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To our parents 



Preface 

This book is intended as an introduction to graph theory. Our aim bas been 
to present what we consider to be the basic material, together with a wide 
variety of applications, both to other branches of mathematics and to 
real-world problems. Included are simple new proofs of theorems of Brooks, 
Chvâtal, Tutte and Vizing. The applications have been carefully selected, 
and are treated in some depth. We have chosen to omit ail so-called 
'applications' that employ just the language of graphs and no theory. The 
applications appearing at the end of each chapter actually make use of 
theory developed earlier in the same chapter. We have also stressed the 
importance of efficient methods of solving problems. Several good al
gorithms are included and their efficiencies are analysed. We do not, 
however, go into the computer iinplementation of these algorithms. 

The exercises at the end of each section are of varying difficulty. The 
harder ones are starred (*) and, for these, hints are provided in appendix I. 
ln some exercises, new . definitions · are introduced. The reader is recom
mended to acquaint himself with these definitions. Other exercises, whose 
numbers are indicated by bold type, are used in subsequent sections; these 
should ail be attempted. 

Appendix II consists of a table in which basic properties of four graphs 
are listed. When new definitions are introduced, · the reader may find it 
helpful to check bis understanding by referring to this table. Appendix III 
includes a selection of interesting graphs with special properties. These may 
prove to be useful in testing new conjectures. In appendix IV, we collect 
together a number of unsolved problems, some known to be very difficult, 
and others more hopeful. Suggestions for further reading are given in 
appendix V. 

Many people have contributed, either directly or indirectly, to this book. 
We are particularly indebted to C. Berge and D. J. ~- Welsh for introducing 
us to graph theory, to G. A. Dirac, J. Edmonds, L. Lovâsz and W. T. Tutte, 
whose works have influenced oui- treatment of the subject, to V. 
Chungphaisan and C. St. J. A. Nash-Williams for their careful reading of the 
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manuscript and valuable suggestions, and to the ubiquitous G. O. M. for his 
kindness and constant encouragement. 

We also wish to thank S. B. Maurer, P. J. O'Halloran, C. Thomassen, 
B. Toft and our colleagues at the University of Waterloo for many 
helpful comments, and the National Research Council of Canada for its 
financial support. Finally, we would like to express our appreciation to Joan 
Selwood for her excellent typing and Diana Rajnovich for her beautiful 
artwork. · 

J. A. Bondy 
U. S. R. Murty 
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1 Graphs and Subgraphs 
1.1 GRAPHS AND SIMPLE GRAPHS 

Many real-world situations can conveniently be described by means of a 
diagram consisting of a set of points together with lines joining certain pairs 
of these points. For example, the points could represent people, with lines 
joining pairs of friends; or the points might be communication centres, with 
Iines representing communication links. Notice that in such diagrams one is 
mainly interested in whether or not two given points are joined by a Iine; 
the manner in which they are joined is immaterial. A mathematical abstrac
tion of situations of this type gives rise to the concept of a graph. 

A graph G is an ordered triple (V(G), E(G), t/Jo) consisting of a 
nonempty set V( G) of vert~ces, a set E( G), disjoint from V( G), of edges, 
and an incidence function tJ,a that associates with each edge of G an 
unordered pair of (not necessarily distinct) vertices of G. If e is an edge and 
u and u are vertices such that t/la(e) = uv, then e is said to join u and v; the 
vertices u and v are called the ends of e. 

Two examples of graphs should serve to clarify the definition. 

Example 1 
G = (V(G), E(G), t/lo) 

where 
V(G)= {v1, V2, V3, V4, Vs} 

E(G) = {e1, e2, e3, e4, es, e6, e,, es} 

and tj,c; is defined by 

t/la(e1) = V1 V2, t/lo(e2) = V2V3, tpa(e3) = V3V3, t/la(e4) = V3V4 

t/la(es) = V2V4, t/la(e6) = V4Vs, t/la(e,) = V2Vs, t/lo(es) = V2Vs 

Example 2 

where 

and 'PH is defined by 

tpH( Q) = UV, 

t/JH( e) = VX, 

H = (V(H), E(H), t/lH) 

V(H) = {u, v, w, x, y} 

E(H) = {a, b, c, d, e, f, g, h} 

t/lH(b) = uu, t/lH(c) = vw, 

t/lH(/) = WX, t/JH(g) = UX, 

t/lH(d) = wx 

t/lH(h) = xy 
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H 

Figure 1.1. Diagrams of graphs G and H 

Graphs are so named because they can be represented graphically, and it 
is this · graphical representation which helps us understand many of their 
properties. Each vertex is indicated by a point, and each edge by a line 
joining the points which represent its ends. t Diagrams of G and H are 
shown in figure 1. 1. (For clarity, vertices are depicted here as small circles.) 

There is no unique way of drawing a graph; the relative positions of points 
representing vertices and lines representing edges have no significance. 
Another diagram of G, for example, is given in figure 1.2. A diagram of a 
graph merely depicts the incidence relation holding between its vertices and 
edges. We shall, however, often draw a diagram of a graph and refer toit as 
the graph itself; in the same spirit, we shall call its points 'vertices' and its 
lines 'edges'. 

Note that two edges in a diagram of a graph may intersect at a point that 

Figure 1.2. Another diagram of G 

t. In such a drawing it is understood that no line intersects itself or passes through a point 
representing a vertex which is not an end of the corresponding edge-this is clearly always 
possible. 
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is not a vertex (for .example e1 and e6 of graph G in figure 1.1). Those graphs 
that have a diagram whose edges intersect only at their ends are called 
plarlar, since such graphs can be represented in the plane in a simple 
manner. The graph of figure 1.3a is planar, even though this is not 
immediately clear from the particular representation shown (see exercise 
1.1.2). The graph of figure 1.3b, on the other band, is nonplanar. (This will 
be proved in chapter 9.) 

Most of the definitions and concepts in graph theory are suggested by the 
graphical representation. The ends of an edge are said to be incident with 
the edge, and vice versa. Two vertices which are incident with a common 
edge are adjacent, as are two edges which are incident with a common 
vertex. An edge with identical ends is called a loop, and an edge with 
distinct ends a link. For example, the edge e3 of G (figure 1.2) is a loop; all 
other edges of G are links. 

X 

(a) (b) 

Figure 1.3. Planar and nonplanar graphs 

A graph is finite if both its vertex set and edge set are finite. In this book 
we study only finite graphs, and so the term 'graph' always means 'finite 
graph'. We call a graph with just one vertex trivial and ail other graphs 
nontrivial. 

A graph is simple if it bas no loops and no two of its links join the same 
pair of vertices. The graphs of figure 1.1 are not simple, whereas the graphs 
of figure 1.3 are. Much of graph theory is concerned with the study of simple 
graphs. 

We use the symbols v(G) and e(G) to denote the numbers of vertices and 
edges in graph G. Throughout the book the letter G denotes a graph. 
Moreover, when just one graph is under discussion, we usually denote this 
graph by G. We then omit the letter G from graph-theoretic symbols and 
write, for instance, V, E, v and e instead of V(G), E(G), v(G) and e(G). 
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Exercises 
1. 1. 1 List five situations from everyday life in which graphs arise naturally. 
1.1.2 Draw a different diagram of the graph of figure 1.3a to show that it 

is indeed planar. 

1.1.3 Show that if G is simple, then E < (;). 

1.2 GRAPH ISOMORPHISM 

Two graphs G and H are identical (written G = H) if V( G) = V(H), 
E(G) == E(H), and !/la= 1/JH- If two graphs are identical then they can clearly 
be represented by identical diagrams. However, it is also possible for graphs 
that are not identical to have essentially the same diagram. For example, the 
diagrams of G in figure 1.2 and H in figure 1.1 look exactly the same, with 
the exception that their vertices and edges have different labels. The graphs 
G and H are not identical, but isomorphic. In general, two graphs G and H 
are said to be isomorphic (written G:::: H) if there are bijections 8: V(G) ~ 
V(H) and cp: E(G) ~ E(H) such that i/la(e) = uv if and only if i/ltt(<f>(e)) = 
8(u)8(v); such a pair (8, </>) of mappings is called an isomorphism between G 
and H. 

To show that two graphs are isomorphic, one must indicate an isomorph
ism between them. The pair of mappings ( 8, <f>) defined by 

and 

8(v1) = y, O(v2) = x, O(v3) = u, O(v4) = v, O(vs) = w 

<f>(e1) = h, 

</>(es)= e, 

</>(e2) = g, 

<f>(e6) = c, 

cp(e3) = b, 

<f>(e1) = d, 

</>(e4) = a 

</>(es)= f 

is an isomorphism between the graphs G and H of examples 1 and 2; G and 
H clearly have the same structure, and differ only in the names of vertices 
and edges. Since it is in structural properties that we shall primarily be 
interested, we shall often omit labels when drawing graphs; an unlabelled 
graph can be thought of as a representative of an equivalence class of 
isomorphic graphs. We assign labels to vertices and edges in a graph mainly 
for the purpose of referring to them. For instance, when dealing with simple 
graphs, it is often convenient to refer to the edge with ends u and v. as 'the 
edge uv'. (This convention results in no ambiguity since, in a simple graph, 
at most one edge joins any pair of vertices.) 

We condude this section by introducing some special classes of graphs. A 
simple graph in which each pair of distinct vertices is joined by an edge is 
called a complete graph. Up to isomorphism, there is just one complete 
graph on n vertices; it is denoted by Kn, A drawing of Ks is shown in figure 
1.4a. An empty graph, on the other hand, is one with no edges. A bipartite 
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(a) ( b) (c) 

Figure 1.4. (a) Ks; (b) the cube; (c) K3 .3 

graph is one whose vertex set can be partitioned into two subsets X and Y, 
so that each edge has one end in X and one end in Y; such a partition 
(X, Y) is called a bipartition of the graph. A complete bipartite graph is a 
simple bipartite graph with bipartition (X, Y) in which each vertex of X is 
joined to each vertex of Y; if IXI = m and IY 1 = n, such a graph is denoted 
by Km,n• The graph defined by the vertices and edges of a cube (figure 1.4b) 
is bipartite; the graph in figure 1 .4c is the complete bipartite graph K3,3· 

There are many other graphs whose structures are of special interest. 
Appendix III includes a selection of such graphs. 

Exercises 

1.2.1 Find an isomorphism between the graphs G and H of examples 1 
and 2 different from the one given. 

1.2.2 (a) Show that if G:::: H, thèn v(G) = v(H) and e(G) = e(H). 
(b) Give an ex ample to show that the converse is false. 

1.2.3 Show that the following graphs are not isomorphic: 

1.2.4 Show that there are eleven nonisomorphic simple graphs on four 
vertices. 

1.2.5 Show that two simple graphs G and H are isomorphic if and only if 
there is a -bijection 6: V(G) ~ V(H) such that uv E E(G) if and 
only if 6(u)6(v) E E(H). 
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1.2.6 Show that the following graphs are isomorphic: 

1.2. 7 Let G be simple. Show that e = (;) if and only if G is complete. 

1.2.8 Show that 

(a) e(Km,n) = mn; 
(b) if G is simple and bipartite, then e < v 2 /4. 

1.2.9 A k-partite graph is one whose vertex set can be partitioned into k 
subsets so that no edge bas bath ends in any one subset; a complete 
k-partite graph is one that is simple and in which each vertex is 
joined to every vertex that is not in the same subset. The complete 
m-partite graph on n vertices in which each part has either [n/m] or 
{n/m} vertices is denoted by Tm,n• Show that 

(a) e(Tm,n) = (n 2 k)+ (m- l)(k; l ), where k = [n/m]; 

(b)* if Gis a complete m-partite graph on n vertices, then e(G)< 
e (T m,n), with equality only if G ::= T m,n• 

1.2.10 The k-cube is the graph whose vertices are the ordered k-tuples of 
O's and 1 's, two vertices being joined if and only if they differ in 
exactly one coordinate. (The graph shown in figure l .4b is just the 
3-cube.) Show that the k-cube has 2k vertices, k2k-t edges and is 
bipartite. 

1.2.11 (a) The complement Ge of a simple graph G is the simple graph 
with vertex set V, two vertices being adjacent in Ge if and only 
if they are not adjacent in G. Describe the graphs K~ and K~.n

(b) A simple graph Gis self-complementary if G - Ge. Show that if 
G is self-complementary, then v =O, l (mod 4). 

1.2.12 An automorphism of a graph is an isomorphism of the graph onto 
itself. 

(a) Show, using exercise 1.2.5, that an automorphism of a simple 
graph G can be regarded as a permutation on V which pre
serves adjacency, and that the set of such permutations form a 
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group f(G) (the automorphism group of G) under the usual 
operation of composition. 

(b) Find f(Kn) and f(Km,n). 
(c) Find a nontrivial simple graph whose automorphism group is 

the identity. 
(d) Show that for any simple graph G, f(G) = f(Gc). 
(e) Consider the permutation group A with elements (1)(2)(3), 

(1, 2, 3) and (1, 3, 2). Show that there is no simple graph G with 
vertex set {1, 2, 3} such that f(G) = A. 

(f) Find a simple graph G such that f(G):::::A. (Frucht, 1939 has 
shown that every abstract group is isomorphic to the auto
morphism group of some graph.) 

1.2.13 A simple graph G is vertex-transitive if, for any two vertices u and 
v, there is an element g in f(G) such that g(u) = g(v); G is 
edge-transitive if, for any two edges U1 V1 and U2V2, there is an 
element h in r( G) such that h({u1, v1}) = {u2, v2}. Find 

(a) a graph which is vertex-transitive but not edge-transitive; 
(b) a graph which is edge-transitive but not vertex-transitive. 

1.3 THE INCIDENCE AND ADJACENCY MATRICES 

To any graph G there corresponds a v x e matrix called the incidence matrix 
of G. Let us denote the vertices of G by V1, v2 , ••• , Vv and the edges by 
ei, e2, ... , ee. Then the incidence matrix of G is the matrix M(G) = [mï;], 
where mi; is the number of times (O, 1 or 2) that vi and e; are incident. The 
incidence matrix of a graph is just a different way of specifying the graph. 

Another matrix associated with G is the adjacency matrix; this is the v x v 
matrix A(G) = [ai;], in which ai; is the number of edges joining vi and V;. A 
graph, its incidence matrix, and its adjacency matrix are shown in figure 1.5. 

e, 

e1 e2 e3 e4 es e6 e1 V1 V2 V3 V4 

V1 1 1 0 0 1 0 1 V1 0 2 1 1 

e3 V2 1 1 1 0 0 0 0 V2 2 0 1 0 

V3 0 0 1 1 0 0 1 V3 1 1 0 1 

V4 0 0 0 1 1 2 0 V4 1 O· 1 1 
M(G) A(G) 

V4 84 V3 

G 

Figure 1.5 
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The adjacency matrix of a graph is generally considerably smaller than its 
incidence matrix, and it is in this form that graphs are commonly stored in 
computers. 

Exercises 
1.3.1 Let M be the incidence matrix and A the adjacency matrix of a 

graph G. 

(a) Show that every column sum of M is 2. 
(b) What are the column sums of A? 

1.3.2 Let G be bipattite. Show that the vertices of G can be enumerated 
so that the adjacency matrix of G has the form 

[IJ-~'.~J 
where A21 is the transpose of A12. 

1.3.3* Show that if G is simple and the eigenvalues of A are distinct, then 
the automorphism group of G is abelian 

1.4 SUBGRAPHS 

A graph H is a subgraph of G (written H c G) if V(H) c V(G), E(H) c 

E(G), and t/JH is the restriction of IPG to E(H). When He G but H;I= G, we 
write H c G and call H a proper subgraph of G. If His a subgraph of G, G 
is a supergraph of H. A spanning subgraph ( or spanning supergraph) of G is 
a subgraph (or supergraph) H with V(H) = V( G). 

By deleting from G all loops and, for every pair of adjacent' vertices, ail 
but one link joining them, we obtain a simple spanning subgraph of G, 
called the underlying simple graph of G. Figure 1.6 shows a graph and its 

· underlying simple graph. 

Figure 1.6. A graph and its underlying simple graph 
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Suppose that V' is a nonempty subset of V. The subgraph of G whose 
vertex set is V' and whose edge set is the set of th ose edges of G that have 
both ends in V' is called the subgraph of G induced by V' and is denoted by 
G[V']; we say that G[V'] is an induced subgraph of G. The induced 
subgraph G[V\ V'] is denoted by G- V'; it is the subgraph obtained from G 
by deleting the vertices in V' together with their incident edges. If 
V'= {v} we write G-v for G-{v}. 

Now suppose that E' is a nonempty subset of E. The subgraph of G 
whose vertex set is the set of ends of edges in E' and whose edge set is E' is 
called the subgraph of G induced by E' and is denoted by G[E']; G[E'] is 
an edge-induced subgraph of G. The spanning subgraph of G with edge set 
E\E' is written simply as G- E'; it is the subgraph obtained from G by 
deleting the edges in E'. Similarly, the graph obtained from G by adding a 
set of edges E' is denoted by G + E'. If E' = {e} we write G- e and G + e 
instead of G-{e} and G +{e}. 

Subgraphs of these various types are depicted in figure 1. 7. 
Let G1 and G2 be subgraphs of G. We say that G1 and G2 are disjoint if 

they have no vertex in common, and edge-disjoint if they have no edge in 
common. The union G1 U G2 of G1 and G2 is the subgraph with vertex set 
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V(G1) U V(G2) and edge set E(G1) U E(G2); if G1 and G2 are disjoint, we 
sometimes denote their union by G1 + G2. The intersection G1 n G2 of G1 
and G2 is defined similarly, but in this case G1 and G2 must have at least one 
vertex in common. 

Exercises 

1.4.1 Show that every simple graph on n vertices 1s isomorphic to a 
subgraph of Kn. 

1.4.2 Show that 

(a) every induced subgraph of a complete graph is complete; 
(b) every subgraph of a bipartite graph is bipartite. 

1.4.3 Describe how M( G - E') and M( G - V') can be obtained from 
M(G), and how A(G-V') can be obtained from A(G). 

1.4.4 Find a bipartite graph that is not isomorphic to a subgraph of any 
k-cube. 

1.4.5* Let G be simple and let n be an integer with 1 < n < v - 1. Show that 
if v > 4 and all induced subgraphs of G on n vertices have the same 
number of edges, then either G::::: K., or G ::::: K~. 

1.5 VERTEX DEGREES 

The degree dG( v) of a vertex v in G is the number of edges of G incident 
with v, each loop counting as two edges. We denote by 8( G) and À( G) the 
minimum and maximum degrees, respectively, of vertices of G. 

Theorem 1.1 

Proof Consider the incidence matrix M. The sum of the entries in the 
row corresponding to vertex v is precisely d(v), and therefore I d(v) is just 

· veV 

the sum of ail entries in M. But this sum is also 2e, since (exercise 1.3. la) 
each of the e column sums of M is 2 0 

Corollary 1.1 In any graph, the number of vertices of odd degree is even. 

Proof Let V1 and V2 be the sets of vertices of odd and even degree iri G, 
respectively. Then 

I d(v) + I d(v) = I d(v) 
veV1 veV2 veV 

is even, by theorem 1. 1. Since I d( v) is also even, it follows that L d( v) is 
veV2 veV1 

even. Thus I Vil is even D 
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A graph G is k - regular if d ( v) = k for all v E V; a regular graph is one that 
is k-regular for some k. Complete graphs and complete bipartite graphs Kn,n 

are regular; so, also, are the k-cubes. 

