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ABSTRACT 

Detecting the student internal state during learning is a key construct in educational environment and 
particularly in Intelligent Tutoring Systems (ITS). Students’ uncertainty is of primary interest as it is deeply 
rooted in the process of knowledge construction. In this paper we propose a new sensor-based multimodal 
approach to model users’ uncertainty from their affective reactions and cognitive and personal characteristics. 
An experimental protocol was conducted to record participants’ brain activity and physiological signals while 
they interacted with a computer-based problem solving system and self-reported their perceived level of 
uncertainty during the tasks. We study key indicators from affective reactions, trait-questionnaire responses, and 
individual differences that are related to uncertainty states. Then we develop models to automatically predict 
levels of uncertainty using machine learning techniques. Evidence indicated that students’ uncertainty is 
associated to their mental and emotional reactions. Personal characteristics such as gender, skill level, and 
personality traits also showed a priori tendencies to be more or less in particular uncertainty states. The SVM 
algorithm demonstrated the best accuracy results for classifying students’ uncertainty levels. Our findings have 
implications for ITS seeking to continuously monitor users’ internal states so they can ultimately provide 
efficient interventions to enhance learning. 
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Introduction 
 
Research in distance education, and more precisely in Intelligent Tutoring Systems (ITS), tended to privilege 
cognitive aspects of teaching in which the learning process was considered as a set of information processing steps 
devoid of affective aspects, until studies in cognitive science, artificial intelligence, and neuroscience show that the 
brain mechanisms associated with emotions are not only related to cognitive mechanisms (Cytowic, 1989), but also 
solicited in perception, problem solving, decision making, and other cognitive processes (Cytowic, 1989; Damasio, 
1994; Picard, 1997). Since then, various research areas including education, psychology, computational linguistics, 
and artificial intelligence devote a growing interest in the close links between affect and learning (Breazeal, 2003; 
Conati, 2002; Lester, Towns, & FitzGerald, 1999; Picard, 1997) as emotions have an impact on attention, motivation, 
memorization, and information processing (Goleman, 1996; Pekrun, 1992). 
 
Affective user modeling has become a key construct in human-computer interaction and particularly in ITS (Conati 
& Maclaren, 2005; Picard, 1997). Even if there is no validated universal theory on emotions neither any consensus or 
agreement about which emotional states are related or pertinent to learning (Picard et al., 2004; Woolf et al., 2009), 
some studies rely on theoretical models explicitly linking emotions to learning (D’Mello et al., 2008; Kort, Reilly, & 
Picard, 2001) while other research focus on particular states such as frustration (Burleson, 2006; McQuiggan, Lee, & 
Lester, 2007), stress (Prendinger & Ishizuka, 2005) or attention (Rebolledo-Mendez et al., 2009). 
 
Students’ uncertainty is of primary interest as it is considered among the most recurrently observed states during 
computer tutoring and due to its theorized relationship to learning (Craig et al., 2004; Graesser & Olde, 2003; Kort et 
al., 2001; Pon-Barry et al., 2006; VanLehn et al., 2003). Indeed, the state of uncertainty is deeply rooted in the 
process of knowledge construction; it is related to a state of confusion or hesitation that one inevitably goes through 
when a misconception or a lack of knowledge or understanding arises. It can also signal a lack of confidence with 
regards to ones self-efficacy in performing specific tasks. Depending on the case and the frequency of this state, a 
tutor can decide either to intervene by providing appropriate aid or hints to help the student to clear up his 
misconception, encouraging him to be more confident in the learned concepts, or to let him get over this state by 
himself. 
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Hence, a tutoring system has to efficiently identify the student’s state in order to formulate the appropriate response 
and adapt his pedagogical strategies accordingly. Nevertheless, actual ITS still cannot compete with human tutors 
who can readily detect from a glance that a student appears uncertain. In most work so far, uncertainty modeling 
relied on acoustic-prosodic, lexical, or discourse features extracted from utterance/dialogue-based system 
interactions (D’Mello et al., 2008; Liscombe, Hirschberg, & Venditti, 2005; Pon-Barry et al., 2006). However, 
uncertainty has barely been linked to learners’ emotional and mental manifestations. We consider that this state 
inevitably involves these dimensions, and that current discourse/utterance features can be insufficient or even 
imprecise, as they cannot always reflect users’ uncertainty. We also believe that uncertainty encompasses as well, 
cognitive factors and is specific to each individual and context. 
 
