Impact of Problem Centralization in Distributed Constraint
Optimization Algorithms

John Davin and Pragnesh Jay Modi
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213

{jdavin, pmod{@cs.cmu.edu

ABSTRACT

Recent progress in Distributed Constraint OptimizatioobRyms
(DCOP) has led to arange of algorithms now available whifflerdi
in their amount of problem centralization. Problem ceitedion

can have a significant impact on the amount of computation re-

quired by an agent but unfortunately the dominant evalnatiet-
ric of “number of cycles” fails to account for this cost. Weaan
lyze the relative performance of two recent algorithms fG@Q@P:
OptAPO, which performs partial centralization, and Adaplich
maintains distribution of the DCOP. Previous comparisoAdadpt

and OptAPO has found that OptAPO requires fewer cycles than

Adopt. We extend the cycles metric to define “Cycle-Based-Run
time (CBR)” to account for both the amount of computation re-
quired in each cycle and the communication latency betwgen c
cles. Using the CBR metric, we show that Adopt outperforms
OptAPO under a range of communication latencies. We alsp ask
What level of centralization is most suitable for a given ooumi-
cation latency? We use CBR to create performance curvebriee t
algorithms that vary in degree of centralization, namelpptl Op-
tAPO, and centralized Branch and Bound search.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems

General Terms
Algorithms

Keywords

Constraint Satisfaction/Optimization

1. INTRODUCTION

The Distributed Constraint Optimization Problem (DCOR) gen-
eral framework for distributed problem solving that has alevi
range of applications in Multiagent Systems and has gesa:sag-
nificant interest from researchers [6, 11, 5, 4, 2, 12, 8, AQCOP
assumes that problem variables and constraints are digttibmong

AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.

a set of agents who must communicate to find an optimal assign-
ment of values for the variables.

Mailler and Lesser have recently proposed a complete, asynous
algorithm for DCOP, named Optimal Asynchronous Partial©ve
lay (OptAPOQ) [8]. This algorithm uses a novel approach to IRCO
in which variables and constraints are partially centealiduring
problem solving. A dynamically chosen agent who collectsbpr
lem constraints is called a “mediator” and the general aggtas
termedcooperative mediatian

The cooperative mediation approach to DCOP is novel (ir) bart
cause it provides the first middle point on a spectrum thagean
from very centralized to more decentralized approachesGOR.
In a very centralized approach, all agents communicatehaelt t
constraints to a single agent in the first step of the algorigmd
a centralized optimization technique is applied, such a<lhssic
Branch and Bound algorithm [3]. At the decentralized endhef t
spectrum, Modi et al. [10] have previously proposed an aggtdo
DCOP, named ADOPT (Asynchronous Distributed OPTimizgtion
that is more decentralized because agents do not explcithmu-
nicate their constraints to others (although some indirdorma-
tion about constraints can be leaked). OptAPO falls someine
the middle of this spectrum of centralization.

The degree of problem centralization, or equivalently, aheunt
of constraints that are communicated during an algoritlerécu-
tion, can have a significant impact on the amount of compartati
required at each agent. As an agent’s subproblem grows had &
greater number of constraints to process, it requires ise@ com-
putational effort. Thus, in order to compare algorithmst ttadl
on different points along our centralization spectrum, arim¢hat
takes local computation effort into account is needed.

The dominant metric for evaluation of DCOP algorithms is vem
of synchronouscycles[13]. In cycle-based execution, all agents
operate concurrently within a cycle, but do not move to thet ne
cycle until all agents have completed their computationgfthe
previous cycle. Any message sent in a cycle is not receivéitl un
the next cycle. While not perfect (see Meisels et. al. [9] Britb

et. al. [1] for a discussion), the cycles metric provides r@venient
method to assess the performance of an asynchronous higorit
True asynchronous execution of a DCOP algorithm is diffitmilt
measure reliably because of the exponential number oflpgessi-
ecution paths that differ significantly in their runtimeshug for
repeatable results, it is often most practical to execut€®P al-
gorithm in a synchronous fashion on a single computer, aad th

00 20000 4

50000
70000 4
0000 4
Q50000
040000 4
30000 4
20000
10000 4
0 T f 7] 04

4000 =

a0

Cycles

2000 ®

1000

—x—Adopt

—x— A dapt
—a— Opta PO

—a— OptAPOQ

5000000

40000

3000000

CCC+L "Cycles

2000000

CBR

1000000

bl
.fo

LI i}

Variables

(a) Number of Cycles

Figure 1: (a) OptAPO requires fewer number of cycles than Adpt

12 16
Variables

(b) Concurrent Constraint Checks

g 12 168 20
Variables

20

(c) Cycle-Based Runtime

, as shown in previous research, (b) But requires an incresed

amount of computation as measured by constraint checks. (&/hen both constraint checks and communication latency (wh L=100)

are accounted for, Adopt outperforms OptAPO.