Exercises 

1.5.1 Show that S ~ 2e/v < â. 
1.5.2 Show that if G is simple, the entries on the diagonals of both MM' 

and A 2 are the degrees of the vertices of G. 
1.5.3 Show that if a k-regular bipartite graph with k >O has bipartition 

(X, Y), then IXI = 1 YI. 
1.5 .4 Show that, in any group of two or more people, there are always two 

with exactly the same nurnber of friends inside the group. 
1.5.5 If G has vertices V1, V2, ... , v.,, the sequence (d(v1), d(v2), ... , d(v.,)) 

is ealled a degree sequence of G. Show that a sequence 
(d1, d2, ... , dn) of non-negative integers is a degree sequence of some 

n 

graph if and only if L di is even. 
i= 1 

1.5.6 A sequenee d = (di, d2, ... , dn) is graphie if there is a simple graph 
'with degree sequence d. Show that 

(a) the sequences (7, 6, 5, 4, 3, 3, 2) and (6, 6, 5, 4, 3, 3, 1) are not 
graphie; · ~'"'/ 

n 

(b) if d is graphie and di >d2 > ... ~ dn, then L di is even and 
i=l 

k n 

i~ di< k(k -1) + i-ti min{k, di} for 1 < k < n 

(Erdôs and Gallai, 1960 have shown that this neeessary condition is 
also sufficient for d to be graphie.) 

1.5.7 Let d= (di, d2, ... , dn) be a noninc_reasing sequenee of non-negative 
integers, and denote the sequence (dz-1, d3- l, ... , dd1+1 -1, 
dd1+2, • • •, dn) by d'. 

(a)* Show that d is graphie if and only if d' is graphie. 
(b) Using (a), deseribe an algorithm for eonstrueting a simple graph 

with degree sequenee d, if such a graph exists. 
(V. Havel, S. Hakimi) 

1.5.8* Show that a loopless graph G eontains a bipartite spanning subgraph 
H such that dH( v) ~ ½do( v) for all v E V. 

1.5.9* Let S = {xi, Xz, ••. , Xn} be a set of points in the plane such that the 
distance between any two points is at least one. Show that there are 
at most 3 n pairs of points at distance exactly one. · 

1.5.10 The edge graph of a graph Gis the graph with vertex set_ E(G) in 
which two vertices are joined if and only if they are adjacent edges in 
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G. Show that, if G is simple 

(a) the edge gràph of G has e(G) vertices and I (dG2(v)) edges; 
vEVIG) 

(b) the edge graph of K5 is isomorphic to the corr.plement of the 
graph featured in exercise 1.2.6. 

1.6 PATHS AND CONNECTION 

A walk in G is a finite non-null sequence W = voe, v1e2V2 ... ekvk, whose 
terms are alternately vertices and edges, such that, for 1 ~ i < k, the ends of 
ei are V;-1 and vj. We say that W is a walk from Vo to vk, or a (vo, vk)-walk. 
The vertices Vo and vk are called the origin and terminus of W, respectively, 
and V1, V2, ... , vk-1 its internai uertices. The integer k is the length of W. 

If W = voe1v1 ... ekvk and W' = vkek+1Vk+1 ••. e,v, are walks, the walk 
vkekvk-1 ..• e1 Vo, obtained by reversing W, is denoted by w-1 and the walk 
voe1 V1 ... e,v,, obtained by concatenating W and W' at vk, is denoted by 
WW'. A section of a walk W = voe1V1 ... ekvk is a walk that is a subsequence 
viei+1V;+1 .•• eivi of consecutive terms of W; we refer to this subsequence as 
the (v;, v;)-section of W. 

In a simple graph, a walk voe1 V1 ••• ek.vk is determined by the sequence 
VoV1 ... vk of its vertices; hence a walk in a simple graph can be specified 
simply by its vertex sequence. Moreover, even in gr~phs that are not simple, 
We shall sometimes refer to a sequence of vertices in which consecutive 
terms are adjacent as a 'walk'. In such cases it shou.ld be understood that the 
discussion is valid for every walk with that vertex sequence. 

If the edges e1, e2, ... , ek of a walk W are distinct, W is called a trail; in 
this case the length of W is just e(W). If, in addition, the vertices 
Vo, Vi, ... , vk are distinct, W is called a path. Figure 1.8 illustrates a walk, a 
trail and a path in a graph. We shall also use the word ·path' to denote a 
graph or subgraph whose vertices and edges are the terms of a .Path. 

u 

y V 

w 

Figure 1.8 

Walk: uavf yfvgyhwbv 

Trail: wcxdyhwbvgy 

Path: xcwhyeuav 
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0 

(a) lb) 

Figure 1.9. (a) A connected graph; (b) a disconnected graph with three components 

Two vertices u and v of G are said to be connected if there is a (u, v )-path 
in G. Connection is an equivalence relation on the vertex set V. Thus there 
is a partition of V into nonempty subsets V1, V2, ... , V"' such that two 
vertices u and v are connected if and only if both u and v belong to the 
same s~t ½. The subgraphs G[V1], G[V2], ... , G[V"'] are called the com
ponents of G. If G bas exactly one component, Gis connected; otherwise G 
is disconnected. We denote the number of components of G by w(G). 
Connected and disconnected graphs are depicted in figure 1.9. 

Exercises 

1.6.1 Show that if there is a (u, v )-walk in G, then there is also a 
( u, v )-path in G. 

1.6.2 Show that the number of (vi, v;)-walks of length k in Gis the (i, j)th 
entry of At. 

1.6.3 Show that if G is simple and 8 > k, then G bas a path of length k. 
1.6.4 Show that G is connected if and only if, for every partition of V 

into two nonempty sets V1 and V2, there is an edge· with one end in 
V1 and one end in V2. 

1.6.5 (a) Show that if G is simple and e > (v 2 
1 ), then G is connected. 

(b) For v> 1, find a disconnected simple graph G with e = (v 2 
1). 

1.6.6 (a) Show that if Gis simple and 8 >[v/2]- l, then Gis connected. 
(b) Find a disconnected {[v/2]-1)-regular simple graph for v even. 

1.6. 7 Show that if G is disconnected, then Ge is connected. 
1.6.8 (a) Show that if e E E, then w(G) <.w(G-e) < w(G)+ 1. 

(b) Let v E V. Show that G - e cannot, in penerat, be replaced by 
G - v in the above inequality. 

1.6.9 Show that if G is connected and each degree in G is even, then, for 
any VE V, w{G-v)<½d(v). 
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1.6.10 Show that any two longest paths in a connected graph have a vertex 
in common. 

1.6.11 If vertices u and v are connected in G, the distance between u and 
v in G, denoted by da(u, v ), is the length of a shortest (u, v )-path in 
G; if there is no path connecting u and v we define da(u, v) to be 
infinite. Show that, for any three vertices u, v and w, d(u, v) + 
d ( V, w) ~ d ( u, w). 

1.6.12 The diameter of G is the maximum distance between two vertices 
of G. Show that if G bas diameter greater than three, then oc bas 
diameter less than three. 

1.6.13 Show that if G is simple with diameter two and à= v - 2, then 
e ~2v-4. 

1.6.14 Show that if G is simple and connected but not complete, then G 
bas three vertices u, v and w such that uv, vw E E and uw é E. 

1.7 CYCLES 

A walk is closed if it has positive length and its origin and terminus are the 
same. A closed trail whose origin and internai vertices are distinct is a cycle. 
Just as with paths we sometimes use the term 'cycle' to denote a graph' 
corresponding to a cycle. A cycle of length k is called a· k-cycle; a k-cycle is 
odd or even according as k is odd or even. A 3-cycle is often called a 
triangle. Examples of a closed trail and a cycle are given in figure 1.10. 

Using the concept of a cycle, we can now present a characterisation of 
bipartite graphs. 

Theorem 1.2 A graph is bipartite if and only if it contains no odd cycle. 

Proof Suppose that G is bipartite with bipartition (X, Y), and let C = 
VoV1 ... vkvo be a cycle of G. Without loss of generality we may assume that 
Vo E ~- Tuen, since VoV1 E E and G is bipartite, V1 E Y. Similarly V2 EX _. !, 
in general, V2ï EX and V2i+1 E Y. Since Vo EX, V1t E Y. Thus k = 2i + 1, for 
some i, and it follows that C is even. 

Figure 1.10 

Closed trail: ucvhxgwfwdvbu 

Cycle: xaubvhx 
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It clearly suffices to prove the converse for connected graphs. Let G be a 
connected graph that contains no odd cycles. We choose an arbitrary vertex 
u and define a partition (X, Y) of V by setting 

X= {x eV I d(u, x) is even} 

Y = { y e V I d ( u, y) is odd} 

We shall show that (X, Y) is a bipartition of G. Suppose that v and w are 
two vertices of X. Let P be a shortest ( u, u)-path and Q be a shortest 
( u, w )-path. Denote by U1 the last vertex common to P and Q. Since P and 
Q are shortest paths, the ( u, u1)-sections of both P and Q are shortest 
( u, u1)-paths and, therefore, have the same length. Now, since the lengths of 
both P and Q are even, the lengths of the (ui, v)-section P1 of P and the 
(u1, w )-section 01 of Q must have the same parity. It follows that the 
(v, w)-path Pï1O1 is of even length. If u were joined to w, Pï1O1wu would 
be a cycle of odd length, contrary to the hypothesis. Theref ore no two 
vertices in X are adjacent; similarly, no two vertices in Y are adjacent D 

Exercises 

1. 7.1 Show that if an edge e is in a closed trail of G, then e is in a cycle of 
G. 

1.7.2 
1.7.3* 

1.7.4 

1.7.5 

1.7.6 

Show that if c5 > 2, then G contains a cycle. 
Show that if G is simple and c5 ;;?; 2, then G contains a cycle of length 
at least 8 + 1. . 
The girth of G is the length of a shortest cycle in G; if G bas no 
cycles we define the girth of G to be infinite. Show that 

(a) a k-regular graph of girth four bas at least 2k vertices, and (up to 
iso~orphism) there exists exactly one such graph on 2k vertices; 

. (b). a k-regular graph of girth five bas at least k 2 + 1 vertices. 

Show that a k-regular graph of girth five and diameter two bas 
exactly k 2 + 1 vertices, and find such a graph for k = 2, 3. (Hoffman 
and Singleton, 1960 have shown_ that such a graph can exist only if 
k = 2, 3, 7 and, possibly, 57.) 
Show that 

(a) if e;;?; v, G contains a cycle; 
(b )* if e ;;?; v + 4, G con tains two edge-disjoint cycles. (L. Posa) 

APPLICATIONS 

1.8 THE SHORTEST PATH PROBLEM 

With each edge e of G let there be associated a real number w(e), called its 
weight. Theo G, together with these weights on its edges, is called a weighted 



16 

1 

9 

Graph Theory with Applications 

2 

Figure 1.11. A ( Uo, Vo)-path of minimum weight. 

graph. Weighted graphs occur frequently in applications of graph theory. In 
the friendship · graph, for example, weights might indicate intensity of 
friendship; in the com.munications graph, they could represent the construc
tion or maintenance costs of the various communication links. 

If H is a subgraph of a weighted graph, the weight w(H) of H is the sum 

of the weights î' w(e) on its edges. Many optimisation problems amount 
e~) . . 

to finding, in. a weighted graph, a subgraph of a certain type with minimum 
(or maximum) weight. One such is thf sh9rtest path problem: given a railway 
network connecting various towns, determine a shortest route between two 
specified towns in the network. . . . · 

Here one must find, in a weighted graph, a path of minimum weight 
connecting two specified vertices Uo and vo; the weights represent distances 
by rail between directly-linked towns, and are therefore non-negative. The 
path indicated in the gràph of figure · 1.11 is a ( uo, vo)-path of minimum 
weight (exercise l.8.1). 

We now present an algorithm for solving the shortest path problem. For · 
clarity of exposition, we shall refer to the weight of a path · in a weighted 
graph as its length; similarly the minimum weight of a (u, v)-path will be 
called the distance between u and v and denoted by d(u, v). These defini
tions coincide with the usual notions of length and distance, as defined in 
section 1.6, when ail the weights are equal to one. 

It clearly suffices to deal with the shortest path problem for simple graphs; 
so we shall assume here that G is simple. We shall also assume that ail the 
weights are positive. This, again, is not a serious restriction because, if the 
weight of an edge is zero, then · its ends can be identified. We adopt the 
convention that w(uv) - oo if uv~ E. 
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The algorithm to be described was discovered by Dijkstra (1959) and, 
independently, by Whiting and Rillier (1960). lt finds not only a shortest 
( u0 , vo)-path, but shortest paths from Uo to ail other vertices of G. The basic 
idea is as follows. 

' -Suppose that S is a proper subset of V such that Uo E S, and let S denote 
V\S. If P = Uo ••• üv is a short est· path from Uo to S then clearly ü E S and 
the (u0 , ü)-section of P must be a shortest (uo, ü)-path. Therefore 

d(uo, v) = d(uo, ü) + w(üv) 

and the distance from Uo to S is given by the formula 

d(uo, S) = min{d(uo, u) + w(uv)} 
ueS 

(1.1) 
veS 

This formula is the basis of Dijkstra's algorithm. Starting with the set 
So = {uo}, an increasing sequence So, S1, ... , S.,-1 of subsets of V is con
structed, in such a way that, at the end of stage i, shortest paths from Uo to 
all vertices in Si are known. 

The first step is to determine a vertex nearest to uo. This is achieved by 
computing d(uo, So) and selecting a vertex U1 E So such that d(uo, u1) = 
d(uo, So); by (1.1) 

d(uo, So) = min{d(uo, u)+ w(uv)}= mi.n{w(uov)} 
ueSo veSo 
ves0 

and so d(uo, So) is easily computed. We now set S1 = {uo, u1} and let P1 
denote the path UoU1; this is clearly a shortest (Ùo, u1)-path. In general, if the 
set Sk = {uo, u1, ... , uk} and corresponding shortest paths Pi, P2, ... , Pk have 
.already been determined, we compute d(uo, Sk) using (1.1) ànd select a 
vertex Uk+l E sk such that d(uo, Uk+1)= d(uo, Sk), By (1.1), d(uo, Uk+l) = 
d(uo, Uj) + w(ujUk+1) for some j < k; we get a shortest (uo, uk+1)-path by 
adjoining the edge UjUk+1 to the path P;. 

We illustrate this procedure by considering the weighted graph depicted in 
figure 1.12a. Shortest paths from uo to the remaining vertices are deter
mined in seven stages. At each stage, the vertices to which shortest paths 
have been found are indicated by solid dots, and each is labelled by its 
distance from u0 ; initially u0 is labelled O. The actual shortest paths are 
indicated by solid lines. Notice that, at each stage, these shortest paths 
together form a connected graph without cycles; such a graph is called a tree, 
and we can think of the algorithm as a 'tree-growing' procedure. The final 
tree, in figure 1.12h, has the property that, for each vertex v, the path 
connecting Uo and v is a shortest (uo, v )-path. 

Dijkstra's algorithm is a refinement of the above procedure. This refine
ment is motivated by the consideration that, if the minimum in ( 1.1) were to 
be computed from scratch at each stage, many comparisons would be 
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Figure 1.12. Shortest path algorithm 
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repeated unnecessarily. To avoid such repetitions, and to retain computa
tion al information from one stage to the next, we adopt the following 
labelling procedure. Throughout the algorithm, each vertex v carries a label 
l(v) which is an upper bound on d(uo, v). Initially l(uo)=0 and l(v)=oo for 
v ~ Uo. (In actual computations oo is replaced by any sufficiently large 
number.) As the algorithm proceeds, these labels are modified so that, at the 
end of stage i, 

l(u) = d(uo, u) for u E si 
and 

l(v) = min{d(uo, u)+ w(uv)} for VE si 
ueS;-1 

Dijkstra's Algorithm 

1. Set l(uo)=0, l(v)=oo for v~uo, So={uo} and i=0. 
2. For each veSi, replace l(v) by min{l(v)d(ui)+w(uiv)}. Compute 

min{l(v)} and let Ui+1 denote a vertex for which this minimum is attained. 
veS; . 

Set Si+l = si u {ui+t}. 
3. If i = v- 1, stop. If i < v- 1, replace i by i + 1 and go to step 2. 

When the algorithm terminates, the distance from Uo to v is given by the 
final value of the label l(v). (If our interest is in determining the distance to 
one specific vertex vo, we stop as soon as some Uj equals vo.) A flow diagram 
summarising this algorithm is shown in figure 1.13. 

As described above, Dijkstra's algorithm determines only the distances 
from Uo to ail the other vertices, and not the actual shortest paths. These 
shortest paths can, however, be easily determined by keeping track of the 
predecessors of vertices in the tree (exercise 1.8.2). 

Dijkstra's algorithm is an example of what Edmonds (1965) calls a good 
algorithm. A graph-theoretic algorithm is good if the number of computa
tional steps required for its implementation on any graph G is bounded 
above by a polynomial in v and e (s.uch as 3v2e). An algorithm whose 
implementation may require an exponential number of steps (such as 2v) 
might be very inefficient for some large graphs. 

To see that Dijkstra's algorithm is good, note that the computations 
involved in boxes 2 and 3 of the flow diagram, totalled over all iterations, 
require v(v-1)/2 additions and v(v -1) comparisons. One of the questions 
that is not elaborated upon in the flow diagram is the matter of deciding 
whether a vertex belongs to S or not (box 1). Dreyfus (1969) reports a 
technique for doing this that requires a total of (v-1) 2 comparisons. Hence, 
if we regard either a comparison or an addition as a basic computational 
unit, the total number of computations required for this algorithm is 
approximately Sv 2/2, and thus of order v 2 • (A function f(v, e) is of order 
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L(uo)= 0 
l { v) = m, v ;t u0 

S={uol 

STOP: Su{u;+il ... S ----< L(v)=d(u0 ,v) 
ïlveV i+l-+-i 

3ui+l S. t. 

NO 

(2) 

min {L(v), l(u;)+w{u;v))-·-l{v) v-i-1 additions 

ïlvE S v - i - 1 comporisons 

(3) 

Compute min {l(v)l 
V€5 

11 - i -1 comporisons 

l { U; + 1) = min {l( v )) ,___ ________ _____. 

V€5 

Figure 1.13. Dijkstra's algorithm 

g(v, e) if there exists a positive constant c such that f(v, s )/g(v, e) < c for ail 
v and e.) 

Although the shortest path problem can be solved by a good algorithm, 
there are many problems in graph theory for which no good algorithm is 
known. We refer the reader to Abo, Hopcroft and Ullman (1974) for 
further details. 

Exercises 

1.8.1 Find shortest paths from uo to all other vertices in the weighted 
graph of figure 1.11. 

1.8.2 What additional instructions are needed in order that Dijkstra's 
algorithm determine shortest paths rather than merely distances? 