In this paper we propose a new multimodal sensor-based approach to model learner uncertainty by integrating these 
factors. We use various data sources from learners’ electrophysiological activity assessing their mental and 
emotional reactions as well as cognitive and personal characteristics. The hypotheses we establish is that (1) these 
features are related to the state of uncertainty and (2) can effectively predict a learner’s uncertainty level. An 
experimental study was conducted to test these hypotheses. In this experiment, an acquisition protocol was 
established to record student affective reactions, trait-questionnaire responses and individual differences while they 
interacted with a logical problem solving system and expressed various levels of uncertainty. 
 
Our approach is two-fold: First we analyze key trends that are associated to uncertainty, then we develop predictive 
models to automatically assess uncertainty states, which involves training machine learning algorithms using 
reported levels of uncertainty to supervise the classification process. Evidence indicated significant correlations 
between the electrophysiological sensor data and students' reported uncertainty levels. Personal characteristics such 
as gender, skill level, and personality traits also showed a priori tendencies to be in particular uncertainty states. The 
SVM algorithm demonstrated the best accuracy results for classifying students’ uncertainty levels. 
 
This paper is structured as follows. In the first section we present related work on automatic detection of students’ 
uncertainty and sensor-based affective modeling in the tutoring community. In the second section we describe our 
experimental setup and methodology. In the third section we present and discuss the obtained results. We conclude in 
the fourth section and present future work. 
 
 
Related work 
 
Promising results have been reported on correlating uncertainty to learning (Craig et al., 2004; Graesser & Olde, 
2003; Kort et al., 2001; Pon-Barry et al., 2006; VanLehn et al., 2003). VanLehn et al. (2003) view uncertainty as a 
“learning impasse” that occurs when students realize that they lack knowledge, getting thus more involved to 
understand the material they are learning and about which they are uncertain. This creates an opportunity for the 
student to engage in constructive learning. Grasser and Olde (2003) describe uncertainty as a “cognitive 
disequilibrium” in which learners confront difficulties that fail to match their expectations, which causes deliberation 
and inquiry aimed at restoring cognitive equilibrium. Other studies show that adapting and responding to student 
uncertainty can greatly improve learning (Forbes-Riley & Litman, 2010; Pon-Barry et al., 2006).  
 
Besides significant studies have been conducted on automatically recognizing uncertainty in tutoring systems 
(Carberry & Schroeder, 2002; D’Mello et al., 2008; Liscombe et al., 2005; Pon-Barry et al., 2006). Pon-Barry et al. 
(2006) for example, used linguistic cues (such as hedges, response latencies, or filled-pause signals) extracted from 
human tutoring corpus through a frequency analysis to detect users’ uncertainty in a tutoring system. Liscombe et al. 
(2005) used acoustic-prosodic features to classify student uncertainty in a corpus collected from a speech-enabled 
intelligent tutoring system. Carberry and Schroeder (2002) proposed an algorithm to recognize doubt by examining 
linguistic and contextual features of dialogue in conjunction with world knowledge including stereotypical beliefs 
ascribed to the dialogue. We believe, however that uncertainty is a rather complex state, which inevitably involves an 
affective dimension manifested by particular mental and emotional activations and is specific to each individual and 
context and that current discourse/utterance features can be insufficient or even imprecise, as they cannot always 
reflect users’ uncertainty. The main contribution of this study is to propose an alternative approach for uncertainty 
recognition based on new information sources such as users’ affective reactions and personal characteristics. 
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On the other side, the integration of physiological data combined with artificial intelligence techniques in ITS proved 
their effectiveness in assessing user state, trying to bridge the gap between actual tutoring systems and face to face 
education and improve technology’s adaptability by accurately detecting student’s affect, adapting tutorial 
interventions, and providing appropriate strategies to assist him to foster optimal conditions for learning (D'Mello et 
al., 2005; McDaniel, et al., 2007; Picard, 1997; Prendinger & Ishizuka, 2005; Woolf et al., 2009). Most of these 
studies use non-intrusive sensors to analyze a variety of physical cues including observable changes like face 
expressions, body postures, vocal tones, and physiological signal changes such as heart rate, skin conductivity, 
temperature, or respiration. 
 
