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1 INTRODUCTION

The Ribbit Scheme system [9, 14] is portable, extensible, and compact. It is based on a Virtual Machine
(VM) that is portable to a dozen host languages including: JavaScript, C, Assembly (x86), Shell, Haskell,
and Prolog. It is extensible, enabling programmers to add their own host-level primitives in Scheme code or
using annotations within the VM’s code. It is compact by design, with an extremely simple VM and with an
AOT compiler that removes dead code from the program, library, and VM itself.

This paper explains how Ribbit has been extended to maintain a small size while adding conformance to
the R4RS specification. The main enhancements to the previous Ribbit system are:

(1) Support for variadic procedures and rest parameters.
(2) Implementation of all required file I/O procedures.
(3) Various measures to better compact the generated code, including a new approach for encoding

programs and a compact implementation of the standard library.
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These changes have allowed us to fit an interactive REPL fully conforming to R4RS in a 7 KB Linux
executable program with no external dependencies. We chose to support the R4RS Scheme standard because
it combines practicality and small size. Also, there is lots of existing code that can run in an R4RS system
including most of the SLIB Portable Scheme Library [8]. Subsequent standards added features that would
increase the size of the system substantially: hygienic macros and multiple values are required starting at
R5RS, and libraries and Unicode support are required starting at R6RS. A more detailed reasoning for our
choice can be found in Section 4.

The paper is organized as follows: Section 2 provides an overview of the Ribbit system. Section 3
explains the encoding optimizations. Section 4 describes the implementation of the R4RS library to achieve
compactness and portability across host languages. Section 5 describes the x86 assembly host which is our
most compact and fast implementation of the RVM. Section 6 evaluates the effectiveness of our approach
through benchmarks that measure the space and execution time using multiple compilation settings. Finally,
the paper concludes with related work.

2 RIBBIT

Ribbit has three main components: the Ribbit VM (RVM) implemented in multiple host languages, the
Ribbit Scheme Compiler (RSC), and the standard library. RSC, an Ahead Of Time (AOT) compiler,
combines the source program with the standard library to generate a standalone specialized RVM in the
chosen host language. Every RVM source program contains annotations that attach meaning to portions of
its code. This lets the compiler selectively include, exclude or adapt sections of the code leading to a RVM
uniquely tailored to the program.

The compiler will embed in the RVM source code the RVM code it has generated for the program in an
encoded form: the Ribbit Intermediate Byte Notation (RIBN), pronounced ribbon. The RIBN has two parts:
the symbol table and the encoded sequence of RVM instructions. The symbol table is represented as a list,
where the position of a symbol in the list is its index. When encoding the symbol table inside the RIBN, the
list, as well as the string representation of symbols, are encoded in reverse order for decoding simplicity. The
encoded program uses a specialized encoding discussed in Section 3.

2.1 Ribbit VM

The Ribbit VM was designed with simplicity in mind, to minimize the VM’s code size and allow porting it to
new host languages with low effort. It is a stack machine with 6 available instructions loosely corresponding
to the fundamental Scheme constructs: jump (tail call), call (non-tail call), set (writing a variable), get

(reading a variable), const (literal data), and if (conditional execution).
To simplify memory management, the only data that is managed by the RVM is the rib: a three field

structure where each field can be an integer or a reference to a rib. The code executed by the RVM, the
Scheme data, and the stack are all represented using ribs. When a rib represents Scheme data, the last field
is an integer indicating the type: 0 for pair, 1 for procedure, 2 for symbol, 3 for string, etc. In the rest of the
paper we will use the notation [a,b,c ] to mean a rib with the fields a , b , and c . This also happens to be
the implementation of ribs in the Python and JavaScript RVMs, among others. As an example, the Scheme
improper list (1 2 . 3) is represented using two ribs: [1, [2, 3, 0], 0].
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(lambda (n) ;; hypothetical definition of abs
(let ((sign (if (< n 0) -1 1)))

(* sign n)))

Fig. 1. RVM code represented as ribs. The RVM code corresponds to the body of the lambda-expression.

Global variables are implemented by storing the variable’s value in the first field of the symbol naming
the variable. The second field of a symbol contains the string representation of this symbol. If the symbol
is anonymous, meaning that its string representation is not needed, this field is empty. The RVM code is
stored in memory as a chain of ribs linked using the third field. The first field is the opcode, an integer
indicating the instruction type. The second field is the operand. For jump, call, set, and get instructions it
indicates the location of a cell (either using a symbol if it refers to a global variable, or an integer if it is a
stack slot). For the const instruction the operand is the literal value. For the if instruction the operand is
the next instruction to execute if the value popped from the stack is not #f. Figure 1 gives an example of
Scheme code and the equivalent RVM code representation as ribs. Note that both jump and call have the
same opcode (0). They are distinguished by the third field which is 0 in the case of a jump (i.e. there is no
following instruction).

When the RVM is executed it decodes the RIBN to create the symbol table and the RVM code represented
as ribs, and then executes that code. The RIBN decoding is discussed in further detail in Section 3.

2.2 Ribbit Scheme Compiler

Ribbit’s AOT compiler merges the standard library and the source program to perform a whole-program
analysis. A liveness analysis removes unused procedures and primitives to optimize compactness. Annotations
let the compiler remove, reorder and add new primitives. If the liveness analysis detects that a certain
primitive is not used, then it is removed from the RVM source code.