1.8.3 A company has branches in each of six cities Ci, C2, ... , C6. The fare 
for a direct flight from Ci to C; is given by the (i, j)th entry in the 
f ollowing matrix ( 00 indicates that there is no· direct ftight): 
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0 50 00 40 25 10 
50 0 15 20 00 25 
00 15 0 10 20 00 

40 20 10 0 10 25 
25 00 20 10 0 55 
10 25 00 25 55 0 

The company is interested in computing a table of cheapest routes 
between pairs of cities. Prepare such a table. 

1.8.4 A wolf, a goat and a cabbage are on one bank of a river. A ferryman 
wants to take them across, but, since bis boat is small, he can take 
only one of them at a time. For obvious reasons, neither the wolf and 
the goat nor the goat and the cabbage can be left unguarded. How is 
the ferryman going to get them across the river? 

1.8.5 Two men have a full eight-gallon jug of wine, and also two empty 
jugs of five and three gallons capacity, respectively. What is the 
simplest way for them to divide the wine equally? 

1.8.6 Describe a good algorithm for determining 
(a) the components of a graph; 
(b) the girth of a graph. 
How good are your algorithms? 

1. 9 SPERNER'S LEMMA 

Every .continuous mapping f of a closed n-disc to itself has a fixed point 
(that is, a point x such that J(x) = x). This powerful theorem, known as 
Brouwer's fixed-point theorem, has a wide range of applications in modern 
mathematics. Somewhat surprisingly, it is an easy consequence of a simple 
combinatorial lemma due to Sperner (1928). And, as we shall see in this 
section, Sperner's lemnta is, in turn, an immediate consequence of corollary 
1.1. 

Sperner's lemma concerns the decomposition of a simplex (line segment, 
triangle, tetrahedron and so on) into · smaller simplices. For the sake of 
simplicity we shall deal with the two-dimensional case. 

Let T be a closed triangle in the plane. A subdivision of T into a finite 
number of smaller triangles is said to be simplicial if any two intersecting 
triangles have either· a vertex or a whole side in common (see figure 1.14a). 

Suppose that a simplicial subdivision of T is given. Then a labelling of the 
vertices of triangles in the subdivision in three symbols 0, 1 and 2 is said to 
be proper if 

(i) the three vertices of T are labelled 0, 1 and 2 (in any order), and 
(ii) for 0 $ i < j $ 2, each vertex on the side of T joining vertices labelled i 

and j is labelled either i or j. 
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0 

(a) 

Figure 1.14. (a) A simplicial subdivision of a triangle; (b) a proper labelling of the 
subdivision 

We call a triangle in the subdivision whose vertices receive ail three labels a 
distinguished triangle. The proper labelling in figure 1.14b bas three distin
guished triangles. 

Theorem 1.3 (Sperner's lemma) Every properly labelled simplicial subdivi
sion of a triangle bas an odd number of di~tinguished triangles. 

Proof Let To denote the region outside T, and let Ti, T2, ... , Tn be the 
triangles of the subdivision. Construct a graph on the vertex set 
{ Vo, Vi, .•• , Vn} by joining vi and Vj whenever the common boundary of T1 
and Ti is an cdge with labels O and 1 (see figure 1.15). 

In this graph, vois clearly of odd degree (exercise 1.9.1). It follows from 
corollary 1.1 that ·an odd number of the vertices Vi, t>2, . , .. , Vn are of odd 
degree; Now it is easily seen that none of these vertices can have degree 

0 

Figure 1.15 
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three, and so those with odd degree must have degree one. But a vertex vi is 
of degree one if and only if the triangle Ti is distinguished 0 

We shall now briefly indicate how Sperner's lemma can be used to deduce 
Brouwer's fixed-point theorem. Again, for simplicity, we shall only deal with 
the two-dimensional case. Since a closed 2-disc is homeomorphic to a closed 
triangle, it suffices to prove that a continuous mapping of a closed triangle to 
itself has a fixed point. 

Let T be a given closed triangle with vertices Xo, X1 and X2. Then each 
point x of T can be written uniquely as x = aoxo + a1X1 + a2x2, where each 
ai> 0 and I ai= 1, and we can represent x by the vector (ao, a1, a2); the real 
number~ ao, a1 and a2 are called the barycentric coordinates of X. 

Now let f be any continuous mapping of T to itself, and suppose that 

Define Si as the set of points (ao, a1, a2) in T for which a:< ai. To show that 
f has a fixed point, it is enough to show that Son S1 n S2 # 0. For suppose 
that (ao, a1, a2) E Son S1 n S2 .. Theo, by the definition of Si, we have that 
af < ai for eac.h i, and this, coupled with the fact that I af = I ai, yields 

In other words, (ao, ai, a2) is a fixed point of f. 
So consider an arbitrary subdivision of T and a proper labelling such that 

each vertex labelled i belongs to Si; the existence of such a labelling is easily 
seen (exercise l .9.2a). It follows from Sperner's lemma that there is a 
triangle in the subdivision whose three vertices belong to So, S1 and S2. Now 
this holds for any subdivision of T and, since it is possible to choose 
subdivisions in which each of the smaller triangles are of arbitrarily small 
diameter, we conclude that there exist three points of So, S1 and S2 which 
are arbitrarily close to one another. Because the sets Si are closed ( exercise 
l.9.2b), one may deduce that Son S1 n S2 # 0. 

For details of the above proof and other applications of Sperner's lemma, 
the reader is referred to Tompkins (1964). 

Exercises 

1.9.1 In the proof of Sperner's lemma, show that the vertex Vo is of odd 
degree. 

1.9.2 In the proof of Brouwer's fixed-point theorem, show that 

(a) there exists a proper labelling such that each vertex labelled i 

belongs to Si; 
(b) the sets Si are closed. 

1.9.3 State and prove Sperner's lemma for higher dimensional simplices. 
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2 Trees 
2.1 TREES 

An acyclic graph is one that contains no cycles. A tree is a connected acyclic 
graph. The trees on six vertices are shown in figure 2.1. 

Theorem 2.1 In a tree, any two vertices are connected by a unique path. 

Proof By contradiction. Let G be a tree, and assume that there are two 
distinct (u, v)-paths P1 and P2 in G. Since P1 #: P2, there is an edge e = xy of 
P1 that is not an edge of P2. Clearly the graph (P1 U P2)- e is connected. It 
therefore con tains an (x, y )-path P. But then P + e is a cycle in the. acyclic 
graph G, a contradiction □ 

The converse of this theorem holds for graphs without loops (exercise 
2.1. l). 

Observe that all the trees on six vertices (figure 2.1) have five edges. In 
general we have: 

Theorem 2.2 If G is a tree, then e = v - 1. 

Proof By induction on v. When v = 1, G- K1 and e = 0 = v -1. 

Figure 2.1. The trees on six vertices 
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Suppose the theorem true for all trees on fewer than v vertices, and let G 
be a tree on v ~ 2 vertices. Let uv e E. Then G - uv contains no (u, v )-path, 
since uv is the unique (u, v )-path in G. Thus G - uv is disconnected and so 
(exercise t6.8a) w(G- uv) = 2. The components G1 and G2 of G- uv, 
being acyclic, are trees. Moreover, each has fewer than v vertices. Therefore, 
by the induction hypothesis 

e ( Gi) = v( Gï) - 1 for i = l, 2 
Thus 

Corollary 2.2 Every nontrivial tree bas at least two vertices of degree one. 

Proof Let G be a nontrivial tree. Tuen 

d ( v) > 1 for all v e V 

Also, by theorems 1.1 and 2.2, we have 

v; d( v) = 2e = 2 v - 2 

lt now follows that d(v) = 1 for at least two vertices v □ 

Another, perhaps more illuminating, way of proving corollary 2.2 is to 
show that the origin and terminus of a longest path in a nontrivial tree both 
have degree one (see exercise 2.1.2). 

Exercises 

2.1.1 Show that if any two vertices of a loopless graph G are connected 
by a unique path, then G is a tree. -

2.1.2 Prove corollary 2.2 by showing that the origin and terminus of a 
longest path in a nontrivial tree both have degree one. 

2.1.3 Prove corollary 2.2 by using exercise 1. 7 .2. 
2.1.4 Show that every tree with exactly two vertices of degree one is a 

path. 
2.1.S Let G be a graph with v - l edges. Show that the following three 

statements are equivalent: 

(a) G is connected; 
(b) G is acyclic; 
(c) G is a tree. 

2.1.6 Show that if G is a tree with Â > k, then G bas at least k vertices of 
degree one. 

2.1. 7 An acyclic graph is also called a forest. Show that 

(a) each component of a forest is a tree; 
(b) G is a forest if and only if e = v-w. 
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2 .1. 8 A centre of G is a vertex u such that max d ( u, v) is as small as 
vev 

possible. Show that a tree bas either exactly onè centre or two, 
adjacent, centres. 

2.1.9 Show that if G is a forest with exactly 2k vertices of odd degree, 
then there are k edge-disjoint paths Pi, P2, ... , Pk in G such that 
E(G) = E(P1) Ü E(P2) U ... U E(Pk). 

2.1.10* Show that a sequence (di, d2, ... , d..) of positive integers is a degree 
V 

sequence of a tree if and only if k di= 2(v-1). 
1•1 

2.1.11 Let T be an arbitrary tree on k + 1 vertices. Show that if G is 
simple and 6 > k then G bas a subgraph isomorphic to T. 

2.1.12 A saturated hydrocarbon is a molecule CmHn in which every carbon 
atom bas four bonds, every hydrogen atom bas one bond, and no 
sequence of bonds forms a cycle. Show that, for every positive 
integer m, CmHn can exist only if n = 2m + 2. 

2.2 CUT EDGES AND BONDS 

A eut edge of Gis an edge e such that w(G-e)>w(G). The graph of figure 
2.2 bas the three eut edges indicated. 

Theorem 2.3 An edge e of G is a eut edge of G if and only if e is 
contained in no cycle of G. 

Proof Let e- be a eut edge of G. Since w ( G - e) > w( G ), there exist 
vertices u and v of G that are connected in G but -not in G - e. There is 
therefore some ( u, v )-path P in G which, necessarily, traverses e. Suppose 
that x and y are· the ends of e, and that x precedes y on P. In G - e, u is 
connected to x by a section of P and y is connected to v by a section of P. If 
e were in a cycle C, x and y would be connected in G - e by the path C - e. 
Thus, u and v would be connected in G - e, a contradiction. 

Figure 2.2. The eut edges of a graph 
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Conversely, suppose that e = xy is not a eut edge of G; thus, w ( G - e) = 

w( G). Since there is an (x, y )-path (namely xy) in G, x and y are in the 
same component of G. It follows that x and y are in the same component of 
G - e, and hence that there is an (x, y )-path P in G - e. But then e is in the 
cycleP+e of G □ 

Theorem 2.4 A connected graph is a tree if and only if every edge is a eut 
edge. 

Proof Let G be a tree and let e be an edge of G. Since G is acyclic, e is 
contained in no cycle of G and is therefore, by theorem 2.3, a eut edge of G. 

Conversely, suppose that G is connected but is not a tree. Then G 
contains a cycle C. By theorem 2.3, no edge of C can be a eut edge of G □ 

A spanning tree of G is a spanning subgraph of G that is a tree. 

Corollary 2.4.1 Every connected graph contains a spanning tree. · 

Proof Let G be connected and let T be a minimal connected spanning 
subgraph of G. By definition w(T) = 1 and w(T-e) > 1 for each edge e of T. 
It follows that each edge of T is a eut edge and therefore, by theorem 2.4, 
that T, being connected, is a tree □ 

Figure 2.3 depicts a connected graph and one of its spanning trees. 

Corollary 2.4.2 If G is connected, then e > v - 1. 

Proof Let G be connected. By corollary 2.4.1, G contains a spanning 
tree T. Theref ore 

e(G) > e(T) = v(T)-1 = v(0)-1 D 

Figùre 2.3. A spanning tree in a connected graph 
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(a) (b) 

.Figure 2.4. (a) An edge eut; (b) a bond 

Theorem 2.5 Let T be a spanning tree of a connected graph G and let e be 
an edge of G not in T. Then T + e con tains a unique cycle. 

Proof Sin ce T is acyclic, each cycle of T + e con tains e. Moreover, C is a 
cycle of T + e if and only if C - e is a path in T connecting the, ends of e. By 
theorem 2.1, T has a unique such path; therefore T + e contains a unique 
cycle D 

For subsets S and S' of V, we denote by [S, S'] the set of edges with one 
end in S and the other in S'. An edge eut of G is a subset of E of the form 
[S, S], where S is a nonempty proper subset of V and S = V\S. A minimal 
nonempty edge eut of G is called a bond; each eut edge e, for instance, gives 
rise to a ·bond {e}. If G is connected, then a bond B of G is a minimal subset 
of E such that G - B is disconnected. Figure 2.4 indicates an edge eut and a 
bond in a graph. 

If H is a subgraph of G, the complement of H in G, denoted by H(G), is 
the subgraph G- E(H). If G is connected, a subgraph of the form f, where 
T is a spanning tree, is called a cotree of G. 

Theorem 2.6 Let T be a spanning tree of a connected graph G, and let e be 
any edge of T. Then 

(i) the cotree f contains no bond of .G; 
(ii) f + e con tains a unique bond of G. 

Proof (i) Let B be a bond of G. Then G - B is disconnected, and so 
cannot contain the spanning tree T. Therefore B is not contained in f. (ii) 
Denote by S the vertex set of one of the two components of T- e. The edge 
eut B = [S, S] is clearly a bond of G, and is contained in f + e. Now, for any 
b E B, T- e + b is a spanning tree of G. Therefore every bond of G 
contained in f +e must include every such element b. lt follows that B is 
the only bond of G contained in f + e D 

The relationship between bonds and cotrees is analogous to that between 
cycles and spanning trees. Statement (i) of theorem 2.6 is the analogue for 
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bonds of the simple fact that a spanning tree is acyclic, and (ii) is the 
analogue of theorem 2.5. This 'duality' between cycles and bonds will be 
further explored in chapter 12 (see also exercise 2.2.10). 

Exercises 

2.2.1 Show that G is a forest if and only if every edge of G is a eut edge. 
2.2.2 Let G be connected and let e E E. Show that 

(a) e is in every spanning tree of G if and only if e is a eut edge of 
G; 

(b) e is in no spanning tree of G if and only if e is a loop of G. 

2.2.3 Show that if G is loopless and has exactly one spanning tree T, then 
G=T. 

2.2.4 Let F be a maximal forest of G. Show that 

(a) for every component H of G, F n H is a spanning tree of H; 
(b) e(F)=v(G)-w(G). 

2.2.5 Show that G contains at least e - v + w distinct cycles. 
2.2.6 Show that 

2.2.7 

2.2.8 

2.2.9 
. 2.2.10 

(a) if each degree in G is even, then G bas no eut edge; 
(b) if G is a k-regular bipartite graph with k > 2, then G has no eut 

edge. · 

Find the number of nonisomorphic spanni!)g trees in the following 
graphs: 

Let G be connected and let S be a nonempty proper subset of V. 
Show that the edge eut [S, S] is a bond of G if and only if both 
G[S] and G[S] are connected. 
Show that every edge eut is a disjoint union of bonds. 
Let B1 and B2 be bonds and let C1 and C2 be cycles (regarded as 
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sets of edges) in a graph. Show that 

(a) B1 aB2 is a disjoint union of bonds; 
(b) C1 ac2 is a disjoint union of cycles, 

where a denotes symmetric difference; 

(c) for any edge e, (B1 U B2)\{e} con tains a bond; 
(d) for any edge e, ( C1 U C2)\{e} con tains a cycle. 
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2.2.11 Show that if a graph G contains k edge-disjoint spanning trees 
then, for each partition (V1, Y2, ... , Yn) of V, the number of edges 
which have ends in different parts of the partition is at least 
k(n - 1). 

(Tutte, 1961 and Nash-Williams, 1961 have shown that this 
necessary condition for G to contain k edge-disjoint spanning trees 
is also sufficient.) 

2.2.12* Let S be an n-element set, and let .stJ, = {A1, A2, ... , An} be a family 
of n distinct subsets of S. Show that there is an element x E S such 
that the sets A1U{x}, A2U{x}, ... , AnU{x} are. ail distinct. 

2.3 CUT VERTICES 

A vertex v of G is a eut vertex if E can be partitioned into two nonempty 
subsets E1 and E2 such that G[EJ] and G[E2] have just the vertex v in 
eommon. If G is loopless and nontrivial, then v is a eut vertex of G if and 
only if w( G - v) > w( G). The graph of figure 2.5 bas the five eut vertices 
indieated. 

Theorem 2. 7 A_ vertex v of a tree G is a eut vertex of G if and only if 
d(v) > 1. 

Proof If d(v) = 0, a- K1 and, clearly, v is not a eut vertex. 

Figure 2.5. The eut vèrtices of a graph 
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If d ( v) = 1, G - v is an acyclic graph with v( G - v) - 1 edges, and thus 
(exercise 2.1.5) a tree. Hence w(G-v) = 1 = w(G), and v is nota eut vertex 
of G. 

If d(v) > 1, there are distinct vertices u and w adjacent to v. The path uvw 
is a (u, w)-path in G. By theorem 2.1 uvw is the unique (u, w)-path in G. It 
follows that there is no (u, w )-path in G- v, and therefore that w( G- v) > 
1 = w( G). Thus v is a eut vertex of G D 

Corollary 2. 7 Every nontrivial loopless connected graph has at least two 
vertices that are not eut vertices. 

Proof Let G be a nontrivial loopless connected graph. By corollary 
2.4.1, G contains a spanning tree T. By corollary 2.2 and theorem 2.7, T 
has at least two vertices that are not eut vertices. Let v be any such vertex. 
Then 

w(T-v)=l 

Since T is a spanning subgraph of G, T- v is a spanning subgraph of G - v 
and therefore 

w(G-v) < w(T-v) 

lt follows that w( G - v) = 1, and hence that v is not a eut vertex of G. Since 
there are at least two such vertices v, the proof is complete D 

Exercises 

2.3.1 Let G be conneeted with v > 3. Show that 

(a) if G has a eut edge, then G bas a vertex v such that w(G-v) > 
w(G); 

(b) the converse of (a) is not necessarily true. 

2.3.2 Show that a simple connected graph that bas exactly two vertices 
whieh are not eut vertices is a path. 

2.4 CAYLEY'S FORMULA 

There is a simple and elegant recursive formula for the number of spanning 
trees in a graph. lt involves the operation of contraction of an edge, which 
we now introduce. An edge e of G is said to be contracted if it is deleted 
and its ends are identified; the resulting graph is denoted by G · e. Figure 
2.6 illustrates the eflect of contraeting an edge. 

lt is clear that if e is a link of G, then 

v(G · e) = v(G)-1 e(G·e)=e(G)-1 and w(G·e)=w(G) 

Therefore, if T is a tree, so too is T · e. 
We denote the number of spanning trees of G by -r( G). 



Trees 33 

G·e 

Figure 2.6. Contraction of an edge 

Theorem 2.8 Ife is a link of G, then -r(G)=-r(G-e)+,-(G·e). 

Proof Since every spanning tree of G that does not contain e is also a 
spanning tree of G - e, and conversely, ,-( G - e) is the number of spanning 
trees of G that do not contain e. 

