, there is enough information in a lightweight task to recreatethe corresponding heavyweight task object if the task is ever stolen from the task stack.The rest of this section is a more detailed description of the LTC mechanism. Theimportant issue of synchronization between the thief and victim is discussed in thesection that follows.3.3.1 The Lazy Task QueueThe task stack is represented by a group of three stack-like data structures: the runtime stack, the lazy task queue (LTQ), and the dynamic environment queue (DEQ).The same terminology as [Mohr, 1991] has been used when possible for consistency. Theterm lazy task refers to a task in the lightweight representation (i.e. a task containedin the task stack). These three data structures are really double ended queues whichare mostly used as stacks. Items can be pushed and popped from the tail of thesequeues. Items can also be removed from the head. For e�ciency, the entries are laidout contiguously in memory. For the LTQ and DEQ, two pointers indicate the extentof the queue (the head and tail).The run time stack contains the continuation frames of all the tasks in the task stack.The LTQ and DEQ contain pointers to continuation frames in the run time stack. TheDEQ, which is only needed to support dynamic scoping, is explained in Section 3.3.4.The purpose of the LTQ is to keep track of each lazy task's continuation. For each lazytask in the task stack there is exactly one pointer on the LTQ. Each pointer points tothe �rst continuation frame of the corresponding future's continuation. The \before"part of Figure 3.5 shows a possible state of the LTQ and run time stack on entry toprocedure p9 after a call to procedure p1(define (p1) ... (p2) ...)(define (p2) ... (p3) ...)(define (p3) ... (FUTURE (p4)) ...)(define (p4) ... (p5) ...)(define (p5) ... (FUTURE (p6)) ...)(define (p6) ... (p7) ...)(define (p7) ... (FUTURE (p8)) ...)(define (p8) ... (p9) ...)(define (p9) ...)The LTQ's TAIL points to the youngest entry on the LTQ whereas HEAD points just belowthe oldest entry. Thus, the LTQ is non-empty if and only if HEAD < TAIL. Otherwise,

86 CHAPTER 3. LAZY TASK CREATIONthe LTQ is empty and HEAD = TAIL. The same is true for the DEQ with the pointersDEQHEAD and DEQTAIL.3.3.2 Pushing and Popping Lazy TasksThe task stack's push and pop operations translate into a small number of steps. Whena future is evaluated, the thunk representing the future's body is called as a subproblem.The continuation frame created on the run time stack for this call corresponds to the�rst frame of the parent task's continuation. To indicate the presence of the parenttask on the task stack, a pointer to the continuation frame (i.e. SP) is pushed on theLTQ (thereby incrementing TAIL) upon entering the thunk. This pointer is used bythe steal operation to recreate the parent task. The processor has e�ectively queuedthe parent on the task stack and is now running the child. When the thunk returns,the LTQ is either empty (indicating that the parent was stolen), or not (indicatingthat the parent is still on the LTQ). If the LTQ is not empty, the parent task getsresumed in parent next fashion. Note that at this point both SP and the topmostpointer on the LTQ point to the parent's continuation frame. To pop the parent taskit is su�cient to place an instruction that decrements TAIL at the subproblem call'sreturn point. After decrementing TAIL, the processor has e�ectively terminated thechild and resumed the parent. The body's result has been transferred from the child tothe parent without having to create a placeholder. Moreover, legitimacy propagationcost nothing because the parent task's legitimacy before and after executing the childare identical. A single legitimacy ag, CURRENT_LEGITIMACY, is needed per processor. Itlogically corresponds to the legitimacy of the task currently running on that processor.Similarly, each processor has a CURRENT_DYNAMIC_ENV variable that is always bound tothe dynamic environment of the currently running task. There is no need to change thisvariable when a lazy task is pushed or popped from the task stack. The handling of astolen parent is explained in the next section.It would seem that most of the work to push a task on the task stack goes into twooperations: the creation of the closure for the body and the creation of the continuationframe. However, these operations do not really constitute an important overhead withrespect to a purely sequential execution of the program.Firstly, it isn't necessary to heap allocate the closure because its single call site isknown. It is more e�cient to lambda-lift the closure so that the closed variables arepassed to the body as parameters. Frequently, these variables are already in registersso they can be left as is for the body to use. As shown in Table 3.1, most of the

3.3. THE LTC MECHANISM 87Program Number of closedvariables for each futureand number copiedabisort 3 (0), 1 (0)allpairs 7 (3)fib 1 (0)mm 7 (3), 6 (2)mst 5 (1)poly 3 (0)qsort 3 (0)queens 6 (2)rantree 3 (0)scan 5 (1), 4 (0)sum 4 (0)tridiag 4 (0), 3 (0)Table 3.1: Size of closure for each future in the benchmark programs.benchmarks require little or no work to setup the closed variables for the body becausethey are already in registers (Gambit does a good job at allocating variables to regis-ters). A system could be designed to avoid any copying by directly accessing the closedvariables in the parent continuation frame. However, this would create dependenciesbetween frames which are hard to manage (in particular, heapi�cation would becomemore complex and expensive because the frames can't be separated).Secondly, the continuation frame created by the future can be reused by the future'sbody. Futures are typically subproblems and have a procedure call as their body (allthe futures in the benchmarks are like this). A sequential version of the program wouldcreate a continuation frame for the call, just before the procedure is invoked. The samecontinuation frame is created by the future but there is no need to create another framefor the call in the body since it is now a reduction call. The only di�erence is thatthe frame is created before the arguments to the procedure are evaluated rather thanafterwards but the cost will be the same.

88 CHAPTER 3. LAZY TASK CREATIONresume_task(t)task *t;{ CURRENT_TASK = t;UNDERFLOW_CONT.link = CURRENT_TASK->cont_link;UNDERFLOW_CONT.ret = CURRENT_TASK->cont_ret;CURRENT_DYNAMIC_ENV = CURRENT_TASK->cont_denv;result_location = CURRENT_TASK->cont_val;CURRENT_LEGITIMACY = CURRENT_TASK->leg_flag;SP = bottom_of_stack;TAIL = bottom_of_LTQ;HEAD = bottom_of_LTQ;DEQTAIL = bottom_of_DEQ;DEQHEAD = bottom_of_DEQ;underflow();} Figure 3.4: Resuming a heavyweight task.3.3.3 Stealing Lazy TasksWhen a thief processor steals a lazy task from a victim processor's task stack, it removesthe oldest entry on the LTQ (thereby incrementing HEAD) and then must do three things:recreate the parent task as a heavyweight task object, notify the victim so that it knowsthe oldest lazy task is no longer on the task stack, and �nally resume the parent task.A heavyweight task is represented with a structure containing �ve �elds� cont_link� cont_ret� cont_denv� cont_val� leg_flagThe �rst four �elds describe the task's continuation. Cont_link is a pointer tothe continuation frames in the heap, cont_ret is the continuation's return address,cont_denv is the continuation's dynamic environment, and cont_val is the value passedto the continuation when the task is resumed. The �fth �eld, leg_flag, is the task'slegitimacy ag. Resuming a heavyweight task is performed by the steps in Figure 3.4.Note that variables are local to the processor unless explicitly marked otherwise (thenotation P->v, where P is a processor, will be used to denote P 's local variable v).Thus, resume_task �rst sets the processor's current task and, after initializing the taskstack, uses the underow mechanism to restore the task's continuation. The value in

3.3. THE LTC MECHANISM 89cont_val is passed to the continuation by setting result_location. It is assumedthat all continuations, including those for futures, receive their result in this location(result_location is a machine register in Gambit). This restriction could be liftedby parameterizing the result location by the return point, that is UNDERFLOW_CONT.ret(this would require adding a �eld to the frame descriptor).Figure 3.5 will help illustrate the e�ect of a steal on the LTQ and run time stack.The pointer p removed from the victim's LTQ points to the �rst continuation frameof the corresponding task (frame 3 in the �gure). To ease its manipulation, the task'scontinuation is �rst heapi�ed from this continuation frame down to the next framehaving the underow handler as its return address. This is achieved by the callheapify_frame(p, r)where r corresponds to the return address associated with frame p (i.e. ret3 in theexample). In addition, r must be replaced by a pointer to the underow handlerso that the child invokes UNDERFLOW_CONT when it is done. An important issue ishow to locate r from p but for now this operation will be hidden in the procedureswap_child_ret_adr_with_underflow(p) that sets r to underflow and returns itsprevious value. The victim's current continuation is now logically the same as before;only the representation has changed.After being heapi�ed, the future body's continuation is in UNDERFLOW_CONT. Notethat UNDERFLOW_CONT.ret contains the address of the subproblem's return point. The�rst instruction at this address is the one which decrements TAIL. The only purpose ofthis instruction is to pop the parent task on a \parent next" transition and it shouldn'tbe executed in any other case. The future's continuation is reconstructed by adjustingUNDERFLOW_CONT.ret so that it points to the following instruction7 (i.e. ret03 in theexample). At this point UNDERFLOW_CONT corresponds to the parent task's continuation(k in Figure 2.12). The thief can now use this continuation to create a heavyweighttask representation of the parent. The cont_link and cont_ret �elds are initializeddirectly from UNDERFLOW_CONT. An undetermined placeholder, res_ph, is also createdto represent the result of the future. Res_ph is stored in the �eld cont_val so that itwill get passed to the parent's continuation. To represent the parent task's legitimacy,another undetermined placeholder, leg_ph, is created and stored in the �eld leg_flag.The �eld cont_denv is initialized to the dynamic environment in e�ect when the taskwas pushed on the task stack (the next section explains how this is done).7This may not be this simple because all return addresses must be parsable. Gambit always generatesa secondary return point along with each future body return point (at a constant distance from it). Thesecondary return point contains a jump to the instruction that follows the popping of the parent task.

90 CHAPTER 3. LAZY TASK CREATION

qqqqq q q q
6
?

?....?....?....?....
@@R

�������������������---
6
?

?....?....?....?....?....
@@R

�������������������-- -...........6? 6?
@@R 6? 6?

@@R�-HHj ��� q?
2

??ZZZ~@@ -
?.... ?....?....

SP RET
5ret6ret78764ret5ret4ret3
ret8

HEADTAIL LTQ
SP RET

5ret6ret78764ret5ret4
ret8

3underflowTAILHEAD LTQUNDERFLOW CONT UNDERFLOW CONT?(())__̂̂ ret032ret13ret2?(())__̂̂ leg phres phret03cont valcont denvcont linkleg flagcont ret AFTERBEFORE HEAPparent end frame end-body3ret2ret1 HEAP underflow2ret2pSTACK STACKunderflow
Figure 3.5: The LTQ and the steal operation.

3.3. THE LTC MECHANISM 91task *steal_task(p)value *p;{ instr *r = swap_child_ret_adr_with_underflow(p); /* update child's ret adr */heapify_frame(p, r); /* heapify parent's cont */{ task *parent = alloc_task(); /* allocate heavyweight task */frame *end_frame = alloc_frame(3); /* allocate end_frame */parent->cont_link = UNDERFLOW_CONT.link; /* setup parent's cont */parent->cont_ret = future_secondary_ret_adr(r); /* (using secondary ret adr) */parent->cont_denv = recover_dyn_env(p); /* setup task's dynamic env */parent->cont_val = alloc_ph(); /* allocate result ph */parent->leg_flag = alloc_ph(); /* allocate legitimacy ph */end_frame->link = parent->cont_link; /* setup end_frame */end_frame->slots[0] = parent->cont_ret;end_frame->slots[1] = parent->cont_val;end_frame->slots[2] = parent->leg_flag;UNDERFLOW_CONT.link = end_frame; /* setup UNDERFLOW_CONT */UNDERFLOW_CONT.ret = end_body;return parent;}} Figure 3.6: The task stealing mechanism.The thief will resume the parent task by a call to resume_task. Before doing thishowever, the victim's underow continuation must be changed so that it will take theappropriate action when it returns from the child. Note that this new continuationwill be invoked with the result of the future's body. Consequently, this continuationmust logically correspond to procedure end-body of Figure 2.12. The �rst time it iscalled, end-body uses the result it is passed to determine the placeholder res_ph and thetask is terminated after propagating the task's legitimacy (i.e. CURRENT_LEGITIMACY)to leg_ph. Subsequently, the result is simply passed on to the parent continuation.This functionality is obtained by pushing a new continuation frame, end_frame, tothe front of the continuation in UNDERFLOW_CONT. End_frame corresponds to the contin-uation frame created for the call to thunk in Figure 2.12. Thus, UNDERFLOW_CONT.retis set to that call's return address (which is essentially a call to procedure end-body).End_frame contains the following values needed by end-body: the parent task's contin-uation and the placeholders res_ph and leg_ph. The \after" part of Figure 3.5 showsthe system's state just before the thief resumes the parent task. Figure 3.6 gives thecomplete task stealing mechanism (except for removing p from the LTQ).

92 CHAPTER 3. LAZY TASK CREATION3.3.4 The Dynamic Environment QueueFor every task that is stolen, it is necessary to know what the dynamic environment waswhen the task was pushed on the task stack. When the recreated task is resumed by thethief, CURRENT_DYNAMIC_ENV will be set to that dynamic environment, thus restoring itto its previous state.A straightforward solution is to store the value of the dynamic environment in thefuture's continuation frame. In other words, CURRENT_DYNAMIC_ENV is pushed on thestack on entry to the future body's thunk. Unfortunately, this adds an overhead to allfutures independently of how heavily dynamic scoping is actually used, if at all.It would be preferable if the cost of supporting dynamic scoping was only relatedto how heavily it is used. This can be achieved by a lazy mechanism that recreates atask's dynamic environment when it is stolen. It is assumed that the dynamic bindingconstruct, dyn-bind, creates a new continuation for the evaluation of its body (as inFigure 2.7). The continuation frame contains prev_env, the dynamic environment thatwas in e�ect when dyn-bind's evaluation was started. Since a change of the dynamicenvironment is always indicated by one of these frames, the following invariants willhold� The dynamic environment Ef associated with a continuation frame f is equal tothe prev_env �eld of the �rst dynamic binding continuation frame above f on thestack.� If there is no dynamic binding continuation frame above f then Ef is equal toCURRENT_DYNAMIC_ENV.The DEQ provides an e�cient mechanism to �nd the �rst dynamic binding con-tinuation frame above the stolen task's continuation frame. For each dynamic bindingcontinuation frame on the stack there is exactly one entry in the DEQ; a pointer tothe frame. The pointer is pushed onto the DEQ just before evaluating the body andis popped after the body as shown in Figure 3.7 (this code uses the association listrepresentation of dynamic environments but the search tree representation could alsobe used).A stolen task's dynamic environment is easily recovered with the DEQ. If the framepointer removed from the LTQ is p, a linear or binary search can locate the lowestpointer on the DEQ that is larger than p. Figure 3.8 shows how this is done. Note thata linear search, as shown, is acceptable because its cost is of the same order as the cost

3.3. THE LTC MECHANISM 93dyn_bind(id, val, body)value id, val;instr *body;{ *++SP = RET; /* create continuation frame */*++SP = CURRENT_DYNAMIC_ENV; /* setup prev_env */*++DEQTAIL = SP; /* push frame pointer onto DEQ */CURRENT_DYNAMIC_ENV = /* install new dynamic env */cons(cons(id, val), CURRENT_DYNAMIC_ENV);RET = env_restore; /* execute body */jump_to(body);}env_restore(){ if (DEQTAIL > DEQHEAD) DEQTAIL--; /* pop frame pointer from DEQ */CURRENT_DYNAMIC_ENV = *SP--; /* restore dyn env to prev_env */RET = *SP--; /* return from dyn_bind */jump_to(RET);} Figure 3.7: The implementation of dyn-bind.of heapifying the stolen task's continuation (i.e. there are no more entries skipped onthe DEQ as there are frames heapi�ed).The cost of supporting dynamic scoping can be attributed entirely to the use ofdyn-bind (i.e. the cost is O(n) where n is the number of dyn-bind's evaluated). Foreach dyn-bind evaluated, a few instructions in dyn-bind are needed to maintain theDEQ and a few more instructions are needed in recover_dyn_env to skip its entry onthe DEQ if it is part of a stolen task's continuation (a DEQ entry is never skipped morethan once).3.3.5 The Problem of OverowBecause the LTQ, DEQ, and run time stack are of �nite size, an important concern isthe detection and handling of overows. A useful invariant of these structures is thatthe combined number of entries in the LTQ and DEQ is never more than the number offrames in the stack. Since each frame contains at least one slot for the return address,the space occupied by the LTQ and DEQ is never more than the space occupied bythe stack. If these structures are allocated in two equal sized areas, one for the LTQand DEQ growing towards each other and one for the stack, then the stack will alwaysoverow before the LTQ and DEQ. Thus, it is only necessary to check for stack overow.Chapter 4 explains how stack overows can be detected e�ciently.

94 CHAPTER 3. LAZY TASK CREATION(define (p2) ... (dyn-bind y 2 (p3)) ...)(define (p3) ... (FUTURE (p4)) ...)(define (p4) ... (p5) ...)(define (p5) ... (FUTURE (dyn-bind z 3 (p5))) ...)(define (p6) ... (FUTURE (p7)) ...)(define (p7) ... (p8) ...)(define (p8) ...)
qq

?....@@R
��������������������--- 6? ?....?.... �������� SSSSSSSSSSo 6? ��?....?....?....?....

-
- q

ret7 - ?
??

?.... --
-

SP RET
HEADTAIL LTQ underflowSTACK DEQ DEQHEADDEQTAILenv restore

prev env
prev env CURRENT DYNAMIC ENV zy

x 1
23Ep7ret66ret55ret4env restoreret343 HEAP2ret2p

value recover_dyn_env(p)value *p;{ while ((DEQHEAD < DEQTAIL) && (DEQHEAD[1] < p)) DEQHEAD++;if (DEQHEAD == DEQTAIL)return CURRENT_DYNAMIC_ENV;elsereturn DEQHEAD[1][0]; /* get frame's prev_env */}Figure 3.8: The DEQ and its use in recovering a stolen task's dynamic environment.

3.3. THE LTC MECHANISM 95A stack overow could simply cause the program to signal an error (or to terminate).This approach puts a strict limit on the depth of the call chain so it is inappropriatefor a language like Lisp where recursion is used liberally. A more elegant approach thatremoves this restriction is to heapify the current continuation and then clear the stack,LTQ, and DEQ. Note that because the stack might contain lazy tasks this heapi�cationis special (as discussed in the next section). Subsequent computation will reuse thestack and possibly cause some other stack overows. The continuation thus migratesto the heap incrementally and it is only when there is no space left in the heap that anerror is signalled.3.3.6 The Heavyweight Task QueueIn general, the current continuation might contain lazy tasks when it is heapi�ed. Thefour situations where this happens are1. Task suspension (for touching an undetermined placeholder)2. Task switch (caused by a preemption interrupt)3. Stack overow4. call/ccIn these situations, something has to be done with the lazy tasks currently on thestack so that they remain runnable and independent. Since the lightweight represen-tation is no longer adequate for these tasks, they are converted to the heavyweightrepresentation and added to the processor's heavyweight task queue (HTQ). This queuecontains all the heavyweight tasks runnable on that processor. It is in this queue thatsuspended tasks are put when the placeholder they are waiting on gets determined.Before heapifying the current continuation, the processor will in essence steal all lazytasks on its own task stack (by calling steal_task(*++HEAD) while HEAD<TAIL) andadd the resulting tasks to its HTQ.But is this the best thing to do in the case of a task suspension? The only task thathas to be suspended is the currently running task so it seems wasteful to remove alllazy tasks. The topmost lazy task could simply be recreated and resumed (i.e. poppedfrom the task stack) after adding the current task on the placeholder's waiting queue.Mohr's system [Mohr, 1991] uses this approach (which he calls tail-biting) even thoughhe concedes that\... it goes against our preference for oldest-�rst scheduling, since we have e�ectively

96 CHAPTER 3. LAZY TASK CREATIONcreated a task at the newest potential fork point. Performance can su�er becausethis task is more likely to have small granularity; also, further blocking may result,possibly leading to the dismantling of the entire lazy task queue."Tail-biting o�ers no savings when supporting the Katz-Weise semantics because theparent continuation must be saved in the suspended task. Thus, the whole stack needsto be heapi�ed anyway. In addition, by immediately moving all lazy tasks to the HTQ ona task suspension and by managing the HTQ as a FIFO structure, the same schedulingorder as bottom stealing is obtained (oldest task �rst). There is also greater liberty asto which task to run next after the suspension. Gambit uses the following heuristic forchoosing the next task: if x is the placeholder that caused the suspension, then the childtask associated with x (i.e. x's owner task) is resumed if it is runnable; otherwise theprocessor goes idle8 . Conversely, when a task terminates after determining placeholdery, one of the tasks waiting on y will be resumed if there is one; otherwise the parent taskassociated with y is resumed if it is runnable9. These heuristics promote an executionorder close to the program's data dependencies so it tends to reduce the number of tasksuspensions.Since there are two sources of runnable tasks per processor, the HTQ and the taskstack, idle processors could obtain a runnable task from either source. Gambit how-ever checks the HTQ �rst and then the task stack because this promotes the LIFOscheduling order, it avoids allocating new heavyweight tasks, and it is faster becausethe heavyweight tasks can be resumed immediately.Another advantage of managing the HTQ as a FIFO structure is that schedulingwill be fair because all runnable tasks, including the lazy tasks on the task stack, areguaranteed to start running in a �nite amount of time. On every preemption interrupt,all lazy tasks and the current task are transferred to the HTQ and the �rst task on theHTQ is resumed. Consequently, if there are m tasks in the task stack and n tasks inthe HTQ at the moment of the preemption interrupt, then these m + n tasks will getat least one quantum out of the next m+ n quantums.3.3.7 Supporting Weaker Continuation SemanticsThe task stealing algorithm can be modi�ed to accommodate any of the other continu-ation semantics described in Section 2.8. These weaker semantics o�er a lower cost fortask stealing because they avoid some steps.8The link to the owner task is recorded in x when the parent task is stolen.9A link to the parent task is recorded in end_frame when the parent task is stolen.

3.3. THE LTC MECHANISM 97Firstly, since these semantics do not support legitimacy, they do not need to createthe legitimacy placeholder (and of course the parent task and end_frame need notcontain the leg_flag and leg_ph �elds). Also, legitimacy propagation in end-body isnot needed.Secondly, the parent task's continuation is not needed in end_frame. In fact,end_frame, just like the root continuation frame, has no parent continuation10. Forthe original Multilisp semantics, end_frame will only contain the result placeholderres_ph. It is the only parameter passed to the procedure end-body apart from thebody's result.For the MultiScheme semantics, end-body only takes the body's result as a param-eter. Consequently, end_frame contains no pertinent information and can simply bepreallocated once and for all at program startup. Nevertheless, the result placeholder isneeded by the child task so an extra �eld, goal_ph, must be added to heavyweight taskobjects. At the time of the steal, the parent task's goal placeholder is initialized fromthe child's goal placeholder and the result placeholder becomes the new goal placeholderof the child, i.e. parent->goal_ph = CURRENT_TASK->goal_ph;CURRENT_TASK->goal_ph = res_ph;The steps avoided by the weaker continuation semantics do not amount to much;perhaps a saving of the order of 10 to 20 machine instructions per steal. A morepromising source of saving is the handling of the parent continuation. Since only theparent task needs this continuation and it is immediately going to be restored by thethief, it seems useless to heapify the continuation. The steal operation could transferthe continuation frames from the victim's stack to the thief's stack in a single block(with a \block transfer" or similar operation). When heapifying the continuation, twocopies of the frames are done: once to the heap (for heapi�cation) and once to thestack (because of underow). Moreover, these copies are more complex to perform thana block transfer of the stack because of the frame formatting and underow handleroverheads.Upon closer examination, neither method is clearly superior to the other. Firstly,communication between the thief and victim processors is more important than thecomplexity of the algorithms. Assuming the thief actually returns through all the con-tinuation frames, the frames only need to be transferred once between the processors ineither method. When using heapi�cation, one of the transfers will be between processors10To preserve the format of frames and avoid a special case in the underow handler, it is best if theseframes contain a dummy parent continuation.