2.3 Annotations

Annotations live inside the RVM’s source code and give additional information to the compiler to generate a
specialized VM. They have a syntax similar to s-expressions, but start and end with @@( and )@@ to easily
embed them unambiguously in host language comments. Annotations are composed of a name and ≥ 0
arguments and refer to some section of the host code. If the annotation starts and ends on the same line the
annotation refers to the code on that line. For example, in the C RVM, there is the following inline feature

annotation that refers to the #include line:

#include <stdio.h> // @@(feature stdio)@@

Fig. 2. Example of a feature annotation inside the C RVM
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If the annotation spans multiple lines, then the annotation refers to the code from the start line to the end
line inclusively. Annotations can also be nested. For instance, the primitives (plural) annotation includes
multiple primitive (singular) annotations. This lets the compiler know the set of primitives implemented
by the RVM and where each primitive is implemented. As an example, here is a multiline primitive nested
inside a primitives annotation, as is found in the primitive procedure dispatch logic of the C RVM:

switch (prim_index) {
// @@(primitives (gen "case " index ":" body)
...

case 19: // @@(primitive (putchar c) (use stdio)
putchar(NUM(tos())); break; // print top of stack

// )@@
...
// )@@
}

Fig. 3. Example showcasing primitive and primitives annotations inside the C RVM

feature annotations are used to control the inclusion of various parts of the RVM, some of which may
not be needed for a given source program. The dependency of a feature on another feature is indicated by
the use clause, as in the above putchar primitive that depends on the stdio feature. This lets the RSC
compiler remove, add, and renumber the primitives inside the RVM. In the previous example, the putchar

primitive may get a different index if other primitives are not needed or it may itself be removed from the
specialized RVM.

The location where the RIBN needs to be injected into the RVM is indicated with the replace anno-
tation. For example, the following code tells the compiler to replace "encoded RVM code" by the result of
(encode 92), the RVM code encoded as a string which is the plain base 92 RIBN encoding:

// @@(replace "\"encoded RVM code\"" (encode 92)
ribn = "encoded RVM code"
// )@@

Fig. 4. Example of a replace annotation inside the Python RVM

2.4 Features

Features in Ribbit are compile time variables that enable the compiler to fine-tune the RVM. They are
defined in the RVM source code using the feature annotation or in the Scheme source code using the
define-feature form. Note that primitives are also features, meaning that when a primitive is enabled, the
feature with the same name is enabled as well and vice-versa. Features and primitives can be enabled or
disabled in multiple ways:

By the programmer using RSC command line options. This is done with the command line options
-f+ feature-to-enable or -f- feature-to-disable. This allows fine tuning of the RVM, for example
choosing whether the JavaScript RVM is to be run on the web or on NodeJS.
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With dependencies among the features. Features can define dependencies with other features with the
(use ...) clause. A fix-point algorithm is used to determine the set of features to enable or disable.

By the compiler. If the compiler detects certain optimizations, it can enable or disable features. For
example, the arity-check and rest-param features are enabled if the compiler detects that the source
program has lambda expressions with rest parameters (after dead code elimination).

Ribbit’s extensibility is mainly achieved using a simple Foreign Function Interface (FFI) to the host
language through the define-primitive form. It defines a primitive with a name, a body and an optional
use clause. The body is a string containing host-language code and is injected inside the RVM source code.
The use clause indicates dependencies between features. For example, the putchar primitive depends on the
stdio feature as it needs C’s putchar function. The use of the define-primitive form below is equivalent
to the annotations within the RVM shown in Figure 3.

(define-primitive (putchar c)
(use stdio)
"putchar(NUM(tos())); break;")

Fig. 5. Example showcasing the definition of a primitive in Scheme code.

In a similar way, a define-feature form exists and lets programmers add functionality to the RVM
through code embedded inside the RVM. This embedded code can be enabled or disabled depending on the
state of the feature. When using define-feature, one needs to specify the location where the code must go.
These locations are identified using @@(location name)@@ annotation. For instance, the following feature
definition, created using the define-feature form, is equivalent to the one in Figure 2 . Here decl is a
named location present at the beginning of the C RVM file.

(define-feature (stdio)
(decl "#include <stdio.h>"))

Fig. 6. Example showcasing the definition of a feature in Scheme code.

2.5 Extension of the Replace Annotation

As will be discussed in Section 3, Ribbit now supports a base 256 RIBN encoding. For compiled hosts
such as C and x86 assembly, encoding the RIBN as a constant array of bytes is the most compact ap-
proach. The replace annotation has been extended to support the embedding of a literal array through the
(encode-as-bytes RIBN-base prefix separator suffix) procedure. For example, the C RVM embeds the base
256 RIBN in this way:

// @@(replace "literal-array-to-embed" (encode-as-bytes 256 "{" "," "}")

unsigned char compressed_ribn[] = literal-array-to-embed;

// )@@
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The corresponding line of the generated RVM will look like this:

unsigned char compressed_ribn[] = { 41, 59, 39, 117, 63, 62, ... };

More broadly, the replace annotation has been extended to embed information known at compile time
and needed by the RVM at run time. For example, this is used during the compression (see Section 3.5) and
the specialized encoding (see Section 3.4). To embed such information inside the RVM, features can now
contain values, such as lists, numbers, and other Scheme values. This information is accessible through the
replace annotation. Combined with the use of procedures that convert the feature-values into strings, this
information can be embedded inside RVMs easily. For example, this mechanism is used by the C RVM to
create an uninitialized array of the exact size of the decompressed RIBN:

// @@(replace "RIBN_SIZE" compression/lzss/2b/ribn-size

unsigned char ribn[RIBN_SIZE];

// )@@

Here, the feature compression/lzss/2b/ribn-size contains the uncompressed size of the RIBN. Without an
information sharing mechanism between the compiler and the RVM, one would have to resort to dynamically
allocated vectors, complicating the logic and increasing the footprint of the RVM.

2.6 if-feature Form

There are instances where Scheme code must behave differently based on features being enabled or disabled.
This is the case for the eval procedure of the standard library that depends on the arity-check feature.
The arity-check feature tells the compiler to add support for argument count verification: pushing the
number of arguments onto the stack just before a call or jump (which is otherwise not needed). This enables
the RVM to check that the number of arguments matches the arity of the procedure. In other words, the
arity-check feature impacts the calling protocol chosen by the compiler and eval needs to be aware of it.