Now to each spanning tree T of G that contains e, there corresponds a 
spanning tree T · e of G · e. This correspondence is clearly a bijection (see 
figure 2. 7). Theref ore 1' ( G · e) is precisely the n umber of spanning trees of G 
that contain e. lt follows that ,-( G) = -r( G- e) + -r( G · e) D 

Figure 2.8 illustrates the recursive calculation of -r(G) by means of 
theorem 2.8; the number of spanning trees in a graph is represented 
symbolically by the graph itself. 

Although theorem 2.8 provides a method of calculating the number of 
spanning trees in a graph, this method is not suitable for large graphs. 
Fortunately, and rather surprisingly, there is a closed formula for -r(G) which 
expresses -r( G) as a determinant; we shall present this result in chapter 12. 
In the special case when G is complete, a simple formula for -r(G) was 
discovered by Cayley (1889). The proof we give is due to Prüfer (1918). 

G G·e 

Figure 2.7 



c(G)= E;J = □ J = (LJ +D) +(d :==:0) 

= . LJ + (L+~) + ( ~ + ) + ( J cY) 

= LJ +LC ___ o + o) +~ + :_0 cY . 

=8 

Figure 2.8. Recursive calculation of T(G) 
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Theorem 2.9 T(Kn) = nn-2 • 

Proof Let the vertex set of Kn be N = {1, 2, ... , n}. We note that nn-2 is 
the number of sequences of length n - 2 that can be formed from N. Thus, 
to prove the theorem, it suffices to establish a one-one correspondence 
between the set of spanning trees of Kn and the set of such sequences. 

With each spanning tree T of Kn, we associate a unique sequence 
(t1, t2, ... , tn-2) as follows. Regarding N as an ordered set, let s1 be the first 
vertex of degree one in T; the vertex adjacent to s1 is taken as ti. We now 
delete s1 from T, denote by s2 the first vertex of degree one in T- s1, and 
take the vertex adjacent to s2 as tz. This operation is repeated until tn-2 bas 
been defined and a tree with just two vertices remains; the tree in figure 2.9, 
for instance, gives rise to the sequence (4, 3, 5, 3, 4, 5). lt can be seen that 
different spanning trees of Kn determine difference sequences. 

2 -<-->- (4,3,5,3,4,5) 

7 8 

Figure 2.9 

The reverse procedure is equally straightforward. Observe, first, that any 
vertex v of _T occurs dT(v )- 1 times in (ti, t2, ... , tn-2). Thus the vertices of 
degree one in Tare precisely those that do not appear in this sequence. To 
reconstruct T from (ti, tz, ... , tn-z), we therefore proceed as follows. Let s1 
be the first vertex of N not in (t1, ti,_ ... , tn-2); join s1 to ti. Next, let s2 be the 
first vertex of N\{s1} not in (h, ... , tn-2), and join S2 to tz. Continue in this 
way until the n - 2 edges s1t1, s2t2, ... , Sn-2tn-2 have been determined. T is 
now obtained by adding the edge joining the two remaining vertices of 
N\{s1, s2, ... , Sn-2}. lt is easily verified that different sequences give rise to 
different spanning trees of Kn, We have thus established the desired one
one correspondence D 

Note that nn-2 is not the number of nonisomorphic spanning trees of Kn, 
but the number of distinct spanning trees of K"; there are just six 
nonisomorphic spanning trees of K 6 (see figure 2.1), whereas fhere are 
64 = 1296 distinct spanning trees of K6, 
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Exercises 

2.4.1 Using the recursion formula of theorem 2.8, evaluate the number of 
spanning trees in KJ,J. 

2.4.2* A wheel is a graph obtained from a cycle by adding a new vertex and 
edges joining it to all the vertices of the cycle; the new edges are 
called the spokes of the wheel. Obtain an expression for the number 
of spanning trees in a wheel with n spokes. 

2.4.3 Draw all sixteen spanning trees of K4. 
2.4.4 Show that if e is an edge of K 0 , then -r(K0 -e)=(n-2)n°-3 • 

2.4.5 (a) Let H be a graph in which every two adjacent vertices are joined 
by k edges and let G be the underlying simple graph of H. Show 
that -r(H) = kv-1-r(G). 

(b) Let H be the graph obtained from a· graph G when each edge of 
G is replaced by a path of length k. Show that -r(H) = 
kE-v+lT(G}. 

(c) Deduce from (b) that -r(K2,0 ) = n2°-1 • 

APPLICATIONS 

2.5 THE CONNECTOR PROBLEM 

A railway network connecting a number of towns is to be set up. Given the 
cost _ cij of constructing a direct link between h>wns vi and Vj, design such a 
network to minintise the total cost of construction. This is known as the 
connector problem. 

By regarding each town as a vertex in a weighted graph with weights 
w(vivj) = Cij, it is clear that this problem is just that of finding, in a weighted 
graph G, a connected spanning subgraph of minimum weight. Moreover, 
since the weights represent costs, they àre certainly non-negative, and we 
may therefore assume that such a minimum-weight spanning subgraph is a 
spanning tree T of G. A minimum-weight spanning tree of a weighted graph 
will be called · an optimal tree ; the spanning tree indicated in the wéighted 
graph of figure 2.10 is an optimal tree (exercise 2.5.1). 

We shall now present a good algorithm for finding · an optimal tree in a 
nontrivial weighted connected graph, thereby solving the connector 
problem. 

Consider, first, the case when each weight w(e) = 1. An optimal tree is 
then a spanning tree with as few edges as possible;. Since each spanning tree 
of a graph has the same number of edges (theorem 2.2), in this special case 
we merely need to construct some spanning tree of the graph~ A simple 
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Figure 2.10. An optimal tree in a weighted graph 

inductive algorithm for finding such a tree is the following: 

1. Choose a link e1. 
2. If edges e1, e2, ... , ei have been chosen, then choose ei+1 from 

E\{e1, e2, ... , ei} in such a way that G[{e1, e2, ... , ei+1}] is acyclic. 
3. Stop when step 2 cannot be implemented further. 

This algorithm works because a maximal acyclic subgraph of a connected 
graph is necessarily a spanning tree. lt was extended by Kruskal (1956) to 
solve the general problem; his algorithm is valid for arbitrary real weights. 

Kruskal's Algorithm 

1. Choose a link e1 such that w(e1) is as small as possible. 
2. If edges e1, e2, ... , ei have been chosen, then choose an edge ei+1 from 

E\{e1, e2, . · .. , ei} in such a way that 

(i) G[{e1, e2, ... , ei+1}] is acyclic; 
(ii) w(ei+1) is as small as possible subject to (i). 

3. Stop when step12 cannot be implemented further. 

~s an example, consider the table of airline distances in miles between six 
of the largest cities in the world, London, Mexico City, New York, Paris, 
Peking and Tokyo: 

L MC NY Pa Pe T 

L 5558 3469 214 5074 5959 
MC 5558 2090 5725 7753 7035 
NY 3469 2090 3636 6844 6757 
Pa 214 5725 3636 5120 6053 
Pe 5074 7753 6844 5120 1307 
T 5959 7035 6757 6053 1307 
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This table deteFmines a weighted complete graph with vertices L, MC, NY, 
Pa, Pe and T. The construction of an optimal tree in this graph is shown in 
figure 2.11 (where, for convenience, distances are given in hundreds of miles). 

Kruskal's algorithm clearly produces a spanning tree (for the same reason 
that the simpler algorithm above does). The following theorem ensures that 
such a tree will always be optimal. 

Theorem 2.10 Any spanning tree T* = G[{e1, e2, ... , ev-1}] constructed by 
Kruskal's algorithm is an optimal tree. 

Proof By contradiction. For any spanning tree T of G other than T*, 
denote by f(T) the smallest value of i such that ei is not in T. Now assume that 
T* is not an optimal tree, and let T be an optimal tree such that f(T) is as 
large as possible. 

Suppose that f(T) = k; this means that e1, e2, ... , ek-1 are in both T and T*, 
but that ek is not in T. By theorem 2.5, T + ek contains a unique cycle C. Let e~ 
be an edge of C that is in T but not in T*. By theorem 2.3, e~ is nota eut edge 
of T + ek. Hence T' = (T + ek)- e~ is a connected graph with v - l edges, and 
therefore (exercise 2.1.5) is another spanning tree of G. Clearly 

(2.1) 

Now, in Kruskal's algorithm, ek was chosen as an edge with the smallest weight 
such that G[{e1, e2, ... , ek}] was acyclic. Since G[{ei, e2, ... , ek-1, e'-}] is a 
subgraph of T, it is also acyclic. We conclude that 

w(e~) > w(ek) (2.2) 

Combining (2.1) and (2.2) we have 

w(T') < w(T) 

and so T', too, is an optimal tree. However 

f(T') > k = f(T) 
• 

contradicting the choice of T. Therefore ·y= T*, and T* is indeed an optimal 
tree D 

A flow diagram for Kruskal's algorithm is shown in figure 2.12. The edges 
are first sorted in order of increasing weight (box 1); this takes about e loge 
computations (see Knuth, 1973). Box 2 just checks to see how many edges 
have been chosen. (S is the set of edges already chosen and i is their 
number.) When i = v- l, S = {ei, e2, ... , ev-1} is the edge set of an optimal 
tree T* of G. In box 3, to check if G[S U {ai}] is acyclic, one must ascertain 
whether the ends of ai are in different components of the forest G[S] or not. · 
This can be achieved in the following way. The vertices are labelled so that, 
at any stage. two vertices belong to the same component of G[S] if and only 
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Figure 2.12. Kruskal's algorithm 

if they have the same label; initially, vertex v 1 is assigned the label l, 
1 < l < v. With this labelling scheme, G[S U {aJ] is acyclic if and only if the 
ends of a; have different labels. If this is the case, a; is taken as ei+1; 

otherwise, a; is discarded and a;+1, the next candidate for ei+1, is tested. Once 
ei+1 has been added to S, the vertices in the two components of G[S] that 
contain the ends of ei+t are relabelled with the smaller of their two labels. For 
each edge, one comparison suffices to check whéther its ends have the same or 
different labels; this takes e computations. After edge ei+t has been added to 
S, the relabelling of vertices takes at most v comparisons; hence, for ail v - 1 
edges e1, e2, ... , ev-1 we need v(v - 1) computations. Kruskal's algorithm is 
therefore a good algorithm. 

Exercises 

2.5.1 Show, by applying Kruskal's algorithm, that the tree indicated m 
figure 2 .10 is indeed optimal. 
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2.5.2 Adapt Kruskal's algorithm to solve the connector problem with preas
signments: construct, at minimum cost, a network linking a number 
of towns, with the additional requirement that certain selected pairs 
of towns be directly linked. 

2.5.3 Can Kruskal's algorithm be adapted to find 

(a) a maximum-weight tree in a weighted connected graph? 
(b) a minimum-weight maximal forest in a weighted graph? 

If so, how? 
2.5.4 Show that the following Kruskal-type algorithm does not necessarily 

yield a minimum-weight spanning path in a weighted complete 
graph: 

1. Choose a link e1 such that w(e1) is as small as possible. 
2. If edges ei, e2, . .. , ei have been chosen, then choose an edge ei+1 

from E\{ei, e2, . .. , ei} in such a way that 

(i) G[{e1, e2, ... , ei+1}] is a union of disjoint paths; 
(ii) w(ei+1) is as small as possible subject to (i). 

3. Stop when step 2 cannot be implemented further. 

2.5.5 The tree graph of a connected graph G is the graph whose vertices 
are the spanning trees Ti, T2, ... , TT of G, with Ti and Tj joined if 
and only if they have exactly v- 2 edges in common. Show that the 
tree graph of any connected graph is connected. 
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3 Connectivity 
3.1 CONNECTIVITY 

ln section 1.6 we introduced the concept of connection in graphs. Consider, 
now, the four connected graphs of figure 3.1. 

G1 is a tree, a minimal connected graph; deleting any edge disconnects it. 
G2 cannot be disconnected by the deletion of a single edge, but can be 
disconnected by the deletion of one vertex, its eut vertex. There are no eut 
edges or eut vertices in G3, but even so G3 is clearly not as well connected as 
G4, the complete graph on five vertices. Thus, intuitively, each successive 
graph is more strongly connected than the previous one. We shall now 
define two parameters of a graph, its connectivity and edge connectivity, 
which measure the extent to which it is connected. 

A vertex eut of G is a subset V' of V such that G - V' is disconnected. A 
k-vertex eut is a vertex eut of k elements. A complete graph bas no vertex 
eut; in fact, the only graphs which do not have vertex cuts are those that 
contain complete graphs as spanning subgraphs. If G has at least one pair of 
distinct nonadjacent vertices, the eonneetivity K( G) of G is the minimum k 
for which G bas a k-vertex eut; otherwise, we define K(G) to be v-1. Thus 
K ( G) = 0 if G is either trivial or disconnected. G is said to be k-eonneeted if 
K( G) > k. Ali nontrivial connected graphs are 1-conneeted. 

Recall that an edge eut of G is a subset of E of the form [S, S], where S is 
a nonempty proper subset of V. A k-edge eut is an edge eut of k elements. 
If G is nontrivial and E' is an edge eut of G, then G- E' is disconnected; we 
then define the edge eonneetivity K'(G) of G to be the minimum k for which 
G bas a k-edge eut. If G is trivial, K'(G) is defined to be zero. Thus K'(G) = 0 
if G is either trivial or disconnected, and K'(G) = 1 if G is a connected graph 
with a eut edge. Gis said to be k-edge-eonneeted if K'(G) > k. Ali nontrivial 
connected graphs are 1-edge-connected. 

G, 

Figure 3.1 
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Figure 3.2 

Theorem 3.1 K < K 1 < 8. 

Proof If G is trivial, then K' = 0 < ô. Otherwise, the set of links incident 
with a vertex of degree ô constitute a 8-edge eut of G. It follows that K 1 < 8. 

We prove that K < K' by induction on K'. The result is true if K 1 = 0, since 
then G must be either trivial or disconnected. Suppose that it holds for ail 
graphs, with edge connectivity Jess than k, let G be a graph with K 1

( G) = k > 
0, and let e be an edge in a k-edge eut of G. Setting H = G- e, we have 
K '(H) = k - 1 and so, by the induction hypothesis, K (H) < k - 1. 

If H contains a complete graph as a spanning subgraph, then so does G 
and 

K ( G) = K (H) < k - l 

Otherwise, let S be a vertex eut of H with K (H) elements. Since H - S is 
disconnected, either G - S is disconnected, and then 

K ( G) < K (H) < k - 1 

or else G - S is connected and e is a eut edge of G - S. In this latter case, 
either v(G-S) = 2 and 

K(G)< v(G)-1 = K(H)+ 1 < k 

or (exercise 2.3.la) G-S has a 1-vertex eut {v}, implying that S U{v} is a 
vertex eut of G and 

Thus in each case we have K ( G) < k = K ' ( G). The result follows by. the 
principle of induction D 

The inequalities in theorem 3.1 are often strict. For example, the graph G 
of figure 3.2 has K = 2, K' = 3 and 8 = 4. 
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Exercises 

3 .1.1 (a) Show that if G is k-edge-connected, wi th k > 0, and if E' is a set 
of k edges of G, then w( G - E') < 2. 

(b) For k > 0, find a k-connected graph G and a set V' of k vertices 
of G such that w( G - V')> 2. 

3 .1. 2 Show that if G is k-edge-connected, then e > k v/2. 
3.1.3 (a) Show that if G is simple and 8 > v - 2, then K = 8. 

(b) Find a simple graph G with 8 = v - 3 and K < o. 
3.1.4 (a) Show that if G is simple and 8 > v/2, then K 1 = 8. 

(b) Find a simple graph G with 8 = [(v/2)-1] and K 1 < 8. 
3.1.5 Show that if G is simple and S>(v+k-2)/2, then G 1s k

connected. 
3.1.6 Show that if G is simple and 3-regular, then K = K 1• 

3 .1. 7 Show that if l, m and n are integers ·- such that O < l < m < n, then 
there exists a simple graph G with K = l, K' = m, and 8 = n. 

( G. Chartrand and F. Harary) 

3.2 BLOCKS 

A connected graph that has no eut vertices is called a block. Every block 
with at least three vertices is 2-connected. A block of a grapfi is a subgraph 
that is a block and is maximal with respect to this property. Every graph is 
the union of its blocks; this is illustrated in figure '3.3. 

0 

(a) ( b) 

Figure 3.3. (a) G; (b) the blocks of-G 

A family of paths in G is said to be internally-disjoint if no vertex of G is 
an internai vertex of more than one path of the family. The following 
theorem is due to Whitney (1932). 

Theorem 3.2 A graph G with v > 3 is 2-connected if and only if any two 
vertices of G are connected by at least two internally-disjoint paths. 
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Proof If any two vertices of G are connected by at least two internally
disjoint paths then, clearly, G is connected and has no 1-vertex eut. Hence 
G is 2-connected. 

Conversely, let G be a 2-connected graph. We shall prove, by induction 
on the distance d(u, v) between u and v, that any two vertices u and v are 
connected by at least two internally-disjoint paths. 

Suppose, first, that d(u, v) = 1. Then, since G is 2-connected, the edge uv 
is not a eut edge and therefore, by theorem 2.3, it is contained in a cycle. It 
follows that u and v are connected by two internally-disjoint paths in G. 

Now assume that the theorem holds for any two vertices at distance less 
than k, and let d(u, v) = k > 2. Consider a (u, v)-path of length k, and let w 
be the vertex that precedes v on this path. Since d ( u, w) = k ~ 1, it follows 
from the induction hypothesis that there are two internally-disjoint (u, w )
paths P and Q in G. Also, since G is 2-connected, G - w is connected and 
so contains a (u, v)-path P'. Let x be the last vertex of P' that is also in 
PU Q (see figure 3.4). Since u is in PU Q, there is such an x; we do not 
exclude the possibility that x = v. · 

We may assume, without loss of generality, that x is in P. Then G bas two 
internally-disjoint (u, v )-paths, one composed of the section of P from u to 
x together with the section of P' from x to v, and the other composed of Q 
together with the path wv □ 

Corollary 3.2.1 If G is 2-connected, then any two vertices of G lie on a 
common cycle. 

Proof This follows immediately from theorem 3.2 since two vertices lie 
on a common cycle if and only if they are connected by two intern,,~·-v 
disjoint paths □ 

lt is convenient, now, to introduce the operation of subdivision of an 
edge. An edge e is said to be subdivided when it is deleted and replaced by a 
path of length two connecting its ends, the internai vertex of this path being 
a new vertex. This is illustrated in figure 3.5. 



46 Graph Theory with Applications 

> 

Figure 3.5. Subdivision of an edge 

It can be seen that the class of blocks with at least three vertices is closed 
under the operation of subdivision. The proof of the next corollary uses this 
fact. 

Corollary 3.2.2 If G is a block with v > 3, then any two edges of G lie on a 
common cycle. 

Proof Let G be a block with v > 3, and let e1 and e2 be two edges of G. 
Form a new graph G' by subdividing e1 and e2, and denote the new vertices 
by V1 and v~. Clearly, G' is a block with at least five vertices, and hence is 
2-connected. lt follows from corollary 3.2.1 that V1 and V2 lie on a common 
cycle of G'. Thus e1 and e2 lie on a common cycle of G (see figure 3.6) D 

Theorem 3 .2 bas a generalisation to k-connected. graphs, known as 
Menger' s theorem: a graph G with v > k + 1 is k-connected if and only if any 
two distinct vertices of G are connected by at least k internally-disjoint 
paths. There is also an edge analogue of this theorem: a graph G is 
k-edge-connected if and only if any two distinct vertices of G are connected 

.,,,---..., 
/ ' I ---, 

I ' 1 \ 

\/ 
\ \ , _____ , 

(a) (b) 

Figure 3.6. (a) G'; (b) G 
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by at least k edge-disjoint paths. Proofs of these theorems will be given in 
chapter 11. 

