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Abstract. In this paper we seek to model the users‘ experience while interacting with a computer-based learning 

environment. More precisely, we are interested in assessing the relationship between learners‘ emotional 

reactions and three extreme trends in the interaction experience, namely flow: the optimal interaction (a perfect 

immersion within the task), stuck: the non-optimal interaction (a difficulty to maintain focused attention), and 

off-task: the non-interaction (a drop out from the task). We propose a hierarchical probabilistic framework using 

a dynamic Bayesian network to model this relationship, and to simultaneously recognize the probability of 

experiencing each trend, as well as the emotional responses occurring subsequently. The framework combines 

three-modality diagnostic variables that sense the learner‘s experience including physiology, behavior and 

performance, predictive variables that represent the current context and the learner‘s profile, and a dynamic 
structure that tracks the temporal evolution of the learner‘s experience. An experimental study, with a 

specifically designed protocol for eliciting the targeted experiences, was conducted to validate our approach. 44 

participants interacted with three computer-based learning environments involving different cognitive tasks 

(problem solving, memorization and reasoning), while their physiological activities (electroencephalography, 

skin conductance and blood volume pulse), patterns of the interaction, and performance during the task were 

recorded. Results revealed that multiple concurrent emotions can be associated to the experiences of flow, stuck 

and off-task, and that the same trend can be expressed differently from one individual to another. The evaluation 

of the proposed framework showed promising results in predicting learners‘ experience trends and emotional 

responses. 
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1 Introduction 
 
Modeling and understanding the users‘ interaction experience is an important challenge in the design 

and development of adaptive intelligent systems [1]. Ongoing advances in human-computer 

interaction (HCI), cognitive science, psychology and neuroscience have greatly enhanced the ability 
of such systems to effectively diagnose users‘ behaviors and to provide appropriate assistance and 

adjustment [2-7]. In this context, a particular attention is paid to modeling users‘ affect and emotional 

reactions, as they play a critical role in users‘ cognitive performance, and decisively influence their 



perception, concentration, decision-making, memorization and problem solving abilities [8-11]. In the 

field of computer-based learning and intelligent tutoring systems (ITS), a growing interest has been 
devoted to obtain and monitor information about learners‘ emotions. The combination of multimoda l 

affect sensing technologies with artificial intelligence (AI) techniques proved its effectiveness in 

inferring learners‘ emotional states [12-18]. Physiological monitoring using wearable non-invasive 

biofeedback devices holds a prominent place as they provide valuable quantitative and objective 
information as compared to traditional evaluation methods such as questionnaires or self-report [19-

21]. 

Nevertheless, the integration of the affective dimension within ITS has raised much debate about 
which emotions should be assessed. No clear consensus was reached on which emotions should be 

fostered or avoided within tutoring interactions [22-24]. Indeed, the relationship between emotions 

and learning is far more complex than a linear association that would state that positive emotions 
enhance learning, while negative emotions obstruct it [25]. Some emotions considered a priori as 

negative, are not only inevitable within technology-mediating learning [26, 27], but can also 

contribute positively to the learning experience. For example, stress can have two opposite effects: the 

‗positive‘ stress (or eustress) is known to stimulate cognitive abilities, while the ‗negative‘ stress (or 
distress) penalizes concentration and decreases cognitive performance [28, 29]. Similarly confusion 

can represent a positive challenging aspect in the learning experience, or might conversely, signal a 

cognitive lock or impasse [23, 30, 31]. Therefore, the assessment of learners‘ emotions may not 
provide in itself, an explicit evaluation of their interaction experience. For instance, beyond which 

level, stress becomes harmful to the learning experience? This is obviously a challenging aspect, 

given the highly contextualized, person-dependent and dynamic nature of emotions. 
Hence, the goal of this research is to not only assess learners‘ emotional responses, but also to 

determine how emotions impact their learning experience, whilst taking account of both contextual 

and individual differences, and tracking the dynamics of the learners‘ states over time. More 

precisely, we propose to model the relationship between learners‘ emotions and the tendency that 
characterizes the quality of their interaction experience (e.g. positive/favorable or 

negative/unfavorable). We identify three extreme trends in the interaction, namely flow or the optimal 

experience: a state in which the learner is completely focused and involved within the task, stuck or 
the unfavorable interaction: a state in which the learner has trouble to maintain focused attention, and 

off-task or the non-interaction: a state in which the learner is not involved anymore within the task. 

The hypothesis we establish is that these trends can be associated to multiple overlapping emotional 

responses, and that this relationship can be specific to each learner. We propose a hierarchical 
probabilistic framework using a dynamic Bayesian network to model this relationship, and to 

simultaneously recognize the trend that characterizes the learner‘s interaction experience, and the 

emotional responses occurring subsequently. The framework involves three different modalities to 
diagnose the interaction including physiology, behavior and performance, the learner‘s profile and 

context-dependent variables to account for individual differences and environmental factors, and a 

dynamic structure to track the evolution of the interaction experience over time. 
An experimental study was conducted to test our hypothesis and validate our approach. A 

protocol was established to manipulate the learners‘ interaction experience, and elicit the three 

targeted trends as they used three computer-based learning environments involving different cognitive 

tasks namely: problem solving, memorization and reasoning. 44 participants were recruited for this 
experiment while monitoring their physiological activities using three biofeedback devices 

(electroencephalogram, skin conductance and blood volume pulse), behavioral variables tracking 

patterns of their interactions, and performance during the tasks. The evaluation of the proposed 
framework shows its capability to efficiently recognize the learners‘ experience. We demonstrate that 

our approach outperforms conventional non-dynamic modeling methods using static Bayesian 

networks, as well as three non-hierarchical formalisms including naive Bayes classifiers, decision 
trees and support vector machines. 

The remainder of the paper is organized as follows. A brief literature review is outlined in 

Section 2. Section 3 describes the proposed hierarchical framework for assessing learners‘ interaction 

trends and emotional responses. Section 4 details our experimental setup and methodology. Finally, 
Section 5 discusses the experimental results, and Section 6 concludes and presents directions for 

future work. 



2 Related work  
 

Improving the interaction between users and computers requires both a means of measuring 

qualitatively the users‘ experience, as well as a set of adaptive mechanisms to automatically adjust the 

interaction. A large body of work has extensively been devoted to evaluate the users‘ experience by 
analyzing their emotions as they play a key role in mirroring the users‘ internal state. Approaches for 

measuring emotions - especially in the fields of HCI and ITS - are typically concerned with the 

recognition of a single emotional state. Two distinct strategies are mainly adopted: either a specific 
emotion is considered in isolation, or several emotions are considered, but treated as mutually 

exclusive. For the first case, the system is designed to identify a specific class of emotion such as 

frustration [17, 32, 33], stress [34-36], confusion [15, 37, 38] or fatigue [39-41]. For the second case, 

the system is capable of representing and recognizing several classes of emotions that vary over time, 
but at a given time the user is characterized by a unique emotional state (e.g. [12, 14, 18, 22, 42]). 

These approaches clearly restrict the evaluation of the user‘s experience as they provide only a limited 

insight into the user‘s actual state. Indeed, several emotions can be experienced at the same time; 
these emotions can have either the same or opposed valence [7, 43]. For instance at a given time, a 

user can be both interested and engaged within the current task, but also stressed and confused. 

Hence, representing and recognizing a combination of overlapping states provides a more holistic and 
comprehensive view of the user‘s experience [13]. 