The special form if-feature was added to test the use of specific features. This special form is processed
after the liveness analysis. This timing is essential because determining the liveness of a feature is dependent
on the define-primitive and define-feature forms, which use use clauses to indicate dependencies.

3 ENCODING

The explicit chaining in the RVM code’s rib representation allows representing loops (cycles) and join points
(sharing) without additional instructions. Although the compiler does not take advantage of this for loops, it
does use sharing for the join points of non-tail if forms, as in Figure 1. So the rib representation of the
RVM code is a Fork-Join Directed Acyclic Graph (DAG) with optional joins that we will call the code graph.

The RIBN is an encoding of the code graph generated by the compiler that is decoded by the RVM to
create the code graph that the RVM interpreter uses. The RIBN is conceptually a list of integer codes whose
values are in the range 0 to 𝑟𝑏 − 1, where 𝑟𝑏 is the RIBN base. The goal is to encode the code graph such
that the least space is taken by the sum of the RIBN and the implementation of the decoder that is part of
the RVM. In the previous Ribbit system the chosen encoding was suboptimal:
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Fig. 7. Code graph of Figure 1 after tail duplication transformation.

(1) The RIBN was a string of characters with a RIBN base equal to 92, the set of characters that don’t
require escaping in most host languages. In host languages that are compiled, where the system’s
footprint is the size of the executable, it is more space efficient to use an array of bytes and a RIBN
base of 256. We solve this by allowing each host language to define the RIBN base and how the RIBN
is stored in memory. The compiler will transform the generated RIBN to comply with the defined
encoding and map the RIBN codes appropriately, for example, between the 92 codes and the printable
ASCII characters.

(2) The RIBN could only express a tree structure. A tail duplication transformation was applied to the
code to remove any shared structure. For example, the code graph in Figure 1 was encoded in a RIBN
that was decoded into the code graph in Figure 7. This duplication causes an exponential growth of
the code when multiple non-tail if forms are in sequence. This is solved by the new encoding approach
which can express sharing.

(3) There was only one RIBN encoding supported. Now, different encoding mechanisms exist. The optimal

encoding empowers the compiler to decide on the optimal ranges to assign each decoding instruction.
The corresponding decoder is used by the RVM generated by the compiler.

(4) No compression was applied to the RIBN before embedding it into the RVM. Now, LZSS compression
is applied on compatible hosts

3.1 Decoding Instructions

The decoding of the RIBN into the code graph is done using a stack. The RIBN is a sequence of decoding
instructions executed by the decoder that have an effect on the stack. The stack is initially empty and at the
end of the decoding it contains a single value that is the code graph. The decoding instructions should not
be confused with the RVM instructions that are contained in the code graph and executed by the RVM’s
interpreter.

Because of the linked nature of the code graph, it is easier to construct the code graph starting with the
tail, for example starting with the jump instruction of Figure 1 and then adding the previous instructions in
front one by one. Note also that all code sequences must end in a jump, so a RIBN always starts off with a
decoding instruction for a jump.

Decoding instructions have a type and an argument (with one exception for decoding if). The argument is
always a nonnegative integer that either stands for itself (the int case), or is used to index the symbol table
to refer to a specific symbol (the sym case). To avoid arbitrarily limiting the number of symbols and global
variables of the source program, the argument has no upper limit. Consequently each decoding instruction is
a sequence of one or more RIBN codes, using a variant of Variable-Length Quantity [1] (VLQ). VLQ uses
fewer RIBN codes for the smaller argument values. The variant we use combines in a single RIBN code
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Decoding
instruction

type

Argument
(arg)

RVM
instruction
generated

Effect on decoding stack state using the notation
⟨current-stack-state⟩ → ⟨next-stack-state⟩

𝑃 𝑈𝑆𝐻0 int or sym jump stack. . . → [0, arg, 0] stack. . .

𝐿𝐼𝑁𝐾0 int or sym call x stack. . . → [0, arg, x] stack. . .

𝐿𝐼𝑁𝐾1 int or sym set x stack. . . → [1, arg, x] stack. . .

𝐿𝐼𝑁𝐾2 int or sym get x stack. . . → [2, arg, x] stack. . .

𝐿𝐼𝑁𝐾3 int or sym const x stack. . . → [3, arg, x] stack. . .

𝑀𝐸𝑅𝐺𝐸3 int const y x stack. . . → [3, [[arg, 0, y], 0, 1], x] stack. . .

𝑀𝐸𝑅𝐺𝐸4 none if y x stack. . . → [4, y, x] stack. . .

𝑆𝐻𝐴𝑅𝐸 int none x stack. . . → list-tail(x, arg) x stack. . .

Table 1. The decoding instructions and their effect on the decoding stack.

the decoding instruction type and the argument value when it is small. When a decoding instruction is a
single RIBN code it is called the short form, otherwise it is the long form. To enhance compactness, the
RSC compiler analyzes the program to assign small symbol table indexes for the most frequently referenced
global variables, so as to minimize the frequency and length of the long form.

Ideally the set of decoding instructions would allow handling any code graph. However, it simplifies the
decoder to restrict the code graph and this may reduce the size of the decoder in the generated RVM.

Firstly, the operand of const instructions is restricted to be a symbol, a nonnegative integer, or a constant
procedure (meaning with no free variables, which is useful for the frequent case of top-level procedure
definitions). The RSC compiler ensures that this is the case by doing a rewriting of the code graph before the
RIBN is created. Any const instruction with an operand that is not an acceptable constant is turned into a
get instruction that refers to a freshly created global variable that contains the constant. The compiler also
adds to the beginning of the program the RVM instructions that constructs the constant and store it in the
global variable. This is done in a way that shares common parts of constants, in particular when the same
constant appears in several places in the source code a single global variable is used.