Moreover, with the advent of consumer oriented electroencephalograms (EEG), it is now possible to measure a 
learner’s mental state with a high time resolution and precision and develop systems that directly modulate their 
tasks to neural indexes of cognition. The growing progress in developing portable, convenient, and low cost EEG 
headsets and devices allows using EEG technology within operational educational environments (Chaouachi, Jraidi, 
& Frasson, 2011; Stevens, Galloway, & Berka, 2007). Neural research established various EEG-based mental gauges 
of alertness, engagement, or executive load using features extracted from power spectral density (PSD) bands or 
event related potential (ERP) components (Pope, Bogart, & Bartolome, 1995; Prinzel, Freeman, & Scerbo, 2000; 
Sterman et al., 1993). More precisely, EEG studies on mental concentration and attention defined an EEG indicator 
of attention to internal processing during performance of mental tasks (Harmony et al., 1996). They have found that 
an increase of the brain activity within the delta and low theta frequency band is related to an increase in subjects’ 
mental concentration. 
 
In this paper, we propose a new multimodal sensor-based approach to model students’ uncertainty by integrating 
affective indicators using neurological and physiological sensors to track users’ emotional activations and mental 
concentration as well as cognitive and personal criteria within a problem solving context. We seek to identify key 
trends/indicators that are related to uncertainty states and develop a predictive model to assess students’ uncertainty 
levels. 
 
 
Methodology and experimental design 
 
The experimental setup consists of a problem solving system, a 6-channel EEG headset, physiological sensors, and 
two video feeds. Data were synchronized using necessary time markers in order to integrate the recorded signals with 
the rest of the instrumental setup under specific (un)certainty states. The problem solving system consists of a series 
of logical tasks that do not require particular perquisites but involve a high level of attention. These tasks imply 
inferential skills on information series and are typically used in brain training exercises or tests of reasoning. The 
system is composed of 3 modules. Each module is concerned with specific forms of data: the first module deals with 
geometrical shapes, the second module with numbers, and the third module with letters. Each module starts with a 
tutorial explaining the task and giving examples to get users accustomed with the types of problems. Then, 5 
multiple-choice questions related to each tutorial are given. Learners were asked to respond as quickly and efficiently 
as possible. They were informed that a correct answer is rewarded 4 points, -1 point is given for a bad answer, 
whereas 0 point is given for a no-answer. A fixed time limit of 80 seconds for each question was imposed. Failing to 
give an answer within the allowed time was considered as a no-answer. We detail our methodology and protocol in 
the following subsections. 
 
 
Considerations for uncertainty elicitation 
 
One of the most important points in this study was to obtain accurate data related to specific uncertainty states. Thus 
problem tasks were selected in a way that potentially causes uncertainty. To choose the right answer, learners needed 
to deduce a logical rule. Without this rule, the learner was not able to be sure of his answer. Moreover, problems had 
different difficulty levels and some of them involved a second rule to decide between two answers that both match 
the first rule. For instance in the geometrical module, three shapes were successively presented in the interface. The 
first shape represented a black triangle, the second a white rectangle and the third a black pentagon. The learner was 
then asked to deduce the fourth element by choosing one answer among five possibilities. In this example, the rule 
that one should deduce is to add a side in each shape and the correct answer would be a hexagon. Two hexagons 
(black and white) were included among the propositions and only one matches to the second rule that one should also 
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deduce (i.e., alternating between the two colors) and the correct answer would be the white hexagon. Other questions 
were designed to systematically mislead the learners. For instance in the number-based module, two perpendicular 
data series were presented. In the vertical series all the numbers were multiples of seven and in the horizontal series 
all the numbers were multiples of five. In this task, one should deduce the missing intersection element, which 
should be a multiple of both five and seven. But no such element was given among the possible answers.  
 
After each question, the system interacted with the learners and prompted them to report how they answered to the 
question by choosing between the following: “I was certain about my response” or “I was uncertain about my 
response.” Furthermore to assess uncertainty granularity levels, learners were prompted to choose between the 
following: “I was certain at 50% or more” or “I was certain at less than 50%”, whenever an uncertain response was 
reported. Hence three possibilities can be registered for each question: certain (Cert), uncertain (Uncert) and no-
answer (No_Resp) with two possible granularity levels for Uncert, namely certain at 50% or more (Low_Uncert) or 
certain at less than 50% (High_Uncert). 
 
