
Word Completion: A First Step TowardTarget-Text Mediated IMTGeorge Foster, Pierre Isabelle, and Pierre PlamondonCentre for Information Technology Innovation (CITI)1575 Chomedey Blvd.Laval, Quebec, Canada, H7V 2X2ffoster,isabelle,plamondong@citi.doc.caAbstractWe argue that the conventional approachto Interactive Machine Translation is notthe best way to provide assistance toskilled translators, and propose an alter-native whose central feature is the useof the target text as a medium of inter-action. We describe an automatic word-completion system intended to serve as avehicle for exploring the feasibility of thisnew approach, and give results in termsof keystrokes saved in a test corpus.1 IntroductionMachine translation is usually signi�cantly infe-rior to human translation, and for most appli-cations where high-quality results are needed itmust be used in conjunction with a human trans-lator. There are essentially three ways of organiz-ing the process by which a person and a machinecooperate to produce a translation: preedition, inwhich the person's contribution takes the form ofa source-text analysis and occurs before the MTsystem is brought to bear; postedition, in whichthe translator simply edits the system's output;and interactive MT (IMT), which involves a di-alog between person and machine. Of the three,IMT is the most ambitious and theoretically themost powerful. It has a potential advantage overpostedition in that information imparted to thesystem may help it to avoid cascading errors thatwould later require much greater e�ort to correct;and it has a potential advantage over preeditionin that knowledge of the machine's current statemay be useful in reducing the number of analysesthe human is required to provide.Existing approaches to IMT (Blanchon, 1994;Boitet, 1990; Brown and Nirenburg, 1990; Kay,1973; Maruyama and Watanabe, 1990; Tomita,1985; Whitelock et al., 1986; Zajac, 1988) place

the MT system in control of the translation pro-cess and for the most part limit the human'srole to performing various source language dis-ambiguations on demand. Although this arrange-ment is appropriate for some applications, notablythose in which the user's knowledge of the targetlanguage may be limited, or where there are mul-tiple target languages, it is not well suited to theneeds of professional or other highly skilled trans-lators. The lack of direct human control over the�nal target text (modulo postedition) is a seriousdrawback in this case, and it is not clear that, fora competent translator, disambiguating a sourcetext is much easier than translating it. This con-clusion is supported by the fact that true IMT isnot, to our knowledge, used in most modern trans-lator's support environments, eg (Eurolang, 1995;Frederking et al., 1993; IBM, 1995; Kugler et al.,1991; Nirenburg, 1992; Picchi et al., 1992; Trados,1995). Such environments, when they incorporateMT at all, tend to do so wholesale, giving the usercontrol over whether and when an MT componentis invoked, as well as extensive postediting facili-ties for modifying its output, but not the abilityto intervene while it is operating.In our view, this state of a�airs should not betaken as evidence that IMT for skilled translatorsis an inherently bad idea. We feel that there isan alternate approach which has the potential toavoid most of the problems with conventional IMTin this context: use the target text as a medium ofcommunication, and have the translator and MTsystem interact by making changes and extensionsto it, with the translator's contributions serving asprogressively informative constraints for the sys-tem. This arrangement has the advantage of leav-ing the translator in full control of the translationprocess, of diverting his or her attention very lit-tle from the object of its natural focus, and of ne-cessitating a minimum of interface paraphernaliabeyond those of a word processor. It can in prin-ciple accomodate a wide range of MT pro�cien-



cies, from very high, in which the system mightbe called upon to propose entire translations andmodify them in response to changes made by thetranslator; to very low, in which its chief contri-bution will be the reduction of typing labour.The aim of this paper is to explore the feasi-bility of this target-text mediated style of IMT inone particularly simple form: a word-completionsystem which attempts to �ll in the su�xes oftarget-text words from manually typed pre�xes.1We describe a prototype completion system forEnglish to French translation which is based onsimple statistical MT techniques, and give mea-surements of its performance in terms of charac-ters saved in a test corpus. The system has notyet been integrated with a word processor, so wecannot quantify the amount of actual time ande�ort it would save a translator, but it seems rea-sonable to expect this to be fairly well correlatedwith total character savings.2 Word CompletionOur scenario for word completion supposes thata translator works on some designated segment ofthe source text (of approximately sentence size),and elaborates its translation from left to right.As each target-text character is typed, a proposedcompletion for the current word is displayed; ifthis is correct, the translator may accept it andbegin typing the next word. Although more elab-orate completion schemes are imaginable, includ-ing ones that involve the use of alternate hypothe-ses or provisions for morphological repair, we haveopted against these for the time being becausethey necessitate special commands whose bene�tin terms of characters saved would be di�cult toestimate.The heart of our system is a completion enginefor English to French translation which �nds thebest completion for a French word pre�x given thecurrent English source text segment under trans-lation, and the words which precede the pre�xin the corresponding French target text segment.It comprises two main components: an evalua-tor which assigns scores to completion hypotheses,and a generator which produces a list of hypothe-ses that match the current pre�x and picks theone with the highest score.1This idea is similar to existing work on typingaccelerators for the disabled (Demasco and McCoy,1992), but our methods di�er signi�cantly in manyaspects, chief among which is the use of bilingualcontext.