98 CHAPTER 3. LAZY TASK CREATIONand one between local memory and the cache (assuming the stack lives mostly in thecache). Since interprocessor communication is an order of magnitude more expensivethan local memory accesses, both methods will have roughly similar performance.Secondly, the thief might not use all of the parent continuation frames. In such a casea block transfer will do more work than strictly required. When using heapi�cation, onlythe frames which are needed are transferred (since frames are restored on demand). Thiscan make a big di�erence in some programs, in particular when a given task spawnsseveral children deep in some recursion. To explain this case, consider the followingvariant of pmap (define (pmap proc lst)(if (pair? lst)(let ((val (FUTURE (proc (car lst)))))(let ((tail (pmap proc (cdr lst))))(cons (TOUCH val) tail)))'()))Assume the root task calls pmap with a continuation containing k stack frames. Notethat the continuation of the ith evaluation of the future contains k + i frames. Alsonote that the only task that ever gets stolen with LTC is the root task. If the list is oflength n and there are n steals, a total ofPni=1 k + i = n(k+ n+12) frames are transferredbetween processors when using the block transfer method. The cost is lower by a factorof O(n) when the parent continuation is heapi�ed on every steal. On the �rst steal,k + 1 frames are heapi�ed and the topmost is transferred and restored by the thief.Subsequent steals will heapify two frames (one for the recursive call to pmap and onefor the call to the future's thunk) and a single frame will be transferred and restored.Finally, in the unwinding of the recursive calls to pmap, n frames will be transferred andrestored. The total is: 2n+ k + 1 heapi�ed frames, 2n restored frames, and 2n framestransferred between processors.3.4 Synchronizing Access to the Task StackIn the above description of LTC a critical issue was not addressed: the synchronization ofthe processors. This is an issue because multiple processors, including the victim, mighttry to simultaneously remove the same task from the task stack. Some synchronizationis needed to resolve this race condition.The case of multiple thieves can be prevented by associating a \steal" lock withevery processor. A processor wanting to steal from a victim �rst acquires the victim's

3.5. THE SHARED-MEMORY PROTOCOL 99steal lock before attempting to steal a task. The lock is released when the attempt is�nished so there in never more than one thief trying to steal from a given victim.The only remaining race condition occurs when the victim's task stack contains asingle task and the thief tries to steal the task while the victim is trying to pop the task.The term protocol refers to how the thief and victim processors interact to avoid conictswhen accessing the task stack. Two protocols are explored here: the shared-memory(SM) protocol and the message-passing (MP) protocol.3.5 The Shared-Memory ProtocolThe SM protocol tries to maximize concurrency between the thief and victim by mini-mizing the interference of the thief on the victim's current execution. The victim doesnot cooperate with the thief but rather the responsibility of stealing falls entirely onthe thief (a cute analogy is that the thief is behaving like a pickpocket trying to stayunnoticed by its victim). Thus, it is the thief that executes the steps in Figure 3.6.The problems with this approach are explained throughout the description of the SMprotocol that follows.The �rst problem is that, at the moment of a steal, the thief has no way of know-ing where the child's return address r is because the victim could be in any of severalstates (this problem shows up in swap_child_ret_adr_with_underflow(p)). The re-turn address is only on the victim's stack if the child is in the process of executing asubproblem call. Even if the procedure calling convention required that r be passedon the stack in a predetermined slot (e.g. the �rst), there would be a problem becausewhen r is invoked to return from the future's body, r will �rst get popped from thestack before the parent task is popped. This race condition between the thief mutatingr and the victim invoking r can be handled in the following way. Instead of having thethief mutate r to bring the victim to call underflow when it returns from the child, thedetection of a stolen parent task is done explicitly by the victim at the future's returnpoint. The test at the return point will cause a branch to the underow handler if theparent was stolen. Nevertheless, the thief must still know the value of r to reconstructthe parent's continuation. A simple solution is to save the value of r inside the future'scontinuation frame (just before pushing the lazy task on the LTQ). Thus, the thief canget the value of r by indirecting p.Before stealing a task, the thief must �rst verify that one is present, that is checkif HEAD<TAIL. However, this only tests the instantaneous presence of a task because

100 CHAPTER 3. LAZY TASK CREATIONnothing prevents the victim from immediately decrementing TAIL as part of the poppingof a lazy task. To prevent this from happening, each LTQ entry could be augmentedwith a \popping" lock that controls the popping of the corresponding task. The victimacquires the popping lock under TAIL before decrementing TAIL and the thief acquiresthe popping lock under HEAD+1 before testing for the presence of a task. If a task ispresent, i.e. HEAD<TAIL, the thief is certain that this condition will remain true untilthe popping lock is released because the victim cannot decrement TAIL from HEAD+1 toHEAD. Note that locking is not needed for pushing a lazy task since this can't cause arace with the thief (as long as TAIL is updated after the entry is written to the LTQ). Tocomplete the stealing of the task, the thief increments HEAD, recreates the task by callingsteal_task(*HEAD), and releases the popping lock under HEAD. Unfortunately, thecost of lock operations on some machines is an order of magnitude more expensivethan typical instructions. For example, the aquisition of a lock on the GP1000 is donethrough a system call that takes 6 �secs (the equivalent of roughly 20 instructions).Accessing the locks would constitute the dominant cost of a future because it is neededon every task pop. The next section explains how hardware locks can be avoided.A major problem with the SM protocol is that the task stack and related data struc-tures must be accessible to all processors. This includes the following data structures� the runtime stack and UNDERFLOW_CONT,� the LTQ and its HEAD and TAIL pointers, and� CURRENT_DYNAMIC_ENV, the DEQ and its DEQHEAD and DEQTAIL pointers.The problem is that these data structures must be in shared memory and can't becached optimally. The victim processor would have faster access to these data structuresif they were private data. This is the prime motivation for the MP protocol describedin Section 3.7. Two of these data structures can nevertheless be private even withthe SM protocol: the TAIL and DEQTAIL pointers. Since this is achieved in a similarway for both pointers it will only be explained for TAIL. The idea is to maintain thefollowing invariant: all LTQ entries above TAIL contain a special marker, for examplea NULL pointer (all LTQ entries are initialized with this value). This means that, forall X>HEAD, X>TAIL if and only if X[0]=NULL. The thief can thus replace the testHEAD<TAIL by HEAD[1]6=NULL. The victim can keep TAIL in the most convenient place(Gambit dedicates one of the processor registers). Pushing and popping an entry on theLTQ each require a single memory write to the LTQ (SP and NULL respectively) and anadjustment of TAIL. The code sequences for this method are given in the next section.

3.5. THE SHARED-MEMORY PROTOCOL 101...RET = ret_point; /* setup future body's return address */*++SP = RET; /* save ret adr in continuation frame */*++TAIL = SP; /* push parent task on LTQ */future's bodyret_point:SM_attempt_pop(); /* pop parent task if still there */secondary_ret_point:SP--; /* pop ret adr from continuation frame */...Figure 3.9: Code sequence for a future under the SM protocol.3.5.1 Avoiding Hardware LocksHardware locks can be avoided in the task popping operation by implementing thepopping locks with any of several \software lock" algorithms based on shared variables(such as Dekker's algorithm [Dijkstra, 1968] and Peterson's algorithm [Peterson, 1981]).The same basic principles used by these algorithms can be adapted to design a specialpurpose synchronization mechanism for LTC as described next. With the exception ofthe previously mentioned method to make TAIL private, this algorithm is similar to theone described in [Mohr, 1991]. The only atomic operations in these algorithms are thememory references and lock operations (increments and decrements do not have to beatomic).The mechanism arbitrates access to the task stack during task steal and task popoperations using only the pointers HEAD and TAIL, and a lock governing mutation ofHEAD (i.e. HEAD_LOCK). Note that HEAD_LOCK can be either a hardware or software lockbut because it is used infrequently in the popping operation it doesn't really matterwhich type it is. The task stealing and popping operations are implemented by theprocedures SM_attempt_steal and SM_attempt_pop respectively (the code is given inFigures 3.10 and 3.11). These procedures attempt to remove a task from the taskstack and indicate if the attempt was successful. SM_attempt_steal indicates failureby returning NULL; otherwise it returns a heavyweight task object corresponding to thestolen task. SM_attempt_pop indicates failure by calling the underow handler directly;otherwise control returns to the caller. The code sequence generated for a future callsSM_attempt_pop at the future's return point, as shown in Figure 3.9. The performanceof the popping operation can be improved by inlining the instructions of procedureSM_attempt_pop at the return point (or at least the two �rst instruction; which are the

102 CHAPTER 3. LAZY TASK CREATIONtask *SM_attempt_steal(V) /* V is victim processor */processor *V;{ value *p; /* entry obtained from V's LTQ */1 if (V->HEAD[1] == NULL) return NULL; /* nothing to steal if LTQ empty */acquire_lock(V->HEAD_LOCK); /* get right to increment HEAD */2 V->HEAD++; /* increment HEAD */3 p = *V->HEAD; /* get entry from LTQ */if (p != NULL) /* check for conflict */{ task *parent = steal_task(V, p); /* won race... recreate parent */release_lock(V->HEAD_LOCK); /* done with HEAD */return parent; /* indicate success */}4 V->HEAD--; /* lost race... undo increment */release_lock(V->HEAD_LOCK); /* done with HEAD */return NULL; /* indicate failure */} Figure 3.10: Thief side of the SM protocol.SM_attempt_pop(){5 *TAIL-- = NULL; /* remove topmost LTQ entry */6 if (HEAD > TAIL) /* check for possible conflict */{ boolean thief_won;7 acquire_lock(HEAD_LOCK); /* prevent thief from mutating HEAD */8 thief_won = (HEAD > TAIL); /* definitive conflict check */release_lock(HEAD_LOCK);if (thief_won) /* if thief won race... */{ *TAIL++ = SP; /* restore LTQ top */underflow(); /* jump to end-body */}}} Figure 3.11: Victim side of the SM protocol.

3.5. THE SHARED-MEMORY PROTOCOL 103most frequently executed instructions). In SM_attempt_steal, steal_task needs toknow which task stack to access so it is called with the victim processor as an extra ar-gument. Also note that the operation swap_child_ret_adr_with_underflow(p) usedby steal_task is equivalent to *p (the child's return address is not mutated).Clearly there is no possible conict between the thief and victim when the taskstack contains more than one task. The thief can increment HEAD and take the lowestentry on the LTQ at the same time that the victim voids the topmost entry (by writingNULL) and decrements TAIL. A conict can only occur if calls to SM_attempt_stealand SM_attempt_pop overlap in time and the task stack contains a single task, that isHEAD=TAIL�1. The idea is to let the thief and victim blindly access the LTQ as thoughthere was no conict (thereby adjusting HEAD and TAIL) and only then check to see ifthere is a conict (that is check if HEAD=TAIL+1 or equivalently HEAD>TAIL). When aconict is detected, one of the two processors is selected as the \winner" of the race forthe task and it returns success. The other processor undoes its mutation of the LTQand returns failure. The thief detects success very simply: it is the winner if and onlyif the entry it reads from the LTQ at line 3 is not NULL. This entry can only becomeNULL if the victim voids it by executing line 5. The two possible orderings of these linesare considered next.1. Thief executes line 3 before the victim executes line 5The thief has won the race. It will recreate the parent task and returns it fromSM_attempt_steal. Note that from this point on, HEAD will never point lower thanthe entry that was removed (HEAD can only increase). When the victim eventuallyexecutes line 5 with TAIL pointing to the removed entry, it will decrement TAILto below HEAD and consequently line 6 will detect the conict. Line 8 will �ndthe same result so the victim will conclude that the parent was stolen and willjump to end-body.2. Victim executes line 5 before thief executes line 3The thief will lose the race because it will read NULL at line 3. Consequently, thethief will restore HEAD to its previous value (at line 4). There are two subcasesdepending on what the thief is doing when the victim executes line 6.(a) Thief is not between lines 2 and 4 when victim executes line 6The thief has either not yet tried to remove the entry or has restored HEADto the value it had just before line 2. Thus, HEAD=TAIL when line 6 isexecuted. The victim sees no conict and declares success by returning fromSM_attempt_pop.

104 CHAPTER 3. LAZY TASK CREATION(b) Thief is between lines 2 and 4 when victim executes line 6The thief has not yet restored HEAD to its original value so HEAD=TAIL+1.The victim thus detects a possible conict at line 6. The reason for acquiringHEAD_LOCK at line 8 is to make sure that the thief is not between lines 2and 4 when the test at line 8 is executed. At that point the thief will haverestored HEAD and will not mutate HEAD again (because HEAD_LOCK is locked).Line 8 thus sees HEAD=TAIL, causing SM_attempt_pop to return successfully.The role of line 1 is to ensure that the victim eventually acquires the lockat line 7 in systems where locks are not fair. It prevents new thieves fromcrossing line 1, so eventually the victim will be the only processor trying tolock HEAD_LOCK. It also avoids the overhead of attempting to steal from aprocessor with an empty task stack.Thus, the SM protocol satis�es the following correctness criteria� Safety | Either the thief or the victim, but not both, will remove a given entryfrom the LTQ.� Liveness | An attempt to remove an entry will eventually indicate failure orsuccess (i.e. deadlock and livelock are impossible).3.5.2 Cost of a Future on GP1000This section describes the details of the GP1000 implementation of the SM protocol andevaluates the costs related to the evaluation of a future on that machine. As explainedabove, the cost of a future depends on many parameters but mostly on whether thecorresponding parent task is stolen or not.Parent Task is not StolenIf the parent is not stolen, the cost is simply that of pushing and popping a lazy task.Pushing a lazy task requires four steps: setting up the body's return address, settingup the arguments to the body (the closed variables), pushing the return address to thestack, and pushing the stack pointer to the LTQ. The �rst step typically replaces thesame step that would be required in a sequential version of the program to evaluate thebody (assuming it is a procedure call) so it won't be counted as overhead. Often thesecond step requires no instructions because the arguments are already in a location

3.5. THE SHARED-MEMORY PROTOCOL 105accessible to the body (e.g. in the registers). Only the last two steps are necessaryextra work with respect to a sequential version of the program. Popping a lazy tasktakes two steps: popping and voiding the topmost entry on the LTQ, and checking for aconict. The popping of the return address from the stack has no cost because it can becombined with the deallocation of the continuation frame by the future's continuation.To get a concise code sequence on the GP1000, some of the special addressing modesof the M68020 processor were used, in particular predecrement and postincrement in-direct addressing. TAIL, SP, and RET are all kept in address registers (a4, sp, and a0respectively). The two required steps in the lazy task push translate into two instruc-tions and a lazy task pop translates into three instructions as shown below.movl a0,sp@- ; push return address to stackmovl sp,a4@+ ; push stack pointer to LTQ.. code for future's body.ret_point:clrl a4@- ; pop and void entry on LTQcmpl HEAD,a4 ; compare head and tailbcs conflict ; jump to handler if conflictsecondary_ret_point:.. code for future's continuation.Note that the stack grows downward on the M68020. Of the �ve instructions, threeare writes to shared memory. The sequence accounts for a run time of roughly 2 �secs.The assembly code generated for the SM protocol when compiling the fib benchmarkis given in Section 3.8.Parent Task is StolenTo the above cost must be added the extra work performed as a consequence of thesteal. Assuming that there is always a single return from the future's body, the thiefand victim will perform the following operationsThief(1) Heapify the parent continuation(2) Find the parent's dynamic environment(3) Allocate new objects | This includes the allocation and initialization of theparent task, result and legitimacy placeholders and end_frame.

106 CHAPTER 3. LAZY TASK CREATIONOperation Instruction countsteal_task (excluding heapify_frame 75and recover_dyn_env)heapify_frame 6 + 34f + 2srecover_dyn_env 8 + 2bresume_task (excluding underflow) 10underflow 50 + 2s0determine! 28 (w = 0)37 + 6w (otherwise)idle (only accounts for search) 15 (n = 0)34 + 8n (otherwise)Table 3.2: Cost of operations involved in task stealing.(4) Resume the parent task | Note that only the �rst continuation frame needsto be restored.Victim(5) Invoke end-body | This is performed by the underow handler.(6) Terminate the child | The result and legitimacy placeholders get determinedand then control goes to idle.(7) Find new work | The victim must �nd a runnable task to resume. The taskeither comes from the victim's HTQ or is stolen from another processor.In addition, there is a cost for restoring the other frames of the parent continuationheapi�ed in (1). This is done at least in part by the thief but maybe also by some otherprocessors (if the parent task migrates to other processors).Table 3.2 gives the cost of the operations involved in task stealing (the costs cor-respond to the number of machine instructions executed in Gambit's encoding of thealgorithms). In this table, f is the number of frames heapi�ed (which is the number offrames separating the future from the enclosing future), s is the number of values onthe stack, b is the number of dynamic variable bindings that were added to the dynamicenvironment since the enclosing future, s0 is the size of the continuation frame to re-store, w is the number of tasks on the placeholder's waiting queue, and n is the numberof processors that were considered in the search for a runnable task (n = 0 when thetask is found in the local HTQ). Note that these costs do not account for the location(i.e. local vs. remote memory) of the data being accessed.

3.6. IMPACT OF MEMORY HIERARCHY ON PERFORMANCE 107From the table can be derived the approximate costs associated with the victim(Tvictim), the thief (Tthief), and the processors that restore the parent's continuation(Tunderow).Tvictim = (50 + 2� 3) + 28 + 28 + 15 = 127Tthief = 75 + (6 + 34f + 2s) + (8 + 2b) + 10 = 99 + 34f + 2s+ 2bTunderow = 50f + 2s226 + 84f + 4s + 2bThe minimal cost corresponds to f = 1, s = 2, b = 0, w = 0, and n = 0. This gives atotal cost of 318 instructions (106 �secs). In a more realistic situation, the frames willbe larger and more numerous so the cost of heapi�cation and underow will increase.Assuming s = 8 and f = 2, the total cost will be 426 instructions (142 �secs).3.6 Impact of Memory Hierarchy on PerformanceAn unfortunate requirement of the SM protocol is that all processors must have accessto the task stack's data structures; in particular the runtime stack and LTQ. Makingthese structures accessible to all processors has a cost because it precludes the use of themore e�cient caching policies. The runtime stack and the LTQ are read and written bythe victim but are only read by thief processors; thus, they are single writer shared dataand can be cached by the victim using the write-through caching policy (as explained inSection 1.4.5). This however is not as e�cient as the copy-back caching policy normallyused in single processor implementations of Lisp. For typical Lisp programs, caching ofthe stack will likely be an important factor since the stack is one of the most intenselyaccessed data structures. Caching of the LTQ will also be an important factor forparallel programs with small task granularity because each evaluation of a future causesa few memory writes to the LTQ and stack (three in the SM protocol). Although thismay not seem like much at �rst sight, the cost of a memory write to a write-throughcached location on modern processors (such as the M88000 processors in the TC2000)is 5 to 20 times larger than the cost of a non-memory instruction or a cache hit (reador write) to a copy-back cached location. Note that this is not an issue on the GP1000which lacks a data cache.But how large is the performance loss due to a suboptimal caching policy? Tobetter understand the importance of caching on performance, it is useful to analyzethe memory access behavior of typical programs. The run time of a Lisp program canbe broken down into the time spent accessing data in memory and the time spent on

108 CHAPTER 3. LAZY TASK CREATION\pure computation". Memory accesses can further be broken down into two categories:accesses to the stack and accesses to the heap. Thus, a program is described by thethree parameters S (stack), H (heap), and C (pure computation) which represent theproportion of total run time spent on each category of instructions (S +H + C = 1).For reference purposes, these parameters are de�ned with respect to an implementationwhere the stack and heap are not cached (i.e. all accesses go to local memory).Some experiments were conducted to measure the value of S, H , and C for eachbenchmark program on both the GP1000 and TC2000. All these programs were run ona single processor as sequential programs (futures and touches were removed from theparallel benchmarks). The run time of each program was measured in three di�erentsettings. The �rst run was with the stack and heap located in non-cached local memory.The second run was with the stack located in remote memory (on another processor)so that each access to the stack would cost more. The �nal run was with the heap inremote memory. The three run times are respectively T , TS , and TH . Now since therelative cost R of a remote access with respect to a local access is known (R = 12:1 onthe GP1000 and R = 4:2 on the TC2000), a system of three linear equations is obtainedS +H +C = 1SR+H +C = TS=TS +HR+C = TH=TThis system can easily be solved to �nd the value of S, H , and C. Note thatthis model does not take into account factors such as the pipelining of instructions bythe processor and the di�erence in costs between reads and writes. Also note thatthe values are dependent on the quality of the code generated by the compiler, butbecause an optimizing compiler was used, the measurements are representative of ahigh-performance system. As a sanity check, the values of S, H , and C obtained onthe TC2000 were used to predict the run time of the program when the stack is cachedwith the copy-back policy. Assuming that the cache hit ratio for the stack is close to 1(which is reasonable due to the high locality of stack accesses), the run time should beT (SK +H +C) where K = 3:8 is the relative cost of a local memory access with respectto a cache access. For most programs (21 out of 27), the prediction was within 5% ofthe actual run time. Only 3 programs had a di�erence above 10%: fib with 12%, mmwith 13%, and sum with 15%. This suggests that the values obtained for S, H , and Care reasonably close to reality.

3.6. IMPACT OF MEMORY HIERARCHY ON PERFORMANCE 109GP1000 TC2000 Stack CachingProgram S H C ORemHeap S H C ORemHeap ONone OWTboyer .08 .08 .84 1.84 .32 .16 .53 1.64 1.29 1.15browse .15 .09 .75 2.05 .25 .15 .60 1.58 1.20 1.10cpstak .11 .25 .64 3.79 .24 .49 .27 2.95 1.24 1.10dderiv .14 .06 .80 1.70 .28 .13 .59 1.51 1.23 1.11deriv .14 .06 .80 1.64 .26 .12 .61 1.49 1.23 1.11destruct .01 .14 .85 2.52 .03 .41 .56 2.32 1.02 1.01div .08 .25 .67 3.82 .19 .47 .34 2.71 1.16 1.07puzzle .09 .21 .70 3.37 .17 .35 .48 2.23 1.13 1.04tak .53 .00 .47 1.00 .83 .00 .17 1.00 2.45 1.55takl .16 .27 .57 4.01 .32 .45 .23 2.82 1.28 1.13traverse .35 .14 .52 2.53 .56 .17 .27 1.90 1.63 1.33triangle .20 .13 .67 2.45 .38 .19 .43 1.81 1.29 1.16compiler .17 .11 .72 2.20 | | | | | |conform .15 .10 .74 2.16 .25 .10 .65 1.40 1.20 1.09earley .25 .06 .69 1.67 .58 .10 .32 1.58 1.88 1.43peval .17 .14 .69 2.54 .35 .26 .38 2.13 1.34 1.14abisort .19 .32 .49 4.56 .31 .49 .20 3.03 1.31 1.13allpairs .56 .12 .33 2.30 .73 .14 .13 2.01 2.27 1.54fib .41 .00 .59 1.00 .70 .00 .30 1.00 1.81 1.34mm .43 .10 .47 2.08 .71 .14 .15 1.99 2.36 1.58mst .29 .13 .58 2.44 .59 .23 .19 2.27 1.76 1.30poly .09 .03 .88 1.32 .33 .12 .55 1.49 1.28 1.14qsort .25 .26 .49 3.94 .37 .26 .37 2.14 1.38 1.18queens .41 .00 .59 1.00 .74 .00 .26 1.00 2.15 1.48rantree .15 .00 .85 1.00 .40 .00 .60 1.00 1.36 1.17scan .49 .05 .46 1.54 .70 .09 .21 1.55 1.96 1.35sum .38 .05 .57 1.56 .73 .08 .19 1.44 1.85 1.34tridiag .35 .10 .55 2.13 .65 .18 .17 2.13 1.99 1.48Table 3.3: Measurements of memory access behavior of benchmark programs.

110 CHAPTER 3. LAZY TASK CREATION6
-

H
S.0.0.1.2.3 .1 .2 .3 .4 .5 .6...

...boyer t browsetcpstaktdderiv t derivtdestructt divtpuzzlet takt
taklt traversettriangletcompilertconform t earleytpevaltabisortt allpairstqueens fibtmmtmst tpoly t

qsortt
trantreet scantsumttridiagtGP10006

-
H

S.0.0.1.2.3
.4.5

.1 .2 .3 .4 .5 .6 .7 .8...
...boyersbrowses

cpstaks ctaksdderiv sderiv s
destructs div spuzzles

taks
takls traversestrianglesconforms earleyspeval sabisorts

allpairssfibsmm smstspolys qsorts queenssrantrees scans sumstridiagsTC2000Figure 3.12: Relative importance of stack and heap accesses of benchmark pro-grams.