3.2 𝑆𝐻𝐴𝑅𝐸 Decoding Instruction

The previous Ribbit had a second restriction on the code graph, namely that it had to be a tree. Ribbit now
supports DAGs thanks to a decoding instruction called 𝑆𝐻𝐴𝑅𝐸 that was not available previously.

Table 1 shows the decoding instructions now supported. On the right side is the effect of the decoding
instruction on the decoding stack state. The top of stack is always a rib and is a sequence of RVM instructions
under construction. The 𝐿𝐼𝑁𝐾 instructions add an RVM instruction to the sequence (with no change to
the stack size). The RVM instruction added is either a call, set, get, or const with an int or sym operand.
The 𝑀𝐸𝑅𝐺𝐸 instructions pop one RVM code sequence from the stack and add either a const or if RVM
instruction to the now current topmost code sequence (thus reducing the stack size by one). This allows
constructing a const RVM instruction referring to a constant procedure whose arity is the argument of the
Manuscript submitted to ACM
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RVM Decoding
instruction Range Size instruction Argument Form
jump 0-19 20 𝑃 𝑈𝑆𝐻0 sym short
jump 20-20 1 𝑃 𝑈𝑆𝐻0 int long
jump 21-22 2 𝑃 𝑈𝑆𝐻0 sym long
call 23-52 30 𝐿𝐼𝑁𝐾0 sym short
call 53-53 1 𝐿𝐼𝑁𝐾0 int long
call 54-55 2 𝐿𝐼𝑁𝐾0 sym long
set 56-56 1 𝐿𝐼𝑁𝐾1 int long
set 57-59 2 𝐿𝐼𝑁𝐾1 sym long
get 59-68 10 𝐿𝐼𝑁𝐾2 int short
get 69-69 1 𝐿𝐼𝑁𝐾2 int long
get 70-71 2 𝐿𝐼𝑁𝐾2 sym long
const 72-82 11 𝐿𝐼𝑁𝐾3 int short
const 83-83 1 𝐿𝐼𝑁𝐾3 int long
const 84-85 2 𝐿𝐼𝑁𝐾3 sym long
const 86-89 4 𝑀𝐸𝑅𝐺𝐸3 int short
const 90-90 1 𝑀𝐸𝑅𝐺𝐸3 sym long
if 91-91 1 𝑀𝐸𝑅𝐺𝐸4

Table 2. Encoding of decoding instructions used in the previous Ribbit system.

𝑀𝐸𝑅𝐺𝐸3 instruction (this is often combined with a set RVM instruction to implement top-level procedure
definitions). The 𝑃 𝑈𝑆𝐻0 decoding instruction pushes to the stack a new sequence containing a single jump

instruction with an int or sym operand. The 𝑆𝐻𝐴𝑅𝐸 decoding instruction is the only other way to start
the construction of a code sequence. It extracts the tail of the sequence currently under construction to
start a new code sequence. It is used for each control flow join point in the code graph. The argument is the
number of RVM instructions to skip. For example, when the code graph of Figure 1 is converted to a RIBN
a 𝑆𝐻𝐴𝑅𝐸 decoding instruction with an argument of 1 is used after the false branch of the if has been
constructed. Then the true branch is added and a 𝑀𝐸𝑅𝐺𝐸4 decoding instruction is used to create the if.

To determine what part of the code graph has sharing, a hash-consing algorithm is used by the RSC
compiler to construct the code graph. Hash-consing can determine if two nodes, including all of their children,
are equal. Equal code graph tails will automatically be shared in the constructed code graph. Other benefits
also emerge from hash-consing such as the ability to optimize certain forms of duplication in the source
code. For example, the two following expressions will compile to the same code graph:

(if (< x y) (f x) (f y))

(f (if (< x y) x y)))

3.3 Encoding of the Decoding Instructions

The encoding of each decoding instruction contains its type, its argument’s type, and its argument’s value.
The argument’s value can be encoded either with a single RIBN code (short) or across multiple ones (long).
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For each type of decoding instruction and argument, a range of codes is assigned. For the short encoding,
the argument will be the difference between the code and the lower boundary of the range. For the long
encoding, the argument will utilize the VLQ encoding, with a starting value in the accumulator equal to the
difference between the code and the lower boundary of the range. For instance, if a range is assigned to the
codes 50..55 for the long encoding, then the two RIBN codes 53 4 will give the argument 3 × rb/2 + 4.

In the previous Ribbit system, which utilized a fixed RIBN base of 92, the ranges were as indicated in
Table 2. These ranges were determined by minimizing the RIBN size through a trial and error process on the
source code of the REPL. They are accessible to the decoder through a table indicating the size of the short
form of each decoding instruction. For example, a RIBN code of 42 encodes a 𝐿𝐼𝑁𝐾0 decoding instruction
with an argument of 19 = 42 − 23. This generates a call RVM instruction with a reference to the symbol at
index 19 in the symbol table.

3.4 Encoding Specialization

Ribbit still uses the same encoding strategy but adapted to the RIBN base of the RVM implementation and
specialized to the code graph produced by the compiler.

At compile time, the programmer can choose the encoding mechanism. The original encoding represents
the encoding in Table 2. It has the advantages of being backward compatible and it is fast to generate. The
optimal encoding is a new approach that searches for the best ranges for each decoding instruction for the
code graph generated. It starts off with a range size of 1 for each long encoding and a range size of 0 for the
others. Then, greedily, it picks the best range to increase. The best range is the one that has the best ratio
between the number of bits needed to encode the range and the number of bits saved by encoding this range
with a single RIBN code. Although it is not optimal in the theoretical sense it gives good results in practice.

As the optimal encoding calculates, at compile time, a specialized encoding for the code graph, the
annotation system (see Section 2.3) has been extended to allow the replacement of information known by
the compiler. To do this, the replace annotation has been extended, as explained in 2.4. Here is an example
taken from the JavaScript RVM:

// @@(feature encoding/optimal

while (1) {

x = get_code();

...