 
Electrophysiological recordings 
 
Three types of sensors were used during the experiment namely electroencephalogram (EEG), skin conductance 
(SC), and blood volume pulse (BVP) sensors. Data were digitized using the ProComp Infinity multi-channel data 
acquisition system (Thought Technology Ltd., 2007). 
 
EEG is a measurement of the electrical brain activity produced by the synaptic excitations of neurons. During the 
session, learners wore a stretch electro-cap and EEG was recorded from sites P3, C3, Pz, and Fz as defined by the 
international 10-20 electrode placement system (Jasper, 1958). Each site was referenced to Cz and grounded at Fpz. 
Two more active sites were used namely A1 and A2 typically known respectively as the left and right earlobe. This 
setup is known as the “referential linked ear montage” and is depicted in figure 1. In this montage, roughly speaking, 
the EEG signal is equally amplified throughout both hemispheres. Moreover, the “linked-ear” setup yields a more 
precise and cleaner EEG signal by calibrating each scalp signal to the average of the left and right earlobe sites. For 
example, the calibrated C3 signal is given by (C3 - (A1 + A2) / 2). Each scalp site was filled with a non-sticky 
proprietary gel from Electro-Cap and impedance was maintained below 5 Kilo Ohms. Any impedance problems 
were corrected by rotating a blunted needle gently inside the electrode until an adequate signal was obtained. The 
recorded sampling rate was at 256 Hz. Due to its weakness (on the order of micro volts), the EEG signal needs to be 
amplified and filtered. Besides, the electrical brain signal is usually contaminated by external noise such as 
environmental interferences caused by surrounding devices. Such artifacts alter clearly the quality of the signal. Thus 
a 60-Hz notch filter was applied during data acquisition to remove these artifacts. In addition, the acquired EEG 
signal easily suffers from noise caused by user body movements or frequent eye blinks. Thus a 48-Hz high pass and 
1-Hz low pass de-noising filters were applied. 
 

 
Figure 1. EEG channel electrode placement 

 
BVP and SC sensors were placed in the resting left hand fingers. Data were recorded at a sampling rate of 1024 Hz. 
SC measures changes in the resistance of the skin produced by the sweat gland activity. A tiny voltage is applied 
through two electrodes strapped to the first and middle fingers on the palm side. This establishes an electric circuit 
and allows us to quantify the skin's ability to conduct the electricity. BVP sensor was placed on the tip of the ring 
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finger. It emits an infrared light and measures the amount of light reflected by the surface of the skin. This amount 
varies with the amount of blood present in the skin and thus with each heartbeat. 
 
 
Affective data gathering 
 
From the EEG raw signals, we computed mental concentration. As previously mentioned, this neural index is given 
by the brain activity within the delta and low theta (delta_low_theta) frequency band (Harmony et al., 1996). An 
EEG power spectrum was calculated for each electrode site using a Fast Fourier Transformation and the needed 
frequency band was extracted (1.56 - 5.46 Hz). We then computed a relative power value from the transformed 
signal by calculating the rate of the delta_low_theta sub-band range over the total EEG frequency band range (1.56 – 
48 Hz). EEG relative power values were then summed from the electrode sites P3, C3, Pz, and Fz to compute the 
global ratio. A mean relative power band rate was measured for each task of the logical test.  
 
SC signals were used to derive the galvanic skin response (GSR) widely known to linearly vary with the arousal 
ratings (Lang, 1995). It increases as a person becomes more stressed. From the BVP signal, the heart rate (HR) was 
calculated by measuring the inverse of the inter-beat intervals (distance between successive pulse peaks). The HR is 
extensively applied to understand the autonomic nervous system function and has shown a close correlation to 
valence (Lang, 1995). Both mean HR and mean GSR values were recorded for each entry. Normalization was done 
by subtracting current values from the baseline, and dividing the difference by the standard deviation. 
 