Current approaches on affective modeling can be also categorized according to the machine 

learning techniques used to recognize the users‘ emotional states. The first category uses conventional 

classification algorithms including rule-based reasoning [44], support vector machines [42, 45], neural 
networks [46, 47], decision trees [48, 49], etc. These approaches rely mostly on a low-level mapping 

between manifesting features of affect and the targeted emotional states. This mapping is often 

inadequate to represent complex dependencies comprising contextual features or person-related 
characteristics, which could interfere in the experience of affect. Besides, the classification of the 

user‘s state is commonly achieved on an ad-hoc and static basis, independently of the history; that is 

without taking account of the past knowledge regarding the user state. Another limitation of these 
approaches is that they are often unable to represent and manage the uncertainty associated to both the 

sensory measurements and the expression of affect. To overcome these limitations the second 

category of approaches use hierarchical probabilistic methods such as dynamic Bayesian networks 

(DBN), hidden Markov models (HMM), etc. DBN are particularly used for affect recognition (e.g. 
[13, 41, 50, 51]) as they provide a powerful tool to model complex causal relationships at different 

levels of abstraction, and capture the dynamics and the temporal evolution of the user‘s state, while 

efficiently handling the uncertainty through probabilistic representation and reasoning formalisms. 
For instance Conati et al. [13] use a DBN to monitor learners‘ emotions within an educational game, 

using bodily expression-related features, personality traits and patterns of the interaction. Liao et al. 

[51] infer users‘ stress levels using a DBN that combines physiological measures, physical observable 

changes, and performance and interaction features. Ji et al. [41] use observable clues including facial 
expressions, gaze direction, head and eye movement, in conjunction with context-related information 

to assess human fatigue.  

In this paper, we propose a hierarchical probabilistic framework to dynamically track the users‘ 
experience while interacting with a learning environment. Our approach differs fundamentally from 

previous work in that we are not only recognizing concurrent emotional states, but also measuring 

explicitly the tendency that characterizes the quality of their interaction experience. More precisely, 
our objective is to assess the relationship between emotions and the type of the interaction. That is, 

how emotions impact the learning experience? Or in other words, how a favorable (or an unfavorable) 

interaction is manifested emotionally? We propose to evaluate the learners‘ experience with regards 

to three extreme key trends, namely the states of flow, stuck and off-task, which characterize the 
learners‘ interaction along the dimensions of involvement and control (or mastery) regarding the task 

at hand, and which would determine whether a tutoring intervention is required. Flow is the optimal 

trend: a positive experience where the learner is perfectly focused and involved within the task. A 
feeling of being in control prevails, as an equilibrium is found between the challenge at hand and the 

learner‘s skills [52]. It is hence the moment where a tutoring intervention should be avoided to not 

interrupt the learner, and risk to disturb his cognitive flow. Stuck is a non-optimal trend: a negative 



experience where the learner has trouble to maintain focused attention. The learner feels to be out of 

control, as a pronounced disequilibrium is perceived between the challenge at hand and his skills [53]. 
In this case, a supportive intervention should be performed to help the learner overcome the 

encountered difficulty, and peruse the task. The off-task trend (or the ‗non-interaction‘) can be seen as 

an extremely negative experience where the learner totally loses his focus, and drops out from the 

task. The notion of control is no longer applicable, as the learner gave up, and ‗disconnected‘ from the 
interaction. The off-task trend should therefore be carefully monitored; and if detected, a more radical 

intervention would be performed to motivate the learner and get him involved again in the interaction, 

such as changing the current task or presenting a different topic. 
Although there have been significant attempts to model these trends, especially within ITS [16, 

53-56] and video game environments [57-59], there is still a lack of a unifying framework to 

systematically assess, in a dynamic way both the three types of interaction (i.e. flow, stuck and off-
task), and the emotional responses that occur subsequently. Indeed these states have mainly been 

approached in an isolated manner, and mostly associated to a single emotion within constrained 

interactions, such as predicting whether a learner is about to quit from a Towers of Hanoi activity as 

he presses a button labeled ‗I‘m frustrated‘ while resolving the task [16], or by detecting whether the 
user is avoiding to learn the materials by guessing or abusing hint features [54]. 

To summarize, the research presented in this paper extends prior work in the following ways. 

First, we combine the recognition of the three interaction experience trends with the emotional 
responses. We assume that a learner‘s experience can be possibly associated to several overlapping 

emotions, and that the same trend can be expressed differently from a learner to another. Second, we 

propose a hierarchical probabilistic framework based on DBN to model and train the relationship 
between learners‘ emotions and the targeted trends. The framework combines multimodal channels of 

affect, with the learner‘s profile and context-dependent variables, to automatically recognize the 

probability of experiencing flow, stuck and off-task, and to assess the emotional responses occurring 

during the interaction. Finally, we validate our approach through an experimental study where we 
provoke the three interaction trends as learners are performing different cognitive tasks. 

 

 

3 The proposed approach 
 

In this section we describe our framework for modeling a user‘s experience while interacting with a 
computer-based learning environment. The framework uses a dynamic Bayesian network [60] to 

automatically track the learner‘s emotional changes, where concurrent emotions are represented, and 

assess the probability of experiencing flow, stuck and off-task. A macro-model of the framework is 
given in figure 1; it includes two main portions to represent the factors (causes) and the manifesting 

features (effects) of a learner‘s state namely, a predictive component and a diagnostic component. 

 

Predictive component. The predictive (upper) part of the network describes the factors that could 
cause or alter the experience of the interaction. These factors represent the current context, which 

includes environmental variables that can directly influence the learner‘s experience such as the level 

of difficulty of the task at hand, the relevance of the hints or help provided, the imposed time 
constraints, etc. The predictive portion includes also the learner‘s own characteristics (profile) that 

can directly or indirectly influence the learning experience. These include the learner‘s goal, 

preference, personality, skills, computer usage frequency, etc. 
 

Diagnostic component. The diagnostic (lower) part denotes the evidence, i.e. the sensory 

observations used to infer the learner‘s state. Three-modality channels can be included, namely 

physiology, behavior and performance. (1) Physiological features can be used to track bodily changes 
associated to emotions. For instance, galvanic skin response (GSR) is widely known to linearly vary 

with the emotional arousal [61, 62]. Heart rate (HR) is extensively applied to understand the 

autonomic nervous system function and has shown a close correlation to the emotional valence [61, 
63, 64]. Electroencephalogram (EEG) can provide neural indexes related to cognitive changes such as 

alertness, attention, workload, executive function, or verbal and spatial memory [2, 65-67]. 

Particularly, Pope and colleagues developed at NASA [68] a mental engagement index. This index 



showed a great reliability in switching between manual and automated piloting modes and was used 

as an alertness criterion for adaptive and automated task allocation [69]. It was also used within an 
educational context, providing an efficient assessment of learners‘ mental vigilance and cognitive 

attention [70]. 

 

 
Fig. 1 The proposed framework for assessing learners‘ emotions and interaction experience trends using a DBN. The 

rectangular spaces are generic; other variables can be inserted or replaced given the available modalities. For instance, the 

sensory nodes can be adapted to the current environment and devices (e.g. a video camera, a posture sensitive chair, an eye-

tracker, etc.). Dashed arrows denote temporal dependencies, e.g. the interaction trend at time t is affected by the experienced 

trend at time t-1. Note that we don‘t draw all the links between the emotion nodes and each diagnostic variable due to space 

limit. 