// @@(replace "[0,1,2]" (list->host encoding/optimal/start "[" "," "]")

while((d=[0,1,2][++op]) <= n) n-=d

// )@@

...

// )@@

In this code, an internal procedure of the compiler that is available in annotations is used to replace the
source code [0,1,2]. The procedure list->host takes a Scheme list, a prefix, a separator and a suffix. It
generates a string that concatenates the values of the list, separated by the separator and surrounded by
the prefix and suffix. This is useful because this kind of syntax for a sequence of codes is almost universal
among programming languages. The feature encoding/optimal/start contains a list of the start of the
Manuscript submitted to ACM
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short ranges for the optimal encoding. The order of the decoding instructions is always the same for the
optimal encoding, and thus known by the RVM. To automatically choose the right decoder implementation
in the RVM, the compiler uses the feature system described in Section 3. The compiler will activate the
feature encoding/optimal when the optimal encoding is used and the feature encoding/original when
the original encoding is used. This lets the RVM adjust its code to the encoding used.

3.5 LZSS Compression

LZSS [4] is a general-purpose compression algorithm heavily inspired by LZ77 [15] that replaces recurring
slices of text with back-pointers to previous occurrences.

The relative simplicity of LZSS makes it an interesting compression algorithm as the implementation of
the decoder contributes to the total code size of the RVM. Fancier algorithms like Zip or Bzip2 are much
more complex and, unless the source program is very large, their implementation will take more space than
the space saved by the compression of the RIBN. A LZSS decompressor is particularly compact; it has been
implemented in less than 50 lines of x86 assembly code and still offers effective compression of the RIBN.

The LZSS algorithm works on units of information that we will call bytes since in practice they correspond
to 8 bits even though in theory it could be different. The byte-base (bb) is the number of codes in a byte,
i.e. bb = 256 in practice. The decompressor takes a stream of bytes and outputs a sequence of RIBN codes.

One of the key issues in applying the LZSS algorithm to compress the RIBN is the encoding of back-
pointers, which are composed of an offset and a size. The offset is the backward distance in number of RIBN
codes to the end of the section that is repeated and size is the length of the section.

To achieve good compression rates it is important to encode back-pointers in as few bytes as possible. We
chose to always use two bytes. When the decompressor encounters a byte whose value is lower than the RIBN
base (rb), it represents a RIBN code that is output as is. Otherwise the byte is in the compression-range
and it is the first of the two bytes that encode a back-pointer BP. The two bytes are combined with the
formula BP = (byte1 - rb) × bb + byte2. The size and offset are then extracted using the size base (sb):

size = BP mod sb + 3
offset = BP div sb

where div and mod are the integer division and modulo operators. There is no gain in using back-pointers
to encode repeated sequences of size 1 or 2, so the minimum size is 3 and the maximum size is sb + 2. The
maximum offset is ((bb - rb + 1) × bb - 1) div sb.

The value chosen for size base determines the balance between the range of sizes and the range of offsets
that can be encoded by a 2 byte back-pointer. Given that the optimal size base depends on the source
program it is RSC that determines the value. RSC will iterate over a small reasonable range of values for
size base (7 to 13) and picks the one that produces the best compression. When using LZSS, a RIBN base of
186 is used, as this gives the best compression for the REPL.

4 THE R4RS LIBRARY

Ribbit needs to adhere to an official Scheme standard as to properly compare its implementation to other
Scheme interpreters and compilers. In order to stay tuned with Ribbit’s minimalism, the chosen standard
needs to offer a good balance between expressiveness and a relatively small number of essential features.
The R4RS standard is a good fit for Ribbit as it possesses such qualities.
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The two standards that were considered were R4RS and R5RS, as the others are simply too big (R6RS
and R7RS) or too outdated (R3RS and below). After analyzing the two, it becomes clear that the R4RS
standard is a more sound choice for Ribbit compared to the R5RS standard for three primary reasons.
First, R4RS is almost a subset of R5RS in terms of essential procedures and syntax (the only exception
is the load procedure essential in R4RS but optional in R5RS). Second, the R4RS standard defines 164
essential procedures and 18 essential syntaxes while the R5RS standard defines 207 essential procedures and
26 essential syntaxes. When size matters, this difference becomes significant. Third, hygienic macros, which
are a key feature of R5RS, require a considerable amount of space to implement. Incorporating support for
this into the eval procedure of the library would increase its complexity and size beyond necessity.

4.1 Design Choices and Tradeoffs

Ribbit’s instruction graph is composed of ribs that can either contain signed integers or a reference to a rib.
This has a number of consequences on the implementation of the R4RS standard, especially when it comes
to the definitions of the various data types, as each type needs to adhere to this structure.

One of the first constraints is that Ribbit only supports exact signed integers inside the Scheme source
code. The biggest challenge to support floating point numbers is the variety of RVMs that Ribbit runs on.
Ribbit could not rely on the host’s implementation as the behavior would not be consistent across RVMs.
For example, the floating point arithmetic of an RVM written in POSIX Shell will behave differently than
its counterpart in Python, making this behavior unreliable, which defeats the whole point of supporting
multiple host languages. This means that Ribbit would need to implement its own floating point arithmetic,
which increases the overall footprint size of the RVMs. To limit the efficiency loss, Ribbit could use the
host’s floating point in some cases and its own in others. However, this requires a lot of work for a feature
that is optional in the R4RS standard.