“number of cycles” metric provides a useful way to measuig th
execution.

Although convenient, the cycles metric does not measurartiwaint

of computation required by the algorithm, i.e., length aflteeycle.

As we have described, taking this factor into account is sy
when comparing algorithms that vary in their degree of cdizt-
tion. To address this issue, we extend the cycles measutémen
include the local computation costs of the algorithm. We ese
current constraint checks (cct) measure the amount of computa-
tion within a cycle [9]. We define a new metric, called Cyclasgd
Runtime (CBR), that takes into account two aspects of rumtim
the computation time as measured by number of ccc and communi
cation time as measured by the latency between cycles. Tl CB
metric still requires agents to execute in synchronousesyethich

we believe continues to be a useful method for analysis, lsot a
incorporates computational cost, allowing us to more cetepy
measure an algorithm’s performance than with cycles alone.

We investigate two issues. First, using CBR, we compare ¢e p
formance of algorithms that vary in their degree of cerntedlon.
Existing research [8] has found that OptAPO outperforms pido
in terms of cycles. We reproduce those results. Howevengusi
CBR as a comparison, we show that Adopt performs better than
OptAPO for a range of communication latencies. Second,Useca
CBR takes into account communication latency, which is @pro
erty of the communication environment in which the algaritop-
erates, we can ask which algorithm is most appropriate fensi
ronment with a given latency. We evaluate three algorithmthe
spectrum of centralization: Adopt, OptAPO, and a fully catized
approach. By comparing all three algorithms using the CBRime
we are able to provide a comparison of how differing levelsent-
tralization perform under various communication lateacié his
analysis is important because it provides assistance éargsers
applying DCOP algorithms within new environments to deieem
the most appropriate level of centralization.

1.1 Key Result

We briefly summarize one of the key results of this paper. iPrev

3-coloring problems in fewer cycles than Adopt. Howeverewh
constraint checks are measured to estimate the compuwthéfn
fort of the algorithms, we find that OptAPO uses more conctirre
constraint checks than Adopt (Fig 1b). Using the CBR meteic d
scribed in Section 3 which takes both constraint checks anu- ¢
munication latency into account, we see that Adopt perfdretter
than OptAPO (Fig 1c). The graph shows results for a given com-
munication latency, but our results hold across a rangetefitzes.

The rest of this paper provides background on Adopt and OPptAP
explains the design and rationale of the methods we usedato an
lyze these algorithms, and then presents analysis thatsstesults
comparing Adopt with OptAPO.

2. ALGORITHMS FOR DCOP
A Distributed Constraint Optimization Problem [10] (DCOf}le-
fined as:

e setof N agents A = {A1, Aa, ... ,An}.
e setofn variables V = {z1,22,... ,zn}.
e set ofdomainsD = {D, Ds,... , Dy}, where the value of

x; is taken fromD;. EachD; is assumed finite and discrete.

e set ofcost functionsf = {fi1,..., fi} where eachf; is a
function f; : D;1 x -+ x D; ; — N U oo. Cost functions

are also calledonstraints

adistribution mapping? : V' — A assigning each variable
to an agent.Q(z;) = A; means that4; is responsible for
choosing a value for;. A; is given knowledge ofc;, D;
and all f; involving z;.

an objective functionF' defined as an aggregation over the
set of cost functions. Summation is most commonly used.

The goal for the agents is to choose values for variables thath
F is minimized. Two agents whose variables share a constraint

ous comparisons of Adopt and OptAPO have used measurementsare callecheighbors Agents may send messages to any agent they

of cycles to compare algorithm performance. In our invesitmn
of Adopt and OptAPO, we obtained cycle measurements in agree
ment with the existing research (Fig 1a). OptAPO solves lyrap

know about and initially agents only know about their neigtsh
When each agent is assigned a single variable, it is commoseto
the notation4; andz; interchangeably as we will in this paper.