 

(2) Behavioral features comprise key aspects of the interaction between the learner and the 

environment, which may give clues about the learners‘ levels of involvement (or activity/inactivity) 
within the task. These variables include the rate of requesting help, the hints used, mouse or keyboard 

pressing, click frequency, character input speed, etc. Additional devices can be used to assess 

learners‘ behaviors during the interaction such as a video camera, an eye-tracker, a posture sensitive 
chair, etc. (3) Performance features involve objective measures that can be influenced by changes in 

the learner‘s experience, and could provide an indication about the level of mastery of the task. These 

features include correctness, errors made in the task, time spend before answering, etc. More complex 

features can be used to track the learner‘s skill acquisition process such as the content that the learner 
knows, the practiced skills, etc. 

The middle part of the model represents the learner‘s actual state. The first layer represents the 

concurrent emotional responses. Each emotion is represented by a separate random variable with 
different possible outcomes. In this work, we are modeling four classes of emotions pertaining to 

learning, and frequently observed during computer tutoring, namely stress, confusion, boredom and 

frustration [22, 23, 25-27, 71]. For instance, the node associated to stress can have the following 

outcomes: calm (no stress), low, moderate and high stress. Similarly confusion can range from 
confidence (no confusion) to high confusion, boredom can range from interest (no boredom) to high 

boredom, and frustration: from satisfaction (no frustration) to high frustration. The second layer 

represents the learner‘s interaction experience trend with the following possible outcomes: flow, stuck 
and off-task. The recognition is achieved through a probabilistic inference from the available 

diagnostic measures (bottom-up) to update the learner‘s emotional responses (i.e. the probability of 

each emotion node‘s outcome). This inference will be in turn, combined to a predictive (top-down) 
inference from the current context and personal variables, and propagate to update the learner‘s 

interaction trend (i.e. the probability of experiencing flow, stuck and off-task).  

This two-layered abstraction is aimed to quantify the learner‘s experience trend on one hand, and 

to identify the emotional responses that occur subsequently on the other hand. More precisely the goal 



is to determine the emotions that occur when the probability of a positive interaction (flow) tends to 

decrease and the probability of a negative interaction (stuck and off-task) tends to increase so that an 
effective intervention can be initiated, and targeted according to the predominant emotional states. In 

addition, the model includes a dynamic structure representing the temporal evolution of the learner‘s 

interaction trends and emotional responses. This structure is described by the dashed arcs shown in 

figure 1. Each random node at time t is influenced by the observable variables at time t, as well as by 
its corresponding random node‘s outcomes at time t-1. The resulting network is made up of 

interconnected time slices of static Bayesian networks describing each, a particular state of the 

learner. The relationship between two neighboring time slices is represented by a hidden Markov 
model (HMM). That is the inference made at time t-1 is used in conjunction with the sensory data 

observed at time t, to update the learner‘s current emotions and the probability of each trend. 

 
 

4 Methodology and experimental design 
 
An experimental protocol was established to deliberately manipulate the learners‘ interaction 

experience, while recording their physiological activities, behavioral patterns, and performance during 

the tasks. Data were collected from 44 participants of different ages, gender and qualifications to 
validate our approach. Three devices were used to record participant‘s physiological activities, 

namely electroencephalogram (EEG), skin conductance (SC), and blood volume pulse (BVP) sensors. 

EEG was recorded using a 6-channel headset. SC and BVP sensors were placed in the resting left 

hand fingers. Data were synchronized using necessary time markers, to automatically integrate the 
recorded signals with the rest of the instrumental setup. In addition, two video cameras were used to 

record the users‘ face, and the onscreen activity, so that to not miss any feature of their interactions.  

Three environments were used for our experimentations, namely trigonometry, backward digit 
span (BDS), and logic. The goal was to study the learners‘ experience within different contexts and 

cognitive tasks. BDS and logic involve strict cognitive tasks with controlled laboratory conditions, 

namely memorizing digits, and logical exercises. The trigonometry session is a more complex 
learning environment, with less controlled conditions. It comprises a learning session with an 

introductory course covering some basic trigonometric properties and relationships, followed by a 

problem solving activity. Figure 2 depicts a screen shot from each environment.  

One of the key points of this study was to acquire accurate data related to the learners‘ 
interaction experience trends and emotional responses. Thus the three environments were thoroughly 

designed in a way that would intentionally elicit the three types of interaction (i.e. flow, stuck and off-

task). Each session begins with relatively simple tasks; everything was made to get the learners 
involved within the activity (e.g. easy problems, figures clarifying the problem statements, help/hints 

provided if needed, no time limit imposed, etc.). As the learner progresses within the session, the 

tasks become more challenging and the level of difficulty increases gradually. Different parameters 

were manipulated to deliberately vary the difficulty level and foster the states of stuck and off-task. 
These included the complexity of the task to be performed, the time limits, and the provided help. 

Some additional parameters (e.g. unreasonable time limits, deliberate bugs, etc.) were adjusted to 

systematically get the learners puzzled or even discouraged from pursuing the activity. 

 

Trigonometry. For this session, we used the trigonometry tutoring system developed by Chaouachi et 

al. [72]. The tutoring content, which formally covered six basic problem solving tasks, was enhanced 
with additional tasks (16 in total) structured in three series of incrementally increasing difficulty as 

will be described below. The session started with a trigonometry lesson explaining several 

fundamental trigonometric properties and relationships. Basic definitions as well as their 

mathematical demonstrations were given. The environment provided schemas and examples for each 
presented concept, and a calculator to perform the needed computations. Learners were then asked to 

complete a problem solving activity, which involved applying, generalizing and reasoning about the 

trigonometric properties. No further prerequisites were required to resolve the problems, except the 
concepts previously seen. However a good level of concentration was needed to successfully achieve 

the tasks. Three series of gradual difficulty were designed for this activity; several parameters were 

considered namely: the time constraints, the presence/absence of help, and the complexity of the task. 



Particularly, each trigonometric problem required some intermediate steps to reach the solution and 

the complexity was enhanced by increasing the number of the required steps. 
 

 

 

 
(a)  (b) 

 
(c) 

 
Fig. 2 Screen shots from the three environments: (a) trigonometry (b) backward digit span (BDS) and (c) logic. 

 
Series 1 involved six rudimentary multiple-choice questions, without any time limit. The 

problems consisted mainly in applying simple trigonometric properties, and required few intermediate 

steps (e.g. calculating the measure of an acute angle within a right triangle given the length of the 
hypotenuse and the opposite side). The environment provided a limited number of hints for each 

problem. The hints (if used) provided relevant and detailed information leading to the solution (e.g. 

―Remember to use the sine = hypotenuse / opposite‖). Schemas illustrating the problems and the 
necessary recalls were presented as well, to make the task easier. Series 2 consisted of five multiple-

choice questions. The problems of this series were more complex and required an increased number 

of intermediate steps to reach the solution. For example, to compute the sine of an angle, learners had 

first to compute the cosine. Then, they had to square the result, and to subtract it from 1. Finally they 
had to compute the square root. A geometrical figure was given to illustrate the statements, and 

reasonable time limits, varying according to the difficulty, were fixed for each problem. Some hints 



were given for the most difficult problems. However the information provided was very vague as 

compared to series 1 (e.g. ―The sum of the angles of a triangle is equal to 180 degrees‖). Series 3 
involved five open response questions (i.e. without offering potential options to choose from). The 

problems involved more elaborated statements, and a further concentration was needed to translate the 

statements into a trigonometric formulation (e.g. ―A 50-foot pole (height = 50 feet), perpendicular to 

the ground, casts a shadow of 20 feet (length = 20 feet) at a given time. Find the elevation angle (in 
degrees) of the sun at that moment‖). Very strict gradually decreasing time limits were imposed and 

no hints or illustrations were given for this series. 