In the previous Ribbit system, individual characters were simply represented as their integer code. However,
the R4RS standard requires the adherence to the Disjointedness of types principle, meaning the type for
characters must now be distinct from other types. For this reason, Ribbit now supports, behind a compiler
feature named chars, the representation of characters using a rib. The character rib has the character code
(an integer) in the first field and the type code 6 in the third field. The second field is an implementation
dependent value and is currently unused by Ribbit’s implementation of R4RS. This change makes the
creation of character constants require significantly more instructions than previously. This explains a
common optimization done in procedures dealing with characters, like char>? and char-whitespace?, where
characters are unboxed and the logic is done with their integer representation. To alleviate the problem
of size and avoid frequent character allocation, the use of a table of previously created characters was
considered. This would also make characters comparison for equality quick using a eq? test. However, in
the interest of a simpler implementation, characters are always allocated when needed, for example by the
integer->char, read-char, and string-ref procedures. This also means that the procedure eqv? needs to
handle this case in the Scheme code, as the ##eqv? primitive only guarantees arithmetic equality, as with
the = procedure, for numbers and a reference equality, as with the eq? procedure, for ribs.

The change to the representation of characters doesn’t impact the internal representation of strings
however, as they were already differentiable from the other types. Therefore, strings are still represented as a
rib containing a list of integer character codes in the first field, the length of the string in the second field, and
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the string type tag in the third field. While this representation must be accounted for in the implementation
of some R4RS procedures, like string-ref and string->list, it also enables some optimizations elsewhere,
like in string comparisons with string<?, string>?, etc.

4.2 A Portable I/O System

The way of interfacing with I/O varies greatly between languages. To solve this problem, Ribbit reduces
the responsibilities of each RVM to a minimum by implementing most of the logic in Scheme code directly.
This allows Ribbit to present a unified API that can adapt to all RVMs while complying with the behaviors
expected by R4RS.

Ribbit separates input-port and output-port into two distinct data types, as required by R4RS.
An input-port is a rib with this layout: [fd, peeked-char/open?, 8]. The fd field is reserved by the RVM

for implementation dependent file descriptors. Each host language has its own way of communicating with
the file system, and this object bridges the gap between the host language and the RVM. For example,
the x86 assembly implementation uses an integer representing the Linux file descriptor, while the Python
implementation keeps a reference to a Python File object.

The peeked-char/open? field has two purposes as to avoid using an extra rib. Its first role is for caching
the last read character after a peek. It is used in the implementation of peek-char and read-char. It is
needed because the RVM’s file interface does not necessarily conform to the R4RS standard. This field is
the empty list by default, meaning there is no character peeked. The second role of the field is to indicate if
the port is open or closed. To do so, the field is set to #f when the port is closed and checking the state of a
port becomes a simple not test. It is necessary to provide this information as R4RS mandates that a port
may be closed any number of times without causing an error, a guarantee not shared by all languages. For
example, NodeJS will throw an exception while attempting to close an already closed port.

An output-port is a rib with this layout: [fd, open?, 9]. The fd field and the open? field have the same
meaning as those fields in input-port.

To support I/O the following primitive procedures must be defined by an RVM:

(##stdin-fd)

(##stdout-fd)

(##get-fd-input-file filename)

(##get-fd-output-file filename)

(##read-char-fd fd)

(##write-char-fd ch-code fd)

(##close-input-fd fd)

(##close-output-fd fd)

##stdin-fd and ##stdout-fd return the fd host-dependent value used in the standard input and output
port. ##get-fd-input-file and ##get-fd-output-file take a filename and return the fd host-dependent
value used in the input and output port for that file. ##read-char-fd takes a fd and reads a character code
(as an integer) from the file, while ##write-char-fd takes a character code (as an integer) and a fd and
writes the character to the file. Finally, ##close-input-fd and ##close-output-fd take a fd and close the
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corresponding port. All those procedures either take or return the implementation dependent object fd that
is used to retrieve or write data to the file system using the host language.

Scheme procedures are defined on top of these primitives, and they take care of caching the peeked
character, checking if the port is open, closing the port when necessary, returning the end-of-file object,
and converting the character code (integer) read into a Scheme character.

4.3 Strategies Used for Making a Compact R4RS Library

The Ribbit implementation of the R4RS library is optimized for size at the cost of execution speed. This
approach can be seen in the implementation of +, *, and -, which are all defined using the fold procedure,
as a call to fold takes less space than an explicit loop to compute the sum or product. The fold procedure,
even if absent from the R4RS standard and, therefore, not required, is used often enough to make up for the
space its implementation needs. The pattern of using higher order procedures to generalize a behavior is
used frequently in the R4RS implementation, as it often avoids code repetition.

Another trick is to define procedures in terms of other procedures. For example, (char>? c1 c2) is defined
as (char<? c2 c1) instead of the faster, but larger (> (char->integer c1) (char->integer c2)).

Another common technique is to define a few internal procedures of a general nature and to call them
in many different places. This makes the AOT compiler rank those procedures at low indexes in the
symbol-table, reducing the cost of accessing them to, in the best case, as little as one byte.

4.4 Expander Macros

The Ribbit AOT compiler supports the define-expander special form for defining expander macros that
are responsible for handling their own recursive expansion [10]. This is used in the R4RS implementation
to optimize certain common patterns. For example, a call to the procedure + with two arguments will be
expanded to a call of the ##+ primitive, which avoids a call to fold. Expander macros are used extensively
by the implementation of R4RS to improve execution speed without compromising space.

4.5 Testing the R4RS Compliance of the Compiler and REPL

Compliance to R4RS was verified using a series of tests inspired by, or taken from, the R4RS test file of
Chicken [3, 7], which includes many examples from the R4RS document. The use of multiple test files
provides modular compliance testing. Each test file starts with the code tested followed by comments
containing the expected output. These were run on the JavaScript, Python, and x86 assembly RVM.

To test the Ribbit compiler, the makefile iterates over the test files and for each one:

(1) Compiles the test file to the target host using the Ribbit compiler;
(2) Runs the generated RVM using the host interpreter or compiler;
(3) Compares the values written to the standard output to the expected output.