Exercises 

3.2.1 Show that a graph is 2-edge-connected if and only if any two vertices 
are connected by at least two edge-disjoint paths. 

3.2.2 Give an example to show that if P is a (u, v)-path in a 2-connected 
graph G, then G does not necessarily contàin a (u, v )-path Q 
internally-disjoint from P. 

3.2.3 Show that if G has no even cycles, then each block of Gis either K1 or 
K2, or an odd cycle. 

3.2.4 Show that a connected graph which is not a black has at least two 
blacks that each contain exactly one eut vertex. 

3.2.5 Show that the number of blacks in G is equal to w+ L (b(v)-1), 
vEV 

where b(v) denotes the number of blacks of G containing v. 
3.2.6* Let G be a 2-connected graph and let X and Y be disjoint subsets of 

V, each containing at least two vertices. Show that G contains 
disjoint paths 11 and Q such that 

(i) the origins of P and Q belong to X, 
(ii) the termini of P and Q belong to Y, and 

(iii) no internai vertex of P or Q belongs to X U Y. 
3.2.7* A nonempty graph Gis K-critical if, for every edge e, K(G-e)< 

K(G). 
(a) Show that every K-critical 2-connected graph has a vertex of 

degree two. 
(Halin, 1969 has shown that, in general, every K-critical k
connected graph has a vertex of degree k.) 

(b) Show that if G is a K-criticar2-connected graph with v ~ 4, then 
e <2v-4. (G. A. Dirac) 

3.2.8 Describe a good algorithm for finding the blacks of a graph. 

APPLICATIONS 

3.3 CONSTRUCTION OF RELIABLE COMMUNICATION NETWORKS 

If we think of a graph as representing a communication network, the 
connectivity (or edge connectivity) becomes the smallest number of com
munication stations (or communication links) whose breakdown would 
jeopardise communication in the system. The higher the connectivity and 
edge connectivity, the more reliable the network. From this point of view, a 
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tree network,. such as the one obtained by Kruskal's algorithm, is not very 
reliable, and one is led to consider the following generalisation of the 
connecter problem. 

Let k be a given positive integer and let G be a weighted graph. 
Determine a minimum-weight k-connected spanning subgraph of G. 

For k = 1, this problem reduces to the connector problem, which can be 
solved by Kruskal's algorithm. For values of k greater -than · one, the 
problem -is unsolved and is known to be difficult. However, if G is a 
complete graph in which each edge is assigned unit weight, then the problem 
has a simple solution which we now present. · 

Observe that, for a weighted complete graph on n vertices in which each 
edge is assigned unit weight, a minimum-weight m-connected spanning 
subgraph is simply an m-connected graph on n vertices with as few edges as 
possible. We shall denote by /{m, n) the least number of edges that an 
m -connected graph on n vertices can have. (It is, of course, assumed that 
m < n.) By theorems 3.1 and 1.1 

f(m, n)>{mn/2} (3.1) 

We shall show that equality holds in (3.1) by constructing an m-connected 
graph Hm.non n vertices that has exactly {mn/2} edges. The structure of Hm,n 
depends on the parities of m and n; there are three cases. 

Case 1 m even. Let m = 2r. Then H2r,n is constructed as follows. It has 
vertices 0, 1, ... , n -1 and two vertices i and j are joined if i - r < j< i + r 
(where addition is taken modulo n). H4,s is shown in figure 3.7 a. 

Case 2 m odd, n even. Let m = 2r + 1. Then H2r+1,n is constructed by 
first drawing H2r,n and then adding edges ·joining vertex i to vertex i + (n/2) 
for 1 $ i $ n/2. Hs.s is shown ·in figure 3.7b. 

0 

4 

(a) 

0 

4 
. (b) 

0 

5 4 

(c) 
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Case 3 m odd, n odd. Let m = 2r + 1. Then H2r+1,n is constructed by first 
drawing H2r,n and then adding edges joining vertex O to vertices (n - 1)/? 
and (n + 1)/2 and vertex i to vertex i + (n + 1)/2 for 1 < i < (n - 1)/2. Hs,9 is 
shown in figure 3. 7 c. 

Theorem 3.3 (Harary, 1962) The graph Hm,n is m-connected. 

Proof Consider the case m = 2r. We shall show that H2r,n has no vertex 
eut of fewer than 2r vertices. If possible, let V' be a vertex eut with I V'I < 2r. 
Let i and j be vertices belonging to different components of H2r,n - V'. 
Consider the two sets of vertices 

S = { i, i + 1, ... , j - 1, j} 
and 

T = {j, j + 1, ... , i -1, i} 

where addition is taken modulo n. Since I V'I < 2r, we may assume, without 
loss of generality, that IV! n S 1 < r. Then there is clearly a sequence of 
distinct vertices in S\ V' which starts with i, ends with j, and is such that the 
difference between any two consecutive terms is at most r. But such a 
sequence is an (i, j)-path in H2r,n- V', a contradiction. Hence H2r,n is 
2r-connected. 

The case m = 2r + 1 is left as an exercise (exercise 3.3.1) D 

It is easy to see that e(Hm,n) = {mn/2}. Thus, by theorem 3.3, 

f(m, n) < {mn/2} 

It now follows from (3.1) and (3.2) th_at 

f(m, n) = {mn/2} 

(3.2) 

and that Hm,n is an m-connected graph on n vertices with as few edges as 
possible. 

We note that since, for any graph G,. K < K' (theorem 3.1), Hm,n is also m
edge-connected. Thus, denoting by g(m, n) the least possible number of 
edges in an m-edge-connected graph on n vertices, we have, for 1 < m < n 

g(m, n) = {mn/2} 

Exercises 

3.3.1 Show that H2r+1,n is (2r + 1)-connected. 
3.3.2 Show that K(Hm,n) = K1(Hm,n) = m. 

(3.3) 

3.3.3 Find a graph with nine vertices and 23 edges that is 5-connected but 
not isomorphic to the graph Hs,9 of figure 3.7c. 

3.3.4 Show that (3.3) holds for all values of m and n with m > 1 and n > 1. 



50 Graph Theory with Applications 

3.3.5 Find, for all v > 5, a 2-connected graph G of diameter two with 
e=2v-5. 

(Murty, 1969 has shown that every such graph bas at least this 
number of edges.) 
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4 Euler Tours and Hamilton 
Cycles 

4.1 EULER TOURS 

A trail that traverses every edge of G is called an Euler trail of G because 
Euler was the first to investigate the existence of such trails in graphs. In the 
earliest known paper on graph theory (Euler, 1736), he showed that it was 
impossible to cross each of the seven bridges of Kônigsberg once and only 
once during a walk through the town. A plan of Kônigsberg and the river 
Pregel is shown in figure 4.1 a. As can be seen, proving that such a walk is 
impossible amounts to showing that the graph of figure 4.1 b contains no 
Euler trail. 

A tour of G is a closed walk that traverses each edge of G at least once. 
An Euler tour is a tour which traverses each edge exactly once (in other 
words, a closed Euler trail). A graph is eulerian if it contains an Euler tour. 

Theorem 4.1 A nonempty connected graph is eulerian if and only if it has 
no vertices of odd degree. 

Proof Let G be eulerian, and let C be an Euler tour of G with origin 
(and terminus) u. Each time a vertex v occurs as an internai vertex of C, two 
of the edges incident with v are accounted for. Since an Euler tour contains 

(a) 

Figure 4.1. The bridges of Kônigsberg and their graph 

C 

D 

( b) 
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every edge of G, d(v) is evén for all v ;é u. Similarly, since C starts and ends 
at u, d(u) is also even. Thus G bas no vertices of odd degree. 
· Conversely, suppose that G is a noneulerian connected graph with. 
at least one edge and no vertices of odd degree. Choose such a graph G with 
as few edges as possible. Since each vertex of G bas degree at least two, G 
contains a closed trail (exercise 1.7.2). Let C be a closed trail of maximum 
possible length in G. By assumption, C is not an Euler tour of. G and so 
G-E(C) bas some component G' with E(G') >O. Since C is itself eulerian, 
it bas no vertices of odd degree; thus the connected graph G' also has no 
vertices of odd degree. Since E(G') <E(G), it follows from the choice of G 
that G' bas an Euler tour C'. Now, becau-se G is connected, there is a vertex 
v in V(C) n V(C'), and we may assume, without loss of generality, that v is 
the origin and terminus of bot9 C and C'. But then CC' is a closed trail of G 
with E(CC') > e(C), contradicting the choice of C □ 

Corollary 4.1 A connected graph has an Euler trail if and only if it bas at 
most two vertices of odd ~degree. 

Proof If G bas an Euler trail then, as in the proof of theorem 4.1, each 
vertex other than the origin and terminus of this trail bas . even degree. 

Conversely, suppose that G is a nontrivial connected graph with at most 
two vertices of odd degree. If G bas no slich vertices then, by theorem 4.1, 
G bas a closed Euler trail. Otherwise, G bas exactly two vertices, u and v, 
of odd degree. In this case, let G + e denote the graph obtained from G by 
the addition of a new edge e joining u and v. Clearly, each vertex of G + e 
bas even · degree and so, by theorem 4 .1, G + e bas an Euler tour C = · 
Voe1V1, .. e~+1Va+t, where e1 = e. The trail U1e2V2,., ee+1V.,+1 is an Euler trail 
of G D 

Exercises., 

4. 1. 1 Which of the following figures can be drawn without lifting one's pen 
. from the paper or covering a line more than once? 

4.1.2 

4.1.3 

1 1 

If possible, draw an eulerian · graph G with v even and e 
otherwise, explain why there is no such graph. 
Show that if G is eulerian,:.then every block of G is eulerian. 

odd· 
' 
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4.1.4 Show that if G has no vertices of odd degree, then there are 
edge-disjoint. cycles C1, C2, ... , Cm such that E(G) = 
E(C1) U E(C2) U ... U E(Cm). 

4.1.5 Show that if a connected graph G has 2k > 0 vertices of odd degree, 
then there are k edge-disjoint trails 01, Q2, ••.• , 01c in G such that 
E(G) = E(01) u E(02) u ... u E(Qk). 

4.1.6* Let G be nontrivial and eulerian, and let v e V. Show that every trail 
of G with origin v can be extended to an Euler tour of Gif and only 
if G - v is a forest. (O. Ore) 

4.2 HAMILTON CYCLES 

A path that con tains every vertex of G is called a Hamilton path of G; 
similarly, a Hamilton cycle of G is a cycle that contains every vertex of G. 
Such paths and cycles are named after Hamilton (1856), who described, in a 
letter to his friend Graves, a mathematical game on the dodecahedron 
(figure 4.2a) in which one person sticks five pins in any five consecutive 
vertices and the other is required to complete the path so formed to a 

(a) (b) 

Figure 4.2: (a) The dodecahedron; (b) the Herschel graph 

spanning cycle. A_ graph is hamiltonian if it contains a Hamilton cycle. The 
dodecahedron is hamlltonian (see figure 4.2a); the Herschel graph (figure 
4.2b) is nonhamiltonian, because it is bipartite and bas an odd number of 
vertices. 

In contrast with the case of eulerian graphs, no nontrivial necessary and 
sufficient condition for a graph to be hamiltonian is known; in fact, the 
problem of finding such a condition is one of the main unsolved problems of 
graph theory. 

We shall first present a simple, but useful, necessary condition. 

Theorem 4.2 If G is hamiltonian then, for every nonempty proper subst:t S 
of V 

w(G-S)s;ISI (4.1) 
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Proof Let C be a Hamilton cycle of G. Then, for every nonempty 
proper subset S of V 

w(C-S)<ISI 

Also, C - S is a spanning subgraph of G - S and so 

w(G-S)<w(C-S) 

The theorem follows D 

As an illustration of the above theorem, consider the graph of figure 4.3. 
This graph bas nine vertices; on deleting the three indicated in black, four 
components remain. Therefore (4.1) is not satisfied and it follows from 
theorem 4.2 that the graph is nonhamiltonian. 

We thus see that theorem 4.2 can sometimes be applied to show that a 
particular graph is nonhamiltonian. However, this method does not always 

Figure 4.3 

work; for instance, the Petersen graph (figure 4.4) is nonhamiltonian, but 
one cannot deduce this by using theorem 4.2. 

We now discuss sufficient conditions for a graph G to be hamiltonian; 
since a graph is hamiltonian if and only if its underlying simple graph is 
hamiltonian, it suffices to limit our discussion to simple graphs. We start with 
a result due to Dirac (1952). 

Theorem 4.3 If G is a simple graph with v > 3 and 8 > v/2, then G is 
hamiltonian. 

Proof By contradiction. Suppose that the theorem is false, and let G be 
a maximal nonhamiltonian simple graph with v > 3 and 8 > v/2. Since v > 3, 
G cannot be complete. Let u and v be nonadjacent vertices in G. By the 
choice of G, G + uv is hamiltonian. Moreover, since G is nonhamiltonian, 
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Figure 4.4. The Petersen graph 

each Hamilton cycle of G + uv must contain the edge uv. Thus there is a 
Hamilton path V1 V2 ••• Vv in G with origin u = V1 and terminus v = Vv. Set 

S ={vi I uvi+1 EE} and T={vi I viv E E} 

Since Vv ~ S U T we have 

Furthermore 
ISUTl<v 

1s nTl=O 

(4.2) 

(4.3) 

since if S n T contained some vertex vi, then G would have the Hamilton 
cycle V1V2 ... VïVvVv-1 ... Vï+1V1, COntrary to assumption (see figure 4.5). 

Using ( 4.2) and ( 4.3) we obtain 

d(u)+ d(v) = ISl+ITI = IS u Tl+IS n Tl< v (4.4) 

But this contradicts the hypothesis that 5 > v/2 □ 

Figure 4.5 

Bondy and Chvatal (1974) observed that the proof of theorem 4.3 can be 
modified to yield stronger sufficient conditions than that obtained by Dirac. 
The basis of their approach is the following lemma. 

Lemma 4.4.1 Let G be a simple graph and let u and v be nonadjacent 
vertices in G such that 

d(u)+d(v)>v (4.5) 
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Then G is hamiltonian if and only if G + uv is hamiltonian. 

Proof If G is hamiltonian then, trivially, so too is G + uv. Conversely, 
suppose that G + uv is hamiltonian but G is not. Then, as in the proof of 
theorem 4.3, we obtain (4.4). But this contradicts hypothesis (4.5) □ 

Lemma 4.4.1 motivates the following definition. The closure of G is the 
graph obtained from G by recursively joining pairs of nonadjacent vertices 
whose degree sum is at least v until no such pair remains. We denote the 
closure of G by c(G). 

Lemma 4.4.2 c ( G) is well defined. 

Proof Let G1 and G2 be two graphs obtained from G by recursively 
joining pairs of nonadjacent vertices whose degree sum is at least v until no 
such pair remains. Denote by ei, e2, ... , em and /1, /2, ... , fn the sequences 
of edges added to G jn obtaining G1 and G2, respectively. We shall show 
that each ei is an edge of G2 and each fj is an edge of G1. 

If possible, let et+1 = uv be the first edge in the sequence e1, e2, ... 1 en that 
is not an edge of G2. Set H = G + {ei, e2, ... , et}. It follows from the 
definition of G1 that 

By the choice of ek+i, H is a subgraph of G2. Therefore 

do:i(u)+ do:i(v) ~ v 

This is a contradiction, since u and v are nonadjacent in G2. Therefore each 
ei is an edge of G2 and, similarly, each fj is an edge of G1. Hence G1 = G~, 
and c(G) is well defined D · 

Figure 4.6 illustrates the construction of the closure of a graph G on six 
vertices. lt so happens that in this example c(G) is complete; note, however, 
that this is by no means always the case. 

G c (G) 

Figure 4.6. The closure of a graph 
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Figure 4.7. A.hamiltonian graph 

Theorem 4.4 A simple graph is hamiltonian if and pnly if its closure is 
hamiltonian. · 

Proof Apply lemma 4.4.1 each time an edge is added in the formation of 
the closure D 

Theorem 4.4 · has a number of interesting consequences. First, upon 
making the trivial observation that ail complete graphs on at least three 
vertices are hamiltonian, we obtain the following result. 

Corollary 4.4 · Let G be a simple graph with v ~ 3. If c,(G) is complete, 
then G is.hamiltonian. · 

Consider, for examp1e, the graph of figure 4. 7. One readily checks that its 
closure is complete. Thereforè, by corollary 4.4, it is hamiltonian. It is 
perhaps interesting to note that the graph of figure 4. 7 ,can be obtained from 
the graph of figure 4.3 by altêring just one end of one edge, and yet we have 
results (corollary 4.4 and theorem 4.2) which tell us that this one is 
hamiltonian whereas the other is not. 

Corollary 4.4 can be used to deduce various suffi.dent conditions for a 
graph to be hamiltonian in terms of its vertex• degrees. For. exainple, sirice 
c( G) is clearly complete when B > v/2, Dirac's condition (theorem 4.3) is an 
immediate corollary. A more general condition than that of Dirac was 
obtained by Chvâtal (1972). 

Theorem 4.5 Let G be a simple graph with degree sequence 
(d1, d2, ... , dv), where d1 s d2 < ... s dv and v > 3. Suppose that there is no 
value of m less than v/2 for which dm< m and d .. -m < v - m. Then G is 
hamiltonian. 
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Proof Let G satisfy the hypothesis of the theorem. We shall show that its 
closure c ( G) is complete, and the conclusion will then follow from corollary 
4.4. We denote the degree of a vertex v in c(G) by d'(v). 

Assume that c( G) is not complete, and let u and v be two nonadjacent 
vertices in c ( G) with 

d'(u) < d'(v) (4.6) 

and d'(u) + d'(v) as large as possible; since no two ndnadjacent vertices in 
c ( G) can have degree sum v or more, we have 

d'(u) + d'(v) < v (4.7) 

Now denote by S the set of vertices in V\{v} which are nonadjacent to v 
in c(G), and by T the set of vertices in V\{u} which are nonadjacent to u in 
c(G). Clearly 

ISl=v-1-d'(v) and ITl=v-1-d'(u) (4.8) 

Furthermore, by the choice of u and v, each vertex in S bas degree at most 
d'(u) and each vertex in TU {u} bas degree at most d'(v ). Setting d'(u) = m 
and using (4.7) and (4.8), we find that c(G) has at least m vertices_of degree 
at most m and at least v - m vertices of degree less than v - m. Because G 
is a spanning subgraph of c(G), the same is true of G; therefore dm< m and 
d.,_m < v - m. But this is contrary to hypothesis since, by ( 4.6) and ( 4. 7), 
m < v/2. We conclude that c(G) is indeed complete and hence, by corollary 
4.4, that G is hamiltonian D · 

One can often deduce that a given graph is hamiltonian simply by 
computing its degree sequence and applying theorem 4.5. This method 
works with the graph of figure 4. 7 but not with the graph G of figure 
4.6, even though the closure of the latter graph is complète. From these 
examples, we see that theorem 4.5 is stronger than theorem 4.3 but not as 
strong as corollary 4.4.. 