2.1 Adopt and OptAPO
Adopt and OptAPO are two state of the art algorithms for DCOP.
Both arecomplete i.e., theoretically guaranteed to return the op-

Adding Links: Adopt and OptAPO seemingly make different as-
sumptions about the communication links in the underlyipplia
cation domain. OptAPO assumes that an agent has the ability t

timal solution, andasynchronousi.e., they remain correct even
when agents execute concurrently, potentially at diffeex@cu-
tion speeds. In both algorithms, agents interleave contipatevith
communication. However, there are a number of qualitatiffere
ences in the algorithms which we describe below.

Adopt [10] is an algorithm for DCOP that is able to find glob-
ally optimal solutions while allowing agents to choose able
values in parallel. Adopt performs a distributed searcimgishe
communication of costs to guide agents toward globallyrogti
value choices. Agents communicate their current variablaes

to lower priority neighbors, who respond with messagesainirtg
lower bounds o’ computed by conditioning on the value choices
of higher priority agents. Higher priority agents resporydex-
ploring new values. Lower bounds are communicated only ¢o th
lowest higher priority neighbor. As this process continuewer
bounds become progressively more accurate, until ultimaie
lower bound of the minimum cost solution equals its uppemioipu
indicating the cost of the optimal solution has been foundteN
that agents do not directly communicate their constramtsther
agents and only send messages between neighbors.

OptAPO [8] is an alternative approach to DCOP that uses tirec

communication of constraints to partially centralize threlgpem
within a mediator. Election of the mediator is done in anlligent
way using dynamic priorities determined during problenvisa.
The mediator uses a centralized optimization routine todmdpti-
mal solution to its portion of the problem. The optimizatioutine

used by Mailler and Lesser is the Branch and Bound algorithm o

Freuder et. al. [3].

Agents in OptAPO use a novel cost justification techniqueritced
the communication of constraints. This technique avoidgraé

ization when it is deemed unjustified based on problem siract
As an OptAPO agent receives constraints from other ageritein
problem, it adds the other agents to a data structure cidlgdadlist

We will use the size of an agent’s goodlist to measure amofunt o

centralization in OptAPO. Finally, when constraints arenawuni-
cated between two agents who are not neighbors, a linkincepro
dure is used to establish a direct communication link.

2.2 Discussion of Qualitative Differences
Communication of ConstraintsiVe see that a key difference be-

tween Adopt and OptAPO is that agents in OptAPO communicate

their constraints to other agents which allows the agent veho
ceives them to evaluate the constraint. The communicaficoro
straints between agents has significant implications coh h@danc-
ing and the amount of computation that each agent must perfor
during problem solving. This is because as the size of antagen
subproblem grows as constraints are gathered, more looghco
tation (search) is required to find the optimal solution te ldrger
subproblem. Thus, when constraints are communicated batwe
agents, the computation load at each agent may increasegduri

problem solving. In OptAPO, we may expect that the computa-

tional load at some agents will grow as problem solving peeges
and their sub-problems grow. On the other hand, in an algarit

which does not communicate constraints, such as Adopt, we ma

expect that the computational load at each agent will reroaim
stant during problem solving.

establish a direct communication link with any other agéatopt
only assumes a direct communication link between neightvors
the constraint graph. Although a multi-hop message styategld

in principle be used to establish a virtual communicatiork lbe-
tween any pair of agents in a connected communication nktwor
this approach would incur additional communication cyctésw-
ever, we do not investigate this issue in this paper.

3. AN EVALUATION METRIC FOR ASYN-
CHRONOUS ALGORITHMS

Performance measurement and comparison of distributedthligns
is more complicated than for traditional centralized ailtpons. Dis-
tributed algorithms have multiple agents that run conaulyeand
communicate asynchronously. This distribution of the Athm
creates several challenges for evaluation in a typicalarebelab
environment. Running in a fully distributed manner acrostua-
ter of many computers is often not practical. Alternativaly asyn-
chronous algorithm can be run on a single computer usingpieilt
threads of execution, for example using a discrete-evettank
simulator. However, this is also problematic because thezean
exponential number of execution paths for an asynchrontyes a
rithm and there can be significant variation between rurdine
pending on the path chosen by the underlying simulator. zg&in
over all possible execution paths is often not practical.