 
Figure 2. Russell’s Circumplex model of emotions with regions 

 
HR and GSR were jointly used to measure specific emotional activations as emotions can be characterized in terms 
of judged valence (negative to positive) and arousal (low to high) (Lang, 1995). We used Russell’s Circumplex 
model of emotions (Russell, 1980) that classifies emotions within the two-dimensional arousal/valence emotional 
space. Two strategic emotional regions were defined during learning as depicted in figure 2. The first region involves 
negative emotions like frustration, boredom, or anger (negative region I and II) and should be avoided. The second 
region is the target emotional region specified by a slight positive valence and neutral arousal. This region is 
assumed to provide a maximum of efficiency and productivity in learning (Kaiser, 2006). In our study, we focused 
on the proportions of positive emotions within the target region for each question. We weighted then the number of 
HR and GSR recordings corresponding to this region by the total number of recordings. 
 
 
Participants and protocol 
 
Thirty-eight learners (14 women) with a mean age of 27.31 ± 6.87 years ranging from 19 to 47 years were recruited 
for the experiment. Participation was compensated with 10 dollars. Upon arrival at the laboratory, participants were 
briefed about the experimental objectives and procedure and asked to sign a consent form. Learners were then 
outfitted with the sensors and a 5-minute baseline was recorded to establish a neutral state for the 
electrophysiological parameters. Problem solving tasks were then completed and response time was recorded for 
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each question. Learners were then asked to fill in information about their age, gender, skill level in logical based 
problem solving (low, or medium to high), and scales on a personality test, namely the Big Five Inventory (BFI). 
This test scales personality traits according to five dimensions, namely Openness, Conscientiousness, Extraversion, 
Agreeableness, and Neuroticism (OCEAN) (John, Naumann, & Soto, 2008). 
 
 
Results and discussion 
 
Our main hypotheses were that users’ brain activity, emotional reactions, and cognitive and personal characteristics 
(1) are related to their uncertainty level, and (2) can be effectively used to predict their actual uncertainty state. 
Figure 3 shows the general architecture of our approach. After completing the recording process (described in the 
previous section), we first identify through correlational analyses, key indicators from the recorded data that could be 
associated to uncertainty (I). Then we develop predictive models to detect levels of uncertainty using machine 
learning algorithms (II).  
 

 
Figure 3. General architecture of the sensor-based approach 

 
A total of 570 entries (15 questions x 38 participants) were gathered from this experiment: 323 for Cert responses 
(56.67%), 189 for Uncert (33,16%) with 103 entries for High_Uncert (54.50%) and 86 Low_Uncert (45.50%), and 
58 No_Resp (10.17%). We detail in the following subsections the results obtained from both analyses. 
 
 
Key trends in learners’ uncertainty  
 
We started by investigating the relationships between learners’ uncertainty and their affective reactions according to 
the electrophysiological signals recorded across the four response types of the problem solving questionnaire. 
Statistical testing was performed using one-way analyses of variance (ANOVA). Figure 4 shows the results for the 
means of delta_low_theta relative power rates, HR, and proportions of emotions within the target region of Russel’s 
Circumplex model of emotions. 
 
First, a main effect of response type was found for the delta_low_theta relative power values. An although small but 
significant difference was observed across the four conditions (F(3, 566) = 3.559, p < 0.05). This suggests that a 
statistically significant difference of mental concentration (signaled by the rates of the delta_low_theta power band) 
exists between the four reported levels of uncertainty. We observed the highest rates of delta_low_theta for the 
No_Resp and the High_Uncert groups of answers. This suggests that a state of certainty (i.e., the learner is sure of 
his reasoning and hence his response) does not necessarily imply a higher level of mental concentration and that 
being uncertain does not mean a lack of mental concentration but can be instead a sign of that if we also consider that 
in the No_Resp, learners were indeed very uncertain and did not take the risk to respond so they do not lose one 
point from the final score of the quiz, or that they did not find the answer within the allowed time. One can explain 
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this from another perspective, i.e., in case of uncertainty, the learner tends to be more focused and involved, trying 
harder to reach the solution of the problem and having difficulty in finding the logical rule between the data, which 
costs him a higher level of mental concentration as opposed to a state of certainty in which he is more at ease with 
the exercise. This confirms previous studies about the theorized relationship between learning and uncertainty (Craig 
et al., 2004; Graesser & Olde, 2003; Kort et al., 2001; Pon-Barry et al., 2006; VanLehn et al., 2003) where it is 
suggested that uncertainty can signal the advent of constructive learning, since that students tend to be more engaged 
to understand and clarify the fuzzy knowledge and concepts causing their uncertainty. 
 