3 Hypothesis EvaluationEach score produced by the evaluator is an es-timate of p(t j~t; s), the probability of a target-language word t given a preceding target text ~t,and a source text s. For e�ciency, this distribu-tion is modeled as a simple linear combination ofseparate predictions from the target text and thesource text:p(t j~t; s) = � p(t j~t) + (1� �) p(t j s):The value of � was chosen so as to maximizecompletion performance over a test text (see sec-tion 5).3.1 Target-Text Based PredictionThe target-text based prediction p(t j~t) comesfrom an interpolated trigram language model forFrench, of the type commonly used in speechrecognition (Jelinek, 1990). It was trained on 47Mwords from the Canadian Hansard Corpus, with75% used to make relative-frequency parameterestimates and 25% used to reestimate interpola-tion coe�cients.3.2 Source-Text Based PredictionThe source text prediction p(t j s) comes from astatistical model of English-to-French translationwhich is based on the IBM translation models 1and 2 (Brown et al., 1993). Model 1 is a Hid-den Markov Model (HMM) of the target languagewhose states correspond to source text tokens (see�gure 1), with the addition of one special nullstate to account for target text words that have nostrong direct correlation to any word in the sourcetext. The output distribution of any state (ie theset of probabilities with which it generates targetwords) depends only on the corresponding sourcetext word, and all next-state transition distribu-tions are uniform. Model 2 is similar to model 1except that states are augmented with a target-token position component, and transition proba-bilities depend on both source and target tokenpositions,2 with the topographical constraint thata state's target-token position component mustalways match the current actual position. Be-cause of the restricted form of the state transition2Along with source and target text lengths inBrown et al's formulation, but these are constant forany particular HMM. The results presented in this pa-per are optimistic in that the target text length wasassumed to be known in advance, which of course isunrealistic. However, (Dagan et al., 1993) have shownthat knowledge of target-text length is not crucial tothe model's performance.
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Figure 1: A plausible state sequence by which the HMM corresponding to the English sentence I have otherexamples from many other countriesmight generate the French sentence shown. The state-transition probabilities(horizontal arrows) are all 1/9 for model 1, and depend on the next state for model 2, eg p(hfrom5; 6i j �) = a(5j6).The output probabilities (vertical arrows) depend on the words involved, eg p(d' j hfrom5; 6i) = p(d' j from).matrices for these models, they have the prop-erty that|unlike HMM's in general|they gen-erate target-language words independently. Theprobability of generating hypothesis t at positioni is just: p(t j s; i) = jsjXj=0 p(t j sj) a(j j i)where sj is the jth source text token (s0 is anull token), p(t j sj) is a word-for-word transla-tion probability, and a(j j i) is a position align-ment probability (equal to 1=(jsj + 1) for model1).We introduced a simple enhancement to theIBM models designed to extend their coverage andmake them more compact. It is based on the ob-servation that there are (at least) three classesof English forms which most often translate intoFrench either verbatim or via a predictable trans-formation: proper nouns, numbers, and specialalphanumeric codes such as C-45. We found thatwe could reliably detect such \invariant" forms inan English source text using a statistical taggerto identify proper nouns, and regular expressionsto match numbers and codes, along with a �lterfor frequent names like United States that do nottranslate verbatim into French and numbers like10 that tend to get translated into a fairly widevariety of forms.When the translation models were trained, in-variant tokens in each source text segment were re-placed by special tags speci�c to each class (di�er-ent invariants occuring in the same segment wereassigned serial numbers to distinguish them); anyinstances of these tokens found in the correspond-ing target text segment were also replaced by theappropriate tag. This strategy reduced the num-ber of parameters in the models by about 15%.When evaluating hypotheses, a similar replace-ment operation is carried out and the transla-tion probabilities of paired invariants are obtainedfrom those of the tags to which they map.Parameters for the translation models werereestimated from the Hansard corpus, automat-ically aligned to the sentence level using the