3.1 Number of Cycles

Because of the above difficulties, previous researchers hew
posed evaluating asynchronous algorithms according tcstare
dardized execution path, namely one in which agents synolusdy
interleave communication and computation. Specifical§od@hm
execution is divided into a sequence of cycles [13] as defiedmlv.

Definition: A cycleis defined as one unit of algorithm progress in
which all agents, in parallel, process their incoming mgssaper-
form any required computation, and send their outgoing ageEss
Importantly, a message sent in cycle i is not received ugtilec
i+1.

Cycles are a convenient standardized metric for estim#tieger-
formance of a DCOP algorithm that avoids the problems desdri
earlier. However, a drawback of cycles is that it does noe tak
into account the amount of computation required by theitisted
agents. We wish to devise a metric that retains the desipble
erties of the measurement using cycles but considers ceatiut
costs as well.

On initial consideration it might seem that the amount of pam
tation performed by an algorithm could be accurately mesasby
the total runtime used by the process on a single computer- Ho
ever, since the agents must take turns using a single parcass
cannot execute in parallel as they would in a distributedesys
the runtime may not accurately reflect the actual distrithpterfor-
mance. If the agents solving the problem do not share the gomp
tational burden relatively evenly, then they will not taldvantage

of the parallelism of distributed problem solving.

3.2 Cycle-Based Runtime
To more accurately measure the performance of DCOP algusith
we desire a metric that approximates the total runtime oflgo-a

rithm whose execution has been measured using synchrogeus c
cles. We begin with a simple definition of runtime:

CBR(m) =t x cce(m) + L x m.)
m Note that the CBR metric is parameterized according to two en
total runtime of m cycles = Z time for cyclek (1) vironmental factors: the communication latency betweectlesy
k=0 (L) and the speed of computatior).(Using this parameterized

model, we can evaluate algorithm performance over a range of
environments that vary in their relative speeds of comnatioa

and computation. Time required to transmit a message idlysua
greater than the time for a constraint check in most enviems)

so for simplicity we assume that a constraint check is thdlesta
atomic unit of time { = 1), and assumd is given relative tor.

We will explore four types of environments where commuriarat
costs are increasing by order of magnitude relative to caoatioun,
i.e.,L =t, L =10¢t, L = 100¢, L = 1000¢.

Now, we need a definition for the time of a cycle. A cycle in-
volves communication followed by computation. Letlenote the
time required in a cycle to deliver all messages sent in tbeipus
cycle. We call this thdatencyof the underlying communication
environment.L is algorithm independent. So we have

time for cycle k = L + computation time in cycle k. (2)
CBR does not take into account number of messages or the time
required to process messages. In other words, we assunmebat
In order to measure the computational costin a cycle, we msée sage processing time per cycle is not a significant difféaing

of a recent metric - concurrent constraint checks (ccc) 9on- feature between algorithms under comparison. We beliéigeigh
straint check is the act of evaluating a constraint in thdlem by true for the algorithms compared in this paper. While Adoggau
comparing the value of one variable to another variableerptiob- many more messages than OptAPO, this is explained by itehigh
lem. Constraint checks are a well accepted measure of camput cycle count, i.e, the number of messages communicated pk cy
tion in traditional centralized constraint processingpaitnms. Let is about the same between the two algorithms. Also, we asthene

cc(wi, k) be the number of constraint checks performed by agent time to process each message is similar for both algorithms.
x; in cyclek. Then the computation time of cycle k is defined as:
4. EMPIRICAL EVALUATION
We obtained the OptAPO code from its creators Roger Mailher a
computation time in cycle k = max cc(zi, k) x t (3) \ﬁctqr Lesser, and. the Adopt code from its creator Pragngsh J
z; €V Modi. We used a simulator framework to measure ccc and cytles
both OptAPO and Adopt. Following previous work [10, 8], wetth

wheret is the time required for one constraint chee¢kis a prop- ran OptAPO and Adopt on a set of randomly generated 3-cgorin
erty of the underlying computing hardware and is algoritmahei problems. The problems were generated with problem sizes&f
pendent. The max over all agents is used because the agents art2: 16, or 20, and a link density of either 2n or 3n. Each proble
conceptually executing in parallel. The length of a cycleéser- size had 50 generated problems (a total of 8*50 = 400). Thesam

mined by how long the longest running agent took to complete. set of randomly generated graphs was used for each algorithm