 
Figure 4. Comparison of affective variables for the four different response types.  

The error bars denote the standard error 
 
Second, a statistically significant difference between the types of responses was found for the HR signals 
(F(3, 566) = 2.709, p < 0.05). The group of Cert responses was significantly associated with the highest HR values 
suggesting that the more certain the students were about their answers, the more likely they tended to have positively 
valenced emotions. Positive valence for affective modeling -even if there is no wide agreement upon its 
interpretation- is more associated to positive emotions (Lang, 1995). This interpretation strengthens the intuitive fact 
that when a student is certain about his response, he tends to manifest a calm attitude and express positive emotions 
like satisfaction or joy. However, a state of uncertainty is usually related to negative emotions like confusion, 
dissatisfaction, or frustration. 
 
No significant differences were found between the groups of answers for the GSR data (F(3, 566) = 1.623, p = n.s.), 
suggesting that the types of responses were not related to the intensity of the emotional reactions (arousal) but rather 
to their valence. In order to go further within this analysis, we considered the proportions of positive emotions within 
the target region of the Circumplex model, given by a slight positive valence and neutral arousal. We found a 
statistically significant difference of the mean of target emotional proportions across the four types of responses 
(F(3, 566) = 3.361, p < 0.05). We observed the highest proportions for the Cert responses, which suggests that the 
learners were more frequently within the target region when they were certain about their answers.  
 
Based upon the obtained results, different trends in terms of concentration, valence, and positive emotional 
activations can be related to the state of uncertainty. Other interesting trends were observed looking at the response 
time across the four groups of responses; we found a statistically significant difference between the four conditions 
(F(3, 566) = 137.925, p < 0.01). The shortest response times were observed for the Cert responses (M = 29.75, SD = 
19.00) compared to Low_Uncert (M = 54.39, SD = 20.11), High_Uncert (M = 66.42, SD = 12.73), and No_Resp (M 
= 59.10, SD = 20.35). Indeed, one can expect that a learner responds faster when he is certain about his answers than 
when he is uncertain and can take more time to try to figure out the solution. This natural tendency confirms that 
learners’ response time should be taken into account for an accurate uncertainty assessment. 
 
In our next investigation we analyzed learners’ individual a priori tendencies to be in particular (un)certainty states. 
We examined the impact of personal characteristics namely age, personality traits, gender, and skill level in the 
logical based problem solving tasks, by looking at the eventual individual associations between these criteria and the 
number of answers for each level of (un)certainty.  
 
First, we ran bivariate correlations to assess the relationships respectively between participants’ age and each of the 
five personality trait scales (OCEAN) and the number of answers for the different considered types of responses. No 
significant correlation was found with regards to the age variable. However, for the personality traits, statistically 
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significant Pearson’s correlation coefficients (r) were found for the conscientiousness trait scale. Table 1 summarizes 
the correlational results. Interestingly, we found a positive although low correlation between the conscientiousness 
trait scale and the number of Cert responses (r = 0.364), a low negative correlation with the number of Uncert 
responses (r = -0.399), and a moderate negative correlation with the number of High_Uncert responses (r = -0.501). 
These correlations were statistically significant (p < 0.05) suggesting that the more conscientious the participant was, 
the more he tended to be uncertain in the logical quiz. 
 

Table 1. Bivariate correlational results  
Correlation between the conscientiousness personality trait and the uncertainty levels (N = 38) 

Response Type r p 
Cert 0.364* 0.025 
Uncert -0.399* 0.013 
Low_Uncert 0.076 0.652 
High_Uncert -0.501** 0.001 
 No_Resp -0.019 0.908 
* Correlation is significant at the 0.05 level (2 tailed). 
** Correlation is significant at the 0.01 level (2 tailed). 
 