method described in (Simard et al., 1992), withnon one-to-one alignments and sentences longerthan 50 words �ltered out; the retained materialconsisted of 36M English words and 37M Frenchwords.4 Hypothesis GenerationThe main challenge in generating hypotheses is tobalance the opposing requirements of completionaccuracy and speed|the former tends to increase,and the latter to decrease with the number of hy-potheses considered. We took a number of stepsin an e�ort to achieve a good compromise.4.1 Active and Passive VocabulariesA well-established corollary to Zipf's law holdsthat a minority of words account for a majorityof tokens in text. To capitalize on this, our sys-tem's French vocabulary is divided into two parts:a small active component whose contents are al-ways used for generation, and a much larger pas-sive part which comes into play only when theactive vocabulary contains no extensions to thecurrent pre�x.Space requirements for the passive vocabularywere minimized by storing it as a special triein which common su�x patterns are representedonly once, and variable-length coding techniquesare used for structural information. This allowsus to maintain a large dictionary containing over380,000 forms entirely in memory, using about475k bytes.The active vocabulary is also represented as atrie. For e�ciency, explicit lists of hypotheses arenot generated; instead, evaluation is performedduring a recursive search over the portion of thetrie below the current completion pre�x. Repeatsearches when the pre�x is extended by one char-acter are obviated in most situations by memoiz-ing the results of the original search with a best-child pointer in each trie node (see �gure 2).4.2 Dynamic VocabularyTo set the contents of the active vocabulary, weborrowed the idea of a dynamic vocabulary from(Brousseau et al., 1995). This involves using
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Figure 2: Memoized portion of the active vocabu-lary trie for the French pre�x parler|heavy lines showbest-child links and shaded nodes represent valid wordends. The current best candidate is parleront ; if ana is appended by the translator, the new best can-didate parlerait can be retrieved from the best-childlinks without having to re-evaluate all 6 possible hy-potheses.translation model 1 to compute a list of the nmostprobable target text words (including translationinvariants), given the current source text segment.As �gure 3 illustrates, compared to an alternatemethod of statically choosing the n most frequentforms in the training corpus, use of a dynamic vo-cabulary dramatically reduces the average activevocabulary size required to achieve a given level oftarget text coverage. Motivated by the fact thatrecent words tend to recur in text, we also addedall previously encountered target-text tokens tothe dynamic vocabulary.4.3 Case HandlingThe treatment of letter case is a tricky problemfor hypothesis generation and one that cannot beignored in an interactive application. Most wordscan appear in a number of di�erent case-variantforms and there are no simple and absolute rulesthat specify which is appropriate in a particularcontext. To cope with this situation, we adopteda heuristic strategy based on an idealized modelof French case conventions in which words are di-vided into two classes: class 1 words are thosewhich are normally written in lowercase; class 2words are those such as proper nouns which nor-mally take a special case pattern containing atleast one uppercase character. Class 1 words gen-erate capitalized hypotheses at the beginning ofa sentence or when the completion pre�x is cap-italized; uppercase hypotheses when the comple-
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Figure 3: Target text coverage versus active vocabu-lary size, for static and dynamic methods. The withhistory curves re
ect the addition of previously en-countered target text tokens to the active vocabulary.tion pre�x is uppercase and at least two characterslong; and lowercase hypotheses otherwise. Class2 words generate uppercase hypotheses under thesame conditions as class 1 words, otherwise ver-batim hypotheses.5 ResultsWe tested the completion engine on two di�erentHansard texts not in our training corpus. TextA, containing 786 (automatically) aligned pairs,19,457 English and 21,130 French tokens, was usedto determine optimum parameter settings; textB, containing 1140 (automatically) aligned pairs,29,886 English and 32,138 French tokens, was usedto corroborate the results. Tests were conductedwith a 3000-word dynamic active vocabulary aug-mented with all encountered target-text forms.Four measures of completion performance