3.6. IMPACT OF MEMORY HIERARCHY ON PERFORMANCE 111These additional measurements were also taken� ORemHeap , the overhead of locating the heap in remote memory rather than localmemory when the stack is cached optimally (i.e. no caching on GP1000 and copy-back caching on TC2000). This value is a good indicator of the overhead that willappear due to the sharing of user data if the program is run in parallel (assuminguser data gets distributed uniformly to all processors, the number of processors islarge, and there is little contention).� ONone (TC2000 only), the overhead of not caching the stack rather than usingcopy-back caching.� OWT (TC2000 only), the overhead of caching the stack with write-through cachingrather than with copy-back caching.The measurements are given in Table 3.3 and Figure 3.12 presents this data in amore readable form (plots in S-H space).A few observations can be made from Figure 3.12. Firstly, most of the programsaccess the stack more often than the heap (i.e. all the programs below the S = Hline). This tendency is even more pronounced for the parallel benchmarks (i.e. theboxed names in the plots). This is to be expected since the majority of the parallelbenchmarks are based on recursive (DAC) algorithms.Secondly, the importance of memory accesses is greater on the TC2000 than on theGP1000 (i.e. the position of a given program on the S-H plane is further from theorigin). This is in agreement with the well known fact that modern processors needcaches and a high hit rate to keep them going at peak speed. Most of the programsactually spend more time accessing memory than doing pure computation when run onthe TC2000 (C is below 12). As indicated by column ONone of Table 3.3, copy-backcaching the stack provides an important performance gain. This gain is in some caseshigher than a factor of 2. However, the median gain is 1.34 and the average is 1.56.The last column in the table, OWT , is of special interest because it reects thecost of suboptimally caching the stack to support the SM protocol. The overhead ofusing write-through caching rather than copy-back caching is as high as 1.58. Thesequential benchmarks have a median overhead of 1.11 (average of 1.17) whereas themedian overhead for the parallel benchmarks is 1.34 (average of 1.34). Note also thatthe cache on the TC2000 is not very fast (only a factor of 3.8 faster than local memory).Some machines have caches which operate several times faster, with a correspondingincrease in OWT . The objective of the MP protocol is to avoid this overhead altogether.

112 CHAPTER 3. LAZY TASK CREATION3.7 The Message-Passing ProtocolIf the role of the thief in the SM protocol is analogous to a pickpocket, in the MP protocolstealing a task is analogous to a holdup because the victim actively cooperates with thethief. To initiate a task steal, the thief sends a steal request message to the victim andstarts waiting for a reply. The victim eventually interrupts its current execution andcalls a steal request handler routine to process the message. This handler checks the taskstack and, if a lazy task is available, recreates the oldest task and sends it back to thethief. Otherwise a failure message is sent back to the thief which must then try stealingfrom some other processor. The victim then resumes the interrupted computation.There are several advantages to this protocol. Firstly, it relies less on an e�cientshared memory. All the data structures comprising the task stack are private to eachprocessor. The stack, LTQ, DEQ, and associated pointers can all be cached with copy-back caching. All programs which use the stack and/or dynamic scoping will thusbene�t, whether they are sequential or parallel. Parallel programs will in additionbene�t from the caching of the LTQ which reduces the cost of pushing and poppinglazy tasks.Secondly, it is possible to handle the race condition more e�ciently than the SMprotocol because all task removals from the task stack are performed by its owner.Preventing the race condition between task steals and task pops is as simple as inhibitinginterrupts for the duration of the task pop. This can be achieved by adding a pair ofinstructions around the task popping sequence to disable and then reenable interruptsto the processor. The method used by Gambit is to detect interrupts via polling andnever check for interrupts inside the popping sequence (e�cient polling is explained inChapter 4). There are other methods that have no direct overhead. For example, in theinstruction interpretation method [Appel, 1989] the hardware interrupt handler checksto see if the interrupted instruction is in an \uninterruptible" section (i.e. a poppingsequence). If it is, the rest of the section is interpreted by the interrupt handler beforethe interrupt is serviced. Other zero cost techniques are described in [Feeley, 1993].Thirdly, the operation swap_child_ret_adr_with_underflow(p) can be imple-mented according to its original speci�cation (i.e. an actual mutation of the child'sreturn address), thus avoiding the push of the body's return address to the stack andthe explicit check for underow at the future's return point. The sequence generated fora future only has to push an entry to the LTQ before evaluating the body and to decre-ment TAIL at the future's return point. Doing this in the SM protocol was not possiblebecause the thief could not know where the victim had stored the return address r. In

3.7. THE MESSAGE-PASSING PROTOCOL 113the MP protocol r can be located in several ways.� Scanning the stack downward from the top | The system can be designedso that the steal request handler is always called in the same way as a subproblemcall. This is fairly easy to do when the system detects interrupts through pollingbecause the call to the handler is a subproblem call. For a system that useshardware interrupts it is more complex but still possible11. Thus, when the handleris executed, SP and RET can be used to parse the content of the stack. The handlercan walk back through the frames until the frame directly above p is found. Atthis point the format of this frame is known, so r can be accessed directly. Thisapproach may be expensive since there can be an arbitrary number of framesabove p at the moment the steal request is received.� Scanning the stack upward from p | Assuming the handler is always calledas a subproblem, either r has been saved to the stack by the child's outermostsubproblem call or it has been saved in the continuation frame for the call to thehandler. Thus, when the handler is executed, r will necessarily be the �rst returnaddress above p on the stack (i.e. the return address in the frame directly abovep). An upward search of the stack starting from p and stopping at the �rst returnaddress will locate r. It is assumed here that the values on the stack are tagged,at least to the extent of allowing return addresses to be distinguished from othervalues. It is also assumed that return addresses are not �rst-class objects andthat return addresses are never saved to more than one location. Achieving thismight require a close coupling of the steal request handler, interrupt system, andcompiler. The cost of �nding r with this method is O(n) where n is the size ofthe frame above p. This method is used by Gambit. Gambit makes an e�ort tolessen the cost of the search by using heuristics that favor the saving of the returnaddress in the lower end of continuation frames.Finally, in the MP protocol it is the victim that is in charge of creating the parenttask, its continuation, and related structures. By allocating these structures in thevictim's local memory steal_task avoids remote memory accesses and thus completesfaster than in the SM protocol. Remote memory accesses are performed by the thiefwhen it resumes the task but strictly on demand. The parent task may actually start11For example, a table could be setup with a description of the register allocation for every instructionin the program. This description indicates among other things where the parent return address is locatedwhen the instruction is executed. This table is used by the handler to build a correctly formattedcontinuation frame for the return to the interrupted code.

114 CHAPTER 3. LAZY TASK CREATIONexecuting sooner than with the SM protocol because only the parent task object and its�rst continuation frame need to be transferred from victim to thief. The total numberof remote memory accesses may also be smaller if the parent's continuation is not usedfully by the thief (for example if the parent task migrates to another processor).The disadvantages of the MP protocol are explained in Section 3.7.3.3.7.1 Really Lazy Task CreationThe basic idea of LTC is to defer the creation of heavyweight tasks to the moment theyare known to be required, that is when they are stolen. This usually saves a lot of workbecause non-stolen tasks are handled at very low cost and the cost of stealing a task isroughly the same as creating a heavyweight task in the �rst place. In the MP protocol,the cost of a non-stolen task is two instructions. This cost can actually be removedcompletely by doing more work when the task is stolen. Notice that the only purposeof the LTQ is to facilitate the reverse parsing of the stack (i.e. from bottom to top) to�nd the task continuation boundary of the lowest task. Finding the task continuationboundaries can however be done by parsing the stack from top to bottom and checkingfor return addresses to future return points. As explained previously, this parsing canbe done by the steal request handler. The problem with this method is that the cost ofstealing is not bounded since all the stack must be parsed. Fine grain programs withshallow recursions may nevertheless perform better with this method if most tasks arenot stolen. Due to its worst-case behavior and the fact that it saves only two inexpensiveinstructions, this method is not very appealing for general use.3.7.2 Communicating Steal RequestsThe algorithms for the thief and victim sides of the MP protocol are shown in Fig-ures 3.13 and 3.14 respectively. Even though they are based on a message-passingparadigm, these algorithms implement the communication using shared variables: THIEFand REPLY. In addition, the parent task is also communicated through shared mem-ory. The victim's THIEF variable is set by the thief so that the victim can tell whichprocessor has sent the steal request. It is also used to indicate the presence of a stealrequest (when there is a steal request THIEF6=NULL). A thief's REPLY variable is set bythe victim in response to a steal request. After the thief has sent a request, it busy-waitsuntil the victim responds by setting the REPLY variable to the task that was stolen or

3.7. THE MESSAGE-PASSING PROTOCOL 115task *MP_attempt_steal(V) /* V is victim processor */processor *V;{ REPLY = NONE_YET; /* initialize with special marker */1 V->THIEF = CURRENT_PROCESSOR; /* tell victim who the thief is */2 raise_interrupt(V); /* get victim to process the request */3 while (REPLY == NONE_YET) ; /* busy-wait until victim replies */return REPLY;} Figure 3.13: Thief side of the MP protocol.interrupt_handler(){ if (THIEF != NULL) /* check for a steal request */{ /* the steal request handler: */4 processor *T = THIEF; /* get pointer to thief */5 THIEF = NULL; /* set it up for next request */if (HEAD < TAIL) /* anything on the task stack? */T->REPLY = steal_task(*++HEAD); /* send oldest task to thief */elseT->REPLY = NULL; /* indicate failure to thief */}.. /* check other sources of interrupts */.} Figure 3.14: Victim side of the MP protocol.to NULL if the victim had an empty task stack12. Note that the interrupt handler canget invoked for other reasons than the call to raise_interrupt at line 2 (assuming alltypes of interrupts go through interrupt_handler). This means that the victim mightdetect the steal request at line 4 as soon as line 1 is executed. Consequently, it isimportant for the thief to initialize REPLY before line 1. THIEF must also be reset (line5) before the reply is sent back. In the reverse order a deadlock might occur if a secondsteal attempt executes line 1 before THIEF is reset. The victim would be unaware ofthe second request and would never send a reply back to the thief (the thief would thusbusy-wait forever).The implementation of raise_interrupt will depend on the interrupt handlingmechanism. If polling is used, then raise_interrupt can simply raise the victim'sinterrupt ag (the cost is that of a remote memory access). Sometime after this, the12The advantage of having REPLY in the thief's local memory is that the busy-waiting does not createany tra�c on the memory interconnect.

116 CHAPTER 3. LAZY TASK CREATIONvictim will detect the interrupt and call interrupt_handler. Note that this requiresthe interrupt ag to be multiple writer shared data so it can't be cached by the victim(or any other processor). Other systems send interrupts to other processors throughdedicated hardware in the interconnect (the CM-5 for example). Sending an interrupton these systems might require a system call. Clearly the cost will vary according tothe features of the machine and operating system.3.7.3 Potential Problems with the MP ProtocolThe MP protocol has a number of characteristics that enhance performance but alsosome others that degrade it. This section examines the detrimental aspects and brieydiscusses their severity. An important question is whether the performance gains aremore important than the losses. This question will not be answered fully here becausethere are too many performance related parameters to consider. Chapter 5 will insteadevaluate the performance of the MP and SM protocols experimentally.Busy-WaitingThe most obvious problem with the MP protocol is that the busy-wait for the replywastes processing resources. The total time wasted by the thief is the time it takesbefore the victim sends back the reply. This is the steal latency . The steal latency isthe sum of the time needed by the victim to detect the steal request (Tdetect) and thetime to process the request (Tprocess). If the request is successful, Tprocess is roughly thetime required to call steal_task (Tsteal task); otherwise Tprocess = 0.The time wasted by the busy-wait must be put in context. If the steal is success-ful, the thief receives a task after wasting Tdetect + Tsteal task of its time and takingTsteal task time away from the victim, so the total amount of work expended to get thetask is Tdetect + 2Tsteal task. If Twork is the time the thief spends running the stolentask before another task needs to be stolen, the overhead costs for stealing the task inthe MP and SM protocols areOMP = 1 + Tdetect+2Tsteal taskTworkOSM = 1 + Tsteal taskTworkOSM and OMP are hard to compare because Tsteal task for the SM protocol is largerthan for the MP protocol due to the additional remote memory accesses. If the penaltyof a remote memory access is su�ciently low, OSM will be lower than OMP . However,

3.7. THE MESSAGE-PASSING PROTOCOL 117the di�erence will be small when Twork is large relative to Tsteal task and Tdetect . Thisis helped by the fact that LTC tends to increase the e�ective granularity of programs(i.e. the granularity of heavyweight tasks) and Twork is directly related to the e�ectivegranularity. However, an increase in the number of processors tends to decrease thee�ective granularity, thus increasing the importance of OMP relative to OSM .Speed of Work DistributionThe speed at which work gets distributed to the processors is dependent on the steallatency. Distributing work quickly is crucial to fully exploit the machine's parallelism.It is especially important at the beginning of the program13 because all processors areidle except one. Reducing the steal latency not only gets processors working sooner butalso allows these processors to generate new tasks sooner for other processors. The MPprotocol has a potentially smaller steal latency than the SM protocol, but only if Tdetectis kept small. Unfortunately, minimizing Tdetect may increase the cost of other parts ofthe system thus creating a trade-o� situation. As explained in the next chapter, pollingwill become more expensive because interrupts need to be checked more frequently.Interrupt OverheadFinally, the cost of failed steal requests is a concern because the victim pays a high pricefor getting interrupted but this serves no useful purpose. The victim might get requestsat such a high rate that it does nothing else but process steal requests. For example,a continuous stream of steal requests will be received by the victim if it is executingsequential code and all other processors are idle. The problem here is that processorsare too \secretive". No information about the task stack is shared with other processorsso the only way for a thief to know if the victim has some work is to send it a stealrequest.A simple solution is to have each processor regularly save out HEAD and TAIL ina predetermined shared-memory location. Before attempting a steal, the thief checksthe copy of HEAD and TAIL in shared memory to see if a task might be available. Forthief processors this snapshot only reects a previous state of the task stack but, if itis updated frequently enough, its correlation to the current state will be high. If thesnapshot indicates a non-empty task stack it is thus likely that the steal attempt will besuccessful. Gambit always keeps HEAD in shared memory so it does not need to be saved13Or more precisely a transition from sequential to parallel execution.

118 CHAPTER 3. LAZY TASK CREATIONout (this does not a�ect performance because the victim accesses HEAD infrequently).TAIL is saved out on every interrupt check.Unfortunately, this strategy reduces the speed of work distribution because thievescan only become aware of a task's presence at the next interrupt check. Performanceis not a�ected if the task stack was not empty at the last interrupt check. However, ifthe task stack was empty, the newly created task can at best be stolen at the secondfollowing interrupt check. The �rst interrupt check will announce the task's presenceto the thieves and the steal request will be handled at best at the second interruptcheck. Since a processor's task stack is empty immediately after it has stolen a task, itis important to have a low interrupt check latency so that work can spread quickly toidle processors.3.8 Code Generated for SM and MP ProtocolsThis section compares the code generated for a small program when using the SM andMP protocols on the GP1000. The program used here is the benchmark fib. Figure 3.15shows the M68020 assembly code generated for fib for each protocol.The following information will be useful to understand the code. Integer objects are8 times their value because the three lower bits are used for the type tag. Fib's entrypoint is label L1. When fib is called, the return address is passed in register a0 andparameter n is passed in register d1. Register d1 is also used to return fib's result.The following registers have a dedicated role: a4 contains TAIL, a5 is a pointer to theinterrupt ag and processor local data, d6 is a mask to test for placeholder objects, d5is a private counter to perform interrupt checks intermittently (this counter is explainedin the next chapter).The boxed parts contain the instructions that relate to polling and the parallelizationof fib. The rest of the code is identical in both protocols14. A sequential version offib is obtained by removing the boxed parts from the code. One parallelization costcommon to both protocols is the touch operation. Of its three instructions, only the�rst two are executed when a non-placeholder is touched (the run time for this case wasmeasured at roughly .7 �secs). The most important di�erence between the protocolsis in the lazy task push and pop operations. These operations take two instructions inthe MP protocol. The run time for these instructions was measured at roughly .7 �secs14Except for the instruction at L7 which is di�erent due to one of the compiler's stack allocationoptimizations.

3.8. CODE GENERATED FOR SM AND MP PROTOCOLS 119(define (fib n)(if (< n 2)n(let* ((f1 (FUTURE (fib (- n 1))))(f2 (fib (- n 2))))(+ (TOUCH f1) f2))))Shared-Memory ProtocolL1:moveq #16,d0cmpl d1,d0ble L3bra L8L2:movl a0,sp@-movl sp,a4@+ lazy task pushsubql #8,d1moveq #16,d0cmpl d1,d0bgt L8L3:movl a0,sp@-movl d1,sp@-lea L6,a0dbra d5,L2moveq #9,d5cmpl a5@,spbcc L2jsr intr_handler Interrupt checkbra L2L4:jsr conflict conict handlerL5:bra L7L6:clrl a4@-cmpl a5@(8),a4bcs L4 lazy task popL7:movl d1,sp@movl sp@(4),d1moveq #-16,d0addl d0,d1lea L9,a0moveq #16,d0cmpl d1,d0ble L3L8:jmp a0@L9:movl sp@+,d2btst d2,d6bne L10jsr touch_undet TOUCHL10:addl d2,d1dbra d5,L11moveq #9,d5cmpl a5@,spbcc L11jsr intr_handler Interrupt checkL11:addql #4,sprts

Message-Passing ProtocolL1:moveq #16,d0cmpl d1,d0ble L3bra L8L2:movl sp,a4@+ lazy task pushsubql #8,d1moveq #16,d0cmpl d1,d0bgt L8L3:movl a0,sp@-movl d1,sp@-lea L6,a0dbra d5,L2movl a4,a5@(4)moveq #9,d5cmpl a5@,spbcc L2jsr intr_handler Interrupt checkbra L2L5:bra L7L6:subql #4,a4 lazy task popL7:movl d1,sp@-movl sp@(4),d1moveq #-16,d0addl d0,d1lea L9,a0moveq #16,d0cmpl d1,d0ble L3L8:jmp a0@L9:movl sp@+,d2btst d2,d6bne L10jsr touch_undet TOUCHL10:addl d2,d1dbra d5,L11movl a4,a5@(4)moveq #9,d5cmpl a5@,spbcc L11jsr intr_handler Interrupt checkL11:addql #4,sprtsFigure 3.15: Assembly code generated for fib.

120 CHAPTER 3. LAZY TASK CREATION(compared to 2 �secs for the �ve instructions required in the SM protocol). Notice thatin both protocols, label L6 is the future's return point and L5 is the secondary returnpoint (which jumps past the popping sequence). The frame description informationhas been removed from the code for clarity. The other di�erence is in the interruptcheck sequence. The code for the MP protocol has one more instruction to save outTAIL. However, this instruction is in the body of the interrupt check sequence which isexecuted once out of 10 times. The only accesses to shared memory in the MP protocolare in the body of the interrupt check sequence (a test of the interrupt ag and thesaving of TAIL).3.9 SummaryETC is not an adequate implementation of futures because the overhead of creating aheavyweight task for each future is too high for �ne grain programs. LTC postponesthe creation of the heavyweight task until it is known to be required. This only happenswhen another processor needs work (or there is a task suspension, a preemption inter-rupt, a stack overow, or a call to call/cc). To do this, LTC uses a lightweight taskrepresentation that contains enough information to recreate the corresponding heavy-weight task. Lightweight tasks are put in a local task stack that is accessed by threeoperations: push, pop, and steal. A future translates to pushing the parent task ontothe task stack, evaluating the future's body, and then popping the parent task to resumeit (assuming it is still on the task stack). Since a task is essentially a continuation, afuture is nothing more than a special procedure call. The task stack is the runtimestack and a table (LTQ) that indicates the extent of each continuation on the stack.In principle, the push and pop operations are only one instruction apiece. The Katz-Weise continuation semantics and dynamic scoping have no cost for non-stolen tasksbecause the associated support operations (i.e. copying the future's continuation andthe dynamic environment) can also be postponed to the time of the steal.Thief processors access the task stack from the bottom (the older task is stolen�rst). In divide-and-conquer algorithms this has the advantage of reducing the numberof task steals required because the task containing the most work is transferred betweenprocessors.A critical issue is which processor extracts the task from the task stack at the time ofa steal. In the shared-memory (SM) protocol, the thief accesses the victim's stack andLTQ directly to steal the task. Careful synchronization between the thief and victimis needed to avoid a steal and pop of the same task. An unfortunate consequence of

3.9. SUMMARY 121the SM protocol is that the stack and LTQ must be accessible to all processors, so theycan't be cached optimally on a machine such as the TC2000. This suboptimal cachingof the stack causes a sizeable overhead because the stack is one of the most frequentlyaccessed data structures. In the message-passing (MP) protocol, the stack and LTQ areonly accessed by the owner processor so they can be fully cached. The thief sends awork request message to the victim which sends back a task from its task stack if one isavailable. One of the important issues for the MP protocol is the interrupt latency. Ifit is too large then the thief will lose precious time busy-waiting and it will hinder theexploitation of the machine's parallelism because work distribution will be slow.

122 CHAPTER 3. LAZY TASK CREATION

Chapter 4Polling E�cientlyThe message-passing implementation of LTC relies on a mechanism to communicatemessages asynchronously from one processor to another. Such a mechanism must havethe ability to interrupt a processor at any time. Conceivably, this could be done usingsome special feature of the hardware (e.g. interrupt lines of the processor) or the operat-ing system (e.g. the Unix \signal" system). Unfortunately, these solutions are not veryportable and a suitable performance cannot be guaranteed across a range of machines.Instead, it is better to consider software methods that are portable and provide a �nercontrol of performance.The idea behind software methods is rather simple. Each processor has a ag inshared memory that indicates whether or not that particular processor has a pendinginterrupt. The processor periodically checks (i.e. polls) this ag and traps to an interrupthandling procedure when it discovers that the ag has been raised. The interruptcheck code necessary for polling the ag is added by the compiler to the normal streamof instructions required for the program. This unfortunately means that there is anoverhead cost for any program, even if interrupts never occur. Minimizing this overheadis thus an important goal.In theory, the compiler could arbitrarily reduce the polling overhead (Opoll) bydecreasing the proportion of executed interrupt checks with respect to the normal in-structions executed by the program. If all instructions take unit time then Opoll =Npoll =Ninstr , where Npoll is the number of interrupt checks executed and Ninstr is thenumber of non interrupt check instructions executed. This strategy lowers the frequencyof interrupt checking and consequently increases the time between an interrupt requestand the actual acknowledgement by the processor. Average latency (L) and polling over-123

124 CHAPTER 4. POLLING EFFICIENTLYhead are inversely related by L = Npoll +NinstrNpoll = 1+ 1Opoll . Note that interrupt latencyhere refers to the time interval between interrupt checks and not the time between aninterrupt request and its acknowledgement. Here latency is expressed in number of in-structions. To account for non-unit time instructions, latency can be expressed in unitsof time or number of machine cycles. This leads to the de�nitions Opoll = Tpoll =Tinstrand L = Tpoll +TinstrNpoll where Tpoll is the total time spent on interrupt checks and Tinstrthe time spent on other instructions. If an interrupt check takes k units of time on av-erage then L = k(1+ 1Opoll). To simplify the discussion, all instructions will be assumedto take unit time.As explained in the previous chapter, increasing the interrupt latency is detrimentalto parallel programs because it will take longer to respond to steal requests. This limitsthe rate at which work can get distributed to other processors. Thus, there is a trade-o�between overhead and latency. High latency is preferable for sequential code becausethe polling overhead is low and low latency is best for parallel code because parallelismcan be exploited better. The importance of latency is actually more subtle than thissimple statement suggests. A high latency may be appropriate for applications wheretasks often suspend on undetermined placeholders. Tasks that become ready followinga determine! are made available to other processors by placing them on the HTQ.The HTQ is conveniently accessed through shared memory making it impervious tointerrupt latency. If most of the tasks migrate in this fashion to the HTQ, a low latencymay not signi�cantly improve the rate of work distribution.An \optimal" latency for all programs does not exist because the ratio of sequentialto parallel code di�ers from program to program. The compiler could select a latencythat suits the needs of the particular program, or procedure, being compiled. Evenif the compiler had enough information to make such a decision, this strategy is stillquestionable. Latency requirements vary at runtime as the program switches back andforth between a sequential and parallel mode of execution. A procedure might be calledboth when latency requirements are low and high, and so a �xed polling frequencywill give suboptimal performance. One could imagine having multiple versions of eachprocedure with varying polling frequencies, but this introduces new problems.Instead of further exploring such ad hoc strategies, this chapter addresses the prob-lem of e�ciently achieving a particular latency with the use of polling. It will be assumedthat code duplication is not permitted. The next chapter explores the e�ect of interruptlatency on the performance of the parallel benchmark programs. The results indicatethat a particular choice of latency performs well for a wide range of programs.