Substituting 3 into 2, we have .
4.1 Runtime as Measured By CBR

Constraint checks and cycle counts were logged and usedrte co
) pute the value of CBR in Eqn 7 for four different valueslof We
time for cycle k = L + max celzi, k) x ¢) create a different graph for each value. As described iniGest
' L represents the time required by the communication enviesnm
o) to deliver messages between cycles specified relative ttirtiee
Now substituting 4 in 1, for a constraint check. For examplelif = 1, we are assuming
communication is very fast and on the same order of magnésde
a constraint check. If. = 1000, we are assuming communication

m takes three orders of magnitude longer than a constraiekche
total runtime of m cycles = Z(L + max cc(xs, k) X t)
k=0 wiev Figures 2 and 3 show four graphs generated from a single st of
(5) periments on problems of link density 2n and 3n respectiedch

datapoint represents the average of the 50 problems. Ind=Ryu
we see that wheh is 1, 10, and 100, Adopt outperforms OptAPO.
At L = 1000, Adopt performs slower than OptAPO on the prob-
lem sizes we tested. However, from the growth rates of theslin
appears that OptAPO may exceed Adopt on larger problem.sizes
To investigate this, we were able to run a small number of expe

iments with problems containing 24 variables. We compl&eéd
cee(m) = Z max ce(zi, k) ®) problems for density 2 and 10 for density 3 (the lengthy et

k=0 on these large problem sizes prevented completion of maie- pr
lems). The performance on these problems has been showia with

Substituting 6 in 5, we arrive at our final equation for thediaim dotted line on the., = 1000 graph, and indicates that Adopt may
cycles, called Cycle-Based Runtime (CBR): outperform OptAPO on large problems everlat 1000.

Finally, the number of concurrent constraint checks (cecjggmed
by an algorithm over m cycles is defined as:

m

—x—Adopt
—= OptAPQ

—x—Adopt
e OpAPO

L=10
100000 100000

80000 80000

80000 60000
40000 40000

20000 20000

o4 . - : — 04

vars 12 4 vars 18 2

L=1000 —x—Adopt

—= OptAR D

L=100

—x—Adopt
100000 —=— OptAPQ 250000

50000 200000

60000 120000

40000 100000

20000 50000

Figure 2: Comparison of Adopt and OptAPO using the CBR
metric on graphs of low density. Each graph represents a dif-
ferent L value.

We observed that while Adopt requires more cycles than OBtAP
each OptAPO cycle takes significantly longer than each Adgpt

cle. L provides a parameter to vary the relative cost between num-
ber of cycles and length of each cycle. We conclude that for a

significant range of., Adopt performs better than OptAPO, and as
problem size grows this range increases.

4.2 Centralization of OptAPO

We have hypothesized that the degree of centralizatioreiseta-
son that OptAPO’s cycles take much longer than an Adopt cycle
To verify this, we recorded the amount of centralizationt tiee
OptAPO agents reached by termination, as represented lyjztne
of the OptAPOgoodlist which contains the other agents whose
constraints have been centralized to an agent.

We computed the average, minimum, and maximum goodlis$ size
across the agents in a problem at termination. We obtaimai si
lar results to the centralization data reported in Maiié'esis [7].

As seen in Figure 4, on low density problems OptAPO agents on

average have centralized at least half of the problem byire &
solution is found. On highly dense graphs, which are mork- dif
cult and time-consuming to solve, OptAPO on average céngésl
nearly all of the problem.

The Max bars show that in high density graphs, almost all prob
lems had at least one agent that fully centralized the pnoblia
low density problems, on average there was at least one adgent
centralized about 75% of the problem.

4.3 Parallelization of Computation

L=1 —x—Adopt L=10 —x— Adopt
9000000 —— CptAPD 9000000 —=— OptAPO
6000000 6000000
3000000 3000000
0+ T T T — o
8 128 vars 16 20 8 124 vars 18 20
L=100 —<—Adopt L=1000 > Adopt
9000000 —=—OptAPO 4op00000 - Opt:wo
30000000
6000000
20000000
3000000
10000000 §
" ::::::;:;7f
T T T

124 vars 16 20] 12 B 24

Figure 3: Comparison of Adopt and OptAPO using the CBR
metric on graphs of high density. Each graph represents a dif
ferent L value.

load.