A sequence of real numbers (pi, p2, . .. ,_pn) is said to be majorised by 
another such sequence (q1, q2, ... , qn) if pi< qi for 1 < i < n. A graph G is 
degree-majorised by a graph H if v( G) = v(H) and the nondecreasin~ 
degree sequence of G is majorised by that of H. For instance, the 5-cycle i~ 
degree-majorised by K2,3 because (2, 2, 2, 2, 2) is majorised by (2, 2, 2, 3: 
3). The family of degree-maximal nonhamiltonian graphs (those that are 
degree-majorised by no others) admits of a simple description. We firs1 
introduce the notion of the join of two graphs. The join G v H of disjoin1 
graphs G and H is the graph obtained from G + H by joining each vertex ol 
Gtoeachvertexof H; it is_represented diagrammatically as in figure 4.8. 

Now, for 1 < m < n/2, let Cm,n denote the graph Km v (K~ + Kn-2m), de• 
picted in figure 4. 9a; two specific examples, C1.s and C2.s, are shown ir 
figures 4.9b and 4.9c. 
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G 

Figure 4.8. The join of Gand H 

That Cm,n is nonhamiltonian follows immediately from theorem 4.2; for if 
S denotes the set of m vertices of degree n - 1 in Cm,n, we have 
w(Cm,n-S) = m + 1 >ISI, 

Theorem 4.6 (Chvâtal, 1972) If G is a nonhamiltonian simple graph with 
v ~ 3, then G is degree-majorised by some Cm,v• 

Proof Let G be a nonhamiltonian simple graph with degree sequence 
( d1, d2, ... , dv), where d1 < d2 ~ ... < dv and v > 3. Then, by theorem 4.5, 
there exists .m < v/2 such that dm< m and dv-m < v - m. Therefore 
(di, d2, ... , dv) is majorised by the sequence 

( m, ... , m, v - m - 1, ... , v - m - 1, v - 1, ... , v - 1) 

with m terms equal to m, v- 2m terms equal to v - m -1 and m terms 
equal to v-1, and this lâtter sequence is the degree sequence of Cm," D 

-[J 

(a) 
(c) 
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From theorem 4.6 we can deduce a result due to Ore (.1961) and Bondy 
(1972). 

Corollary 4.6 If G is a simple graph with v 2! 3 and e > ( v 2 
1) + 1, then G 

is hamiltonian. Moreover, the only nonhamiltonian simple graphs with v 

vertices and ( v 2 
1) + 1 edges are C1,., and, for v = 5, C2,s, 

Proof Let G be a nonhamiltonian simple graph with v 2! 3. By theorem 
4.6, G is degree;..majorised by Cm,., for some positive integer m < v/2. 
Theref ore, by theorem 1.1, 

e(G) < e(Cm,.,) (4.9) 

=-½(m 2 + (v-2m}(v- m -1)+ m(v-1)) 

= (v 2 
1 )+ 1-½(m-l)(m-2)-(m - l)(v-2m-1) 

(4.10) 

Furthermore, equality can only hold in (4.9) if G bas the same degree 
sequence as Cm,.,; and equality can only hold in (4.10) if either m = 2 and 

( v-1) v = 5, or m = 1. Hence e(G) can equal 2 + 1 only if G bas the same 

degree sequence as C1,., or C2.s, which is easily seen to imply that G == C1,., or 
G:::::::C2.s □ 

Exercises 
4.2.1 Show that if either 

(a) G is not 2-connected, or 
(b) G is bipartite with bipartition (X, Y) where IXI ~ IYI, 
then. G is nonhamiltonian. 

4.2.2 A mouse eats bis way through a 3 x 3 x 3 cube of cheese by 
tunnelling through ail of the 27 1 x 1 x 1 subcubes. If he starts at 
one corner and always moves on to an uneaten subcube, can he 
finish at the centre of the cube? 

4.2 .. 3 Show that if G bas a Hamilton path then, for every proper subset S 
of V, w(G-S)<ISl+l. 

4.2.4 * Let G be a non trivial simple graph with degree sequence 
(d., d2, ... , d.,), where d1 < d2 s ... < d.,. Show that if there is no 
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value of m less than (v + 1)/2 for which dm< m and dv-m+1 < v- m, 
then G has a Hamilton path. (V. Chvâtal) 

4.2.5 (a) Let G be a simple graph with degree sequence (d1, d2, ... , dv) 
and let Ge have degree sequence (d~, d;, . .. , d:) where d1 < d2 < 

... <d., and d~<di<, .. <d:. Show that if dm~d:n for all 
m < v/2, then G bas a Hamilton path. 

(b) Deduce that if G is self-complementary, then G has a Hamil-
ton path.. (C. R. J. Clapham) 

4.2.6* Let G be a simple bipartite graph with bipartition (X, Y), where 
IXI = IYI > 2, and let G have degree sequence (di, d2, ... , dv), 
where d1 < d2 < ... < dv, Show that if there is no value of m less 
than or eqUal to v/4 for which dm< m and dv,2 < v/2- m, then G is 
hamiltonian. · (V. Chvâtal) 

4.2.7 Prove corollary 4.6 directly from corollary 4.4. 

4.2.8 Show that if G is simple with v 2=! 66 and e > ( v 2 
6) + 62, then 

Gis hamiltonian. (P. Erdôs) 
4.2.9* Show that if G is a connected graph with v > 26, then G bas a path 

of length at least 26. (G. A. Dirac) 
(Dirac, 1952 has also shown that if G is a 2-connected simple graph 
with v > 26, then G has a cycle of length at least 26.) 

4.2.10 Using the remark to exercise 4.2.9, show that every 2k-regular 
simple graph on 4k + 1 vertices is hamiltonian (k > 1). 

(C. St. J. A. Nash-Williams) 
4.2.11 G is Hamilton-connected if every two vertices of G are connected_ 

by a Hamilton path. 

(a) Show that if G is Hamilton-connected and v 2=! 4, then e ~ 
[½{3v+ 1)]. _ _ 

(b)* For v > 4, construct a Hamilton-connected graph G with 
e · [½(3v + 1)]. (J. W. Moon) 

4.2.12 G is hypohamiltonian if G is not hamiltonian but G-v is .hamilto
nian for every v EV. Show that the Petersen graph (figure 4.4) is 
hypohamiltonian. 
(Herz, Duby and Vigué, 1967 have shown that it is, in fact, the 
smallest such graph.) 

4.2.13*. G is hypotraceable if G bas no Hamilton path but G ~ v bas a 
Hamilton path for every v E V. Show that the Thomassen graph (p. 
240) i~ hypotraceable. 

4.2.14 (a) Show that there is no Hamilton cycle in the graph G1 below 
which contains exactly one of the edges e1 and e2. 

(b) Using (a), show that every Hamilton cycle in G2includes the 
edge _e. 

(c) Deduce that the Horton graph (p. 240) is nonhamiltonian. 
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4.2.15 Describe a good algorithm for 

(a) constructing the clos ure of a graph; 
(b) finding a Hamilton cycle if the closure is complete. 

APPLICATIONS 

4.3 THE CHINESE POSTMAN PROBLEM 

In his job, a postman picks up. mail at the post office, delivers it, and then 
returns to the post office. He must, of course, cover·each street in his area at 
least once. Subject to this condition, he wishes to choose bis route in such a 
way that he walks as little as possible. This problem is known as the Chinese 
postman problem, since it was first considered by a Chinese mathematician, 
Kuan (1962). 

In a weighted graph, we define the weight of a tour Voe1V1 ... envo to be 
n 

i~ w(ei). Clearly, the Chinese postman problem is just that of finding a 

minimum-weight tour in a weighted connected graph with non-negative 
weights. We shall refer to such a tour as an optimal tour. 

If G is eulerian, then any Euler tour of G is an optimal tour because an 
Euler tour is a tour that traverses each edge exactly once. The Chinese 
postman problem is easily solved in this case, since there exists a good 
algorithm for determining an Euler tour in an eulerian graph. The al
gorithm, due to Fleury (see Lucas, 1921), constructs an Euler tour by 
tracing out a trail, subject to the one condition that, at any stage, a eut edge 
of the untraced subgraph is taken only if there is no alternative. 

Fleury' s Algorithm 

1. Choose an arbitrary vertex Vo, and set Wo = Vo. 
2. Suppose that the trail Wi = voe1v1 ... ejvj bas been chosen. 
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Then choose an edge ei+1 from E\{e1, e2, ... , ei} in such a way that 

(i) ei+1 is incident with vj; 
(ii) unless there is no alternative, ei+1 is not a eut edge of 

Gi = G-{e1, e2, ... , ei} 

3. Stop when step 2 can no longer be implemented. 

By its definition, Fleury's algorithm constructs a trail in G. 
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Theorem 4. 7 If G is eulerian, then any trail in G constructed by Fleury's 
algorithm is an Euler tour of G. 

Proof Let G be eulerian, and let Wn = voe1V1 ... enVn be a trail in G 
constructed by Fleury's algorithm. Clearly, the terminus Vn must be of degree 
zero in Gn, lt follows that Vn = vo; in other words, Wn is a closed trail. 

Suppose, now, that Wn is not an Euler tour of G, and let S be the set of 
vertices of positive degree in Gn, Then S is nonempty and Vn ES, where 
S = V\S. Let m be the largest integer such that Vm E S and Vm+1 E S. Since 
Wn terminates in S, em+1 is the only edge of [S, S] in Gm, and hence is a eut 
edge of Gm (see figure 4.10). 

Let e be any other edge of Gm incident with Vm, lt follows (step 2) that e 
must also be a eut edge of Gm, and hence of Gm[S]. But since Gm[S] = 
G 0 [S], every vertex in Gm[S] is of even degree. However, this implies 
(exercise 2.2.6a) that Gm[S] bas no eut edge, a contradiction D 

The proof that Fleury's algorithm is a good algorithm is left as an exercise 
(exercise 4.3.2). 

If G is not eulerian, then any tour in G and, in particular, an optimal tour 
in G, traverses sè>me edges more than once. For example, in the graph of 
figure 4.1 la xuywvzwyxuwvxzyx is an optimal tour (exercise 4.3.1). Notice 
that the four. edges ux, xy, yw and wv are traversed twice by this tour. 

It is convenient, at this stage, to introduce the operation of duplication of 
an edge. An edge e is said to be duplicated when its ends are joined by a 

Figure 4.10 
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(b) 

new edge of weight w(e). By duplicating the edges ux, xy, yw and wv in the 
graph of figure 4.lla, we obtain the graph shown in figure 4.llb. 

We may now rephrase the Chinese postman problem as follows: given a 
weighted graph G with non-negative weights, 

(i) find, by duplicating edges, an eulerian weighted supergraph G* of G 

such that > w(e) is as small as possible; 
eEE(d'1\E(G) 

(ii) find an Euler tour in G*. 

That this is equivalent to the Chinese postman problem follows from the 
observation that a tour of G in which edge e is traversed m(e) times 
corresponds to an Euler tour in the graph obtained from G by duplicating e 
m(e)-1 times, and vice versa. 

We have already presented a good algorithm for solving (ii), namely 
Fleury's algorithm. A good algorithm for solving (i) bas been given by 
Edmonds and Johnson (1973). Unfortunately, it is too involved to be 
presented here. However, we shall consider one special case which affords. 
an easy solution. This is the case where G bas exactly two vertices of odd 
degree. 

Suppose that G bas exactly two vertices u and v of odd degree; let G* be 
an eulerian spanning supergraph of G obtained by duplicating edges,. and 
write E* for E(G*). Clearly the subgraph G*[E*\E] of G* (induced by the 
edges of G* that are not in G) also bas only the two vertices u and v of odd 
degree. It follows from corollary 1.1 that u and v are in the same compo
nent of G*[E*\E] and hence that they are connected by a (u, v)-path P*. 
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where Pis a minimum-weight (u, v)-path in G. Thus ~ w(e) is a minimum 
eEE \E 

when G* is obtained from G by duplicating each of the edges on a 
minimum-weight (u, v)-path. A good algorithm for finding such a path was 
given in section 1.8. 

Exercises 

4.3.1 Show that xuywvzwyxuwvxzyx is an optimal tour in the weighted 
graph of figure 4.lla. 

4.3.2 Draw a flow diagram summarising Fleury's algorithm, and show that 
it is a good algorithm. 

4.4 THE TRAVELLING SALESMAN PROBLEM 

A travelling salesman wishes to visit a number of towns and then return to 
bis starting point. Given the travelling times between towns, how should he 
plan bis itinerary so that he visits each town exactly once and travels in ail 
for as short a time as possible? This is known as the travelling salesman 
problem. In graphical terms, the aim is to find a minimum-weight Hamilton 
cycle in a weighted complete graph .. We shall call such a cycle an optimal 
cycle. In contrast with the shortest path problem. and the connector problem, 
no efficient algorithm for solving the travelling salesman problem is known. 
It is therefore desirable to have a method for obtaining a reasonably good 
(but not necessarily optimal) solution. We. shall show how some of our 
previous theory can be employed to this end. 

One possible approach is to first find a Hamilton cycle C, and then search 
for another of smaller weight by suitably modifying C. Perhaps the simplest 
such modification is as follows. 

Let C = V1V2 ... v.,v1. Tuen, for all i and j such that 1 < i + 1 <j < v, we 
can obtain a new Hamilton cycle 

by deleting the edges VïVi+1 and VjVj+1 and adding the edges VïVj and Vï+t Vr+1, 

as shown in figure 4.12 .. 
If, for some i and j 

w(VïV;) + w(Vi+tVj+t)< w(VïVi+t) + w(v;Vj+t) 

the cycle Cij will be an improvement on C. 
After performing a sequence of the above modifications, one is left with a 

cycle that can be improved no more by these methods. This final cycle will 
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. Figure 4.12 

almost certainly not be optimal, but it is a reasonable assumptiort that it will 
often be f airly good; for greater accuracy, the procedure can be repeated 
several times, starting with a different cycle each time. 

As an example, consider the weighted graph shown in figure 4.13; it is the 
same graph as was used in our illustratiop of Kruskal's algorithm in section 
2.5. 

Starting with the cycle L MC NY Pa Pe T L, we can apply a sequence of 
three modifications, as illustrated in figure 4.14, and end up with the cycle 
L NY MC T Pe Pa L of weight 192. 

An indication of how good our solution is can sometimes be obtained by 
applying Kruskal's algorithm. Suppose that C is an optimal cycle in G. 
Then, for any vertex v, C - v is a Hamilton path in G - v, and is theref ore a 

L 

Pa 

Figure 4.13 
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spanning tree of G - v. It follows that if T is an optimal tree in G - v, and if 
e and f are two edges incident with v such that w(e) + w(f) is as small as 
possible, then w(T)+w(e)+w(f) will be a lower bound on w(C). In our 
example, taking NY as the vertex v, we find (see figure 4.15) that 

w(T) = 122 

T 

13 

Pe 

w(e) = 21 and w(f) = 35 

L 

2 

\ 
\ 
·\ 

\ 
35\ 

\ 

Pa 

Figure 4.15 
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NY 
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We can therefore conclude that the weight w ( C) of an optimal cycle in the 
graph of figure 4.13 satisfies 

178s w(C)s 192 

The methods described here have been further developed by Lin ( 1965) 
and Held and Karp (1970; 1971). In particular, Lin bas found that the cycle 
modification procedure can be made more efficient by replacing three edges 
at a time rather than just two; somewhat surprisingly, however, it is not 
advantageous to extend this same idea further. For a survey of the travelling 
salesman problem, see Bellmore and Nemhauser (1968). 

Exercise 

4.4.1 * Let G be a weighted complete graph in which the weights satisfy the 
triangle inequality: w(xy)+w(yz)2::w(xz) for all x, y, zeV. Show 
that an optimal cycle in G bas weight at most 2w(T), where T is an 
optimal tree in G. 

(D. J. Rosencrantz, R. E. Stearns, P. M. Lewis) 
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5 Matchings 
5 .1 MATCHINGS 

A subset M of E is called a matching in G if its elements are links and no 
two are adjacent in G; the two ends of an edge in Mare said to be matched 
under M. A matching M saturates a vertex v, and v is said to be M
saturated, if some edge of M is incident with v; otherwise, v is M
unsaturated. If every vertex of G is M -saturated, the matching M is perfect. 
M is a maximum matching if G bas no matching M' with IM'I > IMI; clearly, 
every perfect matching is maximum. Maximum and perf ect matchings in 
graphs are indicated in·· figure 5 .1. 

Let M be a matching in G. An M-alternating path in G is a path whose 
edges are alternately in E\M and M. For example, the path VsVsV1V1V6 in the 
graph of figure 5 .1 a is an M-alternating path. An M-augmenting path is an 
M -alternating path whose origin and terminus are M-unsaturated. 

Theorem 5.1 (Berge, 1957) A matching Min Gis a maximum matching if 
and only if G contains no M-augmenting path. 

Proof Let M be a matching in G, and suppose that G contains an 
M-augmenting path VoV1 ••• V2m+1, Define M' c E by 

M' = (M\{V1V2, V3V4,.,., V2m-1V2m}) U{VoVi, V2V3,,,., V2mV2m+1} 

Then M' is a matching in G, and IM'I = IMI + 1. Thus M is not a maximum 
matching. 

Conversely, suppose that Mis nota maximum matching, and let M' be a 
maximum matching in G. Tuen 

IM'I >IMI (5.1) 

Set H = G[M .:1M'], where M '1M' denotes the symmetric difference of M 
and M' (see figure 5.2). 

(a) (b l 

Figure 5 .1. (a) A maximum matching; ( b) a perfect matching 
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Figure 5.2. (a) G, with M heavy and M' broken; (b) G[M âM'] 

Each vertex of H has degree either one or two in H, since it can be 
incident with at most one edge of M and one edge of M'. Thus each 
component of H is either an even cycle with edges alternately in M and M', 
or else a path with edges alternately in M and M'. By (5.1), H contains 
more edges of M' than of M, and therefore some path component P of H 
must start and end with edges of M'. The origin and terminus of P, being 
M'-saturated in H, are M-unsaturated in G. Thus P is an fvf-augmenting 
path in G D 

Exercises 

5.1.1 (a) Show that every k-cube has a perfect matching (k >2). 
(b) Find the number of different perfect matchings in K2n and Kn,n• 

5 .1.2 Show that a tree has at most one perfect matching. 
5.1.3 For each k > 1, find an example of a k-regular simple graph that bas 

no perfect matching. 
5 .1.4 Two people play a game on a graph G by alternately selecting 

distinct vertices Vo, v., V2, ••• such that, for i > 0, Vi is adjacent to Vï-1-

The last player able to select a vertex wins. Show that the first player 
has a winning strategy if and only if G bas no perfect matching. 

5.1.5 A k-factor of G is a k-regular spanning subgraph of G, and G is 
k-factorable if there are edge-disjoint k-factors H1, H2, ... , Hn such 
that G = H1 U H2 U ... U Hn, 

(a)* Show that 
(i) Kn,n and K2n are 1-factorable; 

(ii) the Petersen graph is not 1-factorable. 
(b) Which of the following graphs have 2-factors? 