4.1. THE PROBLEM OF PROCEDURE CALLS 1254.1 The Problem of Procedure CallsAlthough polling seems simple enough to implement, there is a complication. Normally,programs are not composed of a single stream of instructions. If this were the case thecompiler could simply count the instructions it emits and insert an interrupt check afterevery so many instructions. Branches and procedure calls can alter the ow of controlin unpredictable ways and so, it isn't clear how the compiler can achieve a constantnumber of instructions between interrupt checks. A reasonable compromise is to ask ofthe compiler to emit interrupt checks such that a given latency (Lmax) is never exceeded.4.1.1 Code StructureTo explore the problem further, it is convenient to introduce a formalism to describethe structure of a procedure's code. In general, the code of a procedure can be viewedas a graph of basic blocks of instructions. There are two special types of basic blocks:entry points and return points . There is a single entry point per procedure and onereturn point for each procedure call in subproblem position.The only place where branches are allowed is as the last instruction of a basic block.There are four types of branches: local branches (possibly conditional) to other basicblocks of the same procedure, tail calls to procedures (i.e. reductions), non-tail calls toprocedures (i.e. subproblems) and returns from procedures. Local branches and non-tailcalls are not allowed to form cycles and thus they impose a DAG structure to the code.Loops can only be expressed with tail calls.Note that subproblem and reduction calls always jump to entry points and that pro-cedure returns always jump to return points. These restrictions are important becausethey simplify the analysis of a program's control ow.Figure 4.1 gives the graph for the procedure for-each which contains all four typesof branches. Returns and tail calls have been represented with dotted lines because theydo not correspond to DAG edges. Solid lines are used for subproblem calls to highlightthe fact that, just like direct branches, it is known where control continues after theprocedure returns (if it returns at all). The generality of the DAG is only needed toexpress the sharing of code. For the moment, it is su�cient to make the simplifyingassumption that the DAG has been converted into a tree by duplicating each sharedbranch. The handling of shared code is described in Section 4.4.A necessary condition for any polling strategy is that an inline sequence of more

126 CHAPTER 4. POLLING EFFICIENTLY(define (for-each f l)(if (null? l)#f(begin(f (car l))(for-each f (cdr l))))) ���/ SSSw
.�?

for-each
?............#f (car l)(cdr l)(null? l)fFigure 4.1: The for-each procedure and its corresponding code graph.than Lmax instructions is never generated without an intervening interrupt check. Thecompiler can exploit the code structure for this purpose. A locally connected section isany subset of the basic blocks that is connected by local branches only (for example,the three basic blocks at the top of Figure 4.1 or the bottom one). For any instruction iin a locally connected section, it is easy to determine what instructions are on the pathto i from the section's root. These instructions are exactly those that are executed atruntime before i. Thus, for any instruction in a locally connected section, the compilercan tell how far back the last interrupt check occurred (assuming there is one on the samepath from that section's root). The number of instructions that separate an instructionfrom the previous interrupt check is called the instruction's delta 1. When the delta isLmax , an interrupt check is inserted by the compiler before the instruction.4.1.2 Call-Return PollingPolling strategies di�er in how the transition between locally connected sections is han-dled. Call-return polling is a simple polling strategy that consists of putting an interruptcheck as the very �rst instruction of each section's root. Since the root of a section iseither the entry point of the procedure or the return point of a subproblem call, thiscorresponds to polling on procedure call and return.1For instructions that are not preceded by an interrupt check in the same section, the de�nition ofdelta will vary according to the polling strategy.

4.2. SHORT LIVED PROCEDURES 127(define (make-person name age gender) (vector name age gender))(define (person-name x) (vector-ref x 0))(define (person-age x) (vector-ref x 1))(define (person-gender x) (vector-ref x 2))(define (sum vect l h) ; sum vector from 'l' to 'h'(if (= l h)(vector-ref vect l)(let* ((mid (quotient (+ l h) 2))(lo (sum vect l mid))(hi (sum vect (+ mid 1) h)))(+ lo hi))))Figure 4.2: Two instances of short lived procedures.There are several variations on this theme. The interrupt check at the return pointcan be removed if checks are put on all return branches. Similarly, the interrupt check atthe entry point can be replaced by checks on branches to procedures (both tail calls andnon-tail calls). The four possible variations give equivalent dynamic behavior (i.e. samenumber of interrupt checks executed) but one may be preferable to the others if it yieldsmore compact code. This depends on the particular code generation techniques usedby the compiler and the programs being compiled. Compactness of code is not a bigissue here so it won't be considered further.4.2 Short Lived ProceduresUnfortunately, call-return polling can break down in certain circumstances. The worstcase occurs when procedures are short lived, that is they return shortly after beingcalled. At least two interrupt checks are performed per procedure call in subproblemposition (once on entry and once on exit) and one if it is a reduction. This is a signi�cantoverhead if the procedure contains few instructions. This would not be a serious problemin languages that promote the use of large procedures, but in Lisp it is common toarrange programs into many short procedures.Two instances of this style, typi�ed in Figure 4.2, are the implementation of dataabstractions and divide and conquer algorithms. This later situation is especially rele-vant because in Multilisp, parallelism is frequently expressed using divide and conqueralgorithms. In binary divide and conquer algorithms, at least half of the recursive calls

128 CHAPTER 4. POLLING EFFICIENTLYz. R. . 	 .. 9���3Interrupt checks 6? 6?BBBBBBM LmaxP mFigure 4.3: The maximal delta method.correspond to the base case. If the algorithm is �ne grained, such as the procedure sum,the overhead of polling will be noticeable because all the leaf calls are short lived.Putting an interrupt check at every section's root is a very conservative method thatdoesn't take the structure of the program into account. If it is known that a procedureP is always called when delta is equal to n � 1, then the compiler could infer thatthe �rst instruction in P has a delta of n. This would introduce a \grace period" ofLmax � n instructions at P 's entry point during which interrupt checks are not needed.A similar statement holds for return points. Note that this yields a perfect placement ofinterrupt checks if it is carried out at all procedure entry and return points. Interruptchecks occur exactly every Lmax instructions.A more realistic solution is needed to handle the case where procedures and returnpoints are called in di�erent contexts (i.e. from call sites with di�erent deltas). A simpleextension to the previous method is to use m instead of n, where m is the maximumdelta of all call sites to P (and similarly for return points). This maximal delta methodis illustrated in Figure 4.3 where dark rectangles are used to represent interrupt checkinstructions. Note that delta now represents an upper bound on the number of noninterrupt check instructions preceding an instruction. The maximal delta method is notan ideal solution for two reasons. First, it forces all control paths through P to havean early interrupt check (in P) if just one call site to P has a high delta. It would bemuch better if each procedure call \paid its own way", meaning that polling should beput on the call sites with high deltas. Not only would this improve P 's grace period, itwould put the interrupt check where it causes the least overhead (because a high deltaat a call site is a sign of a high number of normal instructions preceding it)2.2For simplicity, it is assumed here that all paths to P are equiprobable.

4.3. BALANCED POLLING 129A second shortcoming of this method is that the source and destination of proce-dure calls has to be known at compile time. In Scheme this information is not generallyavailable, although one could reasonably argue that with the use of programmer anno-tations and/or control ow analysis the destination of most procedure calls could beinferred by the compiler for typical programs. However, the destination of returns isharder to determine because it would require a full dataow analysis of the programand in general there are multiple return points for each procedure. The existence ofhigher order functions is another source of di�culty.4.3 Balanced PollingThis section presents a general solution that does not rely on any knowledge of thecontrol ow of the program. The method could be extended with appropriate rules,such as maximal delta, to better handle the cases where control ow information isavailable, but this is not considered here.The idea is to de�ne polling state invariants for procedure entry and exit. Thepolling strategy expects these invariants to be true at the entry and return points of allprocedures and consequently must arrange for them to be true at procedure calls andreturns.Speci�cally, the invariant at procedure entry is that interrupts have been checkedat most Lmax � E instructions ago. Here E is the grace period at entry points and isconstant for all procedures. In other words, delta is de�ned to be Lmax � E at entrypoints. The invariant at procedure return is more complex. Either delta is less than Eor, the path from the entry point to the return instruction is at most E instructions.These invariants are represented in Figure 4.4. Procedure P has two branches thatillustrate the two cases for procedure return. Note that a procedure can be exited by aprocedure return as well as a reduction call. For now, reduction calls will be ignored tosimplify the discussion.4.3.1 Subproblem CallsThese invariants have important implications. To begin with, short lived proceduresare handled well because there is no need to check interrupts on any path that returnsquickly without a call to another procedure (i.e. with less than E non-call instructions).This corresponds to the rightmost path in Figure 4.4.

130 CHAPTER 4. POLLING EFFICIENTLY

.. procedurereturnprocedurereturn
���/ SSSw6?6?

6? U. �
.

Lmax �E
?
..................?....??

P call sitesat most E
at most E

entry pointinstructionsinstructionsat most to P
instructionsFigure 4.4: Procedure return invariants in balanced polling.

4.3. BALANCED POLLING 131Moreover, the delta at return points can be de�ned as E plus the delta for thecorresponding call point. This can be con�rmed by considering the two possible cases.Assume procedure P1 does a subproblem call to procedure P2 which eventually returnsback to P1 via a procedure return in P2, i.e.P1 subproblemcall � P2 procedurereturn � P1Either the last interrupt check was in P2, so by de�nition delta at the return point(in P1) is less than E. Alternatively, P2 was short lived and didn't check interrupts, sothere are at most E instructions that separate the call site (in P1) from the return point(in P1). As far as polling is concerned, a procedure called in subproblem position canbe viewed as an interrupt check free sequence of E instructions. The compilation rulehere is that if delta at a call point exceeds Lmax �E then an interrupt check is insertedat the call.This rule means that up to bLmax =Ec subproblem procedure calls can be done insequence without any interrupt checking. To see why, consider the scenario where the�rst call is immediately preceded by an interrupt check. At the return point, delta isequal to E. If the instructions for argument setup and branch are ignored, delta at thenth return point is n �E. Only when this reaches Lmax is an interrupt check needed.4.3.2 Reduction CallsAs described, the polling strategy does not handle reduction procedure calls (tail calls)very gracefully. The case to consider here is when a subproblem call is to a procedurewhich exits via a series of tail calls, �nally ending in a procedure return, i.e.P1 subproblemcall � P2 reductioncall � P3 � � � Pn�1 reductioncall � Pn procedurereturn � P1An interrupt check must always be put at a reduction call point to guard against thecase where the called procedure returns quickly without checking interrupts (as in Pn�1calling Pn). Note that the return point in P1 can have a delta as low as E. Note alsothat Pn might execute as many as E non interrupt check instructions before returningto the return point in P1. Thus, it is not valid for Pn�1 to jump to Pn with a deltagreater than 0 because this would violate the polling invariant at the return point inP1. The treatment of reductions can be improved by introducing a new parameter (R)and consequently adjusting the polling invariants to support it. R is de�ned as the

132 CHAPTER 4. POLLING EFFICIENTLYlargest admissible delta at a reduction call. Thus, an interrupt check is put on anyreduction call whose delta would otherwise be greater than R. Note that the samepolling behavior as before is obtained by setting R to 0. The polling constraints forreduction calls can be relaxed by increasing the value ofR. R can be as high as Lmax �Ebecause a reduction call might be to a procedure that doesn't check interrupts for asmany as E instructions.A new invariant for return points has to be formulated to accomodate R. The deltaat return points must now be at least E+R to account for the case explained previously(a chain of reduction calls from P2 to Pn ending in a procedure return to P1). That is, onreturn to P1 there could be up to E instructions in Pn plus as much as R instructionsat the tail of Pn�1 since the last interrupt check. When the compiler encounters asubproblem procedure call it sets the delta at the return points to E plus the largestvalue between R and the delta for the corresponding call point. If this value is greaterthan Lmax an interrupt check is �rst put at the call site and the delta at the returnpoint is set to E+R. The introduction of R also makes it possible to relax the invariantfor procedure returns. Since the delta for return points is at least E+R, a delta as highas E + R can be tolerated at procedure returns without requiring an interrupt check.With these new invariants, there can be up to b(Lmax � R)=Ec subproblem procedurecalls in sequence without interrupt checks. This polling strategy will be called balancedpolling . A summary of the compilation rules for balanced polling is given in Figure 4.5.The two constants E and R must be chosen carefully to achieve good performance.Small values for E and R increase the number of interrupt checks for short lived proce-dures and tail recursive procedures respectively. On the other hand, high values increasethe number of interrupt checks in code with many subproblem procedure calls (e.g. re-cursive procedures). Choosing E = R = bLmax =kc is a reasonable compromise and avalue of k = 6 gives good performance in practice. This suggests that there are typicallyless than 6 subproblem procedure calls per procedure in the benchmark programs (seeSection 4.6).4.3.3 Minimal PollingThe choice of Lmax is also an issue. A high Lmax will give a low polling overhead.However, it is important to realize that there is a limit to how low the polling overheadcan be made by increasing the value of Lmax . This is due to the conservative nature ofthe strategy. Whatever the values of Lmax , E and R are, at least one interrupt check

4.3. BALANCED POLLING 133Location Action by compilerEntry point � Lmax �ENon-branch if (� � Lmax � 1) then add interrupt check; � 0instruction � �+ 1 (for the next instruction)Subproblem if (� � Lmax � E) then add interrupt check; � 0call � E + max(R;�) (for the return point)Reduction if (� � R) then add interrupt checkcallProcedure if (� � E +R) and there is an interrupt check on the pathreturn from the procedure's entry point then add interrupt checkFigure 4.5: Compilation rules for balanced polling.is generated between the entry point and the �rst procedure call. Delta is Lmax � Eon entry to a procedure, so clearly the �rst call (reduction or subproblem) must bepreceded by an interrupt check. Similarly, there is at least one interrupt check betweenany return point and the exit of the procedure (return or reduction call) because deltaat any return point is at least E + R. These two types of paths are the only onesthat are a necessary part of any unbounded length path. Thus, it is su�cient to haveone interrupt check on each of these paths to guarantee that all possible control pathshave a bounded number of instructions between interrupt checks. This minimal pollingstrategy is useful because its overhead is a lower bound that can be used to evaluateother techniques.An example of minimal polling for the procedure sum and the tail recursive varianttr-sum is presented in Figure 4.6. For the call (sum v l h) there are exactly 2� (h� l)interrupt checks executed or nearly one interrupt check per procedure call (assumingh� l+1 is a power of two). By comparison, checking interrupts at procedure entry andexit would execute twice as many interrupt checks (two per procedure call). However,for the tail recursive procedure tr-sum both methods are essentially equivalent with oneinterrupt check per iteration.

134 CHAPTER 4. POLLING EFFICIENTLY
vect l) (+ l h) 2)(quotient���/ SSSw

?
..................... ?....

(vector-refsum ??
(= l h)sum

(+ mid 1)(+ lo hi)sum
���/ SSSw?......... (- i 1).�(vector-ref(+ s vect i))str-sum (< i 0)

(define (tr-sum vect s i)(if (< i 0)s(tr-sumvect(+ s (vector-ref vect i))(- i 1))))Figure 4.6: Minimal polling for the recursive procedure sum and a tail recursivevariant.

4.4. HANDLING JOIN POINTS 135It is interesting to note that balanced polling is more general than minimal pollingand call-return polling. These can be emulated by judiciously choosing E, R and Lmax .Minimal polling is obtained when 0 � E = R � Lmax (i.e. E and R are arbitrarilylarge and Lmax is arbitrarily larger). An interrupt check is put at the �rst call andanother one is put at the return or reduction call that follows the last return point.Call-return polling occurs when 0 = E � R = Lmax . This places interrupt checks atall entry points and return points.4.4 Handling Join PointsIt has been assumed that the code of procedures is in the form of a tree. However,the compilation of conditionals (e.g. and, or, if and cond) in subproblem positionintroduces join points that give a DAG structure to the code. Certain optimizationtechniques, such as common code elimination, can also produce join points to expressthe sharing of identical code branches. A simple approach for join points is to use themaximal delta method. That is, the delta at the join point is the maximum delta of allbranches to the join point. Although this is not an optimal strategy, its performanceon the benchmark programs seems su�ciently good to be content with it.4.5 Polling in GambitPolling is a general mechanism that can serve many purposes. In Gambit, polling isused for� Stack overow detection� Inter-processor communication (for stealing work)� Preemption interruption (for multitasking)� Inter-task communication (for interrupting tasks)� Barrier synchronization (e.g. for synchronizing all processors for a garbage collec-tion and to copy objects to the private memory of every processor)A special technique is used to check all these cases with a single test. The interruptag in shared memory is really a pointer that is normally set to point to the end of thearea available for the stack. An interrupt check consists of comparing the ag to thecurrent stack pointer, and to jumping to an out of line handler when the stack pointer

136 CHAPTER 4. POLLING EFFICIENTLYexceeds this limit. A processor can be interrupted by setting the ag to a value thatforces this situation (e.g. 0). The interrupt handler can then use some other ags todiscriminate between the possible sources of interrupt.Although it can be done with a single test, the interrupt check may still be rela-tively expensive due to the reference to shared memory. Increasing Lmax is not a viablesolution because the polling frequency can't be lowered beyond a certain point. Toprovide a �ner level of control, interrupts can be checked intermittently. Polling in-structions generated by the compiler represent \virtual" interrupt check points and anactual interrupt check occurs only every so many virtual checks. This new parameteris the intermittency factor and is called I . Intermittent checking is easily implementedby a private counter that is decremented at every virtual check. When it reaches zeroit is reset to I and the interrupt check is performed. The average cost of an interruptcheck will thus be the cost of updating and checking the counter plus 1=Ith the cost ofchecking the interrupt ag.An interesting optimization occurs here. Balanced polling has a tendency to put theinterrupt checks at branch points. An interrupt check itself involves a branch instructionso in many cases it is possible to combine the two branches into a single one. Moreover,several machines have a combined \decrement and branch" instruction that helps reducethe cost even further. All these ideas are implemented in Gambit.4.6 ResultsTo have a better idea of the polling overhead that can be expected from these pollingmethods, it is important to measure the overhead on actual programs. Two situa-tions are especially interesting to evaluate: the overhead on typical programs and onpathological programs that are meant to exhibit the best and worst performance.Several programs and polling methods were tested. The programs were run on theGP1000 using a single processor. Each program was compiled in four di�erent ways:with no interrupt checks, with minimal polling, with call-return polling and balancedpolling. For balanced polling, Lmax was set to values from 10 to 90 and E and R wereset at bLmax =6c. A value of I = 10 was used as the intermittency factor. The averagerun time on ten runs was taken for each situation. The polling overhead of minimalpolling over the program compiled with no interrupt checks is reported in the �rstcolumn of Table 4.1. The overhead for the other polling methods is expressed relativelyto the overhead of minimal polling. Thus a relative overhead of 2 means that the

4.6. RESULTS 137overhead is twice that of minimal polling. Overheads lower than one can be explainedby a combination of factors: timing inaccuracies and degradation of instruction cacheperformance (due to the di�erent loading location of the programs). The table also givesthe average latency obtained with minimal polling and balanced polling (at Lmax = 10and Lmax = 90). The latency for compiler is not shown because the number of interruptchecks executed was not available (to measure it, the program must be compiled with astatistics gathering option which increases the size of the code so much that it can not�t anymore on the GP1000!).The program tight, shown below, was designed to exhibit worst-case behavior.(define (tight n)(if (> n 0)(tight (- n 1))))It is a tight loop that doesn't do anything except update a loop counter. There are onlytwo instructions executed on every iteration: an increment and a conditional branch.Interrupt checks will clearly add a high overhead to this. For most polling methods theoverhead is about 80%. In the case of balanced polling with Lmax = 10 the overheadis roughly twice that because two interrupt checks get added to every loop (becauseE = R = 1).The program unfolded is the same loop as tight but unfolded 80 times. Thus, it isa long inline sequence of 80 decrements followed by one conditional branch instruction.The polling methods do well on this program (about 6% for minimal and call-returnpolling) because procedure calls are relatively infrequent and it is easy to handle theinline sequence of instructions. As expected for balanced polling, increasing Lmax de-creased the overhead, down to about 14%. Lmax would have to be higher than 486(i.e. 6� 81) to reduce the overhead to that of minimal polling (at Lmax = 90 there aretwo interrupt checks per loop).The other programs are from the standard set of benchmarks. The parallel programswere compiled as sequential programs (i.e. with futures and touches removed) to factorout the overhead of supporting parallelism.The results for these programs indicate that minimal polling outperforms call-returnpolling in nearly all cases. Sometimes by as much as a factor of four, but by a factorcloser to 1.7 on average. The largest di�erences occur for �ne grain recursive pro-grams (e.g. tak and fib) and programs with a profusion of data abstraction procedures(e.g. conform). The performance of balanced polling is rather poor for small values ofLmax , two to three times the overhead of minimal polling when Lmax = 10. However,

138 CHAPTER 4. POLLING EFFICIENTLYMinimal polling Balanced pollingOpoll L Call-returnpolling Rel. ov. when E = R = bLmax =6c and Lmax is L (�secs)for Lmax =Program (%) (�secs) Rel. ov. 10 20 30 40 50 60 70 80 90 10 90tight 83.9 13 1.0 2.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 11 13unfolded 6.1 154 0.9 10.8 6.5 4.2 3.5 3.7 3.9 2.3 2.3 2.3 22 83boyer 21.5 58 1.4 1.7 1.1 1.0 1.0 1.1 1.0 0.9 0.9 0.9 36 57browse 14.7 90 1.1 1.6 1.1 0.8 1.0 1.7 1.2 1.0 1.0 0.9 46 88cpstak 10.9 108 1.2 1.9 1.5 1.2 1.0 1.1 1.0 1.0 1.0 1.1 59 110dderiv 9.0 93 1.6 2.1 1.4 1.6 1.2 1.0 1.3 1.3 1.2 1.3 53 95deriv 8.1 114 1.4 1.8 1.4 1.8 1.1 0.9 1.0 1.0 1.1 1.2 62 115destruct 21.3 34 1.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 20 34div 14.1 49 1.0 1.3 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 38 49puzzle 14.5 58 0.9 2.1 1.7 1.2 1.0 1.0 1.0 0.9 0.9 0.9 28 57tak 8.7 71 4.6 3.9 1.4 1.8 1.2 1.0 1.0 1.0 1.0 1.0 25 71takl 29.3 38 0.9 1.5 1.0 1.1 1.0 0.9 0.9 0.9 0.9 0.9 21 36traverse 16.9 36 1.5 2.5 1.3 0.9 0.9 0.9 0.9 0.9 0.9 0.9 27 35triangle 3.9 63 3.7 6.0 6.0 3.2 3.8 2.4 2.1 2.3 1.0 2.0 38 65compiler 14.4 | 1.8 2.3 1.3 1.1 1.0 1.0 1.0 1.1 1.0 1.0 | |conform 10.5 34 2.5 2.8 1.7 1.3 1.1 1.2 1.4 1.3 1.4 1.2 18 34earley 6.4 120 1.5 2.3 1.6 1.5 1.0 1.1 2.1 0.8 1.1 1.2 59 122peval 9.7 98 1.7 2.2 1.5 1.0 1.1 1.1 1.3 1.0 1.0 1.1 50 98abisort 11.4 72 1.3 2.5 1.7 1.4 1.4 1.0 1.1 1.1 1.0 1.0 36 72allpairs 4.4 149 1.0 3.9 2.6 2.0 2.0 2.0 0.5 1.8 1.0 1.0 56 149fib 18.7 36 2.1 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 21 36mm 4.7 115 1.1 3.0 2.7 3.0 1.6 2.2 2.2 0.8 0.9 0.9 61 114mst 10.5 122 1.6 2.2 1.5 2.1 1.0 1.2 1.0 0.8 1.1 1.0 53 122poly 23.4 101 0.6 1.2 0.7 0.7 0.3 0.4 0.8 0.6 0.4 0.6 39 93qsort 12.3 64 1.3 1.9 1.3 1.0 1.3 1.0 1.0 1.0 1.0 1.0 44 63queens 15.2 48 1.4 3.0 1.5 1.5 1.5 1.4 1.3 1.3 1.2 1.3 26 50rantree 11.4 101 2.5 2.2 1.2 0.9 1.4 1.1 1.3 1.0 1.0 0.9 41 100scan 6.6 84 2.4 3.5 2.0 0.8 0.8 1.2 1.0 1.0 1.0 1.0 39 84sum 11.8 66 1.8 2.5 1.4 0.7 0.5 0.9 1.0 0.8 0.9 0.8 30 65tridiag 1.6 364 2.7 7.9 4.5 4.3 4.2 3.4 3.7 3.9 3.0 3.6 103 259Table 4.1: Overhead of polling methods on GP1000.