To test the Ribbit R4RS REPL, the makefile:

(1) Compiles the REPL to the target host using the Ribbit compiler;
(2) Runs the generated RVM using the host interpreter or compiler;
(3) For each test file, evaluates (load "path/to/the/test.scm") and compares the values written to the

standard output to the expected output.
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5 X86 ASSEMBLY HOST

Choosing the right host is critical for implementing the R4RS standard within a 7 KB limit. While the
library is designed to work on any host, achieving the goal of a 7 KB footprint requires optimization efforts
focused specifically on the host.

High-level languages like Python or JavaScript could serve as intriguing host options. The footprint of
these hosts is determined by the size of the source code for the resulting RVM. Since users are likely to have
the host language pre-installed, only the source code is required to run the RVM. The challenge here lies in
balancing the verbosity of the source code against the availability of built-in language features.

The C language is an appealing host option due to its compactness and ease of optimization to meet the
7 KB size constraint. However, executables generated through gcc often include unnecessary boilerplate
code, like the main function startup code. While the generated code can be trimmed-down with C compiler
options, using C as a host still limits our low-level control [2].

A stripped down ELF file containing x86 code is our host of choice. It is very compact and optimizable to
meet our objectives. However, everything needs to be implemented from scratch, including a GC, the I/O
primitives (using Linux syscalls) and the specialized encoding. Fortunately, the RVM is sufficiently simple to
allow for the implementation of this kind of low-level host within a reasonable time frame.

6 EVALUATION

We are interested in measuring the footprint of our R4RS implementation as a standalone executable as well
as the execution speed. The footprint of the REPL, including the generated RVM for the x86 assembly host,
is shown in Table 3. Each column represents a different compilation setting. The first column is the baseline,
which is the size of the generated code without any optimizations. The available compilation settings are:

Baseline. The original encoding is used.
Prim-no-arity. The procedure call argument count is normally pushed to the stack, costing one byte per

encoded call. If rest parameters are not used with primitives, this can be skipped for primitives. The
space saving is appreciable as all calls to primitives are encoded with one fewer byte and the argument
count check in the RVM can be removed if rest parameters are not used in the source program.

Optimal (92). The optimal encoding with 92 codes per byte is used, as described in Section 3.4.
Optimal (256). The optimal encoding with 256 codes per byte is used, as described in Section 3.4.
LZSS. LZSS compression is applied to the generated code before writing it to the RVM as described in

Section 3.5. Note that LZSS compression works only with optimal (256) encoding.

The most compact executable for the REPL is obtained, unsurprisingly, with the combination of Prim-no-
arity, Optimal (256), and LZSS: a footprint of 6.5 KB. Not using Prim-no-arity has a minor 2% impact on
footprint when using LZSS.

Baseline Prim-no-arity Optimal (92) Optimal (256) Prim-no-arity
Optimal (92)

Prim-no-arity
Optimal (256)

No LZSS 14 KB 13 KB 9.8 KB 9.2 KB 9.0 KB 8.4 KB
LZSS - - - 6.6 KB - 6.5 KB

Table 3. Footprint of the REPL compiled to the x86 assembly host with different compilation settings.
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To test the footprint and execution speed for specific source programs, the x86 assembly and the JavaScript
host have been benchmarked, as well as the Gambit Scheme Interpreter [6]. Tests are taken from the Gambit
benchmarking suite [6]. The test machine is a 4.5 GHz Intel i7-9750H with 16 GB of RAM running Linux.
The NodeJS version is v10.24.1. The Gambit version is v4.9.5. In the Tables 4 and 5, different settings were
used to compile/execute the benchmark:

gsi. Gambit Scheme Interpreter used as a reference for execution speed comparison.
pna. Refers to the Prim-no-arity compilation option. This is the same as in Table 3. Note that we use

the label pa to indicate not using that option (i.e. the primitives do check arity).
tc. The R4RS library comes in two forms: with and without type checking. The tc option means that

the type checking version is used. Note that type checking is not required for conformance with R4RS.
x86 REPL. Execution using the REPL compiled for the x86 assembly host. It was compiled with

Prim-no-arity, Optimal (256), LZSS, and the non type checking R4RS library (footprint of 6.5 KB).

gsi tc tc x86
(secs) pna pa pna pa REPL

ctak 0.2 s 0.9× 2.1 KB 1.0× 2.2 KB 1.5× 8.8 KB 1.8× 9.3 KB 2.8×
fib 26.2 s 0.3× 2.0 KB 0.4× 2.0 KB 1.9× 8.6 KB 2.2× 9.1 KB 4.9×
ack 2.2 s 0.4× 2.0 KB 0.4× 2.0 KB 1.6× 8.6 KB 1.9× 9.1 KB 5.7×
tak 2.3 s 0.6× 2.0 KB 0.6× 2.0 KB 1.5× 8.6 KB 1.7× 9.1 KB 3.5×
takl 2.5 s 0.9× 2.2 KB 1.0× 2.2 KB 0.8× 8.7 KB 1.0× 9.2 KB 1.0×
primes 1.4 s 0.8× 2.3 KB 1.0× 2.3 KB 1.5× 8.8 KB 1.8× 9.3 KB 2.6×
deriv 0.7 s 6.8× 2.7 KB 8.2× 2.7 KB 26.3× 9.2 KB 32.6× 9.8 KB 7.3×
mazefun 1.4 s 0.7× 4.0 KB 0.8× 4.1 KB 1.7× 9.9 KB 2.0× 11 KB N/A
nqueens 2.0 s 0.8× 3.4 KB 0.9× 3.5 KB 1.7× 8.8 KB 2.0× 9.2 KB N/A
sum 19.4 s 0.3× 2.0 KB 0.4× 2.0 KB 2.1× 8.6 KB 2.5× 9.1 KB N/A

Table 4. Execution time when using the Gambit Scheme Interpreter and for Ribbit the relative execution time and footprint
of the x86 assembly host on different benchmarks.