72 Graph Theory with Applications 

(c) Using Dirac's theorem (4.3), show that if G is simple, with v 
even and 8 ~ (v/2) + 1, then G has a 3-factor. 

5.1.6* Show that K2n+1 can be expressed as the union of n connected 
2-factors (n ~ 1). 

5.2 MATCHINGS AND COVERINGS IN BIPARTITE GRAPHS 

For any set S of vertices in G, we define the neighbour set of S in G to be 
the set of all vertices adjacent to vertices in S; this set is denoted by No(S). 
Suppose, now, that G is a bipartite graph with bipartition (X, Y). In many 
applications one wishes to find a matching of G that saturates every vertex 
in X; an example is the personnel assignment problem, to be discussed in 
section 5.4. Necessary and sufficient conditions for the existence of such a 
matching were first given by Hall (1935). 

Theorem 5.2 Let G be a bipartite graph with bipartition (X, Y). Then 1G 
contains a matching that saturates every vertex in X if and only .if 

IN(S)I > ISI for an Sc X (5.2) 

Proof Suppose that G contains a matching M· which saturates every 
vertex in X, and let S be a subset of X. Since the vertices in S are matched 
under M with distinct vertices in N(S), we clearly have IN(S)I > ISI. 

Conversely, suppose that G is a bipartite graph satisfying (5.2), but that G 
contains no matching saturating all the vertices in X. We shall obtain a 
contradiction. Let M* be a maximum matching in G. l3y our supposition, 
M* does not saturate all vertices in X. Let u be an M*-unsaturated vertex 
in X, and let Z denote the set of all vertices connected to u by M* -
alternating paths. Since M* is a maximum matching, it follows from theorem 
5 .1 that u is the only M*;.unsaturated vertex in Z. Set S - Z n X. and 
T =Zn Y (see figure 5.3). . 

Clearly, the vertices in S\{u} are rriatched under M* with the vertices in 
T. Therefore · 

ITI= 1s1-1 (5.3) 

and N(S) => T. In fact, we have 

N(S) = T (5.4) 

since every vertex in N(S) isconnected to u by an M*-alternating path. But 
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T= N(S) 

Figure 5.3 

(5.3) and (5.4) imply that 

IN(S)I = 1s1- 1 < 1s1 
contradicting assumption (5.2) D 
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The above proof provides the basis of a good algorithm for finding a 
maximum matching in a bipartite graph. This algorithm will be presented in 
section 5.4. 

Corollary 5.2 If G is a k-regular bipartite graph with k > 0, then G bas a 
perf ect matching. 

Proof Let G be a k-regular bipartite graph with bipartition (X, Y). Since 
G is k-regular, k IXI = IEI = k IYI and so, since k >0, IXI = IYI. Now let S 
be a subset of X and denote by E1 and E2 the sets of edges incident with 
vertices in S and N(S), respectively. By definition of N(S), E1 c E2 and 
therefore 

k IN(S)I = IE2I > IE1I = k 1s1 
lt follows that IN(S)I > ISI and hence, by theorem 5.2, that G bas a matching 
M saturating every vertex in X. Since IXI = 1 YI, M is a perfect matching D 

Corollary 5.2 is sometimes known as the marriage theorem, since it can be 
more colourfully restated as follows: if every girl in a village knows exactly k 
boys, and every boy knows exactly k girls, then each girl can marry a boy 
she knows, and each boy can marry a girl he knows. 

A covering of a graph G is a subset K of V such that every edge of G bas 
at least one end in K. A covering K is a minimum covering if G bas no 
covering K' with IK'I < IKI (see figure 5.4). 

If K is a covering of G, and M is a matching of G, then K contains at 
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(a) (b) 

Figure 5.4. (a) A covering; (b) a minimum covering 

least one end of each of the edges in M. Thus, for any matching M and any 
covering K, IMI s IKI. Indeed, if M* is a maximum matching and K is a 
minimum covering, then 

IM*lslKI (5.5) 

In general, equality does not hold in (5.5) (see, for ~xample, figure 5.4). 
However, if G is bipartite we do have IM*I = IKI. This result, due to Konig 
(1931), is closely related to Hall's theorem. Before presenting its proof, we 
make a simple, but important, observation. · 

Lemma 5.3 Let M be a matching and K be a covering such that IMI = IKI. 
Theo M is a maximum matching and K is a minimum covering. 

Proof If M* is a maximum matching and K is a minimum covering then, 
by (5.5), 

IMI s 1.M*I < IKI s IKI 

Since IMI = IKI, it follows that IMI = IM*I and l·KI = IKI D 

Theorem 5.3 In a bipartite graph, the number of edges in a maximum 
matching is equal to the number of vertices in a minimum covering. 

Proof Let G be a bipartite graph with bipartition (X, Y), and let M* be 
a maximum matching of G. Denote by U the set of M*-unsaturated vertices 
in X, and by Z the set of ail vertices connected by M*-alternating paths to 
vertices of U. Set S = Z n X and T = Z n Y. Tuen, as in the proof of 
theorem 5.2, we have that every vertex in T is M*..:saturated and N(S) = T. 
Define K = (X\S) UT (see figure 5.5). Every edge of G must have at least 
one of its ends in K. For, otherwise, there would be an edge withone end in 
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X\S 
__A __ _ 

S and one end in Y\ T, contradicting N(S) = T. Thus K. is a covering of G 
and clearly 

IM*l=IKI 
By lemma 5.3f K. is a minimum covering, and the theorem follows D 

Exercises 

5.2.1 Show that it is impossible, using 1 x 2 rectangles, to exactly cover an 
8 x 8 square from which two opposite 1 x 1 corner squares have been 
removed. 

5.2.2 (a) Show that a bipartite graph G has a perfect matching if and only 
if IN(S)I > ISI for all Sc V. 

(b) Give an example to show that the above statement does not 
remain valid if the condition that G be bipartite is dropped. 

5.2.3 For k > 0, show that 

(a) every k-regular bipartite graph is 1-factorable; 
(b)* every 2k-regular graph is 2-factorable. (J. Petersen) 

5.2.4 Let Ai, A2, .. . , Am be subsets of a set S. A system of distinct 
representatives for the family (A1, A 2, ••• , Am) is a subset 
{ai, a2, ... , am} of S such that ai E Ai, 1 < i $ m, and ai":/: ai for i #: j. 
Show that (Ai, A2, ... , Am) bas a system of distinct representatives if 

and only if I i';;, Ai 1 ~ III for all subsets J of { 1, 2, ... , m}. (P. Hall) 

5.2.5 A line of a matrix is a row or a column of the matrix. Show that the 
minimum number of lines containing all the l 's of a (O, 1)-matrix is 
equal to the maximum number of l 's, no two of which are in the 
same line. 
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5.2.6 (a) Prove the following generalisation of Hall's theorem (5.2): if G 
is a bipartite graph with bipartition (X, Y), the number of edges 
in a maximum matching of G is 

IXI- max{ISI-IN(S)I} 
Ss;X 

(D. Kônig, O. Ore) 
(b) Deduce that if Gis simple with IXl=IYl=n and e>(k-l)n, 

then G bas a matching of cardinality k. 
5.2.7 Deduce Hall's theorem (5.2) from Kônig's theorem (5.3). 
5.2.8* A non-negative real matrix Q is doubly stochastic if the sum of the 

entries in each row of Q is 1 and the sum of the entries in each 
column of Q is 1. A permutation matrix is a (0, 1)-matrix which has 
exactly one 1 in each row and each column. (Thus every permutation 
matrix is doubly stochastic.) Show that 

(a) every doubly stochastic matrix is necessarily square; 
(b) every doubly stochastic matrix Q can be expressed as a convex 

linear combination of permutation matrices; that is 

Q = c1P1 + c2P2+ ... + ckPk 

where each Pi is a permutation matrix, each ci is a non-negative real 
k 

number, and L ci= 1. (G. Birkhoff, J. von Neumann) 
1 

5.2.9 Let H be a finite group and let K be a subgroup of H. Show that 
there exist elements h1, h2, ... , hn EH such that h1K, h2K, ... , hnK 
are the left cosets of K and Khi, Kh2, ... , Khn are the right cosets 
of K. (P. Hall) 

5.3 PERFECT MATCHINGS 

A necessary and suffi.dent condition for a graph to have a perfect matching 
was obtained by Tutte (1947). The proof given here is due to Lovâsz (1973). 

A component of a graph is odd or even according as it bas an odd or even 
riumber of vertices. We denote by o(G) the number of odd components of G. 

Theo rem 5 .4 G bas a perf ect matching if and only if 

o(G-S)<ISI for all Sc V (5.6) 

Proof It clearly suffi.ces to prove the theorem for simple graphs. 
Suppose first that G bas a perfect matching M. Let S be a proper subset 

of V, and let G1, G2, ... , Gn be the odd components of G - S. Because Gi is 
odd, some vertex ui of Gi must be matched under M · with a vertex Vi of S 
(seê figure 5.6). Therefore, since { V1, V2, ••. , vn} c S 

o(G- S) = n = l{v1, V2, .•• 'Vn}I < 1s1 
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Odd components of G-S Even components of G-S 

O····O 

Figure 5.6 

Conversely, suppose that G satisfies (5.6) but bas no perfect matching. 
Then G is a spanning subgraph of a maximal graph G* having no perfect 
matching. Since G - S is a spanning subgraph of G* - S we have 
o(G*-S)so(G-S) and so, by (5.6), 

o(G*-S)<ISI forall ScV(G*) (5.7) 

In particular, setting S = 0, we see that o( G*) = 0, and so v( G*) is even. 
Denote by U the set of vertices of degree v - 1 in G *. Sin ce G * clearly 

bas a perfect matching if U = V, we may assume that U ~ V. We shall show 
that G*- U is a disjoint union of complete graphs. Suppose, to the contrary, 
that some component of G*- U is not complete. Then, in this component, 
there are vertices x, y and z such that xy e E(G*), yz e E(G*) and 
xz é E( G*) (exercise 1.6.14). Moreover, since y é U, there is a vertex w in 
G*- U such that ywé E(G*). The situation is illustrated in figure 5.7. 

Since G* is a maximal graph containing no perfect matching, G* + e bas a 
perfect matching for all eé E(G*). Let M1 and M2 be perfect matchings in 
G*+ xz and G*+ yw, respectively, and denote by H the subgraph of 

y w ----------0 

X Z 

Figure 5.7 
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(a) 

M1 heavy 
M2 wavy 

Figure 5.8 
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(b) 

G* U {xz, yw} induced by M1 ÂM2. Since each vertex of H bas degree two, 
H is a disjoint union of cycles. Furthermore, ail of these cycles are even, 
sirice edges of M 1 alternate with edges of M2 around them. We distinguish 
two cases: 

Case 1 xz and yw are in different components of H (figure 5.8a). Theo, 
if yw is in the cycle C of H, the edges of M1 in C, together with the edges of 
M2 not in C, constitute a perfect matching in G*, contradicting the defini
tion of G*. 

Case 2 xz and yw are in the same component C of H. By symmetry of x 
and z, we may assume that the vertices x, y, w and z occur in that order on 
C (figure 5.8b). Theo the edges of M1 in the section yw ... z of C, together 
with the edge yz and the edges of M2 not i~ the section yw ... z of C, 

* Odd components of G - U 

Figure 5.9 

Even components of G*- U ____ A ___ _ 

r ., 

tB\ r9\ \e) .... '91 

u 
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constitute a perfect matching in G*, again contradicting the definition of 
G*. 

Since both case 1 and case 2 lead to contradictions, it follows that G* - U 
is indeed a disjoint union of complete graphs. 

Now, by (5.7), o(G*-U)<IUI. Thus at most IUI of the components of 
G*- U are odd. But then G* clearly has a perfect matching: one vertex in 
each odd component of G * - U is matched with a vertex of U; the 
remaining vertices in U, and in components of G*- U, are then matched as 
indicated in figure 5 .9. 

Since G * was assumed to have no perfect matching we have obtained the 
desired contradiction. Thus G does indeed have a perfect matching D 

The above theorem can also be proved with the aid of Hall's theorem (see 
Anderson, 1971). 

From Tutte's theorem, we now deduce a result first obtained by Petersen 
(1891). 

Corollary 5.4 Every 3-regular graph without eut edges has a perfect 
matching. 

Proof Let G be a 3-regular graph without eut edges, and let S be a 
· proper subset of V. Denote by G., G2, ... , Gn the odd components of 

G - S, and let mi be the number of edges with one end in Gi and one end in 
S, 1 < i < n. Since G is 3-regular 

(5.8) 

and 

l:d(v)=31S1 
ves 

(5.9) 

By (5.8), mi= > d(v)-2e(Gi) is odd. Now mi# 1 s1nce G bas no eut 
vetfoi> 

edge. Thus 

(5.10) 

lt follows from (5.10) and (5.9) that 

1 n 1 
o(G-S) = n <- l: mi~- l: d(v) = 1s1 

3 i=-1 3 ves 

Therefore, by theorem 5A, G bas a perfect matching □ 

A 3-regular graph with eut edges need not have a perfect matching. For 
example, it follows from theorem 5 .4 that the graph G of figure 5 .10 bas no 
perfect matching, since o(G-v) =3. 
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Figure 5.10 

Exercises 

5.3. 1* Derive Hall's theorem (5.2) from Tutte's theorem (5.4). 
5.3:2 Prove the following generalisation of corollary 5,4: if G is a (k - 1)

edge..:conneèted · k-regular graph with v even, then G has a perfect 
m.atching. · 

5.3.3 Show that a tree G has a perfect matching if and only if o(G-v) = 1 
for ail v e V. (V. Chungphaisan) 

5.3.4* Prove the following generalisation of Tutte's theorem (5.4): the 
number of edges in a maximum matching of G is ½(v-d), where 
d = max{o( G- S)- ISI}. (C. Berge) 

ScV 

5.3.5 (a) Using Tutte's theorem (5.4), characterise the maximal simple 
graphs which have no perfect matching . 

. (b) Let G be simple, with v even and 6 < v/2. Show that if e > 

(~) + (v- 2
2
6- l) + 6(v- 6), then G bas a perfect matching. 

APPLICATIONS 

5 .4 THE PERSONNEL ASSIGNMENT PROBLEM 
. . 

In a certain company, n workers X1, X2, ... , Xn are available for n jobs 
Y1, Y2, .... , Yn, each worker being qualified for one or more of these jobs. 
Can. ail the men be assigned, one man per job,. to jobs for which they are 
qualified? This is the personnel assignment problem. 
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We construct a bipartite graph G with bipartition (X, Y), where X= 
{xi, X2, ••• , Xn}, Y= {y1, Y2, ... , Yn}, and Xi is joined to Y; if and only if 
worker Xi is qualified for job Yj. The problem becomes one of determining 
whether or not G bas a perfect matching. According to Hall's theorem (5.2), 
either G bas such a matching or there is a subset S of X such that 
IN(S)I < ISI. ln the sequel, we shall present an algorithm to solve the 
personnel assignment problem. Given any bipartite graph G with bipartition 
(X, Y), the algorithm either finds a matching of G that saturates every 
vertex in X or, failing this, finds a subset S of X such that IN(S)I < ISI. 

The basic idea behind the algorithm is very simple. We start with an 
arbitrary matching M. If M saturates every vertex in X, then it is a matching 
of the required type. If not, we choose an M-unsaturated vertex u in X and 
systematically search for an M -augmenting path with origin u. Our method 
of search, to be described in detail below, finds such a path P if one exists; 
in this case M = M âE (P) is a larger matching than M, and hence satura tes 
more vertices in X. We then repeat the procedure with M instead of M. If 
such a path does not exist, the set Z of all vertices which are connected to u 
by M-alternating paths is found. Then (as in the proof of theorem 5.2) 
S =Zn X satisfies IN(S)I < ISI. 

Let M be a matching in G, and let u be an M-unsaturated vertex in X. A 
tree H c G is called an M-alternating tree rooted at u if (i) u E V(H), and (ii) 
for every vertex v of H, the unique ( u, v )-path in H is an M -alternating 
path. An M-alternating tree in a graph is shown in figure 5.11. 

X5 

Y, 

x1 =u 

(a) (b) 

Figure 5.11. (a) A matching Min G; (b) an M-alternating tree in G 
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(a) (b) 

Figure 5.12. (a) Case (i); (b) case (ii) 

The search for an M-augmenting path with origin u involves 'growing' an 
M-alternating free H rooted at u. This procedure was first suggested by 
Edmonds (1965). Initially, H consists of just the single vertex u. It is then 
grown in such a way that, at any stage, either 

(i) all vertices of H except u are M-saturated and matched under M (as in 
figure 5.12a), or 

(ii) H contains an M-unsaturated vertex different from u (as in figure 
5.12b). 

If (i) is the case (as it is initially) then, setting S = V(H) n X and T = 
V(H) n Y, we have N(S)::::, T; thus either N(S) = T or N(S)::::, T. 

(a) If N(S) = T then, since the vertices in S\{u} are matched with the 
vertices in T, IN(S)I = ISI -1, indicating that G bas no matching saturat
ing all vertices in X. 

(b) If N(S)::::, T, there is a vertex y in Y\ T adjacent to a vertex x in S. Since 
ail vertices of H except u are matched under M, either x = u or else x is 
matched with a vertex of H. Therefore xy é M. If y is M-saturated, with 
yz E M, we grow H by adding the vertices y and z and the edges xy and 
yz. We are then back in case (i). If y is M-unsaturated, we grow H by 
adding the vertex y and the edge xy, resulting in case (ii). The (u, y)
path of H is then an M-augmenting path with origin u, as required. 

Figure 5.13 illustrates the above tree-growing procedure. 
The algorithm described above is known as the Hungarian method, and 
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M- saturated 
y 

X X 

) > 

Case (i) 

M- unsaturated 

X 

or > 

u 
Case (i) Case ( i i) 

Figure 5.13. The tree-growing procedure 

can be summarised as foHows: 

Start with an arbitrary matching M. 
1. If M saturates every vertex in X, stop. Otherwise, let u be an M

unsaturated vertex in X. Set S = { u} and T = 0. 
2. If N(S) = T then IN(S)I < ISI, since. ITI = ISl-1. Stop, since by Hall's 

theorem there is no matching that saturates every vertex in X. Other
wise, let y E N(S)\ T. 

3. If y is M-saturated, let yz E M. Replace S by S U { z} and T by TU {y} 
and go to step 2. (Observe that ITI = ISl-1 is maintained after this 
replacement.) Otherwise, let P be an M-augmenting (u, y )-path. Replace 
M by M = M '1E(P) and go to step 1. 

Consider, for example, the graph G in figure 5.14a, with initial matching 
M = {x2y2, X3y3, XsYs}, In figure 5.14b an M-alternating tree is grown, start
ing with X1, and the M-augmenting path X1Y2X2Y1 found. This results in a 
new matching M = {X1Y2, X2Y1, X3y3, XsYs}, and an M-alternating tree is now 
grown from X4 (figures 5.14c and 5.14d) Since there is no M-augmenting 
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X3 X3 

Y2 

x, x, 

Figure 5.14. (a) Matching M; (b) an M-altemating tree; (c) matching M; (d) an 
M-altemating tree 

path with origin X4, the algorithm terminates.- The set S = {xi, X3, X4}, with 
neighbour set N(S) = {y2, y3}, shows that G has no perfect matching. 