4.7. SUMMARY 139balanced polling gives performance close to minimal polling when Lmax is high. WithLmax = 90 the polling overhead ranges from 5% to 25%. The highest overheads are for�ne grain recursive programs. The average overhead for balanced polling is about 12%for values of Lmax higher than 50.4.7 SummaryInterrupts can be detected by the processor's hardware interrupt system or by polling.Polling has the advantage of simplicity and portability. A common claim is that pollingis not appropriate for a high-performance system because it has a high overhead. Thischapter described the balanced polling method whose overhead is almost half that ofthe more straightforward call-return polling method. Balanced polling as implementedon the GP1000 has a 12% overhead on average. This overhead still seems rather highbut this can be explained by the high quality of code generated by Gambit and the poorinstruction set of the M68020 processors on the GP1000. Systems with a compiler thatgenerates less tight code or with a processor that permits a lower cost code sequence foran interrupt check (for example, a fast \compare and trap on condition" instruction)would have a correspondingly lower overhead for polling.Clearly, the processor's hardware interrupt system should be used to implement theMP protocol if the interrupt latency and overhead are low enough and the state of theprocessor at the time of interrupt can be recovered conveniently. If not, polling is atleast a viable alternative.

140 CHAPTER 4. POLLING EFFICIENTLY

Chapter 5ExperimentsPerformance is the main design objective of the implementation strategies presented inthis thesis. In most cases a purely theoretical performance analysis is not satisfyingbecause it must abstract away many real issues to make the analysis manageable. Thegoal of this chapter is to evaluate performance using experiments. Concrete evidencefor the following claims is given1. Exposing parallelism with LTC is relatively inexpensive when the MP protocol isused. The worst-case overhead (when programs are very �ne grain) is about 20%.2. In the absence of a cache, the overhead of exposing parallelism with the SMprotocol is about twice that of the MP protocol (i.e. the worst-case overhead isabout 40%). When a cache is available, the overhead for the SM protocol can behigher than a factor of two.3. LTC scales well to large shared-memory multiprocessors. The two protocols havevery similar speedup characteristics when a cache is not present.4. The MP protocol has speedup characteristics that are consistently better than theSM protocol on multiprocessors with caches. The di�erence in performance whenusing a large number of processors is as high as a factor of two on the TC2000.5. The steal request latency can be relatively large without adversely a�ecting theMP protocol's performance.6. Supporting the Katz-Weise semantics and legitimacy generally has a negligibleimpact on performance. 141

142 CHAPTER 5. EXPERIMENTS5.1 Experimental SettingSeveral experiments were conducted to evaluate and compare the various implemen-tation strategies. The experiments consisted of running each benchmark program in aparticular context and measuring some of its characteristics. The context was dependenton the following parameters.� Machine and compiler| The experiments were performed on the GP1000 andTC2000 multiprocessors. Each of the M68020 processors on the GP1000 deliversroughly 3 MIPS and each M88000 processor on the TC2000 delivers roughly 20MIPS. Only the TC2000 has a data cache. Each machine has its own version ofthe compiler (but the front-ends are the same). The back-end for the GP1000 gen-erates highly optimized native code, whereas the version for the TC2000 generatesportable C code which must be subsequently compiled with a C compiler. Theprice to pay for this portability is a slowdown of a factor of 1.5 to 3 over nativecode depending on the program. The slowdown is a result of extra \pure compu-tation" instructions. The number of memory accesses would however be the samein a native code implementation. This means that the importance of the TC2000'smemory hierarchy is lower than it would be if the back-end generated native code.Consequently, the results obtained with the GP1000 are more representative ofa high-performance compiler and the results obtained on the TC2000 are morerepresentative of a modern multiprocessor with a low cost memory hierarchy.A severe handicap of these machines is the small size of physical memory. The localmemory on each processor is only 4 Mbytes on the GP1000 and 8 Mbytes on theTC2000. Since this memory holds the operating system's code and data structuresand the program's code, little space is left for the program's heap (only about 2Mbytes on the GP1000). Allocating virtual memory is not a solution because itadversely a�ects the performance of garbage collection and also because it doesn'tscale well (page faults are handled by a small set of processors dedicated for thispurpose). To minimize these problems, the benchmarks were chosen so that thedata they allocate �ts in the heap without causing any garbage collection. In ane�ort to reduce the number of page faults, the benchmarks perform a few \dryruns" before the run actually measured. Nevertheless, some memory intensiveprograms, allpairs and poly in particular, consistently caused page faults dueto their poor locality of reference.� Number of processors | One of the goals of this thesis is to show that LTCscales well to large shared-memory multiprocessors. For this reason, the experi-

5.1. EXPERIMENTAL SETTING 143ments were conducted on the largest machines that were accessible: a 94 processorGP1000 (at Michigan State University) and a 45 processor TC2000 (at ArgonneNational Laboratory). These are multi-user machines where processors are dy-namically allocated into partitions at the time the program is launched by theuser. The program is only aware of the processors in its partition but, becausethe memory interconnect is a buttery network shared by all the partitions, thecontention on the network depends on the other programs running on the ma-chine. To minimize this e�ect, experiments were performed at \o�-peak" hoursand the average of several runs (usually 10) was taken. However, it was di�cultto �nd times where large partitions could be allocated, so it was necessary tolimit the number of experiments and number of runs for the larger partitions (thisexplains, at least in part, the greater variations in the results on large partitions).The largest partition used on the GP1000 was 90 processors; on the TC2000 itwas 32 processors.Another problem a�icts large partitions. Each processor on the GP1000 andTC2000 has a limited size TLB (translation lookaside bu�er) for holding the map-ping information that is used to translate virtual addresses to physical addresses.The TLB is managed like a cache and has roughly 60 entries. Each entry mapsa page of the program's virtual address space. When a memory reference is to apage not currently mapped by the TLB, a translation fault occurs and the oper-ating system must load the appropriate mapping information into the TLB froma table in memory. Translation faults must be avoided because they are handledin software and are relatively expensive. Programs with poor locality of referenceand that have more than 60 or so pages in their working set will cause frequenttranslation faults. Unfortunately, several of the benchmarks have poor localitybecause they distribute user data evenly across the machine to reduce contention.The working set of these programs increases with the number of processors andthrashing occurs when the working set exceeds 60 pages (this typically starts hap-pening somewhere between 32 and 64 processors but the exact point depends onthe program). Moreover, poor locality is inherent in the search for a task to stealwhich possibly \ushes" several entries from the TLB that are part of the stolentask's working set. The importance of this factor will increase with the numberof processors and the scarcity of tasks to steal.� Polling parameters | Balanced polling with E = R = 15 and Lmax = 90 wasused for all experiments. The steal request latency was controled by changing thepolling intermittency factor I . Unless otherwise indicated, I was set to 10 (thesame value used in the previous chapter to evaluate the polling methods).

144 CHAPTER 5. EXPERIMENTS� Stealing protocol | Both the SM and MP protocols were tested.� Continuation semantics| Two continuation semantics were used: the originalMultilisp semantics and the Katz-Weise semantics. On the GP1000, the originalsemantics was used with the SM protocol and the Katz-Weise semantics was usedwith the MP protocol. The TC2000 used the original semantics for both proto-cols. For the original semantics the transfer of the stolen task's continuation wasperformed with a single block transfer operation. The Katz-Weise semantics wasimplemented with heapi�cation.� Legitimacy | Unless otherwise indicated, legitimacy was not supported.5.2 Overhead of Exposing ParallelismOexpose corresponds to the cost of exposing the parallelism to the system. Part of thiscost comes from the futures and touches added to the sequential program to parallelizeit. The other part of the cost is a consequence of the less e�cient caching policy that isneeded for the SM protocol. Recall that Tseq is the run time of a sequential version ofthe program (the parallel program with futures and touches removed) and Tpar is therun time of the parallel program on one processor. Tpar , Tseq , and Oexpose are relatedby the equation Oexpose = TparTseqTo evaluate Oexpose , the run time was measured on a single processor partition withthe program compiled with and without futures and touches (giving Tpar and Tseqrespectively). Tpar and Oexpose are given on the left side of Tables 5.1 through 5.4.The �rst two tables are for the SM and MP protocols on the GP1000 and the last twotables are for the SM and MP protocols on the TC2000. On the TC2000, the stack waswrite-through cached for measuring the SM protocol's Tpar and the stack was copy-backcached for measuring Tseq and the MP protocol's Tpar .Notice that for nearly all programs, the SM protocol has an Oexpose larger than theMP protocol. The only exceptions are the programs mm and abisort on the GP1000.

5.3. SPEEDUP CHARACTERISTICS 1455.2.1 Overhead on GP1000On the GP1000, Oexpose is closely dependent on G, the task granularity, and n, thenumber of closed variables that must be copied for the future's body (Tables 2.1 and3.1 give the value of G and n for each benchmark). Oexpose is approximately equal to1+ (2:7+1:6n)�secsG when using the SM protocol and 1 + (1:4+1:6n)�secsG when using the MPprotocol. This is consistent with the costs measured in Chapter 3 for the lightweight taskpush and pop sequence, 2 �secs for the SM protocol and .7 �sec for the MP protocol,and the .7 �sec cost for a touch (most programs have the same number of touches andfutures). For the SM protocol, Oexpose is at its lowest value (.3%) for allpairs, theprogram with the largest granularity. The highest overhead (37.5%) is for fib, theprogram with the smallest granularity. For the MP protocol, allpairs and fib alsoyield the lowest and highest overheads (.2% and 20.8%). This is about half the overheadof the SM protocol.5.2.2 Overhead on TC2000On the TC2000, Oexpose for the MP protocol ranges from 2.3% to 20.9%, which isessentially the same range as for the GP1000. However, Oexpose for the SM protocolis much larger, ranging from 27.1% to 127.8%. The highest overhead is for fib, whichruns a factor of 2.278 slower than the sequential version of the program. For the MPprotocol, the overhead for fib is only 15.7%. The large di�erence in overheads is mostlydue to the SM protocol's use of write-through caching for the stack and LTQ. Accordingto column OWT of Table 3.3, write-through caching the stack accounts for an overheadof 1.34 on sequential fib. Thus, the additional overhead of the parallel version (to gofrom 1.34 to 2.278) is attributable mostly to the three stack and LTQ writes performedfor each future. On the other hand, the overhead of coarse grain programs is closer toOWT . For example, allpairs has an OWT of 54% and an Oexpose of 55%.5.3 Speedup CharacteristicsThe right side of Tables 5.1 through 5.4 provides some information on the parallelbehavior of the programs. The programs were run on increasingly large partitions (upto 90 processors on the GP1000 and 32 processors on the TC2000) to see how wellthey exploit parallelism. For the GP1000, three measurements were taken: the runtime of the program, the number of heavyweight tasks created, and the number of task

146 CHAPTER 5. EXPERIMENTSSpeedup, TC and TS whennumber of processors isProgram Tpar Oexpose 2 4 8 16 32 64 90fib 1.1300 37.5% S=TC=TS= 1.45.0000.0000 2.82.0002.0001 5.47.0005.0001 10.33.0008.0003 17.79.0019.0006 27.04.0039.0012 31.37.0042.0014queens 1.3080 19.3% S=TC=TS= 1.66.0003.0000 3.16.0015.0003 5.70.0042.0008 9.75.0083.0019 15.10.0152.0036 19.16.0305.0076 18.21.0404.0117rantree .4550 14.9% S=TC=TS= 1.68.0012.0004 3.18.0025.0011 5.41.0085.0039 8.84.0190.0071 11.86.0346.0121 14.04.0593.0204 13.38.0722.0259mm 1.5760 1.1% S=TC=TS= 1.20.0005.0001 1.88.0091.0018 3.24.0238.0056 5.90.0491.0099 10.14.1048.0214 15.94.1830.0416 18.34.2408.0598scan 1.2960 21.8% S=TC=TS= 1.26.0001.0000 2.13.0009.0001 3.61.0022.0002 6.43.0045.0005 10.21.0083.0008 13.54.0155.0015 13.57.0201.0022sum .4820 22.6% S=TC=TS= 1.22.0001.0000 2.09.0009.0001 3.72.0019.0002 6.55.0041.0004 10.23.0075.0008 11.77.0133.0013 12.20.0171.0021tridiag 4.0320 1.7% S=TC=TS= 1.20.0004.0001 1.78.0021.0001 2.93.0055.0005 5.18.0126.0014 8.60.0238.0026 12.58.0454.0055 16.51.0631.0073allpairs 24.9530 .3% S=TC=TS= ||| ||| ||| ||| ||| ||| |||abisort 5.0710 6.9% S=TC=TS= .62.0001.0000 .76.0013.0001 1.20.0030.0003 2.16.0072.0008 3.60.0167.0019 5.63.0386.0046 6.95.0563.0064mst 25.1160 7.0% S=TC=TS= ||| ||| ||| ||| ||| ||| |||qsort .2630 25.8% S=TC=TS= ||| ||| ||| ||| ||| ||| |||poly 2.4340 6.3% S=TC=TS= ||| ||| ||| ||| ||| ||| |||Table 5.1: Performance of SM protocol on GP1000.

5.3. SPEEDUP CHARACTERISTICS 147Speedup, TC and TS whennumber of processors isProgram Tpar Oexpose 2 4 8 16 32 64 90fib .9930 20.8% S=TC=TS= 1.64.0000.0000 3.22.0002.0001 6.14.0005.0002 11.27.0010.0003 19.21.0020.0006 27.96.0041.0012 32.88.0051.0016queens 1.2550 14.5% S=TC=TS= 1.73.0003.0000 3.27.0016.0003 6.00.0039.0009 10.26.0081.0019 15.39.0171.0041 20.60.0308.0078 22.28.0396.0098rantree .4460 12.6% S=TC=TS= 1.72.0012.0004 3.24.0031.0014 5.53.0087.0039 8.53.0195.0078 11.48.0371.0141 13.56.0635.0236 14.04.0747.0277mm 1.5830 1.5% S=TC=TS= 1.21.0006.0002 1.85.0094.0016 3.26.0270.0046 5.78.0465.0086 10.23.1017.0190 15.78.1744.0376 18.87.2219.0507scan 1.1900 11.8% S=TC=TS= 1.35.0001.0000 2.23.0008.0000 3.91.0021.0001 6.54.0043.0003 10.27.0081.0006 14.22.0140.0009 14.78.0189.0012sum .4460 13.5% S=TC=TS= 1.34.0001.0000 2.23.0010.0000 3.92.0021.0001 6.46.0043.0003 10.13.0076.0006 12.68.0134.0010 13.28.0178.0012tridiag 3.9880 .6% S=TC=TS= 1.21.0004.0001 1.79.0023.0001 2.96.0046.0004 5.04.0108.0009 8.49.0221.0018 12.13.0366.0035 15.80.0453.0034allpairs 24.9400 .2% S=TC=TS= 1.10.0104.0082 1.58.1254.0194 2.62.2553.0642 4.20.4478.1020 6.27.6910.1321 7.88.8898.1532 7.16.9853.2094abisort 5.2800 11.3% S=TC=TS= .61.0001.0000 .75.0014.0001 1.23.0030.0002 2.09.0071.0006 3.58.0162.0013 5.57.0347.0024 6.85.0487.0029mst 24.7990 5.7% S=TC=TS= .93.0116.0037 1.06.0454.0029 1.38.0889.0055 1.53.1523.0083 1.59.2434.0113 1.37.3294.0147 1.25.3578.0150qsort .2480 18.7% S=TC=TS= 1.33.0017.0009 1.63.0101.0061 1.60.0399.0232 1.42.1073.0611 1.22.2394.1313 1.02.4334.2245 1.13.5290.1611poly 2.3580 3.0% S=TC=TS= .98.1510.0120 1.08.3083.0771 1.27.5142.1520 1.44.7066.1626 1.41.8179.1346 1.22.8458.1763 .76.6338.0741Table 5.2: Performance of MP protocol on GP1000.

148 CHAPTER 5. EXPERIMENTSSpeedup whennumber of processors isProgram Tpar Oexpose 2 4 8 16 32fib .6763 127.8% .88 1.74 3.23 6.03 11.18queens .6338 117.3% .91 1.77 3.24 5.95 9.49rantree .1827 39.0% 1.41 2.70 4.60 7.44 10.79mm .6576 60.2% .93 1.64 3.01 5.64 10.07scan .7156 81.3% .94 1.72 3.01 5.51 8.97sum .2471 94.8% .90 1.67 2.86 4.85 7.82tridiag 1.6559 56.0% .92 1.58 2.82 5.02 8.49allpairs 12.2866 55.0% .95 1.63 2.85 4.85 7.61abisort 2.9351 27.1% .84 1.36 2.41 4.36 7.79mst 9.5555 43.2% .85 1.21 1.55 1.81 1.85qsort .1740 52.8% 1.17 1.67 1.75 1.80 1.71poly .7275 30.2% .61 .79 1.01 1.19 1.20Table 5.3: Performance of SM protocol on TC2000.Speedup whennumber of processors isProgram Tpar Oexpose 2 4 8 16 32fib .3435 15.7% 1.72 3.37 6.52 11.97 20.46queens .3525 20.9% 1.63 3.07 5.58 9.11 13.51rantree .1391 5.9% 1.82 3.46 5.76 9.07 11.99mm .4198 2.3% 1.29 2.18 3.88 7.09 11.40scan .4558 15.5% 1.35 2.40 4.29 7.57 12.20sum .1430 12.7% 1.40 2.49 4.43 7.56 11.88tridiag 1.0907 2.7% 1.21 1.98 3.35 5.83 9.44allpairs 8.1841 3.2% 1.22 2.03 3.43 5.56 7.80abisort 2.4107 4.4% .95 1.48 2.49 4.51 7.93mst 6.9101 3.6% 1.04 1.34 1.76 1.93 1.92qsort .1294 13.6% 1.48 2.07 2.05 1.95 1.62poly .5759 3.1% .77 .92 1.19 1.43 1.29Table 5.4: Performance of MP protocol on TC2000.

5.3. SPEEDUP CHARACTERISTICS 149suspensions that occurred. Each entry in the table contains three values computed fromthese measurements:� S | This is the program's speedup over the sequential version of the program(i.e. that has futures and touches removed and that is run with copy-back cachingof the stack on the TC2000). S= Tseqrun time� TC | This is the proportion of lightweight tasks that were transformed intoheavyweight tasks. TC= heavyweight tasks createdNfuture� TS | This is the number of task suspensions expressed relatively to the numberof lightweight tasks. TS= number of task suspensionsNfutureNote that a few of the benchmarks (allpairs, mst, poly, and qsort) did not runproperly with the SM protocol on the GP10001. The tables for the TC2000 only containthe speedup. The speedup data is reproduced as speedup curves in Figures 5.1 through5.6. The speedup curves for the GP1000 also contain data for runs of the MP protocolwith higher and lower intermittency factors. For now, only the curves marked I = 10 areconsidered. TC and TS for the MP protocol on GP1000 are also plotted as a functionof the number of processors in Figures 5.7 and 5.8. The benchmark programs can beroughly classi�ed in three groups, according to the shape of their speedup curves.1. Parallel and compute bound: fib, queens, rantree. These programs donot access memory. The speedup curve is initially close to linear speedup, andgradually diverges from it as the number of processors increases (in other wordsthe �rst derivative of the curve starts at 1 and the second derivative is negative).The attening out of the curve as the number of processors increases is explainedby Amdahl's law (i.e. each program has a maximal speedup).1The bug has stumped me to this day. I suspect that it is a race condition I introduced in the assemblylanguage encoding of the algorithms (Gambit's kernel contains about 5000 lines of hand optimizedassembly code). After obtaining a working version of the SM protocol on the TC2000 (written in C), Iconvinced myself that the problem was not algorithmic. The problem may also be related to a knownbug in the parallel garbage collection algorithm.

150 CHAPTER 5. EXPERIMENTS
SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

fibSM, I=10MP, I=50, L= 198 �secsMP, I=10, L= 41 �secsMP, I=2, L= 10 �secs
...

.. SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

queensSM, I=10MP, I=50, L= 281 �secsMP, I=10, L= 58 �secsMP, I=2, L= 13 �secs
...

..

SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

rantreeSM, I=10MP, I=50, L= 453 �secsMP, I=10, L= 93 �secsMP, I=2, L= 20 �secs
...

.. SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

mmSM, I=10MP, I=50, L= 579 �secsMP, I=10, L= 117 �secsMP, I=2, L= 25 �secs
...

..
Figure 5.1: Speedup curves for fib, queens, rantree and mm on GP1000.

5.3. SPEEDUP CHARACTERISTICS 151
SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

scanSM, I=10MP, I=50, L= 449 �secsMP, I=10, L= 91 �secsMP, I=2, L= 20 �secs
...

.. SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

sumSM, I=10MP, I=50, L= 332 �secsMP, I=10, L= 68 �secsMP, I=2, L= 15 �secs
...

..

SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

tridiagSM, I=10MP, I=50, L=1265 �secsMP, I=10, L= 256 �secsMP, I=2, L= 53 �secs
...

.. SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

allpairsMP, I=50, L= 755 �secsMP, I=10, L= 152 �secsMP, I=2, L= 32 �secs
...

..
Figure 5.2: Speedup curves for scan, sum, tridiag and allpairs on GP1000.

152 CHAPTER 5. EXPERIMENTS
SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

abisortSM, I=10MP, I=50, L= 359 �secsMP, I=10, L= 74 �secsMP, I=2, L= 17 �secs
...

.. SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

mstMP, I=50, L= 694 �secsMP, I=10, L= 142 �secsMP, I=2, L= 30 �secs
...

..

SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

qsortMP, I=50, L= 294 �secsMP, I=10, L= 61 �secsMP, I=2, L= 14 �secs
...

.. SPEEDUP Number of Processors
1286432168421.5.25 1 2 4 8 16 32 64 128

polyMP, I=50, L=1426 �secsMP, I=10, L= 291 �secsMP, I=2, L= 59 �secs
...

..
Figure 5.3: Speedup curves for abisort, mst, qsort and poly on GP1000.

5.3. SPEEDUP CHARACTERISTICS 153
SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

fibSMMP
..

... SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

queensSMMP
..

...

SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

rantreeSMMP
..

... SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

mmSMMP
..

...

Figure 5.4: Speedup curves for fib, queens, rantree and mm on TC2000.

154 CHAPTER 5. EXPERIMENTS
SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

scanSMMP
..

... SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

sumSMMP
..

...

SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

tridiagSMMP
..

... SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

allpairsSMMP
..

...

Figure 5.5: Speedup curves for scan, sum, tridiag and allpairs on TC2000.

5.3. SPEEDUP CHARACTERISTICS 155
SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

abisortSMMP
..

... SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

mstSMMP
..

...

SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

qsortSMMP
..