wereused. All assume that the translator will accept acorrect completion proposal as soon as it is made(ie, without typing further). The most direct in-dex is the proportion of characters in correctly-completed su�xes. Related to this is the pro-portion of correctly-anticipated characters: thosein correct su�xes plus any that match the nextcharacter the translator will have to type. The �-nal two measures are intended to approximate thenumber of keystrokes saved within words. The�rst assumes that the translator uses a specialcommand, costing one keystroke, to accept a pro-posal. The second assumes that acceptance con-sists merely in typing the character which fol-lows the word|either a space or a punctuationmark.3 Completions are free in this accounting,3Some French pre�xes such as jusqu' which elideletters are not normally followed by either spaces or
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Figure 4: Combined trigram/translation model per-formance versus trigram weight �.but all punctuation must be manually typed, andany spaces or punctuation characters in hand-typed pre�xes are assessed a one-keystroke escapepenalty.Figure 4 shows the performance of the systemfor various values of the trigram coe�cient �. Anoteworthy feature of this graph is that interpola-tion improves performance over the pure trigramby only about 3%. This is due in large part to thefact that the translation model has already made acontribution in non-linear fashion through the dy-namic vocabulary, which excludes many hypothe-ses that might otherwise have misled the languagemodel.Another interesting characteristic of the data isthe discrepancy between the number of correctlyanticipated characters and those in completed suf-�xes. Investigation revealed the bulk of this tobe attributable to morphological error. In orderto give the system a better chance of getting in-
ections right, we modi�ed the behaviour of thehypothesis generator so that it would never pro-duce the same best candidate more than once fora single token; in other words, when the trans-lator duplicates the �rst character of a proposal,the system infers that the proposal is wrong andchanges it. As shown in table 1, completion per-formance improves substantially as a result. Fig-ure 5 contains a detailed record of a completionsession that points up one further de�ciency in thesystem: it proposes punctuation hypotheses toooften. We found that simply suppressing punctu-ation in the generator led to another small incre-ment in keystroke savings, as indicated in table 1.punctuation. We assume the system can detect theseand automatically suppress the character used to ef-fect the completion.

measure method(% chars) text A text Bstd PBHR P+NP P+NPanticipated 77.2 80.0 79.2 78.9completed 67.1 73.6 72.6 72.2keystrokes1 65.1 71.8 72.3 71.9keystrokes2 49.8 54.6 55.1 55.1Table 1: Final performance �gures. PBHR standsfor previous-best-hypothesis rejection, and P+NP forPHBR without punctuation hypotheses.6 ConclusionThe work described in this paper constitutes arudimentary but concrete �rst step toward a newapproach to IMT in which the medium of inter-action is simply the target text itself. In con-trast with previous interactive approaches, thetranslator is never expected to perform tasks thatare outside the realm of translation proper (suchas advising a machine about common sense is-sues). In line with the spirit of truly interac-tive approaches, the translator is called upon earlyenough to guide the system away from a \raw ma-chine translation" he or she would rather not haveto revise. And in fact the machine is now the onerequired to revise its own copy, making use of ev-ery keystroke entered by the translator to steeritself in a useful direction.This strikes us as the \proper place" of menand machines in IMT, and we intend to continueexploring this promising avenue in future research.ReferencesHerv�e Blanchon. 1994. Perspectives of DBMTfor monolingual authors on the basis of LIDIA-1, an implemented mock-up. In COLING-94,pages 115{119, Kyoto, August.Christian Boitet. 1990. Towards personal MT. InCOLING-90, pages 30{35, Helsinki, August.J. Brousseau, C. Drouin, G. Foster, P. Isabelle,R. Kuhn, Y. Normandin, and P. Plamondon.1995. French speech recognition in an au-tomatic dictation system for translators: theTransTalk project. In Eurospeech 95, pages193{196, Madrid, Spain, September.Ralf D. Brown and Sergei Nirenburg. 1990.Human-computer interaction for semantic dis-ambiguation. In COLING-90, pages 42{47,Helsinki, August.Peter F. Brown, Stephen A. Della Pietra, VincentDella J. Pietra, and Robert L. Mercer. 1993.
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