As discussed in Section 3¢(z;, k) is the number of constraint
checks performed by agent in cycle k. Then, the distribution
of computation within a cycle, which we will calbad(k), can be

represented by the ratio of the maximum constraint checkketo
total constraint checks in a cycle:

MaXy; € Agents CC(Ti, k)

load(k) =
o () E:wiEAgentscc(xi7k)

®)

This equation represents the fraction of work that the marim
computing agent did during the cycle. A value of 1.0 means one
agent did all of the computation in that cycle, and a loweugal
indicates the load was more balanced.

In Figure 5, the load ratio for OptAPO and Adopt is graphedtier
execution of one representative graph coloring problerh &itari-
ables and a density of 2n. The x-axis is the execution timgétes,
and the y-axis is the load as defined in Eqn 8. The line for O@AP
shows spikes at cycles where an agent, the mediator, didrcBra
and Bound search and accounted for most or all of the conipntat
in that cycle. On the other hand, Adopt had very consistesttidi
bution of computation, with most agents doing a similar nandf

So far we have found that OptAPO does more computation, basedconstraint checks for most of the algorithm’s duration.

on our measurement of the maximum constraint checks peefibrm
across the agents during each cycle. However, we would iso |
to determine whether the higher maximum constraint chectse

to OptAPO simply doing more computationafi the agents during
a cycle, or if it is due to uneven distribution of the compiatiaal

This chart illustrates that OptAPO finished in a fewer numtfer
cycles than Adopt, but the computation during those cycldess
evenly distributed among the agents, which results in Iotigee
per cycle.

Density=2 & Hin
BAVerage
R Man
20 -
16
g
= 124
=
=1
=
s
o 91
=)
n
4
1]
Problem Size (#vars)
Density=3 & Min
B Average
B Max
20
16
2
= 124
=
=]
=
s
@ 8-
el
@
4
1]

Problem Size (Zvars)

Figure 4: OptAPO centralization - Avg is the average central
ization across the agents in a problem, Max is the highest cen
tralization of all the agents in a problem, and Min is the lowest
of the agents. The upper line above each bar marks n (# of vari-
ables), which is the maximum possible centralization at edc
problem size. Each measurement is the average of 50 problems

—«—Adopt
—— OptaP O

o o o
[I == R T~ R
L L L |

o o
o m
R—

MaxCCC/Total per cycle

o o
W
—_

M =3 K W e e M B - e oK G - B R e

o
[N

o

=]

il 5 10 15 20 25 0 s 40
Cycle

Figure 5: A measure of the distribution of computation in
Adopt and OptAPO. The peaks on the OptAPO line indicate
that in those cycles a single agent did most of the computatio

4.4 Tradeoffs Between Communication Latency

and Centralization
As our analysis has shown, a non-centralized algorithmAittept
uses more communication cycles but has a lower computétiona
cost per cycle. OptAPO, a partially centralized algorittas rela-
tively low communication cycles but higher computationagtcper
cycle. We now ask how does a partially centralized approikeh |
OptAPO and a decentralized approach like Adopt, compare avit
completely centralized approach using CBR as an evaluatieta
ric?

For the centralized approach, we assume one agent staréd-the
gorithm with full knowledge of the problem, and simply inwask
an optimization search procedure. We used OptAPO’s impleme
tation of centralized Branch and Bound search and measheed t
number of constraint checks required to find the optimaltgmiu
We ignored the overhead cost that would be required in a thisly
tributed setting of electing a centralizer and all agentsmoini-
cating the problem information to it. In the worst case, ttast is
only some small factor of the width of the communication ¢rap

Figure 6 shows the three algorithms at different L values.eks
pected, the centralized algorithm is insensitive to varfirvalues
because no communication is required. For both graph dessit
Adopt is the best performing algorithm at L values less th@®. 1
The crossover point occurs between L=100 and L=1000. These
crossover points are important because they tell us at wdiat p
communication becomes too expensive for Adopt to operate ef
ficiently, and tell us which algorithm should be used for aegiv
communication environment.

For density 2, the OptAPO performance curve outperformsvits
centralized solver using the CBR metric. These resultssaguali-
tatively with the results using a serial runtime metric népd by
Mailler and Lesser [8]. On density 3, the fully centralizeg a
proach had a lower CBR than OptAPO, which we believe may be
explained by the fact that OptAPO does repeated multiple@&ra
and Bound searches, which could become more costly on dense
graphs. The OptAPO searches partially reuse past seaiohies,
this partial reuse does not completely recover the costeptle-
vious searches. From our analysis, we conclude that on legh d
sity graphs OptAPO eventually centralizes most of the obbut
does so with a higher cost than doing a simple centralizétioie

first step of the algorithm.