... SPEEDUP Number of Processors
32168421.5.25 1 2 4 8 16 32

polySMMP
..

...

Figure 5.6: Speedup curves for abisort, mst, qsort and poly on TC2000.

156 CHAPTER 5. EXPERIMENTS
TC

Number of Processors
202�12�22�32�42�52�62�72�82�92�102�112�122�132�142�152�16 1 2 4 8 16 32 64 128

fibqueensrantreemm TC
Number of Processors

202�12�22�32�42�52�62�72�82�92�102�112�122�132�142�152�16 1 2 4 8 16 32 64 128
scansumtridiagallpairs TC

Number of Processors
202�12�22�32�42�52�62�72�82�92�102�112�122�132�142�152�16 1 2 4 8 16 32 64 128

abisortmstqsortpoly
Figure 5.7: Task creation behavior of MP protocol on GP1000.

TS
Number of Processors

202�12�22�32�42�52�62�72�82�92�102�112�122�132�142�152�16 1 2 4 8 16 32 64 128
fibqueensrantreemm TS

Number of Processors
202�12�22�32�42�52�62�72�82�92�102�112�122�132�142�152�16 1 2 4 8 16 32 64 128

scansumtridiagallpairs TS
Number of Processors

202�12�22�32�42�52�62�72�82�92�102�112�122�132�142�152�16 1 2 4 8 16 32 64 128
abisortmstqsortpoly

Figure 5.8: Task suspension behavior of MP protocol on GP1000.

5.3. SPEEDUP CHARACTERISTICS 1572. Parallel and memory accessing: abisort, allpairs, mm, scan, sum, tridiag.These programs access memory to various extents. The speedup curves for theseprograms is \S" like (i.e. the second derivative is initially positive and then neg-ative). A good example is abisort. The initial bend in the curve is explainedby the increase in cost for accessing shared user data which is distributed evenlyacross the machine. A memory access has a probability of n�1n of being to remotememory (where n is the number of processors), so the average cost of an access toshared user data is L+R(n�1)n , where R is the cost of a remote memory access andL is the cost of a local memory access. The bend in the curve is consequently morepronounced for programs which spend a high proportion of their time accessingthe heap (e.g. abisort, allpairs, and mm).3. Poorly parallel: mst, poly, qsort. These are programs whose algorithms donot contain much parallelism or that contain a form of parallelism that is not wellsuited for LTC. The speedup curves for these programs are mostly at becauselittle of the parallelism is exploited. Generally, the curve starts going down aftera certain number of processors because no more parallelism can be exploited butother costs, such as contention and memory interconnect tra�c, increase.5.3.1 Speedup on GP1000On the GP1000, it is striking how similar the tables and speedup curves are for theSM and MP protocols. The speedup, number of tasks created and the number of tasksuspensions are normally within a few percent of each other. Nevertheless, the MPprotocol typically has a slightly higher speedup, especially for the �ne grain programs.This can be explained by the fact that the di�erence in Oexpose between protocols islarger for �ne grain programs.Recall that on the GP1000, the SM protocol is using the original continuation se-mantics and the MP protocol is using the Katz-Weise semantics without legitimacysupport. Since the speedup characteristics for both protocols are so similar, it followsthat the additional work needed to support the Katz-Weise semantics, mostly that ofheapi�cation, is globally negligible. The cost of supporting legitimacy is examined in alater section.For both protocols, the number of heavyweight tasks created by most programs is asmall fraction of what ETC would have created. When fib is run on 90 processors, onlyabout .5% of the lightweight tasks are transformed to heavyweight tasks. As suggestedby the curves in Figure 5.7, above 4 processors TC increases roughly linearly with the

158 CHAPTER 5. EXPERIMENTSnumber of processors. The notable exceptions are allpairs, mst and poly whose TClevels o� as it nears 1 and qsort whose TC �rst goes up roughly as the square of thenumber of processors before leveling o� as it nears 1. All programs have TC<8% on 90processors, except mm (22-24%), allpairs (99%), mst (36%), poly (63%), and qsort(53%). The high TC of these programs can be explained by their coarse granularity andlow degree of parallelism (except qsort which is explained later). These programs createrelatively few lightweight tasks so proportionately more of them need to be stolen to keepthe processors working. An extreme example is allpairswhich on each iteration createsonly 116 lightweight tasks (i.e. the maximum parallelism is 117). It isn't surprising thaton a 90 processor partition nearly all of the tasks get stolen to balance the load acrossthe machine.The reason why TC is high for qsort (and also poly), is that most of the stolentasks perform very little work (i.e. Twork is only a few instructions). Most of qsort'sstolen tasks perform a single call to cons before they terminate. A handful of similarlysimple operations are performed by poly's stolen tasks. Thieves that have just stolen atask will soon be looking for new tasks to steal so the lightweight tasks that are createdare likely to get stolen. Qsort's poor speedup is explained by its high TC and low Tworkcombined with its �ne granularity (G = 16 �secs) and heavy remote memory usage(ORemHeap = 3.94).Similarly Figure 5.8 suggests that, above 4 processors, the number of task suspen-sions increases fairly linearly with the number of processors for most programs. Thenotable exceptions are allpairs, mst and poly which have a fairly constant TS above8 processors.5.3.2 Speedup on TC2000On the TC2000, the speedup curves for the MP protocol have a similar shape to thosefor the MP protocol on the GP1000. The actual speedup is however slightly higher forthe TC2000. This is probably due to the TC2000's faster memory system combined withthe lower quality of code generated by the compiler (which makes the memory systemappear even faster). These factors reduce the relative importance of task managementoperations and memory accesses. Consequently, a native code implementation on theTC2000 would have a lower speedup (but higher absolute performance!).The SM protocol however has a consistently lower speedup than that of the MPprotocol. For each protocol, the speedup curve starts o� at 1=Oexpose on 1 processor(for their respective Oexpose) and as the number of processors increases the curves tend

5.4. EFFECT OF INTERRUPT LATENCY 159to get closer. Programs with good speedup characteristics (e.g. fib and sum) maintain aroughly constant distance between the speedup curves. In other words, the ratio of theirrun time stays close to the ratio of their Oexpose . On the other hand, programs withpoor speedup characteristics (e.g. mst and qsort) have speedup curves that becomecolinear at a high number of processors. This can be explained by the progressivedecrease of mandatory work being performed by the program. The main cause ofthe overhead Oexpose , that is suboptimally caching the stack and task stack, mostlya�ects the performance of the mandatory work. The relative importance of suboptimallycaching the stack will thus decrease as the programs spend more and more time beingidle and/or accessing remote memory.The only point where the speedup curves cross is for qsort at 32 processors. How-ever, the same thing should be expected for other benchmarks on larger partitionsbecause, as the number of processors increases, the bene�ts of caching decrease whereasthe speed of work distribution becomes more critical to performance. Since the SMprotocol has a lower steal latency, it will likely outperform the MP protocol on verylarge partitions. Note however that this might happen at the point where the e�ciency(i.e. the ratio of speedup and the number of processors) is so low that it is not coste�ective. For instance, the best speedup attained by qsort is 2.07 at 4 processors usingthe MP protocol whereas the best speedup for the SM protocol is 1.8 at 16 processors.5.4 E�ect of Interrupt LatencyIn order to study the e�ect of the interrupt latency on the performance of the MPprotocol, the programs were tested on the GP1000 with lower and higher intermittencyfactors. The previous experiments were performed with I = 10 and a new set of mea-surements were taken with I = 2 and I = 50. These changes in I cause the interruptlatency to vary roughly by a factor of 5 (decrease and increase respectively). Tables 5.5and 5.6 contain for each program the value of Tpar , Oexpose , and for each partition size:S, TC, and TS. Figures 5.1 through 5.3 contain the speedup curves for each setting ofI and also give L, the average interrupt latency (L is Tpar divided by the number ofinterrupt checks executed). Note that the average time before an interrupt is detected(Tdetect) is L=2.The settings for I were chosen so that Tdetect would be roughly comparable toTsteal task, the cost of stealing a task. Experimental measurements put Tsteal taskat between 120 and 180 �secs (depending on the program). When I = 2, Tdetect isnormally a fraction of Tsteal task and when I = 50, it is normally larger.

160 CHAPTER 5. EXPERIMENTSSpeedup, TC and TS whennumber of processors isProgram Tpar Oexpose 2 4 8 16 32 64 90fib 1.1620 41.4% S=TC=TS= 1.40.0001.0000 2.76.0002.0001 5.31.0005.0002 9.82.0011.0004 16.69.0022.0007 26.18.0041.0013 30.44.0057.0017queens 1.4180 29.4% S=TC=TS= 1.53.0003.0000 2.92.0016.0003 5.37.0043.0009 9.18.0092.0022 14.31.0182.0047 19.09.0325.0084 21.49.0427.0108rantree .4880 23.2% S=TC=TS= 1.57.0012.0004 2.97.0031.0014 5.14.0089.0040 8.20.0192.0078 11.02.0395.0157 13.56.0644.0257 14.14.0843.0327mm 1.6840 8.0% S=TC=TS= 1.17.0009.0003 1.82.0122.0026 3.21.0246.0043 5.66.0562.0120 10.02.1081.0237 15.84.1979.0433 18.87.2561.0582scan 1.2850 20.8% S=TC=TS= 1.27.0001.0000 2.13.0011.0001 3.76.0023.0002 6.39.0049.0003 10.02.0092.0007 13.75.0159.0012 14.94.0213.0015sum .4870 23.9% S=TC=TS= 1.25.0001.0000 2.11.0010.0001 3.74.0021.0002 6.28.0046.0003 9.73.0089.0008 12.84.0152.0013 13.65.0199.0014tridiag 4.1510 4.7% S=TC=TS= 1.17.0005.0000 1.75.0025.0001 2.95.0058.0004 5.07.0126.0012 8.44.0229.0020 12.27.0437.0040 16.18.0587.0051allpairs 26.1640 5.1% S=TC=TS= 1.07.0105.0080 1.56.1253.0219 2.60.2752.0658 4.21.4920.1079 6.59.7422.1422 8.62.9464.1741 7.67.9970.2438abisort 5.9390 25.2% S=TC=TS= .58.0001.0000 .74.0014.0001 1.21.0030.0002 2.07.0068.0007 3.59.0168.0016 5.64.0361.0036 6.95.0509.0049mst 26.3310 12.2% S=TC=TS= .91.0120.0038 1.03.0473.0033 1.27.1028.0059 1.62.1828.0094 1.55.2912.0144 1.53.4097.0221 1.38.4511.0249qsort .2780 33.0% S=TC=TS= 1.25.0011.0006 1.56.0105.0064 1.53.0431.0250 1.35.1213.0679 1.13.2718.1407 .99.5112.2402 1.10.6093.2049poly 2.3990 4.8% S=TC=TS= .97.1524.0116 1.05.3249.0667 1.27.5235.1504 1.51.7161.1655 1.51.8340.1372 1.42.8846.1715 .64.5555.0565Table 5.5: Performance of MP protocol on GP1000 with I = 2.

5.4. EFFECT OF INTERRUPT LATENCY 161Speedup, TC and TS whennumber of processors isProgram Tpar Oexpose 2 4 8 16 32 64 90fib .9610 16.9% S=TC=TS= 1.70.0000.0000 3.33.0002.0000 6.34.0004.0001 11.56.0009.0003 19.85.0020.0006 29.36.0033.0009 33.15.0043.0012queens 1.2140 10.8% S=TC=TS= 1.78.0003.0000 3.38.0014.0003 6.17.0034.0007 10.29.0079.0018 15.48.0150.0037 20.15.0275.0066 22.28.0340.0083rantree .4350 9.8% S=TC=TS= 1.75.0012.0004 3.29.0028.0013 5.47.0081.0036 8.41.0162.0064 10.77.0293.0109 12.61.0466.0174 12.86.0537.0195mm 1.5630 .3% S=TC=TS= 1.21.0010.0000 1.88.0102.0011 3.24.0261.0045 5.62.0538.0086 9.52.0892.0137 13.89.1501.0211 16.04.1862.0260scan 1.1780 10.7% S=TC=TS= 1.35.0001.0000 2.24.0009.0000 3.84.0018.0001 6.29.0034.0002 9.60.0063.0004 12.49.0107.0006 13.33.0132.0006sum .4350 10.7% S=TC=TS= 1.37.0001.0000 2.25.0010.0000 3.91.0018.0001 6.38.0034.0002 9.27.0062.0002 11.56.0107.0004 11.77.0139.0005tridiag 3.9370 -.7% S=TC=TS= 1.21.0003.0001 1.78.0019.0001 2.93.0044.0003 4.89.0085.0007 7.89.0157.0013 11.18.0241.0018 12.80.0288.0020allpairs 24.8150 -.3% S=TC=TS= 1.10.0093.0074 1.56.1238.0155 2.44.2419.0562 3.61.4133.0926 4.68.6207.1298 5.01.8236.1631 4.59.9005.1574abisort 5.1110 7.7% S=TC=TS= .61.0001.0000 .75.0011.0000 1.21.0024.0002 2.04.0057.0004 3.42.0127.0007 5.07.0247.0009 5.69.0310.0009mst 24.3180 3.6% S=TC=TS= .92.0090.0034 1.09.0292.0023 1.32.0530.0042 1.46.0791.0053 1.37.0935.0055 1.12.0922.0055 .99.0911.0054qsort .2410 15.3% S=TC=TS= 1.42.0009.0003 1.69.0088.0052 1.63.0335.0211 1.42.0853.0534 1.17.1830.1078 .93.2196.1272 .93.3396.0997poly 2.3110 .9% S=TC=TS= .97.1510.0115 .96.2819.0892 1.05.4460.1845 1.04.5883.1723 .69.5713.1206 .30.3588.0722 .26.4754.0629Table 5.6: Performance of MP protocol on GP1000 with I = 50.

162 CHAPTER 5. EXPERIMENTSOverall, the speedup curves indicate that the setting of I does not signi�cantly a�ectperformance. For small partitions, the speedup curves for I = 50 are consistently better(but only slightly) than smaller values of I . This is simply due to the slightly lowerpolling overhead for I = 50. As the number of processors increases and the program'swork distribution requirements become more critical, the performance for the lowervalues of I improves and eventually surpasses the performance for I = 50. The onlyexception is fib which at 90 processors is still a little faster with I = 50. On largepartitions, most programs perform better with a setting of I = 2 but the performanceof I = 10 is very close. The di�erence in performance between I = 2 and I = 10 at 90processors is less than 3%, with the exception of allpairs (7%) and mst (10%). It isinteresting to note however that good performance is obtained for all settings of I suchthat L is less than Tsteal task (allpairs and mst with I = 10 are on the border withL equal to 152 and 142 �secs respectively).5.5 Cost of Supporting LegitimacyThe previous experiments were performed with a version of the MP protocol that didnot contain support for legitimacy. To evaluate the cost of supporting legitimacy, theappropriate operations were added to the task management algorithms (i.e. the creationof the legitimacy placeholder, its installation in the stolen task and end_frame, and thelegitimacy propagation and chain collapsing in end-body). The programs were runon the GP1000 with increasingly large partitions (up to 16 processors). Two runswere performed: one with and one without a speculation barrier at the end of theprogram. The run time was measured and compared to the run time of the versionlacking legitimacy support. The overhead (the ratio of run times) is shown in Table 5.7.The results clearly show that for all programs based on fork-join algorithms, the costof supporting legitimacy is negligible. In fact, it can hardly be measured at all (the costis below the noise level of �2%). The collapsing of the legitimacy chain appears to beworking out as expected for fork-join algorithms. Only the programs qsort and poly,which are based on pipeline parallelism, have measurable overheads. The overheadsincrease with the number of processors, indicating that the legitimacy chain is gettinglonger and its collapsing is getting more expensive. The highest overhead is 10% forpoly at 16 processors when a speculation barrier is present. On 16 processors, theoverhead is a little lower (by 2 to 3%) when there is no speculation barrier.

5.6. SUMMARY 163Number of Processors1 2 4 8 16Program without with without with without with without with without withfib 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.01 1.00queens 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.01 1.00 .99mm 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00scan 1.00 1.00 .99 1.00 1.00 1.01 .98 1.01 1.01 1.00rantree 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 .98 .99sum 1.00 1.00 1.00 1.00 1.00 .99 .99 1.01 1.02 1.02tridiag 1.00 1.00 1.02 1.00 1.01 1.00 1.02 .99 1.00 .99allpairs 1.00 1.00 .99 1.00 1.00 1.00 1.01 1.01 1.00 1.00abisort 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00mst 1.00 1.00 1.00 .99 1.00 1.00 1.00 1.00 1.00 1.00poly 1.00 .98 1.00 1.00 1.00 1.00 1.06 1.05 1.03 1.05qsort 1.00 1.00 1.01 1.01 1.01 1.03 1.05 1.06 1.07 1.10Table 5.7: Overhead of supporting legitimacy, with and without speculation barrier onGP1000.5.6 SummaryThis chapter has evaluated the performance of the SM and MP protocol implementationsof LTC on large shared-memory multiprocessors (up to 90 processors). Experimentswere conducted with several benchmark programs on the GP1000 multiprocessor (whichlacks a data cache) and the TC2000 (which has a data cache). The results show that� The parallelization cost is low | The overhead of parallelizing a sequentialprogram (by adding futures and touches) is typically less than 20% when usingthe MP protocol. For the SM protocol, the overhead is twice as large when acache is not available. However, when a cache is available the overhead is muchmore important (up to a factor of two on the TC2000) because the SM protocolmust cache the stack and LTQ suboptimally.� LTC scales well| Programs with a high degree of parallelism have fairly linearspeedup with respect to the sequential version of the program. The SM and MPprotocols have almost identical speedup curves when a cache is not available.When a cache is available, the speedup curve for the MP protocol is consistentlybetter due to the di�erence in caching policy. However, this di�erence gradually

164 CHAPTER 5. EXPERIMENTSdecreases as the number of processors increases because the caching policy becomesless important (the caching policy has no inuence on the idle time and remotememory access time which increase with the number of processors).� Interrupt latency can be relatively high| For the MP protocol, an interruptlatency as high as the time to steal a task provides adequate performance. On a90 processor GP1000, the run time is usually within 3% of the run time for thebest latency.� Supporting the Katz-Weise semantics and legitimacy generally has anegligible impact on performance | There was no noticeable performancedi�erence between a version of the system that supported the Katz-Weise seman-tics and one that did not. This indicates that the additional cost of heapi�cationis low relatively to the other costs of stealing (in particular, the remote memoryreferences needed to transfer the task between processors). The cost of legitimacypropagation and testing is also very low. The overhead for fork-join programsis too low to measure. However, programs with a less restrictive task termina-tion order exhibit a measurable but small overhead (no more than 10% on 16processors).

Chapter 6ConclusionThe initial goal of this work was the implementation of a high-performance Multilispsystem. Earlier implementations of Multilisp, such as Concert Multilisp [Halstead, 1984]and MultiScheme [Miller, 1987], gave interesting self relative speedups but because theywere based on interpreters it was not clear that the same speedups would apply to a\production quality" system. As a �rst step of this work, a highly optimizing compilerfor Scheme was developed to provide a realistic setting for exploring new implementationstrategies for Multilisp and evaluating their performance. This e�ort resulted in Gambit[Feeley and Miller, 1990], currently the best Scheme compiler in terms of performanceof the code generated.The system was ported to the GP1000 and TC2000 multiprocessors, and support forMultilisp's parallelism constructs added to the compiler. Initially the eager task creation(ETC) method was used to implement futures but it was soon clear that the overheadof task creation would be too high for �ne grain programs (as explained in Chapter 2).Work on the lazy task creation (LTC) mechanism was triggered by a comment on \lazyfutures" in [Kranz et al., 1989]. LTC postpones the creation of a task until it needsto be transferred to another processor, the \thief". Consequently, the overhead of taskcreation is mostly dependent on the work distribution needs of the program and not somuch the program's granularity. For divide-and-conquer programs, LTC has the niceproperty of transferring large pieces of work and roughly balancing the work betweenthe thief and victim processors. This helps reduce the number of task transfers neededto keep processors busy. Most tasks end up being executed locally at low cost.Eric Mohr independently explored the LTC mechanism with the Mul-T system onthe Encore Multimax multiprocessor (a UMA computer with up to 20 processors) and165

166 CHAPTER 6. CONCLUSIONended up using a version of the shared-memory (SM) protocol very similar to the oneused here [Mohr, 1991]. In the SM protocol, thief processors directly access the stackof other processors to \steal" tasks. This thesis extends his results in several ways:� Experience on large machines| Experiments on a 90 processor GP1000 witha wide range of benchmarks provide concrete evidence that LTC scales well to largemachines and that good speedup is possible for realistic programs.� Support of a rich semantics | The semantics of the Multilisp language doesnot have to be impoverished to attain good performance. In fact, the lazinessof LTC can be exploited to implement several programming features at low cost.These include{ The Katz-Weise continuation semantics with legitimacy; which provides anelegant semantics for �rst-class continuations.{ Dynamic scoping.{ Fairness.� Better implementation of the SM protocol | A slightly faster implemen-tation of the SM protocol was developed. It requires fewer instructions, fewermemory references, and is simpler to prove correct.� The message-passing (MP) protocol | The main problem with the SM pro-tocol is that all processors must have access to the runtime stack. On machineslacking coherent-caches, such as the TC2000, the stack can only be cached in write-through mode instead of the more e�cient copy-back mode. This a�ects the speedof computation in general (parallel and sequential parts of the programs su�er).A study of several benchmarks in Chapter 3 shows that the stack is one of themost frequently accessed data structures and that the di�erence in caching policycan account for an important di�erence in performance (as high as a factor of twoon the TC2000).In the MP protocol the stack is a private data structure that can be cachedoptimally. To obtain a task to run, a thief processor sends a work request messageto the \victim" processor. When the request is serviced, the victim accesses itsown stack to remove a lazy task and packages it in a heavyweight task that issent back to the thief. This approach would appear to depend on a low latencyinterrupt mechanism, such as polling, but in fact the experiments indicate thatperformance is close to optimal when the interrupt latency is comparable to thetime required to perform the task steal.

6.1. FUTURE WORK 1676.1 Future WorkThe results of this thesis suggest that task partitioning can be done e�ciently on ma-chines that lack an e�cient shared memory. Coherent-caches are not really required,as shown by the MP protocol implementation of LTC. There is thus hope that, at leastfor some problems, Multilisp can run e�ciently on distributed-memory machines. Amachine like the Thinking Machine's CM-5, which lacks a shared memory but providesa fast message-passing system, would be an ideal candidate.One of the shortcomings of LTC as implemented here is that it does not address thedata partitioning problem. The scheduling algorithm makes no attempt to run a taskon (or close to) the processor that contains the data it accesses. As shown in Chapter 3,a substantial performance loss is attributable to the remote memory accesses to userdata (up to a factor of 5 on the GP1000 and a factor of 3 on the TC2000). Coherent-caches may help reduce this problem on shared-memory machines but the penalty ondistributed-memory machines will be much higher.Another problem is the overhead of touching. Contrary to Multilisp's original spec-i�cation, this work has assumed that touches are inserted explicitly by the user. Thisis hard to do for programs with complex data dependencies. It would be more con-venient for the user if touches were inserted automatically by the compiler. Addinga touch on each strict operation is a poor solution because it causes a high over-head. On the GP1000 the overhead is roughly a factor of 2 on typical programs(but a lower overhead may be possible on modern processors which are optimizedfor register operations). A better solution would be for the compiler to do a data-ow analysis of the program to identify all the strict operations that might be passeda placeholder. Control-ow and data-ow analysis techniques such as [Shivers, 1988,Shivers, 1991] would be a good starting point.