gsi tc tc
(secs) pna pa pna pa

ctak 0.2 s 10.6× 2.7 KB 13.2× 2.7 KB 18.3× 11 KB 22.0× 11 KB
fib 26.2 s 4.0× 2.4 KB 5.1× 2.5 KB FAIL 11 KB FAIL 11 KB
ack 2.2 s 4.8× 2.4 KB 5.3× 2.5 KB 21.5× 11 KB 22.9× 11 KB
tak 2.3 s 7.0× 2.4 KB 8.3× 2.5 KB 20.4× 11 KB 23.1× 11 KB
takl 2.5 s 11.5× 2.7 KB 13.5× 2.7 KB 12.5× 11 KB 13.7× 11 KB
primes 1.4 s 10.6× 2.8 KB 12.3× 2.9 KB 19.7× 11 KB 25.0× 11 KB
deriv 0.7 s 94.2× 3.3 KB 108.0× 3.4 KB FAIL 11 KB FAIL 12 KB
mazefun 1.4 s 8.5× 5.0 KB 10.5× 5.2 KB 23.8× 12 KB 28.0× 13 KB
nqueens 2.0 s 10.2× 4.2 KB 11.8× 4.4 KB 24.7× 11 KB 27.6× 11 KB
sum 19.4 s 4.2× 2.4 KB 5.3× 2.5 KB FAIL 11 KB FAIL 11 KB

Table 5. Execution time when using the Gambit Scheme Interpreter and for Ribbit the relative execution time and footprint
of the NodeJS host on different benchmarks.
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Note that a few entries are missing from the tables. Some of the benchmarks use named-let and internal
define which are not supported by the REPL because they are not required by R4RS. This is indicated
with N/A in Table 4. In Table 5, a few tests with the type checked version timed-out. The limit was 5
minutes for the compilation and the execution of the benchmark.

The results for the x86 assembly host demonstrate good space and execution speed characteristics when
the programs are compiled with the AOT compiler. These relatively small benchmark programs (15-200
LOC) compile to executables in the 2-4 KB range when the non type checking R4RS library is used. It
demonstrates the effectiveness of the AOT compiler to remove unused parts of the R4RS library and RVM
source code. In terms of execution speed. When the type checking R4RS library is used the footprint grows
considerably to the 9-11 KB range. This is due to the frequent use of set! to redefine the predefined
procedures with type checking variants which interferes with the effectiveness of the dead code elimination.

Execution speed compares well with the Gambit Scheme Interpreter. All programs except deriv are faster
when compiled with the Ribbit AOT compiler and non type checking library is used. The AOT compiler
does not optimize deriv well due to the presence of higher-order procedures and rest parameters. The x86
REPL fares reasonably well in terms of execution speed with a factor of no more than 7.3× slower than the
Gambit Scheme Interpreter.

The results for the JavaScript host show that the footprint is consistently about 0.5 KB larger than with
the x86 assembly host. On the other hand, the execution time is about one order of magnitude larger, which
can be explained by the use of a higher level host language without low level control.

7 RELATED WORK

Bit [5] is a compact Scheme implementation based on an AOT compiler. It supports call/cc, and most
constructs from R4RS. However, it doesn’t support the full R4RS standard, excluding all port based textual
I/O procedures. It claims to fit this implementation within 22 KB. In contrast, Ribbit is a factor of 3×
smaller while providing a REPL and a fully compliant R4RS library.

Picobit [12] is a Scheme implementation also based on an AOT compiler that targets embedded systems.
It supports a broad subset of R5RS and includes a macro system, however, important features are missing:
file I/O, eval, and string-to-symbol conversion. They claim to fit the VM without the standard library
and without bignums in 11.6 KB on PIC18 microcontrollers which are 8-bit microprocessors. Moreover the
heap size is constrained by the use of a 16 bit address space. Ribbit has a substantially smaller VM (˜2 KB
for the x86 RVM which has a 32 bit address space) and the AOT compiler supports macros. Additionally,
Ribbit offers a full REPL compliant with R4RS, including support for string-to-symbol conversion, eval,
and I/O procedures, all within 6.5 KB which is considerably smaller than the bare Picobit VM.

Bigloo [11] is a Scheme implementation with a macro system that is very similar to the one used by Ribbit,
as they both define a define-expander special form with a similar semantics. For example, in Bigloo, as
well as in Ribbit, the form define-macro is expanded into a define-expander. A notable difference is that
Ribbit only supports the use of expanders in the Ribbit AOT compiler, while Bigloo supports this in its
compiler and interpreter.

SectorLISP [13] serves as a unique Lisp implementation that runs directly as an operating system with
a GC and impressively fits within the constraints of a 512-byte boot sector. While this compactness is
noteworthy, it comes with limitations in terms of features when compared to Ribbit. Specifically, SectorLISP
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does not include a built-in eval procedure - though users can manually enter one through the REPL - and
its Lisp version falls short of the comprehensive feature set found in the R4RS standard.

8 CONCLUSION

In this paper, we have described how the Ribbit system has been improved with a new, more efficient, and
more flexible way of encoding Scheme programs. We also have described how a R4RS compliant REPL was
implemented for Ribbit in a footprint of only 6.5 KB. The REPL is capable of running on a wide variety of
host languages with no extra dependencies. Our approach to minimize the generated encoded program by
the Ribbit AOT compiler is to use a multistep process. First, we do a liveness analysis on the Scheme code
to remove any unused procedures and variables. The liveness analysis is also used to determine which parts
of the generated Ribbit VM need to be removed, using our feature system. Then, the compiler finds the
optimal way of encoding the program. After being encoded, the LZSS algorithm is used to compress it to
reduce its size even more. Finally, the compiler injects the encoded program into the Ribbit VM.

It would be interesting to see how the system needs to be extended to support Scheme standards beyond
R4RS. While we can only speculate on the compactness, we believe it is likely that a complete R7RS
compliant REPL can be implemented in a 15-30 KB footprint.
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