 
Backward digit span (BDS). This activity involves mainly working memory and attention abilities. 

A series of single digits are presented successively on the screen during a short time. Learners are 

asked to memorize the whole sequence, and then instructed to enter the digits in the inverted order of 
presentation. Two levels were considered for this session, namely BDS 1 and BDS 2. Each level 

involved three tasks (i.e. task one to three and task four to six), of gradual difficulty by increasing the 

number of digits of the displayed sequence. The difficulty was further enhanced in BDS 2 by 

gradually decreasing the digits‘ display periods (from 700 ms to 600, 500 and 300 ms). Task one 
consisted of a series of 12 sets of 3 digits, task two: 8 sets of 4 digits, task three: 7 sets of 5 digits, task 

four: 5 sets of 6 digits, task five: 4 sets of 8 digits, and task six: 4 sets of 9 digits. Participants were 

instructed to use the mouse to enter the digits using a virtual keyboard displayed on the screen. No 
additional time constraints were imposed for this activity. 

 

Logic. This activity involves inferential skills on information series and is typically used in brain 
training exercises or tests of reasoning. No further prerequisites are needed but a high level of 

concentration is required. The goal is to teach learners how to infer a logical rule from a series of data 

in order to find a missing element. The tutoring environment is composed of three modules. Each 

module is concerned with specific forms of data: the first module deals with geometrical shapes 
(Geo.), the second module with numbers (Num.), and the third module with letters (Lett.). The session 

started with a tutorial giving instructions and warm up examples, to get the learners accustomed with 

the user interface and types of questions, then a series of multiple-choice question tasks related to 
each module is given. For instance in the Geo. module, three shapes were successively presented in 

the interface. The first shape represented a black triangle, the second a white rectangle, and the third a 

black pentagon. Learners were asked to deduce the fourth missing element, which would be in this 

case, a white hexagon. That is, the logical rule that one should guess is to alternate between the black 
and white colors and to add a side in each shape. Two levels with an increasing difficulty were 

considered for each module namely Geo. 1 and 2, Num. 1 and 2, and Lett. 1 and 2. The difficulty was 

manipulated by enhancing the complexity of the logical rule between the data. In addition, for the first 
level, the environment provided a limited number of hints to help the learners find the logical rule that 

they had to infer, and no time constraint was fixed to answer. In the second level, the hints were 

increasingly scarcer or even omitted, and a gradually decreasing time delay was imposed to answer. 
Besides, some tasks were designed to systematically mislead the learner. For instance in the Num. 2 

module, two perpendicular data series were presented. In the vertical series all the numbers were 

multiples of seven and in the horizontal series all the numbers were multiples of five. In this task, one 

should deduce the missing crossing element, which should be a multiple of both five and seven. But 
no such element was given among the possible answers. Some disturbing bugs were also intentionally 

provoked to get learners distracted and lose their focus (e.g. freezes, hidden statements or materials, 

very unreasonable time limits, etc.). A total of 20 tasks were given in this session: each sub activity 
consisted of 3 tasks, except Num. 2 and Lett. 2, which involved 4 tasks each. 

 

 

Sensory measurements 
 

Three-modality measures were monitored, namely behavioral variables, performance, and 
physiological features. Behavioral variables included the mouse movement rate (Mouse_mvt) and the 

frequency of requesting help/hints (Help_req). Performance measures included response time 

(Resp_time), answer to the current task (correct, incorrect or no-answer) and the overall accuracy rate. 



Physiological features involved galvanic skin response (GSR), heart rate (HR) and mental 

engagement (EEG_Engag). We discuss below the methodology used to extract and pre-process the 
physiological data. 

 

Physiological features. Three devices were used to record learners' physiological activities, namely 

skin conductance (SC), blood volume pulse (BVP), and electroencephalogram (EEG) sensors. The 
acquired signals were digitized using the ProComp Infinity multi-channel data acquisition system 

[73]. The SC device computed galvanic skin response (GSR). It measures changes in the resistance of 

the skin produced by the perspiration gland activity. A tiny voltage is applied through two electrodes 
strapped to the first and middle fingers on the palm side. This establishes an electric circuit that 

quantifies the skin's ability to conduct electricity, which increases as the skin is sweaty (for instance 

when one is experiencing stress). The SC data were recorded at a sampling rate of 1024 Hz. The BVP 
device is a photoplethysmograph sensor, which computes the amount of light reflected by the surface 

of the skin. This amount varies with the quantity of blood present in the skin, and thus with each 

heartbeat. The BVP signals were recorded at a sampling rate of 1024 Hz. Heart rate (HR) was 

calculated by measuring the inverse of the inter-beat intervals (i.e. distance between successive pulse 
peaks).  

 

 
 

Fig. 3 EEG channel electrode placement  

 
EEG was recorded using an electro-cap that measures the electrical brain activity produced by 

the synaptic excitations of neurons. Signals were received from sites P3, C3, Pz, and Fz as defined by 

the international 10-20 electrode placement system [74]. Each site was referenced to Cz and grounded 
at Fpz. Two more active sites were used namely A1 and A2 (i.e. the left and right earlobes 

respectively). This setup is known as the ―referential linked ear montage‖, and is illustrated in figure 

3. In this montage, roughly speaking, the EEG signal is equally amplified throughout both 

hemispheres. Moreover, the ―linked-ear‖ setup calibrates each scalp signal to the average of the left 
and right earlobe sites, which yields a cleaner and a more precise signal. For example, the calibrated 

C3 signal is given by (C3 - (A1 + A2) / 2). Each scalp site was filled with a non-sticky proprietary gel 

from Electro-Cap and impedance was maintained below 5 Kilo Ohms. Any impedance problems were 
corrected by rotating a blunted needle gently inside the electrode until an adequate signal was 

obtained. The recorded sampling rate was at 256 Hz.  

Due to its weakness (at the order of a few microvolts), the EEG signal needs to be amplified and 

filtered. Besides, the brain electrical signal is usually contaminated by external noise such as 
environmental interferences caused by surrounding devices. Such artifacts alter clearly the quality of 

the signal. Thus a 60-Hz notch filter was applied during data acquisition to remove these artifacts. In 

addition, the acquired EEG signal easily suffers from noise caused by user body movements or 
frequent eye blinks. Thus a 48-Hz high pass and 1-Hz low pass de-noising filters were applied. The 

engagement index was derived using three EEG frequency bands, namely Theta (4-8 Hz), Alpha (8-

13 Hz) and Beta (13-22 Hz). A fast Fourier transform (FFT) was applied to transform the EEG signal 
from each active site into a power spectrum. The transformed signal was divided to extract the 

estimated power with respect to each band. A combined power was then summed from the measured 

scalp sites in order to compute the EEG band ratio given by: Beta / (Alpha + Theta) [68]. The EEG 

engagement index was then smoothed using a sliding moving average window: at each instant T, the 



engagement index is computed by averaging each ratio within a 40s-sliding window preceding T. 

This procedure is repeated every 2s and a new 40s-sliding window is used to update the index. 

 

 

Participants and protocol 

 
44 participants (31 males) aged between 19 and 52 (M = 28.61, ± 8.40) were recruited for this 

research. Participation was compensated with 20 dollars. Upon arrival at the laboratory, participants 

were briefed about the experimental objectives and procedure and asked to sign a consent form. They 
were then outfitted with the biofeedback devices and familiarized with the materials and 

environments. Next, participants filled in demographic information (age, gender, qualification, 

frequency of computer usage per day, etc.).
 