168 CHAPTER 6. CONCLUSION

Appendix ASource Code for ParallelBenchmarksThis appendix contains the source code for the parallel benchmark programs used inchapters 2, chapters 3, chapters 4, and 5. A general description of these programs isgiven in section 2.9. Half of the programs were originally written in Mul-T by Eric Mohras part of his PhD thesis work [Mohr, 1991]. These programs were translated to Schemewith super�cial changes to suit Gambit's particular features. These changes include� Macro de�nitions (Gambit uses the non-standard construct ##define-macro).� The de�nition of record structures (Gambit does not have a prede�ned constructfor de�ning structures; plain vectors were used instead).� The performance of abisort, allpairs and mst was improved by partial evaluat-ing the programs by hand. The algorithms are the same but some of the procedureabstractions were removed by replacing procedure de�nitions by macro de�nitions.� The programs abisort, rantree and tridiag originally had a few uses of a non-standard construct to return multiple values. Since Gambit does not have sucha feature, the multiple returns were reformulated in standard Scheme. This onlya�ects rantree's performance because the two other programs used multiple valuereturns exclusively in the initialization phase (which is not measured).� Tridiag, which solves a set of equations, uses only half as many equations (i.e. 32767).This data set just barely �ts in the memory available on a single processor nodeof the GP1000. About 2 Mbytes per processor (out of a total of 4 Mbytes) are169

170 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKSavailable for the heap after Gambit has started. This makes it possible to evaluatethe program in a uniprocessor con�guration (which is useful to generate speedupcurves). All other programs were run with the same data set size in order to makedirect comparisons easier.The new programs fall into two main classes. The programs mm (matrix multiplica-tion), scan (parallel pre�x operation on a vector), and sum (parallel reduction operationon a vector) are based on divide and conquer algorithms. The program poly (polyno-mial multiplication) implements a form of pipeline parallelism and qsort (quicksort) isa combination of pipeline and divide and conquer parallelism.The programs were modi�ed in certain places to address shared-memory prob-lems. To lessen contention to shared data in vectors, the non-standard proceduresmake-cvector and cvector-ref were used instead of the corresponding standard vectoroperations. A cvector is a vector with immutable elements (i.e. a \constant vector").When a cvector is created, it is copied to the local memory of each processor. Accessto a cvector is thus both contention free and fast (as fast as a local memory reference).However, access to the elements of a cvector may still exhibit some contention andremote memory reference latency if the elements are memory allocated structures (as isthe case in tridiag, the only program that uses cvectors).When the shared data was in mutable vectors (i.e. the programs allpairs, mm,mst, scan and sum), the non-standard procedures make-dvector, dvector-ref anddvector-set! were used instead of the corresponding standard vector operations. Advector is a vector whose entries are evenly allocated across the machine (i.e. a \dis-tributed vector"). If entry i is in the local memory of processor j, then entry i + 1 ison processor j + 1 (modulo the number of processors). On an n processor machine, areference to the vector will correspond to a local memory reference with probability 1nand to a remote reference with probability n�1n . This means that the average cost ofan access to a dvector increases with the number of processors, quickly approachingthe cost of a remote reference. Dvectors have good contention characteristics becauseduring a given cycle there can be as many accesses to dvectors as there are processors.The average number of contention free accesses will be lower, but this is more of anacademic question since in general, processors do not all access memory at the samemoment.Record structures were similarly distributed where possible (i.e. the programs abisort,mst and tridiag). This was done with a call to the procedure make-vector-chainwhich builds a chain of �xed size vectors that are evenly distributed across the machine.

171The creation of all these special data structures happens once and for all in theinitialization phase of the programs. Thus, it doesn't contribute to the measurements.Memory allocation in the main part of the program only occurs for qsort and poly andis done with the standard cons procedure. This means that space is allocated in thelocal memory of the processor doing the allocation.The programs were all compiled with special declarations meant to improve perfor-mance. All references to prede�ned variables, such as cons and car, were assumed tobe to the corresponding primitive procedure. This essentially means that inline codewas generated for calls to simple prede�ned procedures. All arithmetic operations wereassumed to be on small integers (�xnums), except for the program poly which usesgeneric arithmetic.In the code that follows, FUTURE and TOUCH have been underlined to make themstand out. The last line of each program is a call to the macro benchmark, which startsthe run. The subforms passed to benchmark are in order: the name of the program, theexpression used to initialize the input data and the expression that starts the part ofthe program being measured. A brief description is included with each program.

172 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKSA.1 abisortThis program sorts 16384 integers using the adaptive bitonic sort algorithm describedin [Bilardi and Nicolau, 1989].(##define-macro (make-node) `(make-vector 3 #f))(##define-macro (node-left x) `(vector-ref ,x 0))(##define-macro (node-value x) `(vector-ref ,x 1))(##define-macro (node-right x) `(vector-ref ,x 2))(##define-macro (node-left-set! x v) `(vector-set! ,x 0 ,v))(##define-macro (node-value-set! x v) `(vector-set! ,x 1 ,v))(##define-macro (node-right-set! x v) `(vector-set! ,x 2 ,v))(##define-macro (swap-left l r)`(let ((temp (node-left ,l)))(node-left-set! ,l (node-left ,r))(node-left-set! ,r temp)))(##define-macro (swap-right l r)`(let ((temp (node-right ,l)))(node-right-set! ,l (node-right ,r))(node-right-set! ,r temp)))(##define-macro (fixup-tree-1 root up?)`(let loop ((pl (node-left ,root))(pr (node-right ,root)))(if pl(compare-and-swap pl pr ,up?;swap right subtrees, search path goes left(begin (swap-right pl pr)(loop (node-left pl) (node-left pr)));search path goes right(loop (node-right pl) (node-right pr))))))(##define-macro (fixup-tree-2 root up?)`(let loop ((pl (node-left ,root))(pr (node-right ,root)))(if pl(compare-and-swap pl pr ,up?;swap left subtrees, search path goes right(begin (swap-left pl pr)(loop (node-right pl) (node-right pr)));search path goes left(loop (node-left pl) (node-left pr))))))

A.1. ABISORT 173(##define-macro (compare-and-swap node1 node2 up? true false)`(let ((v1 (node-value ,node1))(v2 (node-value ,node2)))(cond ((,(if up? `>= `<) v1 v2)(node-value-set! ,node1 v2)(node-value-set! ,node2 v1),true)(else ,false))))(##define-macro (pbimerge root spare up?)`(let loop ((root ,root) (spare ,spare))(compare-and-swap root spare ,up?(fixup-tree-1 root ,up?)(fixup-tree-2 root ,up?))(cond ((node-left root)(let ((left-half (FUTURE (loop (node-left root) root))))(loop (node-right root) spare)(TOUCH left-half))))))(define (pbisort-up root spare)(let ((left (node-left root)))(if left(let ((left-half (FUTURE (pbisort-up left root))))(pbisort-down (node-right root) spare)(TOUCH left-half)(pbimerge root spare #t)))(compare-and-swap root spare #t #t #f)))(define (pbisort-down root spare)(let ((left (node-left root)))(if left(let ((left-half (FUTURE (pbisort-down left root))))(pbisort-up (node-right root) spare)(TOUCH left-half)(pbimerge root spare #f)))(compare-and-swap root spare #f #t #f)))(define (new-node l r v)(let ((node (make-node*)))(node-left-set! node l)(node-right-set! node r)(node-value-set! node v)node))

174 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKS(define node-chain #f)(define (init-node-chain n) ; make a chain of 3 element vects(set! node-chain (make-vector-chain n 3)))(define (make-node*)(let ((node node-chain))(set! node-chain (vector-ref node 0))node))(define (make-inorder-tree depth)(let loop ((i 0)(depth depth))(if (= depth 1)(cons (new-node #f #f i) i)(let* ((x (loop i (- depth 1)))(l-tree (car x))(l-imax (cdr x)))(let* ((y (loop (+ l-imax 2) (- depth 1)))(r-tree (car y))(r-imax (cdr y)))(cons (new-node l-tree r-tree (+ l-imax 1)) r-imax))))))(define r #f)(define s #f)(define k 14)(define (init)(init-node-chain (expt 2 k))(let* ((x (make-inorder-tree k))(root (car x))(imax (cdr x)))(let ((spare (new-node #f #f (+ imax 1))))(set! r root)(set! s spare))))(benchmark ABISORT (init) (pbisort-up r s))

A.2. ALLPAIRS 175A.2 allpairsThis program computes the shortest paths between all pairs of 117 nodes using a parallelversion of Floyd's algorithm.(##define-macro (do-all var lo hi . body)`(let loop ((,var ,lo) (hi ,hi))(if (= ,var hi)(let () ,@body)(let* ((mid (quotient (+ ,var hi) 2))(lo-half (FUTURE (loop ,var mid))))(loop (+ mid 1) hi)(TOUCH lo-half)))))(define (apsp/par a n)(let ((n-1 (- n 1)))(do ((k 0 (+ k 1)))((= k n))(let ((k*n (* k n)))(do-all i 0 n-1(let* ((i*n (* i n))(i*n+k (+ i*n k)))(do ((j 0 (+ j 1)))((= j n))(let* ((kpath (+ (dvector-ref a i*n+k)(dvector-ref a (+ k*n j))))(i*n+j (+ i*n j)))(if (< kpath (dvector-ref a i*n+j))(dvector-set! a i*n+j kpath))))))))))(define (make-linear-adjacency-matrix n)(let ((a (make-dvector (* n n) (quotient most-positive-fixnum 2))))(dvector-set! a 0 0)(do ((i 1 (+ i 1)))((= i n))(dvector-set! a (+ (* i n) i) 0)(dvector-set! a (+ (* (- i 1) n) i) 1)(dvector-set! a (+ (* i n) (- i 1)) 1))a))(define a #f)(define n 117)(define (init)(set! a (make-linear-adjacency-matrix n)))(benchmark ALLPAIRS (init) (apsp/par a n))

176 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKSA.3 fibThis program computes F25, the 25th �bonacci number, using the \standard" doublyrecursive algorithm.(define (pfib n)(let fib ((n n))(if (< n 2)n(let* ((f1 (FUTURE (fib (- n 1))))(f2 (fib (- n 2))))(+ (TOUCH f1) f2)))))(benchmark FIB #f (pfib 25))

A.4. MM 177A.4 mmThis program multiplies two matrices of integers (50 by 50).(define (mm m1 m2 m3) ; m1 * m2 -> m3(define (compute-entry row col) ; loop to compute inner product(let loop ((i (+ row (- n 1)))(j (+ (* n (- n 1)) col))(sum 0))(if (>= j 0)(loop (- i 1)(- j n)(+ sum (* (dvector-ref m1 i) (dvector-ref m2 j))))(dvector-set! m3 (+ (+ i 1) col) sum))))(define (compute-cols-between row i j) ; DAC over columns(if (= i j)(compute-entry row i)(let ((mid (quotient (+ i j) 2)))(let* ((half1 (FUTURE (compute-cols-between row i mid)))(half2 (compute-cols-between row (+ mid 1) j)))(TOUCH half1)))))(define (compute-rows-between i j) ; DAC over rows(if (= i j)(compute-cols-between (* i n) 0 (- n 1))(let ((mid (quotient (+ i j) 2)))(let* ((half1 (FUTURE (compute-rows-between i mid)))(half2 (compute-rows-between (+ mid 1) j)))(TOUCH half1)))))(compute-rows-between 0 (- n 1)))(define m1 #f)(define m2 #f)(define m3 #f)(define n 50)(define (init)(set! m1 (make-dvector (* n n) 2))(set! m2 (make-dvector (* n n) 2))(set! m3 (make-dvector (* n n) #f)))(benchmark MM (init) (mm m1 m2 m3))

178 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKSA.5 mstThis program computes the minimum spanning tree of a 1000 node graph. A parallelversion of Prim's algorithm is used.(##define-macro (make-city) `(make-vector 4 #f))(##define-macro (city-x x) `(vector-ref ,x 0))(##define-macro (city-y x) `(vector-ref ,x 1))(##define-macro (city-closest x) `(vector-ref ,x 2))(##define-macro (city-distance x) `(vector-ref ,x 3))(##define-macro (city-x-set! x v) `(vector-set! ,x 0 ,v))(##define-macro (city-y-set! x v) `(vector-set! ,x 1 ,v))(##define-macro (city-closest-set! x v) `(vector-set! ,x 2 ,v))(##define-macro (city-distance-set! x v) `(vector-set! ,x 3 ,v))(define (new-city x y closest distance)(let ((city (make-city*)))(city-x-set! city x)(city-y-set! city y)(city-closest-set! city closest)(city-distance-set! city distance)city))(define (prim cities ncities find-closest-city)(let* ((max-i (- ncities 1))(target0 (dvector-ref cities max-i)))(city-closest-set! target0 target0) ;; makes drawing easier(let loop ((max-i (- max-i 1))(target target0))(if (= max-i 0)(add-last-city (dvector-ref cities 0) target)(let* ((closest-i (find-closest-city cities max-i target))(newcity (dvector-ref cities closest-i)))(dvector-set! cities closest-i (dvector-ref cities max-i))(dvector-set! cities max-i newcity)(loop (- max-i 1) newcity))))))(define (add-last-city city newcity)(let* ((newdist (distance city newcity))(olddist (city-distance city)))(cond ((< newdist olddist)(city-distance-set! city newdist)(city-closest-set! city newcity)))))

A.5. MST 179(define (distance c1 c2)(let ((dx (- (city-x c1) (city-x c2)))(dy (- (city-y c1) (city-y c2))))(+ (* dx dx) (* dy dy))))(##define-macro (combine-interval/ptree lo hi f combine)`(let ((lo ,lo) (hi ,hi))(let* ((n (+ (- hi lo) 1))(adjust (- lo 1))(first-leaf (quotient (+ n 1) 2))(treeval(let loop ((i 1))(cond ((< i first-leaf)(let* ((left (FUTURE (loop (* i 2))))(right (,combine (loop (+ (* i 2) 1))(,f (+ i adjust)))))(,combine right (TOUCH left))))(else(,f (+ i adjust)))))))(if (even? n)(,combine treeval (,f hi))treeval))))(define (find-closest-city/ptree cities max-i newcity)(combine-interval/ptree 0 max-i(lambda (i) (update-city i cities newcity))(lambda (i1 i2)(if (< (city-distance (dvector-ref cities i1))(city-distance (dvector-ref cities i2)))i1i2))))(define (update-city i cities newcity)(let* ((city (dvector-ref cities i))(newdist (distance city newcity))(olddist (city-distance city)))(cond ((< newdist olddist)(city-distance-set! city newdist)(city-closest-set! city newcity)))i))

180 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKS(define city-chain #f)(define (init-city-chain n) ; make a chain of 4 element vects(set! city-chain (make-vector-chain n 4)))(define (make-city*)(let ((city city-chain))(set! city-chain (vector-ref city 0))city))(define random (make-random 3434534))(define random-range 1000)(define (make-random-vector-of-cities n)(let ((cities (make-dvector n)))(do ((i 0 (+ i 1)))((>= i n) cities)(dvector-set! cities i(new-city (modulo (random) random-range)(modulo (random) random-range)'()most-positive-fixnum)))cities))(define c #f)(define n 1000)(define (init)(init-city-chain n)(set! c (make-random-vector-of-cities n)))(benchmark MST (init) (prim c n find-closest-city/ptree))

A.6. POLY 181A.6 polyThis program computes the square of a 200 term polynomial of x (with integer coe�-cients) and evaluates the resulting polynomial for a certain value of x.(##declare (generic)) ; use generic arithmetic(define (poly* p1 p2) ; compute p1*p2(if (or (null? p1) (null? p2))'()(poly+*k (cons 0 (poly* p1 (cdr p2)))p1(car p2))))(define (poly+*k p1 p2 k) ; compute p1+p2*k(if (null? p2)p1(if (null? p1)(let ((rest (FUTURE (poly+*k '() (cdr p2) k))))(cons (* (car p2) k) rest))(let ((rest (FUTURE (poly+*k (TOUCH (cdr p1)) (cdr p2) k))))(cons (+ (car p1) (* (car p2) k)) rest)))))(define (poly-eval p x) ; compute value of p at x(let loop ((p p) (y 1) (sum 0))(if (pair? p)(loop (TOUCH (cdr p)) (* x y) (+ sum (* (car p) y)))sum)))(define p ; 200 terms'(1 11 11 11 11 11 11 11 1))(benchmark POLY #f (poly-eval (poly* p p) 1))

182 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKSA.7 qsortThis program sorts a list of 1000 integers using a parallel version of the Quicksortalgorithm.(define (qsort lst)(##define-macro (filter keep? lst)`(let loop ((lst ,lst))(let ((lst (TOUCH lst)))(if (pair? lst)(let ((head (car lst)))(if (,keep? head)(cons head (FUTURE (loop (cdr lst))))(loop (cdr lst))))'()))))(define (qs lst tail)(if (pair? lst)(let ((pivot (car lst))(other (cdr lst)))(let ((sorted-larger(FUTURE (qs (filter (lambda (x) (not (< x pivot))) other)tail))))(qs (filter (lambda (x) (< x pivot)) other)(cons pivot sorted-larger))))tail))(qs lst '()))(define (walk lst)(let loop ((lst lst))(let ((lst (TOUCH lst)))(if (pair? lst) (loop (cdr lst)))))lst)(define l ; randomized list of numbers 0 to 999`(34 313 852 803 941 931 63 581 309 569 62 561 602 572 353 253 815 869928 472 247 808 88 698 315 152 58 465 881 888 652 312 47 69 279 418... 361 762 53 664 892 768 778 685 190 52 665 289 558 188 455 408 381 805791 68 293 827 529 301 825 357 202 365 955 746 449 927 823))(benchmark QSORT #f (walk (qsort l)))

A.8. QUEENS 183A.8 queensThis program computes the number of solutions to the n-queens problem, with n = 10.(define (queens n)(let try ((rows-left n)(free-diag1 -1) ;all bits set(free-diag2 -1)(free-cols (- (ash 1 n) 1))) ;bits 0 to n-1 set(let ((free (logand free-cols (logand free-diag1 free-diag2))))(let loop ((col 1))(cond ((> col free)0)((= (logand col free) 0)(loop (* col 2)))((= rows-left 1)(+ 1 (loop (* col 2))))(else(let* ((sub-solns(FUTURE(try (- rows-left 1)(+ (ash (- free-diag1 col) 1) 1)(ash (- free-diag2 col) -1)(- free-cols col))))(other-solns (loop (* col 2))))(+ (TOUCH sub-solns) other-solns))))))))(benchmark QUEENS #f (queens 10))

184 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKSA.9 rantreeThis program models the traversal of a random binary tree with on the order of 32768nodes. The branching factor is 50%.(define (lehmer-left seed) (+ 1 (* seed #xface475)))(define (lehmer-right seed) (+ 1 (* seed #x283feed)))(define (pseudo-random-tree n)(let loop ((n n) (seed 1))(cond ((<= n 2)n)((> seed 0)(let* ((ln (+ 1 (modulo seed (- n 2))))(rn (- (- n 1) ln))(left (FUTURE (loop ln (lehmer-left seed))))(right (loop rn (lehmer-right seed))))(+ (TOUCH left) (+ right 1))))(else(+ 1 (loop (- n 1) (lehmer-left seed)))))))(benchmark RANTREE #f (pseudo-random-tree 32768))

A.10. SCAN 185A.10 scanThis program computes the parallel pre�x sum of a vector of 32768 integers. The vectoris modi�ed in place. A given element is replaced by the sum of itself and all precedingelements.(##define-macro (scan f c v)`(let ((c ,c) (v ,v))(let ((n (dvector-length v)))(define (pass1 i j)(if (< i j)(let* ((m (quotient (+ i j) 2))(left (FUTURE (pass1 i m)))(right (pass1 (+ m 1) j))(result (,f (TOUCH left) right)))(dvector-set! v j result)result)(dvector-ref v j)))(define (pass2 i j c)(if (< i j)(let* ((m (quotient (+ i j) 2))(left (FUTURE (pass2 i m c)))(cc (,f c (dvector-ref v m)))(right (pass2 (+ m 1) j cc)))(dvector-set! v m cc)(TOUCH left))))(if (> n 0)(let ((j (- n 1)))(pass1 0 j)(pass2 0 j c)(dvector-set! v j (,f c (dvector-ref v j))))))))(define (scan+ c v) (scan + c v))(define v #f)(define n 32768)(define (init)(set! v (make-dvector n 0)))(benchmark SCAN (init) (scan+ 0 v))

186 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKSA.11 sumThis program computes the sum of a vector of 32768 integers.(define (sum vect l h) ; sum vector from 'l' to 'h'(if (= l h)(dvector-ref vect l)(let* ((mid (quotient (+ l h) 2))(lo (FUTURE (sum vect l mid)))(hi (sum vect (+ mid 1) h)))(+ (TOUCH lo) hi))))(define v #f)(define n 32768)(define (init)(set! v (make-dvector n 1)))(benchmark SUM (init) (sum v 0 (- n 1)))

A.12. TRIDIAG 187A.12 tridiagThis program solves a tridiagonal system of 32767 equations.(##define-macro (a obj) `(vector-ref ,obj 0))(##define-macro (b obj) `(vector-ref ,obj 1))(##define-macro (c obj) `(vector-ref ,obj 2))(##define-macro (y obj) `(vector-ref ,obj 3))(##define-macro (x obj) `(vector-ref ,obj 4))(##define-macro (a-set! obj v) `(vector-set! ,obj 0 ,v))(##define-macro (b-set! obj v) `(vector-set! ,obj 1 ,v))(##define-macro (c-set! obj v) `(vector-set! ,obj 2 ,v))(##define-macro (y-set! obj v) `(vector-set! ,obj 3 ,v))(##define-macro (x-set! obj v) `(vector-set! ,obj 4 ,v))(define (reduce/par equ imid)(define (reduce-equation i delta)(let* ((equ-ileft (cvector-ref equ (- i delta)))(equ-iright (cvector-ref equ (+ i delta)))(equ-i (cvector-ref equ i))(e (- (quotient (a equ-i) (b equ-ileft))))(f (- (quotient (c equ-i) (b equ-iright)))))(a-set! equ-i (* e (a equ-ileft)))(c-set! equ-i (* f (c equ-iright)))(b-set! equ-i (+ (b equ-i)(+ (* e (c equ-ileft))(* f (a equ-iright)))))(y-set! equ-i (+ (y equ-i)(+ (* e (y equ-ileft))(* f (y equ-iright)))))))(let do-branch ((i imid)(delta (quotient imid 2)))(if (= delta 1)(reduce-equation i delta)(let* ((ileft (- i delta))(iright (+ i delta))(l (FUTURE (do-branch ileft (quotient delta 2)))))(do-branch iright (quotient delta 2))(TOUCH l)(do ((d 1 (* d 2)))((> d delta))(reduce-equation i d))))))

188 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKS(define (backsolve/par equ imid)(let loop ((i imid) (delta imid))(let ((equ-i (cvector-ref equ i)))(x-set! equ-i (quotient (- (y equ-i)(+ (* (a equ-i)(x (cvector-ref equ (- i delta))))(* (c equ-i)(x (cvector-ref equ (+ i delta))))))(b equ-i)))(if (> delta 1)(let* ((new-delta (quotient delta 2))(l (FUTURE (loop (- i new-delta) new-delta))))(loop (+ i new-delta) new-delta)(TOUCH l))))))(define abcyx-chain #f)(define (init-abcyx-chain n) ; make a chain of 5 element vects(set! abcyx-chain (make-vector-chain n 5)))(define (make-abcyx*)(let ((node abcyx-chain))(set! abcyx-chain (vector-ref node 0))node))

A.12. TRIDIAG 189(define n #f)(define imid #f)(define equ #f)(define k 15)(define (init1)(let ((n+1 (expt 2 k)))(set! n (- n+1 1))(set! imid (quotient n+1 2))(init-abcyx-chain (+ n 2))(set! equ (make-cvector (+ n 2) make-abcyx*))))(define (init2)(do ((i (+ n 1) (- i 1)))((< i 0))(let ((equ-i (cvector-ref equ i)))(a-set! equ-i 1)(b-set! equ-i 1)(c-set! equ-i 1)(y-set! equ-i 3)(x-set! equ-i 0)))(let ((equ-1 (cvector-ref equ 1)))(a-set! equ-1 0)(b-set! equ-1 1)(c-set! equ-1 1)(y-set! equ-1 2))(let ((equ-n (cvector-ref equ n)))(a-set! equ-n 1)(b-set! equ-n 1)(c-set! equ-n 0)(y-set! equ-n 2)))(define (run)(reduce/par equ imid)(backsolve/par equ imid))(benchmark TRIDIAG (begin (init1) (init2)) (run))

190 APPENDIX A. SOURCE CODE FOR PARALLEL BENCHMARKS

Appendix BExecution Pro�les for ParallelBenchmarksThis Appendix contains \execution pro�les" for each of the parallel benchmarks ofAppendix A. An execution pro�le is a plot representing the activity of the processorsas a function of time. Pro�les are useful to visualize the behavior of parallel programs.They are also an invaluable tool to detect performance related problems with algorithmsand the language implementation.To generate the pro�les, the programs were compiled with the default polling settingswith an intermittency factor of 10. The message-passing protocol supporting the Katz-Weise continuation semantics and legitimacy was used but fairness was disabled. Theprograms were run on the GP1000 with 64 processors. Processors can be in one of sixdistinctive states in the message-passing protocol1. Interrupt | The processor is servicing a steal request. This state accounts forheapifying the parent continuation, creating the task, the result and legitimacyplaceholders, and responding to the thief.2. Working | The processor is running the main body of the program (i.e. \usercode"). This accounts not only for all the work that is strictly required by a se-quential version of a program, but also includes the following extra work neededto support parallelism: pushing and popping lazy tasks, checking for placehold-ers (as part of TOUCH), waiting for references to remote memory and restoringcontinuations1.1Measuring all these cases independently would be useful; unfortunately, it is impossible to do in an191

192 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKS3. Idle | The processor is looking for work but hasn't yet found an available taskin a work queue or a victim processor to interrupt.4. Touching an undetermined placeholder| An undetermined placeholder wastouched. This state indicates the suspension of a task.5. Determine | A placeholder is being determined prior to the termination of atask.6. Stealing | The processor has found a victim processor, sent a steal request andis waiting for a response. The cost of restarting the task is also included exceptfor restoring the task's continuation.Only certain transitions between these states are possible, as de�ned by the followingdiagram -���) ��=PPPiZZ} 6?���1 PPPq6?interrupt workinginterruptstealingtouch undetdetermineidleNote that it is possible to go directly from the idle state to the working state. Thishappens when a task is taken from a processor's HTQ. Also, note that interrupts canonly be serviced in the idle state and in the working state.For the pro�les to be signi�cant, it is important to minimize the impact of monitoringon the behavior of the system. The pro�les were obtained by having each processor logan event in a table in local memory whenever there was a state transition. The extracode needed to do this is con�ned to the runtime system, user code is not changed inany way. Each event indicates the state being entered and the current time taken froma real time clock with a 62.5 �secs resolution. These tables were then dumped to diskfor later processing by the analysis program generating the pro�les. The cost of loggingan event in this way is about 6 �secs. This is relatively small compared to the typicalduration of states (usually much more that 100 �secs).A pro�le is divided into three sections. The top part displays the instantaneousactivity of the machine. That is, what proportion of all the processors are in eachstate as a function of time (time is always expressed in milliseconds). Below this is theunintrusive way. This is why all these di�erent cases were grouped together in one state. Time spentin the \working" state can only serve as an approximation of the work required by a sequential versionof the program.