Second, one-way ANOVAs were performed to test the associations between the number of answers of each response 
type and respectively, participants’ perceived skill level in logical problem solving and the gender variables. A 
statistically significant effect of the skill level was found for the number of Cert responses (F(1, 36) = 4.346, p < 
0.05) and for the number of High_Uncert responses (F(1, 36) = 4.268, p < 0.05). Results revealed that learners with 
moderate to high skill level had more certain answers (M = 9.18, SD = 2.23) than learners with low skill level (M = 
7.56, SD = 2.52) and less highly uncertain answers (M = 2.18, SD = 1.65 versus M = 3.44, SD = 2.09). This suggests 
that participants with moderate to high skills in logical based problem solving were more certain about their answers 
in the logical quiz than participants with a low skill level. A significant effect of gender was also found for the 
number of High_Uncert responses (F(1, 36) = 4.872, p < 0.05). Women reported more highly uncertain responses 
(M = 3.57, SD = 2.13) than men (M = 2.21, SD = 1.64). These results underline the importance of individual 
characteristics/differences (such as gender, skill level, or personality traits) for a multidimensional modeling of 
uncertainty. 
 
 
Uncertainty prediction 
 
In the previous section we were interested in identifying indicators that can distinguish between learner trends and 
contribute in assessing levels of uncertainty. It was found that several facets from their electrophysiological activity 
as well as cognitive and personal parameters were significantly related to their state of uncertainty confirming hence 
our first hypothesis. In this section we are interested in the second hypothesis of this research that is a combination of 
these factors can reliably assess a user’s uncertainty level. We train classifier models by taking as an input, features 
that revealed statistically reliable associations with the (un)certainty levels namely delta_low_theta rate, HR, target 
emotions proportions, response time, gender, skill level and the conscientiousness trait scale.  
 
First, we trained a binary classifier to predict the Uncert from the Cert responses. Then, we extended the analysis to 
predict users’ uncertainty in a more detailed level (High_Uncert, Low_Uncert, Cert). Besides, two separate datasets 
were considered. In the first dataset, No_Resp samples were either included with the Uncert samples or gathered in a 
separate class. In the second dataset, No_Resp samples were discarded. This separation is motivated by the 
ambiguous interpretation of the No_Resp samples (10.17% of the data). Does a no-response mean a high level of 
uncertainty such that the learner was unable to reach the solution of the problem within the allowed time or did not 
take the risk to respond? Or does it merely indicate that the learner did not have the time to respond even if he knew 
the correct answer? Table 2 shows the accuracies of classification results from three machine learning algorithms 
namely Decision Tree (DT), Naïve Bayes (NB) classifier, and Support Vector Machines (SVM) (Witten & Frank, 
2005).  
 
Prediction performance was evaluated using a K-fold cross validation technique (Efron & Tibshirani, 1993). The 
input dataset is divided into K subsets. The classifier is trained on K-1 subsets and evaluated on the remaining subset. 
This process is repeated K times, the accuracy estimates are averaged to yield the overall classifier accuracy. This 
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study employed the Weka software (Witten & Frank, 2005), a collection of machine learning algorithms intended for 
data mining tasks. We used the software’s default parameters for the three algorithms with K = 20.  
 

Table 2. Classifier accuracy results1st dataset (No_Resp included) 
Classes DT NB SVM 
Cert, Uncert 77.37% 78.42% 79.64% 
Cert, Uncert, No_Resp 72.46% 71.58% 73.33% 
Cert, Low_Uncert, High_Uncert, No_Resp 64.56% 63.68% 65.08% 

2nd dataset (No_Resp excluded) 
Classes DT NB SVM 
Cert, Uncert 78.90% 80.86% 83.25% 
Cert, Low_Uncert, High_Uncert 73.84% 71.67% 74.46% 
 
As presented in table 2, the SVM classifier has shown the highest prediction rates in all cases with accuracies 
ranging from 65.08% for the 4-class model (Cert, Low_Uncert, High_Uncert, No_Resp) to 83.25% for the binary 
model (Cert, Uncert) excluding the no-answers from the training set (2nd dataset). Indeed, we noticed that merging 
the No_Resp examples in the Uncert category slightly decreases the quality of the model to 79.64% (Cert, Uncert 
binary model in the 1st dataset), which suggests that trained models are clearly sensitive to the introduced inputs and 
hence that the no-answers can eventually involve both uncertainty and certainty states, which introduces a bias in the 
model. 
 