They were also asked about their preferences regarding 

the three activities (i.e. whether they like or not trigonometry, digit recall and logical reasoning, 
respectively), and their perceived skill levels (low, moderate or high) in each of the three activities. 

Then, the Big Five Inventory (BFI) was administrated to assess learners‘ personality traits, namely 

openness, conscientiousness, extraversion, agreeableness, and neuroticism [75]. After that, 
participants completed a 5-minute eyes open baseline followed by another 5-minute eyes closed 

baseline to establish a neutral reference for the physiological variables. 

Participants were then instructed to complete the trigonometry session, followed by BDS, and 

logic. To make the tasks more stimulating, participants were informed that a correct answer is 
rewarded 4 points, -1 point is given for a bad answer, 0 point is given for a no-answer, and that they 

could, if they choose to, get their score and ranking as compared to other participants, at the end of the 

three sessions. All participants completed the levels of the three activities in the same order, namely: 
series 1 to 3 for trigonometry, next BDS 1-2, and then Geo. 1-2, Num. 1-2 and Lett. 1-2 for logic. 

They were allowed to self-pace with respect to the time required to complete each task and were 

given breaks and rest periods between the three sessions and levels. Before starting each level, 
participants were asked what were their goals regarding the next tasks by choosing between the 

following: ―realizing the highest score/fewest incorrect answers possible‖, ―learning or discovering 

new concepts‖, or just ―finishing the task‖. The experiment ended with a debriefing interview. 

 
Subjective measurement collection. After completing each task, participants reported how they have 

been experiencing the last trial. Participants were instructed to select the trend that would characterize 

their overall state during the last task (i.e. flow, stuck or off-task), and rate their experienced levels of 
stress, confusion, frustration and boredom.  A definition of each trend was given to the participants, to 

help them choosing the descriptions that best match to their experiences. Flow was defined as: ―I felt 

like I was immersed in the activity. I was totally involved, and I was focused and attentive. I was 

totally controlling the task, and I felt that I had the necessary skills to fulfill it‖. Stuck was defined as: 
―I felt that I was blocked. I had trouble to maintain focused attention. I was not totally controlling the 

task, and felt like I could not make it‖. Off-task was defined as: ―I was likely to drop out. I could not 

(or did not want to) concentrate and I was no more involved in the task. I felt like I gave up, or that I 
did not want to pursue‖.

1
 

A definition of each of the four emotions was provided as well. Stress was defined as: a reaction 

from a state of calm (relaxed) to an excited state, a feeling of tension or worry due to environmental 
pressure or constraint. Confusion was defined as: having doubts or uncertainty; may be due to a lack 

of knowledge or understanding. Frustration was defined as annoyance, irritation or dissatisfaction. 

Boredom was defined as being wearied or listless due to a lack of interest. Four graduated scroll bars 

ranging from 0 to 100 were used to rate the intensity of each emotion. The bars included the following 
subdivisions 0 = no negative emotion (i.e. calm, confident, satisfied or interested, respectively for 

stress, confusion, frustration or boredom), ]0; 35] = a low level, ]35; 65] = moderate, and ]65; 100] = 

high. For instance, if a participant rated 17 for stress, 52 for confusion, 0 for frustration and 0 for 
boredom, we get the following overlapping states: low stress, moderate confusion, satisfied and 

interested.  

                                                   
1 If participants reported an ‗off-task‘ trend, they were given a little break before resuming the session. 



5 Results and discussion  
 

A total of 1848 samples (42 * 44 participants), were collected from the experiment. Results are 

organized as follows: first we describe the statistical analysis conducted to validate our experimental 

design. Then, we study the relationship between the reported emotions and the experienced trends. 
Finally, we evaluate our framework for recognizing learners‘ interaction experience trends and 

emotional responses.  

 
 

Analysis of the reported experiences 
 
A preliminary statistical analysis was performed to analyze the experienced trends with regards to the 

task design. More precisely, the goal was to investigate how participants perceived their interactions 

throughout the sessions: What was the distribution of the targeted trends (i.e. flow, stuck and off-task) 
across the different activities? Did the reported experiences vary in line with the established 

experimental process? 

A two-way repeated measure ANOVA was conducted to evaluate the incidence (occurrence) and 

the variation (increase or decrease) of flow, stuck and off-task
 2

 across the levels of difficulty of the 
three sessions (i.e. trigonometry, BDS and logic). The within-subject dependent variable was the 

proportions of the interaction trends, and the independent variables were: (i) the type of the trend 

(flow, stuck or off-task) and (ii) the testing time (i.e. series 1-3 for trigonometry, levels 1-2 for BDS, 
and Geo. 1-2, Num. 1-2 and Lett. 1-2 for logic). Results revealed a statistically significant main effect 

of the trend: F(1.80, 77.71) = 61.85, p < 0.001; degrees of freedom were corrected using Huynh-Feldt 

estimates of sphericity (epsilon = 0.89), as the assumption of sphericity has been violated (chi-square 
= 6.79, p < 0.05). Post-hoc tests with a Bonferroni adjustment indicated that the state of flow was in 

overall (i.e. across the three environments), the most prominent trend (M = 0.59 (0.028)), the state of 

stuck was less frequent (M = 0.27 (0.022)), and off-task was the least prevalent state (M = 0.14 

(0.021)). 
The interaction effect (trend * testing time) showed that the rates of occurrence of flow, stuck 

and off-task differed significantly across the 11 sub-activities: F(10.24, 440.40 = 20.07), p < 0.001; 

degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity (epsilon = 0.59), 
as the assumption of sphericity has been violated (chi-square = 441.62, p < 0.001). Bonferroni 

corrected posthoc tests yielded the following patterns at the 0.05 significance level: flow > stuck > 

off-task for the beginning of the trigonometry session (series 1) and flow > (stuck = off-task) for the 

beginning of BDS (level 1) and logic (Geo. 1). Hence in the first tasks of each of the three 
environments, experiences of flow were the most common, and experiences of stuck were either on 

par with or higher than off-task. For instance an average occurrence of 79% for flow, 17% for stuck 

and 4% for off-task was found in series 1 of trigonometry. These patterns were reversed towards the 
end of each activity: (flow = off-task) < stuck for trigonometry (series 3), and flow = off-task = stuck 

for BDS (level 2) and logic (Lett. 2). That is experiences of stuck were either as or more likely than 

experiences of off-task and flow. For instance for the last sub-activity in logic (Lett. 2), flow occupied 
38% of the interaction time, stuck 30% and off-task 32% of the time.  

Figure 4 shows the estimated marginal means of each trend over the 11 sub-activities of the three 

learning environments. The proportions of flow were significantly lower at the end of the 

trigonometry session (series 3) compared to the beginning of the session (series 1) (d = -0.497, 
p < 0.001), and the proportions of stuck and off-task were significantly higher (d = 0.239 and 0.258 

respectively, p < 0.05). The same pattern was observed from level 1 to level 2 in BDS (d = -0.523 for 

flow, 0.258 for stuck, and 0.265 for off-task, p < 0.001), as well as from Geo. 1 to Lett. 2 in logic 
(d = -0.534 for flow, 0.218 for stuck, and 0.316 for off-task, p < 0.05). Hence for each of the three 

environments, the further the learners got within the tasks, the more the occurrences of flow decreased 

and the occurrences of suck and off-task increased. This pattern was inverted between the end of the 
trigonometry session (series 3) and the beginning of BDS (level 1): the incidence of flow increased 

                                                   
2 During debriefing, participants were asked whether there were other trends that would characterize their overall state 

throughout their interactions. All responses were negative. 