193global activity chart. It indicates what percentage of the run time is spent in each ofthe states (in other words it gives the area covered by each state in the instantaneousactivity chart). The bottom section consists of state duration histograms for everystate. Each histogram indicates the distribution of state durations and also the averageduration2. Note that each state is represented by a di�erent shade of gray. To helpdistinguish the shades, the states are always in the same order; from bottom to top inthe instantaneous activity chart and from left to right in the global activity chart.For each benchmark two pro�les are given. The �rst is for the complete run and thesecond is a close-up of the beginning of the run.

2The time spent servicing interrupts is ignored to compute the duration of the working and idlestates.

194 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKSB.1 abisort
File: "abisort-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.168

77%

0 100 200 300

12.603

48%

0 10 20

.958

56%

.0 .5

.315

50%

0 1

.159

60%

0 1 2 3

.523

9%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 100 200 300 400 500 600 700 800 msec

File: "abisort-mp.elog" Processors: 64

File: "abisort-mp.elog" Processors: 64

interrupt working idle determine stealing

.0 .5

.119

32%

0 5

4.402

6%

0 5

4.500

5%

.0 .5

.260

33%

0 1 2

.640

10%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 1 2 3 4 5 6 7 8 9 10 msec

File: "abisort-mp.elog" Processors: 64

B.2. ALLPAIRS 195B.2 allpairs
File: "allpairs-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1 2 3

.206

60%

0 10 20

7.311

19%

0 10 20

5.746

17%

0 1 2 3 4

.369

37%

0 1 2 3

.168

62%

0 5

.518

16%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 500 1000 1500 2000 2500 3000 msec

File: "allpairs-mp.elog" Processors: 64

File: "allpairs-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

.0 .5

.165

40%

0 10

7.619

10%

0 10 20

6.481

15%

0 1

.391

34%

0 1 2

.190

58%

0 1 2 3 4

.530

13%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 5 10 15 20 25 30 35 40 45 50 55 60 msec

File: "allpairs-mp.elog" Processors: 64

196 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKSB.3 fib
File: "fib-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.147

63%

0 10

2.053

30%

0 5

.912

56%

.0 .5

.251

59%

0 1

.138

55%

0 1

.205

50%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 msec

File: "fib-mp.elog" Processors: 64

File: "fib-mp.elog" Processors: 64

interrupt working idle stealing

.0 .5

.107

35%

0 1 2

1.066

11%

0 1 2

1.766

11%

.0 .5

.178

68%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

.0 .5 1.0 1.5 2.0 2.5 3.0 msec

File: "fib-mp.elog" Processors: 64

B.4. MM 197B.4 mm
File: "mm-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.173

50%

0 50

12.403

23%

0 10

1.776

64%

0 1

.344

46%

.0 .5

.153

66%

0 1

.414

14%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 10 20 30 40 50 60 70 80 90 msec

File: "mm-mp.elog" Processors: 64

File: "mm-mp.elog" Processors: 64

interrupt working idle stealing

.0 .5

.127

29%

0 1 2 3 4 5 6

1.546

7%

0 1 2 3 4

3.011

7%

.0 .5 1.0

.445

15%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 msec

File: "mm-mp.elog" Processors: 64

198 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKSB.5 mst
File: "mst-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 5

.204

80%

0 10

.913

8%

0 100 200

.354

54%

0 5

.319

64%

0 10

.165

75%

0 10

.618

20%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000 msec

File: "mst-mp.elog" Processors: 64

File: "mst-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.173

52%

0 10

3.356

7%

0 10

3.498

23%

.0 .5

.335

43%

.0 .5

.154

60%

0

.831

16%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 5 10 15 20 25 30 35 40 msec

File: "mst-mp.elog" Processors: 64

B.6. POLY 199B.6 poly
File: "poly-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1 2 3 4

.181

62%

0 100

.559

95%

0 100 200

2.518

90%

0 5

.543

28%

0 10 20

.242

91%

0 50

.790

60%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 msec

File: "poly-mp.elog" Processors: 64

File: "poly-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.163

24%

0 50

1.936

69%

0 100

28.542

20%

0 5

2.437

25%

0 1 2 3 4

.510

34%

0 5

.619

33%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 10 20 30 40 50 60 70 80 90 100 msec

File: "poly-mp.elog" Processors: 64

200 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKSB.7 qsort
File: "qsort-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.157

62%

0 10 20 30

.270

93%

0 10 20 30

.658

62%

0 1 2

.320

35%

0 1 2

.198

44%

0 1 2 3

.580

13%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 msec

File: "qsort-mp.elog" Processors: 64

File: "qsort-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.130

30%

0 10

.361

47%

0 10

2.066

12%

0

.388

24%

.0

.195

44%

0 1 2

.459

22%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 1 2 3 4 5 6 7 8 9 10 msec

File: "qsort-mp.elog" Processors: 64

B.8. QUEENS 201B.8 queens
File: "queens-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.179

63%

0 10

1.362

23%

0 10

.810

57%

0 1 2

.283

57%

0 1

.137

54%

0 1

.232

42%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 5 10 15 20 25 30 35 40 45 50 55 msec

File: "queens-mp.elog" Processors: 64

File: "queens-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

.0 .5

.138

34%

0 1 2

.806

7%

0 1 2 3

1.532

15%

.0

.260

53%

.0

.134

55%

.0 .5

.203

36%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 msec

File: "queens-mp.elog" Processors: 64

202 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKSB.9 rantree
File: "rantree-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

.0 .5

.157

65%

0

.969

21%

0 10

1.278

68%

0 1

.280

42%

0 1

.144

55%

0 1

.235

36%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 msec

File: "rantree-mp.elog" Processors: 64

File: "rantree-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

.0 .5

.135

37%

0 1 2

.761

13%

0 1 2 3

1.099

21%

.0 .5

.253

44%

.0 .5

.139

54%

0 1

.226

36%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 msec

File: "rantree-mp.elog" Processors: 64

B.10. SCAN 203B.10 scan
File: "scan-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

.0 .5

.170

67%

0 10 20

3.248

14%

0 10

1.244

58%

.0 .5

.286

60%

.0 .5

.151

66%

0 1 2

.288

24%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 msec

File: "scan-mp.elog" Processors: 64

File: "scan-mp.elog" Processors: 64

interrupt working idle determine stealing

.0 .5

.118

30%

0 1 2 3

1.832

9%

0 1 2 3

2.601

7%

.0 .1

.138

71%

0 1

.303

29%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 msec

File: "scan-mp.elog" Processors: 64

204 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKSB.11 sum
File: "sum-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.158

64%

0 10

2.460

10%

0

1.120

44%

.0 .5

.293

65%

0 1

.152

64%

0 1

.254

33%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 msec

File: "sum-mp.elog" Processors: 64

File: "sum-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

.0 .5

.117

34%

0 1 2 3 4

2.108

10%

0 1 2 3

2.245

8%

.0

.218

100%

.0

.135

44%

.0 .5

.246

28%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

.0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 msec

File: "sum-mp.elog" Processors: 64

B.12. TRIDIAG 205B.12 tridiag
File: "tridiag-mp.elog" Processors: 64

interrupt working idle touch_undet determine stealing

0 1

.170

66%

0 100

17.283

17%

0 50

4.276

81%

.0 .5

.325

42%

.0 .5

.155

57%

0 5

.687

13%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 50 100 150 200 250 300 msec

File: "tridiag-mp.elog" Processors: 64

File: "tridiag-mp.elog" Processors: 64

interrupt working idle stealing

.0 .5

.118

35%

0 5 10

4.425

7%

0 1 2 3 4 5 6

4.856

7%

0 1

.817

11%

msec

0 10 20 30 40 50 60 70 80 90 100 %

0

20

40

60

80

100

%

0 1 2 3 4 5 6 7 8 9 10 msec

File: "tridiag-mp.elog" Processors: 64

206 APPENDIX B. EXECUTION PROFILES FOR PARALLEL BENCHMARKS

Bibliography[Adams and Rees, 1988] N. Adams and J. Rees. Object-oriented programming inScheme. In Conference Record of the 1988 ACM Conference on Lisp and FunctionalProgramming, pages 277{288, August 1988.[Agarwal, 1991] A. Agarwal. Performance tradeo�s in multithreaded processors. Tech-nical Report MIT/LCS/TR-501, Massachusetts Institute of Technology, Cambridge,MA, April 1991.[Appel, 1989] A. W. Appel. Allocation without locking. Software Practice and Experi-ence, 19(7):703{705, July 1989.[Arvind and Nikhil, 1990] Arvind and R. S. Nikhil. Executing a program on the MITtagged-token dataow architecture. IEEE Transactions on Computers, 39(3):300{318, March 1990.[Baker and Hewitt, 1978] H. Baker and C. Hewitt. The incremental garbage collectionof processes. Technical Report AI Memo 454, Mass. Inst. of Technology, Arti�cialIntelligence Laboratory, March 1978.[BBN, 1989] BBN Advanced Computers Inc., Cambridge, MA. Inside the GP1000,1989.[BBN, 1990] BBN Advanced Computers Inc., Cambridge, MA. Inside the TC2000Computer, 1990.[Bilardi and Nicolau, 1989] G. Bilardi and A. Nicolau. Adaptive bitonic sorting: Anoptimal parallel algorithm for shared-memory machines. SIAM Journal of Computing,12(2):216{228, April 1989.[Callahan and Smith, 1989] D. Callahan and B. Smith. A future-based parallel languagefor a general-purpose highly-parallel computer. In Papers from the Second Workshop207

208 BIBLIOGRAPHYon Languages and Compilers for Parallel Computing, pages 95{113. University ofIllinois at Urbana-Champaign, 1989.[Censier and Feautrier, 1978] L. M. Censier and P. Feautrier. A new solution to co-herence problems in multicache systems. IEEE Transactions on Computers, pages1112{1118, December 1978.[Chaiken et al., 1991] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS direc-tories: A scalable cache coherence scheme. In ASPLOS IV: Architectural Support forProgramming Languages and Operating Systems, pages 224{234, 1991.[Clinger et al., 1988] W. Clinger, A. Hartheimer, and E. Ost. Implementation strategiesfor continuations. In Conference Record of the 1988 ACM Conference on Lisp andFunctional Programming, pages 124{131, Snowbird, UT., July 1988.[Clinger, 1984] W. Clinger. The Scheme 311 compiler: an exercise in denotationalsemantics. In Conference Record of the 1984 ACM Symposium on Lisp and FunctionalProgramming, pages 356{364, 1984.[Dijkstra, 1968] E. W. Dijkstra. Cooperating sequential processes. In ProgrammingLanguages, pages 43{112. Academic Press, 1968.[Dubois and Scheurich, 1990] M. Dubois and C. Scheurich. Memory access dependen-cies in shared-memory multiprocessors. IEEE Transactions on Software Engineering,16(6):660{673, June 1990.[Feeley and Miller, 1990] M. Feeley and J. S. Miller. A parallel virtual machine fore�cient Scheme compilation. In Proceedings of the 1990 ACM Conference on Lispand Functional Programming, Nice, France, June 1990.[Feeley, 1993] M. Feeley. Polling e�ciently on stock hardware. In Proceedings of the 1993ACM Conference on Functional Programming Languages and Computer Architecture,1993.[Fra, 1990] Franz Inc., Berkeley, CA. Allegro CL User Manual, 1990.[Friedman and Haynes, 1985] D. P. Friedman and C. T. Haynes. Constraining control.In Proceedings of the Twelfth Annual Symposium on Principles of Programming Lan-guages, pages 245{254, New Orleans, LA., January 1985. ACM.[Friedman et al., 1992] D. P. Friedman, M. Wand, and C. T. Haynes. Essentials ofProgramming Languages. MIT Press and McGraw-Hill, 1992.

BIBLIOGRAPHY 209[Gabriel and McCarthy, 1984] R. P. Gabriel and J. McCarthy. Queue-based multi-processing Lisp. In Conference Record of the 1984 ACM Symposium on Lisp andFunctional Programming, pages 25{44, Austin, TX., August 1984.[Gabriel, 1985] R. P. Gabriel. Performance and Evaluation of Lisp Systems. ResearchReports and Notes, Computer Systems Series. MIT Press, Cambridge, MA, 1985.[Gharachorloo et al., 1991] K. Gharachorloo, A. Gupta, and J. Hennessy. Performanceevaluation of memory consistency models for shared-memory multiprocessors. InProceedings of the 4th International Conference on Architectural Support for Pro-gramming Languages and Operating Systems, pages 245{257. ACM, April 1991.[Goldman and Gabriel, 1988] R. Goldman and R. P. Gabriel. Preliminary results withthe initial implementation of Qlisp. In Conference Record of the 1988 ACM Con-ference on Lisp and Functional Programming, pages 143{152, Snowbird, UT., July1988.[Goodman, 1983] J. R. Goodman. Using cache memory to reduce processor-memorytra�c. Proceedings of the 10th International Symposium on Computer Architecture,pages 124{131, June 1983.[Gray, 1986] S. L. Gray. Using futures to exploit parallelism in Lisp. Master's thesis,Mass. Inst. of Technology, 1986.[Halstead and Fujita, 1988] R. Halstead and T. Fujita. MASA: A multithreaded pro-cessor architecture for parallel symbolic computing. In Proceedings of the 15th AnnualInternational Symposium on Computer Architecture, pages 443{451, 1988.[Halstead et al., 1986] R. Halstead, T. Anderson, R. Osborne, and T. Sterling. Con-cert: Design of a multiprocessor development system. In Int'l. Symp. on ComputerArchitecture, volume 13, pages 40{48, June 1986.[Halstead, 1984] R. Halstead. Implementation of Multilisp: Lisp on a multiprocessor.In Conference Record of the 1984 ACM Symposium on Lisp and Functional Program-ming, pages 9{17, Austin, TX., August 1984.[Halstead, 1985] R. Halstead. Multilisp: A language for concurrent symbolic compu-tation. In ACM Trans. on Prog. Languages and Systems, pages 501{538, October1985.[Halstead, 1987] R. Halstead. Overview of concert Multilisp: A multiprocessor symboliccomputing system. ACM Computer Architecture News, 15(1):5{14, March 1987.

210 BIBLIOGRAPHY[Haynes et al., 1984] C. T. Haynes, D. P. Friedman, and M. Wand. Continuations andcoroutines. In Conference Record of the 1984 ACM Symposium on Lisp and Func-tional Programming, pages 293{298, Austin, TX., 1984.[Haynes, 1986] Christopher T. Haynes. Logic continuations. In Proceedings of the ThirdInternational Conference on Logic Programming, pages 671{685. Springer-Verlag,July 1986.[Hieb et al., 1990] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representingcontrol in the presence of �rst-class continuations. In ACM SIGPLAN '89 Conf. onProgramming Language Design and Implementation, pages 66{77, White Plains, NewYork, June 1990.[Hockney and Jesshope, 1988] R. W. Hockney and C. R. Jesshope. Parallel Computers2. Adam Hilger, Bristol and Philadelphia, 1988.[IEEE Std 1178-1990, 1991] IEEE Std 1178-1990. IEEE Standard for the Scheme Pro-gramming Language. Institute of Electrical and Electronic Engineers, Inc., New York,NY, 1991.[Ito and Matsui, 1990] T. Ito and M. Matsui. A parallel Lisp language PaiLisp andits kernel speci�cation. In Parallel Lisp: Languages and Systems, pages 58{100.Springer-Verlag, 1990.[Katz and Weise, 1990] M. Katz and D. Weise. Continuing into the future: on theinteraction of futures and �rst-class continuations. In Proceedings of the 1990 ACMConference on Lisp and Functional Programming, Nice, France, June 1990.[Kessler and Swanson, 1990] R. Kessler and M. Swanson. Concurrent Scheme. In Par-allel Lisp: Languages and Systems, pages 200{234. Springer-Verlag, 1990.[Kessler et al., 1992] R. Kessler, H. Carr, L. Stroller, and M. Swanson. Implementingconcurrent Scheme for the Mayy distributed parallel processing system. Lisp andSymbolic Computation: An International Journal, 5(1/2):73{93, 1992.[Kranz et al., 1989] D. Kranz, R. Halstead, and E. Mohr. Mul-T: A high-performanceparallel Lisp. In ACM SIGPLAN '89 Conf. on Programming Language Design andImplementation, pages 81{90, June 1989.[LeBlanc and Markatos, 1992] T. J. LeBlanc and E. P. Markatos. Shared memory vs.message passing in shared-memory multiprocessors. Technical report, University ofRochester, April 1992.

BIBLIOGRAPHY 211[Lenoski et al., 1992] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D.Weber, A. Gupta,J. Hennessy, M. Horowitz, and M. S. Lam. The Stanford Dash multiprocessor. IEEEComputer, 25(3):63{79, March 1992.[Miller, 1987] J. S. Miller. MultiScheme: A Parallel Processing System Based on MITScheme. PhD thesis, Mass. Inst. of Technology, August 1987. Available as MITLCS/TR/402.[Miller, 1988] J. S. Miller. Implementing a Scheme-based parallel processing system.International Journal of Parallel Processing, 17(5), October 1988.[Mohr, 1991] E. Mohr. Dynamic Partitioning of Parallel Lisp Programs. PhD thesis,Yale University Department of Computer Science, October 1991.[Mou, 1990] Z. G. Mou. A formal model of divide-and-conquer and its parallel real-ization. Computer science research report #795 (PhD dissertation), Yale University,1990.[Murray, 1990] K. Murray. The future of Common Lisp: Higher performance throughparallelism. In The �rst European Conference on the Practical Application of Lisp,Cambridge, UK, March 1990.[Nikhil et al., 1991] R. S. Nikhil, G. M. Papadopoulos, and Arvind. *T: A multithreadedmassively parallel architecture. Technical Report Computations Structures GroupMemo 325{1, Mass. Inst. of Technology, Laboratory for Computer Science, Cam-bridge, MA, November 1991.[O'Krafka and Newton, 1990] B. W. O'Krafka and A. R. Newton. An empirical evalu-ation of two memory-e�cient directory methods. In Proceedings of the 17th AnnualInternational Symposium on Computer Architecture, pages 138{147. ACM, May 1990.[Osborne, 1989] R. Osborne. Speculative Computation in Multilisp. PhD thesis, Mass.Inst. of Technology, 1989. Available as MIT LCS/TR/464.[Peterson, 1981] G. L. Peterson. Myths about the mutual exclusion problem. Informa-tion Processing Letters, 12(3):115{116, 1981.[P�ster et al., 1985] G. F. P�ster, W. C. Brantley, D. A. George, S. L. Harvey, W. J.Kleinfelder, K. P. McAuli�e, E. A. Melton, V. A. Norton, and J. Weiss. The IBMResearch Parallel Processor Prototype (RP3): Introduction and architecture. Inter-national Conference on Parallel Processing, pages 764{771, 1985.[R3RS, 1986] Revised3 report on the algorithmic language Scheme. ACM Sigplan No-tices, 21(12), December 1986.

212 BIBLIOGRAPHY[R4RS, 1991] Revised4 report on the algorithmic language Scheme. Technical ReportMIT AI Memo 848b, Mass. Inst. of Technology, Cambridge, Mass., November 1991.[Rettberg et al., 1990] R. D. Rettberg, W. R. Crowther, P. P. Carvey, and R. S. Tomlin-son. The Monarch parallel processor hardware design. IEEE Computer, 23(4):18{30,April 1990.[Rozas and Miller, 1991] G. Rozas and J. S. Miller. Free variables and �rst-class envi-ronments. Lisp and Symbolic Computation: An International Journal, 3(4):107{141,1991.[Rozas, 1987] G. Rozas. A computational model for observation in quantum mechanics.Master's thesis, Mass. Inst. of Technology, 1987. Available as MIT AI/TR/925.[Shivers, 1988] O. Shivers. Control ow analysis in Scheme. In ACM SIGPLAN '88Conf. on Programming Language Design and Implementation, pages 164{174, At-lanta, Georgia, June 1988.[Shivers, 1991] O. Shivers. Data-ow analysis and type recovery in Scheme. In PeterLee, editor, Topics in Advanced Language Implementation. The MIT Press, Cam-bridge, Mass., 1991.[Srini, 1986] V. P. Srini. An architectural comparison of dataow systems. IEEE Com-puter, 19(3):68{88, March 1986.[Steele, 1978] G. L. Steele. Rabbit: a compiler for Scheme. MIT AI Memo 474, Mas-sachusetts Institute of Technology, Cambridge, Mass., May 1978.[Steinberg et al., 1986] S. Steinberg, D. Allen, L. Bagnall, and C. Scott. The ButteryLisp system. In Proc. 1986 AAAI, volume 2, Philadelphia, PA, August 1986.[Swanson et al., 1988] M. Swanson, R. Kessler, and G. Lindstrom. An implementationof portable standard Lisp on the BBN Buttery. In Conference Record of the 1988ACM Conference on Lisp and Functional Programming, pages 132{141, Snowbird,UT., July 1988.[Wand, 1980] M. Wand. Continuation-based program transformation strategies. Jour-nal of the ACM, 27(1):164{180, 1980.[Weening, 1989] J. S. Weening. Parallel Execution of Lisp Programs. PhD thesis, Stan-ford University, Department of Computer Science, 1989. Available as STAN-CS-89-1265.

BIBLIOGRAPHY 213[Zorn et al., 1988] B. Zorn, P. Hil�nger, K. Ho, J. Larus, and L. Semenzato. Featuresfor multiprocessing in SPUR Lisp. Technical Report Report UCB/CSD 88/406, Uni-versity of California, Computer Science Division (EECS), March 1988.