Figure 6 provides initial guidance to a researcher seekirapply

a DCOP algorithm to a new domain. The figure gives an estimate
of which algorithm would be the most efficient for a given com-
munication model and constraint density, although resultther
domains may vary.

5. CONCLUSION

We have investigated two algorithms for DCOP - OptAPO and
Adopt - that vary in the amount they centralize the problerorin
der to find the optimal solution. We developed a metric, CBR, f
more accurately comparing these algorithms by taking iotmant
communication latency between cycles and the length of egch
cle. We have shown that while OptAPO requires fewer cycles
than Adopt, OptAPQ’s cycles are longer because they requore
computation. For domains with low communication latencyneo
pared to time to do a computation, Adopt outperforms OptARO b
cause in such domains agents are able to communicate dfficien

. —x— A dapt
Density=2 QAP O
—a— Centralzed
4
==}
-
ks
1 10 100 1000
. —x—Adopt
Density=3 OptAPO
—a— Centraliz ed
» » - 1
-4
]
L=
H
® Xﬂ_
1 10 100 1000
L

Figure 6: Adopt, OptAPO, and Centralized at 4 different L
values. Each graph is based on 50 random problems of 20 vari-
ables.

and Adopt is able to take advantage of it by more evenly thstri

ing the work of solving the DCOP. We have created graphs of the

relative performance of Adopt, OptAPO, and centralizeddean-
der environments with varying communication latenciesyjaling
the ability to choose the most effective level of centrdlaa for
each environment.

6. ACKNOWLEDGEMENTS

We thank Roger Mailler for generously providing us with his-i
plementation of OptAPO, which made this investigation fmes
We thank Manuela Veloso for productive discussions and fzym
insightful comments.

7. REFERENCES
[1] I. Brito, F. Herrero, and P. Meseguer. On the Evaluatibn o
DisCSP Algorithms. IProc. Workshop on Distributed
Constraint Reasoning held at Constraint Programming 2004
(CP), 2004.

[2] B. Faltings and S. Macho-Gonzalez. Open constraint
optimization. InPrinciples and Practice of Constraint
Programming - CR2003.

[3] E. C. Freuder and R. J. Wallace. Partial constraint
satisfactionArtif. Intell., 58(1-3):21-70, 1992.

[4] K. Hirayama and M. Yokoo. An approach to
over-constrained distributed constraint satisfactiabfgms:
Distributed hierarchical constraint satisfaction. In

Proceedings of International Conference on Multiagent
Systems2000.

[5] M. Lemaitre and G. Verfaillie. An incomplete method for
solving distributed valued constraint satisfaction peois.
In Proceedings of the AAAI Workshop on Constraints and
Agents 1997.

[6] J. Liu and K. Sycara. Exploiting problem structure for
distributed constraint optimization. Proceedings of
International Conference on Multi-Agent Systet895.

[7] R. Mailler. A Mediation-Based Approach to Cooperative,
Distributed Problem Solving?hD thesis, University of
Massachussetts at Amherst, 2004.

[8] R. Mailler and V. Lesser. Solving Distributed Constrain
Optimization Problems Using Cooperative Mediation. In
Proceedings of Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS)
pages 438-445. IEEE Computer Society, 2004.

[9] A. Meisels, E. Kaplansky, I. Razgon, and R. Zivan.
Comparing Performance of Distributed Constraints
Processing Algorithms. IRroc. Workshop on Distributed
Constraint Reasoning (AAMAS002.

P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guaranteedurtificial Intelligence Journal2005.

[10]

[11] V. Parunak, A. Ward, M. Fleischer, J. Sauter, and T. @han
Distributed component-centered design as agent-based
distributed constraint optimization. Proc. of the AAAI

Workshop on Constraints and Agent997.

[12] M. Silaghi and D. Mitra. Distributed constraint sagisfion
and optimization with privacy enforcement.3nd IC on

Intelligence Agent Technologg004.

[13] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formaliaat
and algorithmsKnowledge and Data Engineering

10(5):673-685, 1998.