(d = 0.611, p < 0.001), and the incidence of stuck and off-task decreased (d = -0.338 and -0.273 

respectively, p < 0.001). The same variations were observed from BDS (level 2) to logic (Geo. 1): d = 
0.530 for flow, -0.250 for stuck and -0.280 for off-task (p < 0.05). Besides, within the logic session, 

the occurrences of flow increased from Geo. 2 to Num. 1 (d = 0.220, p <0.05), and from Num. 2 to 

Lett. 1 (d = 0.237, p < 0.05), that is as a different type of materials (numbers or letters) was presented, 

with a lower difficulty level. The difference was not significant for stuck and off-task. 
 

 
Trigonometry Backward digit span Logic 

Fig. 4 Estimated marginal means of the proportions of the experienced trends over the three sessions. 

 

To sum up, the experienced trends accurately tracked the intended experimental design. At the 
beginning of their interactions, learners were more likely to experience flow. The occurrences of 

negative interactions (stuck and off-task) were also probable, but with very low proportions. As the 

level of difficulty of the task increased (i.e. more complex tasks, imposed time constraints, scarcer 
hints, provoked bugs, etc.), the incidence rate of flow decreased significantly and both stuck and off-

task behaviors were more likely experienced. Particularly towards the end of the sessions, stuck and 

off-task became more common; a negative interaction trend was as or more likely than a positive 

interaction experience. Switching the learning environment (i.e. starting a new activity with a lower 
level of difficulty) reversed this pattern. That is the incidence of stuck and off-task decreased and the 

state of flow became dominant again. 

 

 

Emotional expressions of the experienced trends  

 
Our next investigation was to analyze the learners‘ emotional responses with regards to the states of 
flow, stuck and off-task. More precisely, we were interested in answering the following questions: (1) 

Are there any significant differences in terms of stress, confusion, boredom and frustration, as the 

learners‘ interaction was optimal, problematic or completely inhibited? (2) If so, is there a particular  
emotional pattern associated to each trend? That is which emotion(s) could potentially characterize or 

contribute to each state, and how? (3) Did all the learners share the same pattern?  

Three MANOVAs were conducted to test the relationship between the interaction experience 

trends and the emotional responses reported in each of the three environments. The dependent 
variable was the combined intensities of the four emotions (i.e. stress, confusion, boredom and 

frustration), and the independent variable was the interaction trends (i.e. flow, stuck, and off-task). 

We found that each of three MANOVAs was statistically significant, showing that there is a 
significant interplay between the combined expressed emotions and the interaction feedback. F(8, 

1398) = 73.81, p < 0.001; Pillai‘s Trace = 0.59, partial ε
2
 = 0.29 for trigonometry, F(8, 518) = 27.32, 

p < 0.001; Pillai‘s Trace = 0.59, partial ε
2
 = 0.29 for BDS, and F(8, 1750) = 101.66, p < 0.001; Pillai‘s 

Trace = 0.63, partial ε
2
 = 0.31 for logic. Hence the emotional responses do seem to significantly 

characterize the type of the interaction. An analysis of each emotion aside was performed using 

distinct ANOVAs (4 * 3). The results were statistically significant for all the ANOVAs (p < 0.001); a 

summary is given in Table 1. Bonferroni posthoc tests showed that the three trends were significantly 
different in terms of the four emotions (p < 0.001). The state of flow was characterized by a low level 

(]0; 35]) of stress (around 17 and 25) and confusion (around 16 and 19), and a very low level of 

boredom (around 6 and 9) and frustration (around 10 and 15). The state of stuck was marked by a 
moderate level (]35; 65]) of stress (44 to 46) , confusion (about 57) and frustration (36 to 50), and a 



low level of boredom (20 to 25). The off-task trend concurred with the highest level of stress (still 

moderate: 50 to 57, but more intense as compared to stuck), a high level (]65; 100]) of confusion (70 
to 77), a moderate level of boredom (49 to 64), and a moderate to high level of frustration (about 58 to 

68). 

 
Tab. 1 Descriptive statistics on intensities of emotions for each interaction trend in the three learning environments. Standard 
errors given in parentheses. ANOVAs reported in italics (p < 0.001). 

 

Environment Experience trend Stress Confusion Boredom Frustration 

Trigonometry Flow 

Stuck 

Off-Task 

22.72 (1.37) 

46.37 (1.94) 

49.69 (2.80) 

18.46 (1.36) 

57.96 (1.94) 

74.30 (2.80) 

07.64 (1.20) 

25.03 (1.71) 

58.66 (2.46) 

15.28 (1.40) 

50.17 (1.99) 

67.58 (2.87) 

  F(2, 701) =  69.47  238.65  180.45  189.163 

BDS Flow 

Stuck 

Off-Task 

24.91 (1.98) 

45.85 (3.53) 

50.36 (3.97) 

18.88 (2.07) 

57.26 (3.70) 

70.36 (4.16) 

09.47 (1.87) 

20.47 (3.34) 

49.41 (3.75) 

10.62 (1.78) 

36.04 (3.17) 

58.45 (3.56) 

  F(2, 261) =  24.51  84.53  45.77  82.36 

Logic Flow 

Stuck 

Off-Task 

17.13 (1.20) 

44.01 (1.72) 

56.79 (2.30) 

16.36 (1.23) 

57.32 (1.76) 

77.19 (2.35) 

06.71 (1.11) 

24.73 (1.58) 

64.45 (2.11) 

11.25 (1.16) 

45.47 (1.66) 

66.39 (2.22) 

  F(2, 877) =  157.47  353.30  297.16  307.07 

 

From these analyses, it can be said that there was not a unique emotion behind the nature of the 
interaction, but the four concurrent emotions (stress, confusion, boredom and frustration) seemed to 

contribute significantly in the expression of flow, stuck and-off-task. In overall (i.e. across all the 

participants), low stress and confusion seemed to be more likely associated to a positive trend of 

interaction. Frustration was also experienced, but with a very smaller degree, and boredom was 
practically absent with flow. The state of stuck was characterized with significantly higher levels of 

stress, confusion, frustration and boredom. The off-task behavior was likely associated to the worst 

emotional responses (i.e. the highest levels of stress, confusion, boredom and frustration). However, 
the case-by-case analysis showed that this pattern was not shared by all the study subjects. 

 

 
 (a)  (b)  (c) 

Fig. 5 Three different patterns of learners‘ emotional responses. MANOVA tests revealed a significant effect of the 

interaction trends for the three cases: (a) F(8, 74) = 7.75, p < 0.001; Pillai‘s Trace = 0.91, partial ε2 = 0.46 (b) F(8, 74) = 

3.43, p < 0.05; Pillai‘s Trace = 0.54, partial ε2 = 0.27 (c) F(8, 74) = 4.42, p < 0 .001; Pillai‘s Trace = 0.65, partial ε2 = 0.33. 