Table 3. Classifier accuracy results without the sensor data 
1st dataset (No_Resp included) 

Classes DT NB SVM 
Cert, Uncert 69.66% 70.64% 72.07% 
Cert, Uncert, No_Resp 68.26% 67.22% 69.28% 
Cert, Low_Uncert, High_Uncert, No_Resp 57.80% 60.73% 62.08% 

2nd dataset (No_Resp excluded) 
Classes DT NB SVM 
Cert, Uncert 70.90% 72.07% 74.66% 
Cert, Low_Uncert, High_Uncert 68.58% 67.32% 70.69% 
 
These results confirm our second hypothesis. That is a classifier model of a user’s uncertainty state can be built on 
the basis of a multimodal combination of factors from affective variables, namely mental concentration, valence, and 
positive emotional activations, trait-questionnaire features such as the response time and individual differences such 
as gender, skill level, and personality trait scales. Results also suggest that this approach can be further extended to 
handle several levels of uncertainty. We believe that our method could be an appropriate alternative for an ITS to 
automatically assess users’ uncertainty states using machine learning techniques applied to EEG, GSR, and HR 
measures using non-intrusive sensors, as well as cognitive and personal criteria, so that ultimately, the prediction 
could be used to guide learning during computer-based education.  
 
In order to highlight the contribution of these additional sensors, we replicated our analysis by excluding all the 
sensor data from the prediction models’ inputs. Table 3 shows the results of the classification results from the three 
algorithms using the same above setup. Accuracy rates ranged from 57.80% for the 4-class model (Cert, 
Low_Uncert, High_Uncert, No_Resp) in the 1st dataset to 74.66% for the binary model (Cert, Uncert) excluding the 
no-answers in the 2nd dataset. Prediction performance decreased for the three algorithms in all the cases as compared 
to the previous approach including the sensor data. These results confirm that a multimodal sensor-based method 
yields more accurate predictive models. For instance, for the best-case binary model (Cert, Uncert), the prediction 
accuracy of the SVM classifier decreased from 83.25% to 74.66% for the same considered settings. This suggests 
that there is a non-negligible contribution and an obvious advantage of integrating affective data through these 
electrophysiological sensors to assess learners’ uncertainty states and that endowing ITS with capabilities to track 
learners’ mental and emotional reactions could give rise to more accurate user one-line monitoring and thereby 
eventually providing intelligent assistance and more efficient automated interventions and tutorial adjustments. 
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Conclusion and future works 
 
In this paper we have proposed a new multimodal sensor-based approach to assess students’ uncertainty on the basis 
of their cerebral and emotional behavior using electrophysiological data with cognitive and personal variables. An 
experimental protocol was established by recruiting 38 participants to record EEG, BVP, and SC signals as well as 
trait-questionnaire responses and individual criteria namely age, gender, skill level, and personality trait scales. 
Participants interacted with a logical problem solving system designed to elicit uncertainty and reported their 
perceived level of uncertainty regarding each answer. These responses were used to supervise the classification 
process. 
 
Results confirmed that students’ cerebral activity and emotional reactions in terms of mental concentration, HR, and 
positive target emotions with regards to the Circumplex model of emotions were significantly associated to different 
uncertainty levels. We also observed that participants’ individual differences contributed to some trends to be in 
particular uncertainty states. Finally, we developed classifiers to automatically predict levels of uncertainty using 
machine learning techniques, with the SVM algorithm demonstrating the best accuracy results (83.25%), and showed 
that a sensor-based modeling approach yields more precise predictions as opposed to a conventional modeling. This 
work should however be extended with a deeper comparative study with regards to current methods of uncertainty 
assessment.  
 
Our future research trends will be focused on using this sensor-based approach to track the students’ states and guide 
the teaching process in a way that enhances users’ cognitive abilities and learning performance. In the short term, we 
are planning to extrapolate uncertainty models within more complex learning situations, gathering more data, and 
refining the models by incorporating further parameters from learners’ profiles. In the long term, we will be 
interested in developing a tutor that will integrate real time model predictions and select appropriate pedagogical 
strategies according to the classifiers’ outputs. The tutor will use associations between user’s actions and internal 
states to adjust the tutoring content. Further variables such as the frequency of user’s uncertainty, history of the 
presented concepts and system’s interactions, and answer correctness will be considered to track the subjacent 
potential cause of uncertainty and adapt the problem difficulty levels and the adequate support to the user.  
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