 

Separate correlational analyses were run for each participant. MANOVAs results revealed a 

statistically significant effect of the experienced trends for all the participants (p < 0.05), but with 

different emotional reactions. Figure 5 depicts an example of three distinct patterns: for the first 
participant (a), a significant effect was found for the four emotions (F(2, 39) = 22.43 for stress, 23.18 

for confusion, 20.56 for boredom, and 19.73 for frustration, p < 0.001 for the four ANOVAs),  

showing that all four emotions do significantly contribute in the expression of flow, stuck and-off-

task. Bonferroni post-hoc tests showed a statistically significant increase of the intensity of the four 
emotions from the state of flow to stuck, and from the state of stuck to off-task; that is as the typical 



case discussed above. For the second subject (b), there were no significant differences of stress 

between the three types of interaction (F(2, 39) = 0.71, p = n.s.), and as a matter of fact, this subject 
did not seem to experience much stress during the experiment (Max = 33.75). A significant 

contribution of boredom was found (F(2, 39) = 3.32, p < 0.05), with the highest values (a low level), 

for the off-task trend (M = 32.5 (10.35))), but there were no reliable differences between flow and 

stuck. Significant contributions of confusion (F(2, 39) = 7.30, p < 0.05), and frustration (F(2, 39) = 
6.85, p <0.05), were also found. But unlike the overall pattern, the highest values were associated to 

the state of stuck rather than off-task (M = 75 (9.36), and M = 71.67 (9.99) respectively for confusion 

and frustration). Besides, there were no significant differences between the states of flow and off-task, 
in terms of confusion and frustration. For the third subject (c), a totally different pattern was found: 

there was no significant contribution of stress (F(2, 39) = 2.00 p = n.s.) or confusion ((F(2, 39) = 1.11, 

p = n.s.), and a tendency towards significance for frustration (F(2, 39) = 3.12, p = 0.056). The unique 
significant effect was found for boredom (F(2, 39) = 17.64, p < 0.001), with a low level in the off-task 

trend (M = 17.5 (2.80), values were close to zero for flow and stuck).  

In summary, emotions do seem to be key indicators of a user‘s learning experience. This 

relationship showed to include several emotions that may differ from a person to another, which 
confirmed our expectations about the person-specific nature in expressing emotions. Indeed the case-

by-case analysis showed that the emotional responses associated to the states of flow, stuck and off-

task, can be specific to each learner. Some learners can experience the same stress, confusion or 
frustration when they are immersed within a task or get stuck, and fewer reactions when they drop 

out. Besides, some subjects seemed to have calmer temper and showed little emotional activations, 

that is no considerable emotional changes between a positive and a negative interaction. Different 
factors such as the learner‘s goals, personality or skills, could intervene and make that learners do not 

all react the same way as they are fully involved within a task, get stuck, or are about to give up; 

hence the importance of accounting for these individual differences in the assessment of learners‘ 

experience. 
 

Learners’ interaction experience modeling 
 

Our last objective was to implement and validate our framework for recognizing a learner‘s 

interaction experience trend and emotions, based on the observable diagnostic features, the current 

context and the learner‘s characteristics. More precisely, given the macro-model described in figure 1, 
the diagnostic component involved the following modalities: (1) physiological features including 

EEG_Engag, GSR and HR (2) behavioral variables: Help_req and Mouse_mvt, and (3) performance 

measures: Resp_time, answer and accuracy. The context involved three variables namely: the 
difficulty of the task being executed (Task_diff), the presence/absence of hints or help (Help_given) 

and time constraints (Time_const). The profile involved: the learner‘s goal regarding the importance 

of performing the task (having the best score, learning new concepts or just finishing the task), 

preference (e.g. whether the learner likes trigonometry or not), skill level, frequency of computer 
usage (Computer_use), conscientiousness personality trait (Perso_consc), and age.

3
  

Once the structure of the DBN has been defined, the next step was to train the model parameters 

that quantify the relationships between the connected nodes. These parameters are given by the a 
priori probabilities of each predictive node (e.g. p(Skill) over the values ‗low‘, ‗moderate‘ and ‗high‘), 

the conditional probability distribution of each node given the outcomes of its parents (e.g. 

p(Experience trend | Goal) over the values ‗flow‘, ‗stuck‘, ‗off-task‘ given each of the values ‗having 
the best score‘, ‗learning new concepts‘ and ‗finishing the task‘), and the transition probabilities 

between the time slices (e.g. p(Boredomt | Bordedomt-1, Experience trendt) over the values ‗interest‘, 

‗low‘, ‗moderate‘ and ‗high‘ boredom given the corresponding values at time t-1 and the current 

parent‘s outcomes ‗flow‘, ‗stuck‘ and ‗off-task‘). We used an iterative approach to automatically train 
the model parameters from the collected data, namely the EM algorithm [76]. Starting with a random 

parameter initialization, EM alternates between two steps. The E-step (Expectation) computes the 

                                                   
3 Although beyond the scope of this paper, it should be mentioned that these particular variables were selected as they 

showed statistically significant associations with the experienced trends. For instance, no significant correlation was 

found with regards to the gender variable, which was not included in the model. 



likelihood of the completed data given the current parameter estimate and the observed data; 

unobserved data are filled in with their expected probability distributions.
4
 The M-step 

(Maximization) updates the current parameters by maximizing the data likelihood; i.e. the model 

parameters that best fit the data. The two steps are iterated until parameter convergence where a local 

optimal solution is reached. A 10-fold cross validation technique was used to train the parameters and 

evaluate the model inference for categorizing both the interaction trends and the four concurrent 
emotions (i.e. stress, confusion, boredom and frustration). The data set was divided into 10 subsets, 

where 9 subsets were used for the training and the remaining subset was used for the evaluation. The 

process was repeated 10 times, the accuracy estimates were averaged to yield the overall model 
inference accuracy reported in table 2 (DBN). The accuracy results were compared to a static 

approach (i.e. without the temporal dependencies) using static Bayesian networks (SBN), as well as to 

three non-hierarchical static formalisms namely: naive Bayes (NB) classifiers [77], decision trees 
(DT) [78] and support vector machines (SVM) [79]. 

 
Tab. 2 Model inference accuracy. Outright classification is done by assigning each instance to the class with the highest 
probability (maximum a posteriori procedure). Participants‘ matching self-reports are used as a ground truth. For the non-
hierarchical approaches (NB, DT and SVM), the inference is achieved only for the experienced trends. 
 

Target Classes DBN SBN NB DT SVM 

Interaction experience trend Flow, Stuck, Off-task  75.63 69.31 63.71 64.07 69.09 

Stress No (calm), Low, Moderate, High 61.09 47.01 N/A N/A N/A 

Confusion No (confidence), Low, Moderate, High 60.02 53.71 N/A N/A N/A 

Boredom No (interest), Low, Moderate, High 79.95 63.45 N/A N/A N/A 

Frustration No (satisfaction), Low, Moderate, High 67.46 55.36 N/A N/A N/A 

Interaction experience trend Positive, Negative 82.25 73.12 68.78 69.26 72.23 

Stress Calm to low stress, Moderate to high 82.18 68.95 N/A N/A N/A 

Confusion Confidence to low confusion, Moderate to high 81.88 67.41 N/A N/A N/A 

Boredom Interest to low boredom, Moderate to high 90.97 71.04 N/A N/A N/A 

Frustration Satisfaction to low frustration, Moderate to high 85.38 69.02 N/A N/A N/A 

 
As shown in table 2, two test cases were considered. The first case (top) categorizes three 

outcomes for the interaction experience trend namely: flow, stuck and off-task, and four outcomes for 

each emotion (e.g. the target variable stress has the following possible outcomes: calm (no stress), 
low, moderate or high stress). The second case (down) shows the accuracy of a binary categorization, 

where two outcomes are considered for both the experience trend and the emotion labels. Although 

there is a loss of information, this last setting is intended to focus on two reverse behaviors in a 
learner‘s experience and emotional responses. Thereby the experience trend is either positive/ 

favorable (i.e. flow) or negative/unfavorable (i.e. stuck or off-task). In the same way, each emotion 

can be either positive to low, or moderate to highly negative (e.g. calm to low stress, or moderate to 

high stress). In both cases, DBN yielded the highest accuracy rates for the experience trend and 
emotion recognition as compared to SBN, NB, DT and SVM. For the first test case, an accuracy rate 

of 75.63% was achieved for assessing the experience trend, and an accuracy ranging from 60.02% 

(for confusion) to 79.95% (for boredom), to discriminate between four levels of emotions. For the 
second (binary) case, an accuracy of 82.25% was reached for categorizing between a positive and a 

negative interaction, and an accuracy ranging from 81.88% to categorize between a state of 

confidence-to-low-confusion and moderate-to-high-confusion, to an accuracy of 90.97% to 
discriminate between the states of interest-to-low-boredom and moderate-to-high-boredom.  

These results suggest that the inference of a learner‘s interaction experience can be accurately 

achieved through probabilistic inference using three modality measures (physiology, behavior and 

                                                   
4 Unobserved data included missing information such as corrupted readings due to sensor failure. 



performance), in conjunction with context and person-dependent (profile) variables. The dynamic 

approach using a DBN outperformed the static approaches (SBN, NB, DT and SVM) that do not track 
the temporal evolution of the learners‘ states over time. Besides, with non-hierarchical formalisms 

(i.e. NB, DT and SVM), no distinction can be made between the input variables on the basis of their 

causal relationships to the learners‘ states (i.e. the predictive variables of the interaction experience on 

one side, and the diagnostic variables on the other side): all the features are equally entered as input 
variables for the three classifiers. Moreover with the three latter techniques, the recognition is done 

only for the interaction experience trends. Indeed unlike Bayesian networks (SBN and DBN), where a 

simultaneous inference of several target nodes is made possible through the two-layered hierarchical 
structure, these approaches do not allow a straight representation of several unknown classes 

simultaneously. 

 

 
Fig. 6 Inference of a learner‘s interaction experience from three modality measures (physiology, behavior and performance) 

and personal and contextual information. The observed evidence are given by the probability values of 100%. Posterior 

probability distributions are updated for the nodes associated to the interaction experience trend and emotional responses. 

 

The underlying inference of a learner‘s level of stress, confusion, boredom and frustration 
through the DBN, can be used as a dashboard for real time adaptation by continuously monitoring the 

learner‘s state and assessing the potential cause of a favorable vs. unfavorable interaction, so that an 

effective intervention can be undertaken. For instance in case of a favorable interaction (i.e. a high 
probability of flow), the tutoring system would let the learner free to go through the materials without 

interruption. Implicit interventions such as affective or cognitive primings, can be made to enhance 

the interaction experience without interrupting the learner‘s immersion (see [80] for more details). If 

the learner is about to get stuck (i.e. a high probability for stuck), an explicit intervention would be 
initiated, while taking into account the learner‘s emotional changes. For instance in case of high 

boredom, a more challenging task could be proposed. If frustration, hints could be made available for 

the learner. In case of high stress, the time constraints can be alleviated, and in case of confusion, a 
piece of advice or help can be proposed to guide the learner. Similarly, if the learner is about to give 

up (i.e. a high probability for the off-task trend), a different activity can be proposed with a varying 

level of challenge, constraints or help, depending on the predominant emotional states.  
Figure 6 depicts such an example where a learner‘s emotional responses and interaction 

experience trend are inferred using the trained DBN, as new evidence are introduced into the model 

(predictive and diagnostic nodes). The task at hand is the last trigonometric problem in series 3. The 

predictive variables are given by the current context: a high level of difficulty, no help provided and a 
time constraint imposed, the learner‘s current goal: finishing the activity, and characteristics: less than 

30 years, conscientious, low computer usage, low skills and does not like trigonometry. The 

diagnostic evidence are given by the learner‘s cerebral activity: low EEG engagement, dermal 



response: moderate GSR, and cardiac activity: low HR; behavioral variables: no help request, and low 

mouse movement rate; and performance: high response time, no-answer to the given problem, and 
low accuracy rate. The inference yields the following outcomes: a low level of stress (with a 

probability P = 58%), a moderate confusion (P = 41%), a high level of boredom (P = 58%) and a low 

frustration (P = 60%). The predominant inferred experienced trend is an off-task behavior (P = 77%). 

In this case, the system would for instance interrupt the learner to propose a break and change the type 
of the activity with a more challenging task, as a state of high boredom is detected with a high 

probably of giving up. 

 

 

6 Conclusion  
 
In this paper we described a hierarchical probabilistic framework to model the user's experience while 

interacting with a computer-based learning environment. The framework uses a dynamic Bayesian 

network to recognize three trends of the interaction experience, namely: flow or the optimal 
interaction (a total involvement within the task), stuck or the non-optimal interaction (a difficulty to 

maintain focused attention) and off-task or the non-interaction (a drop out from the task), as well as 

the emotional responses occurring subsequently. The network integrates three-modality measurements 
to diagnose the learner‘s experience namely: physiology, behavior and performance, predictive 

variables including contextual features and the learner‘s personal characteristics (profile), and a 

dynamic structure to track the temporal changes of the learner‘s state. An experimental protocol was 

conducted, while 44 participants performed different cognitive tasks (trigonometry, backward digit 
span and logic) with a gradual difficulty level to provoke the three-targeted trends, and analyze their 

relationship with the reported emotional responses. Three biofeedback devices were used to record 

participants‘ physiological activities including skin conductance, heart rate and EEG engagement. 
Behavioral variables included the help use and mouse movement rate, and performance measures 

included response time, answer and accuracy. 

The statistical analysis supported our hypothesis about the complexity of the relationship 
between emotions and learners‘ experiences. Results showed that concurrent emotional responses can 

be associated to the experiences of flow, stuck and off-task, and that the same trend could be 

expressed with different emotional patterns for different participants; which confirmed the importance 

of accounting for overlapping emotional changes and individual differences in the assessment of the 
learners‘ interaction experience. The evaluation of the proposed framework showed its capability to 

efficiently assess the probability of experiencing flow, stuck and off-task, as well as the emotional 

responses associated to each trend. The experimental results showed that our framework 
outperformed conventional non-dynamic modeling approaches using static Bayesian networks, as 

well as three non-hierarchical formalisms including naive Bayes classifiers, decision trees and support 

vector machines. An accuracy rate of 82% was reached to characterize a positive vs. a negative 

experience, and an accuracy ranging from 81% to 90% was achieved to assess four emotions related 
to the interaction namely stress, confusion, frustration and boredom.  

Our findings have implications for intelligent tutoring systems in particular, and for human-

computer applications more generally, seeking to acquire a precise monitoring of the user state, by 
simultaneously identifying concurrent emotional responses occurring during the interaction, and the 

tendency that characterizes their experiences within the task. As our next steps, we plan to enhance 

the proposed framework with a decision theoretic formalism, and incorporate it within a real time 
interaction based tutoring system, so that timely interventions can be formulated on the basis of the 

user‘s inferred state. Further diagnostic variables will be included within the model to track additional 

features of the user‘s experience including keyboard interaction patterns, facial expressions, etc., as 

well as a cognitive component to monitor the learner‘s skill acquisition process including the history 
of the presented concepts, the practiced skills, etc., to optimally adapt the pedagogical content and 

strategies according to the learner‘s state. 
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