A flow diagram of the Hungarian method is given in figure 5 .15. Sin ce the 
algorithm can cycle through the tree-growing procedure, I, at most IXI times 
before finding either an Sc X such that IN(S)I < ISI or an M-augmenting 
path, and since the initial matching can be augmented at most IXI times 
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before a matching of the required type is found, it 1s clear that the 
Hungarian method is a good algorithm. 

One can find a maximum matching in a bipartite graph by slightly 
modifying the above procedure (exercise 5.4.1). A good algorithm that 
determines such a matching in any graph bas been given by Edmonds 
(1965). 

Exercise 

5.4.1 Describe how the Hungarian method can be used to find a maximum 
matching in a bipartite graph. 
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5 .5 THE OPTIMAL ASSIGNMENT PROBLEM 

The Hungarian method, described in section 5.4, is an efficient way of 
determining a feasible assignment of workers to jobs, if one exists. However 
one may, in addition, wish to take into account the eflectiveness of the 
workers in their various jobs (measured, perhaps, by the profit to the 
company). In this case, one is interested in an assignment that maximises the 
total eflectiveness of the workers. The problem of finding such an assign
ment is known as the optimal assignment problem. 

Consider a weighted complete bipartite graph with bipartition (X, Y), 
where X= {xi, X2, ... , Xn}, Y= {y1, Y2, ... , Yn} and edge XiY; bas weight 
Wi; = w(xiy;), the eflectiveness of worker Xi in job Y;. The optimal assign
ment problem is clearly equivalent to that of finding a maximum-weight 
perfect matching in this weighted graph. We shall refer to such a matching 
as an optimal matching. 

To solve the optimal assignment problem it is, of course, possible to 
enumerate all n ! perfect matchings and find an optimal one among them. 
However, for large n, such a procedure would clearly be most inefficient. In 
this section we shall present a good algorithm for finding an optimal 
matching in a weighted complete bipartite graph. 

We define a feasible vertex labelling as a real-valued fonction l on the 
vertex set X U Y such that, for all x E X and y E Y 

l(x) + l(y) > w(xy) {5.11) 

(The real number l(v) is càlled the label of the vertex v.) A feasible vertex 
labelling is thus a labelling of the vertices such that the sum of the labels of 
the two ends of an edge is at least as large as the weight of the edge. No 
matter what the edge weights are, there always exists a feasible vertex 
labelling; one such is the fonction l given by 

l(x) = max w(xy) if x EX} 
yEY 

l (y) = 0 if y e Y 
(5.12) 

If l is a feasible vertex labelling, we denote by E, the set of those edges for 
which equality holds in (5.11); that is 

E,={xyeE l l(x)+l(y)=w(xy)} 

The spanning subgraph of G with edge set E, is referred to as the equality 
subgraph corresponding to the feasible vertex labelling l, and is denoted by 
G1• The connection between equality subgraphs and optimal matchings is 
provided by the following theorem. 

Theorem 5.5 Let l be a feasible vertex labelling of G. If G, contains a 
perfect matching M*, then M* is an optimal matching of G. 
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Proof Suppose that G, contains a perfect matching M*. Since G, is a 
spanning subgraph of G, M* is also a perfect matching of G. Now 

w(M*) = L w(e) = L l(v) 
eEM* vEV 

(5.13) 

since each e E M* belongs to the equality subgraph and the ends of edges of 
M* cover each vertex exactly once. On the other hand, if M is any perfect 
matching of G, then 

w(M) = l w(e) < l l(v) 
e~ V~ 

(5.14) 

lt follows from (5.13) and (5.14) that w(M*) > w(M). Thus M* is an optimal 
matching D 

The above theorem is the basis of an algorithm, due to Kuhn (1955) and 
Munkres (1957), for finding an optimal matching in a weighted complete 
bipartite graph. Our treatment closely follows Edmonds (1967). 

Starting with an arbitrary feasible vertex labelling l (for example, the one 
given in (5.12)), we determine G1, choose an arbitrary matching Min G1 and 
apply the Hungarian method. If a perfect n1atching is found in G1 then, by 
theorem 5.5, this matching is optimal. Otherwise, the Hungarian method 
termina tes in a matching M' that is not perfect, and an M' -alternating tree 
H that contains no M'-augmenting path and cannot be grown further (in 
G1). We then modify l to a feasible vertex labelling Î with the property that 
both M' and H are contained in Gï and H can be extended in Gr. Such 
modifications in the feasible vertex labelling are made whenever necessary, 
until a perfect matching is found in some equality subgraph. 

The Kuhn-Munkres Algorithm 

Start with an · arbitrary feasible vertex labelling l, determine Gi, and 
choose an arbitrary matching M in G1• 

1. If X is M -saturated, then M is a perfect matching (since IXI = 1 YI) and 
hence, by theorem 5.5, an optimal matching; in this càse, stop. Other
wise, let u be an M-un~aturated vertex. Set S = {u} and T = 0. 

2. If Na.(S) => T, go to step 3. Otherwise, Na1(S) = T. Compute 

a 1 = min{l(x) + l(y)-w(xy)} 
xES 
yET 

and the feasible vertex labelling Î given by 

{ 
l( V)- a 1 if VE S 

Î ( v) = l ( v) + a1 if v E T 

l ( v) otherwise 

(Note that a,> 0 and that NalS) => T.) Replace l by Î and G1 by G,. 
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Figure 5.16 
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3. Choose a vertex y in No,(S)\T. As in the tree-growing procedure of 
section. . ~ .4, consider whether or not y · is M-saturated. If y is M
saturated, with yz e M, replace S by S U {z} and T by TU {y}, and go to 
step 2. Otherwise, let P be an M-augmenting (u, y)-path in G,, replace M 
by M = M âE(P), and go to step 1. · 

In illustrating the Kulin-Münkres algorithm, it is conv-eriient to represent 
a weighted complete bipartite': graph G by a matrix W ' [ W1j], where Wij is 
the weight of edge xiyj in G. We shall start with the matrix of figure 5.16a. 
ln figure 5.16b, the feasible vertex labelling (5.12) is shown (by placing the 
l_abel of xi to the right of· row i of the matrix and the label of Yi below 
column j) an~ the çntries corresponding to e4ges of the· associated equality 
subgraph are indicated; the equallty suhgraph itself is depicted (without 
weights) in figure·5.16c. It was shown in the previous section that this graph 
bas no perfect matching (the set S = {xi, X3, X4} bas neighbour set {y2, yj}). 
We therefore modify our initial feasible vertex labelling to the one given in 
figure 5. l 6d. An application of the Hungarian method now shows that the 
associated equality subgraph (figure 5.16e) bas the. pedect matching 
{x1 y4; X2Y1, X3y3, X4Y2, XsYs}. This is therefore an optimal matching of G. 
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A flow diagram for the Kuhn-Munkres algorithin is given in figure 5.17. 
In cycle Il, the number of computations required to compute Gris clearly of 
order v 2 • Since the algorithm can cycle through I and II at most IXI times 
before finding an M-augmenting path, and since the initial matching can be 
augmented at most IXI times before an optimal matching is found, we see 
that the Kuhn-Munkres algorithm is a good algorithm. 

Exercise 

5.5.1 A diagonal of an n x n matrix is a set of n entries no two of which 
belong to the same row or the same column. The weight of a 
diagonal is the sum of the entries in it. Find a minimum-weight 
diagonal in the following matrix: 

4 5 8 10 11 
7 6 5 7 4 
8 5 12 9 6 
6 6 13 10 7 
4 5 7 9 8 
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6 Edge Colourings 
6.1 EDGE CHROMATIC NUMBER 

A k-edge colouring cg of a loopless graph G is an assignment of k colours, 
1, 2, ... , k, to the edges of G. The colouring cg is proper if no two adjacent 
edges have the same colour. 

Alternatively, a k-edge colouring can be thought of as a partition 
(E1, E2, ... , Ek) of E, where E denotes the (possibly empty) subset of E 
assigned colour i. A proper k-edge colouring is then a k-edge colouring 
(E1, E2, ... , Ek) in which each subset Ei is ~ matching. The graph of figure 
6.1 bas the proper 4-edge colouring ({a, g},_ {b, e }, {c, f}, {d}). 

Gis k-edge co/ourab/e if G has a proper k-edge-colouring. Trivially, every 
loopless graph G is e-edge-colourable; and if G is k-edge-colourable, then 
G is also l-edge-colourable for every l > k. The edge chromatic number 
x'(G), of a loopless graph G, is the minimum k for which G is k-edge
colourable. G is k-edge-chromatic if x'(G) = k. lt can be readily verified 
that the graph of figure 6.1 bas no proper 3-edge colouring. This graph is 
therefore 4-edge-chromatic. 

Clearly, in any proper edge colouring, the edges incident_ with any one 
vertex must be assigned different colours. lt follows that 

(6.1) 

Referring to the example of figure 6.1, _we see that inequality (6.1) may be 
strict. However, we shall show that, in the case when G is bipartite, x' = 4. 
The following simple lemma is basic to our proof. We say that colour i is 
represented at vertex v if some edge incident with v has colour i. 

Lem ma 6.1.1 Let G be a connected graph that is not an odd · cycle. Then 

Figure 6.1 
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G bas a 2-edge colouring in which both colours are represented at each 
vertex of degree at least two. 

Proof We may clearly assume that G is nontrivial. Suppose, first, that G 
is eulerian. If G is an even cycle, the proper 2-edge coloùring of G bas the 
required property. Otherwise, G bas a vertex Vo of degree at least four. Let 
voe1V1 ••• eeVo be an Euler tour of G, and set 

(6.2) 

Theo the 2-edge colouring (E1, E2) of G bas the required property, since 
each vertex of G is an internai vertex of voe1V1 ... eevo. 

If G is not eulerian, construct a new graph G* by adding a new vertex Vo 
and joining it to each vertex of odd degree in G. Clearly G* is eulerian. Let 
v0 e1V1 ... ee• Vo be an Euler tour of G* and define E1 and E2 as in (6.2). lt is 
then easily verified that the 2-edge colouring (E1 n E, E2 n E) of G bas the 
required property D 

Given a k-edge colouring <f6 of G we shall denote by c ( v) the number of 
distinct colours represented at v. Clearly, we always have 

c(v) < d(v) (6.3) 

Moreover, <f6 is a proper k-edge colouring if and only if equality holds in 
(6.3) for all vertices v of G. We shall call a k-edge colouring <fJ' an 
improvement on <f6 if 

L c'(v) > L c(v) 
vev vev 

where c'(v) is the number of distinct colours represented at v in the 
colouring <fJ'. An optimal k-edge colouring is one which cannot be im
proved. 

Lemma 6.1.2 Let <fJ = (E., E2, ... , Ek) be an optimal k-edge colouring of 
G. If there is a vertex u in G and colours i and j such that i is not 
represented at u and j is represented at least twice at u, then the component. 
of G[Ei U Ei] that con tains u is an odd cycle. 

Proof Let u be a vertex that satisfies the hypothesis of the lemma, and 
denote by H the component of G[Ei U Ei] containing u. Suppose that H is 
not an odd cycle. Then, by lemma 6.1.1, H bas a 2-edge colouring in which 
both colours are represented at each vertex of degree at least two in H. 
When we recolour the edges of H with colours i and j in this way, we obtain 
a new k-edge colouring <fJ' = (E;, E;, ... , E~) of G. Denoting by c'(v) the 
number of distinct colours at v in the colouring <fJ', we have 

c'(u) = c(u) + 1 
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since, now, both i and j are represented at u, and also 

CI (V) > C (V) for V~ U 

Thus L c'(v) > L c(v), contradicting the choice of Cfi. It follows that H is 
vEV vEV 

indeed an odd cycle D 

Theorem 6.1 If G is bipartite, then x' = Â. 

Proof Let G be a graph with x' > Â, let cg= (E1, E2, ... , EA) be an 
optimal Â-edge colouring of G, and let u be a vertex such that c(u) < d(u). 
Clearly, u satisfies the hypothesis of lemma 6.1.2. Therefore G con tains an 
odd cycle and so is not bipartite. lt follows from (6.1) that if G is bipartite, 
then x' = Â D 

An alternative proof of theorem 6.1, using exercise 5.2.3a, is outlined in 
exercise 6 .1. 3. 

Exercises 

6.1.1 Show, by finding an appropriate edge colouring, that x'(Km,n) = 
Â(Km,n), 

6.1.2 Show that the Petersen graph is 4-edge-chromatic. 
6.1.3 (a) Show that if G is bipartite, then G bas a Â-regular bipartite 

supergraph. 
(b) Using (a) and exercise 5.2.3a, give an alternative proof of 

theorem 6.1. 
6.1.4 Describe a good algorithm for finding a proper Â-edge colouring of a 

bipartite graph G. 
6.1.5 Using exercise 1.5.8 and theorem 6.1, show that if G is loopless with 

Â = 3, then x' < 4. 
6.1.6 Show that if G is bipartite with 8 > 0, then G bas a 8-edge colouring 

such that ail 8 colours are represented at each vertex. 
(R. P. Gupta) 

6.2 VIZING'S THEOREM 

As has already been noted, if G is not bipartite then we cannot necessarily 
conclude that x' = Â. An important theorem due to Vizing (1964) and, 
independently, Gupta (1966), asserts that, for any simple graph G, either 
x' = Â or x' = Â + 1. The proof given here is by Fournier (1973). 

Theorem 6.2 If G is simple, then either x' = Â or x' = Â + 1. 

Proof Let G be a simple graph. By virtue of (6.1) we need only show 
that x' < Â + 1. Suppose, then, that x' > Â + 1. Let cg= (E1, E2, ... , EA+1) be 
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an optimal (Â + 1)-edge colouring of G and let u be a vertex such that 
c(u) < d(u). Then there exist colours io and h such that io is not represented 
at u, and i1 is represented at least twic·e at u. Let uvi have colour ii, as in 
figure 6.2a. 

Since d(v1) < Â + 1, some colour ii is not represented at V1. Now h must be 
represented at u since otherwise, by recolouring uv1 with h, we would 
obtain an improvement on Cf6. Thus some edge uv2 has colour ii. Again, 
since d(v2)<Â+l, some colour ÏJ isnot represented at v2; and Î3_must be 
represented at u since otherwise, by recolouring uv1 with h and uv2 with ÏJ, 

. we would obtain an improved (Â + 1)-edge colouring. Thus -some edge UV3 

has colour h. Continuing this procedure we construct a sequence Vi, V2, •. • 

of vertices and a sequence i1, i2, ... of colours, such that · 

(i) uv; bas colour Îj, and 
(ii) Îj+1 is not represerited at Vj, 

Since the degree of u is finite, there exists a smallest integer l such that, for 
some. k < l, 

(Ïii) Î1+1 = Îk. 
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The situation is depicted in figure 6.2a. 
We now recolour G as follows. For 1 < j < k - 1, recolour UVj with colour 

i;+1, yielding a new (Â + 1)-edge colouring CfJ' = (E~, Ei, ... , E~+1) (figure 
6.2b). Clearly 

c'(v) > c(v) for all v E V 

and therefore ((J' is also an optimal (Â + 1)-edge colouring of G. By lemma 
6.1.2, the component H' of G[E:0 U E:J that contains u is an odd cycle. 

Now, in addition, recolour uvï with colour Îj+1, k < j < l -1, and uv, with 
colour ik, to obtain a (Â + 1)-edge colouring ((J" = (E1, E~, ... , E1+1) (figure 
6.2c). As above 

c"(v)>c(v) for all v EV 

and the component H" of G[EJ0 U E't] that contains u is an odd cycle. But, 
since vk bas degree two in H', vk clearly bas degree one in H". This 
contradiction establishes the theorem □ 

Actually, Vizing proved a more general theorem than that given above, 
one that · is valid for all loopless graphs. The ma~imum number of edges 
joining two vertices in G is called the multiplicity of G, and denoted by 
µ(G). We can now state Vizing's theorem in its full generality: if G is 
loopless, then Â < x' < Â + µ. 

This theorem is best possible in the sense that, for any µ, there exists a 
graph G such that x' = Â + µ. For example, in the graph G of figure 6.3, 
Â = 2µ and, since any two edges are adjacent, x' = e = 3µ. 

Strong as theorein. 6.2 is, it leaves open one interesting question: which 
simple graphs satisfy x' = Â? The significance of this question will become 
apparent in chapter 9, when we study edge colourings of planar graphs. 

Figure 6.3. A graph G with x' = !l. + µ 
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Exercises 

6.2.1 * Show, by finding appropriate edge colourings, that x'(K2n-1) = 
x'(K2n) = 2n - 1. 

6.2.2 Show that if G is a nonempty regular simple graph with v odd, then 
x'= Â+ 1. 

6.2.3 (a) Let G be a simple graph. Show that if v = 2n + 1 and e > nll, 
then x' = Â + 1. (V. G. Vizing) 

(b) Using (a), show that 
(i) if G is obtained from a simple regular graph with an even 
number of vertices by subdividing one edge, then x' = Â + 1; 
(ii) if G is obtained from a simple k-regular graph with an odd 
number of vertices by deleting fewer than k/2 edges, then x' = 
Â + 1. (L. W. Beineke and R. J. Wilson) 

6.2.4 (a) Show that if G is loopless, then G bas a Â-regular loopless 
supergraph. 

(b) Using (a) and exercise 5~2.3b, show that if Gis loopless and Â is 
even, then x' s 3Â/2. 

(Shannon, 1949 bas shown that this inequality also holds when 
Â is odd.) . 

6.2.5 G is called uniquely k-edge-colourable if any two proper k-edge 
colourings of G induce the same partition of E. Show that every 
uniquely 3-edge-colourable 3-regular graph is hamiltonian. 

(D. L. Greenwell and H. V. Kronk) 
6.2.6 The product of simple graphs G and H is the simple graph G x H 

with vertex set V(G) x V(H), in which (u, v) is adjacent to (u', v') if 
and only if either u = u' and vv' E E(H) or v = v' and uu' E E(G). 

(a) Using Vizing's theorem (6.2), show·that x'(G x K2) = Â(G x K2), 
(b) Deduce that if H is nontrivial with x'(H) = Â(H), then 

x'(G X H) = Â(G x H). 

6.2. 7 Describe a good algorithm for finding a proper (Â + 1)-edge colour
ing of a simple graph G. 

6.2.8* Show that if G is simple with 6 > 1, then G bas a (6-1)-edge 
colouring such that ail 6-1 colours are represented at each vertex. 

(R. P. Gupta) 

APPLICATIONS 

6.3 THE TIMETABLING PROBLEM 

In a school, there are m teachers Xi, X2, ... , Xm, and n classes 
Y., Y2, ... , Yn. Given that teacher Xi is required to teach class Yj for Pi; 
periods, schedule a complete timetable in the minimum possible number of 
periods. 
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The above problem is known as the timetabling problem, and can be solved 
completely using the theory of edge colourings developed in this chapter. 
We represent the teaching requirements by a bipartite graph G with 
bipartition (X, Y), where X= {x1, X2, ... , Xm}, Y= {y1, Y2, . , , , Yn} and ver
tices xi and yj are joined by pij edges. Now, in any one period, each teacher 
can teach at most one class, and each class can be taught by at most one 
teacher-this, at least, is our assumption. Thus a teaching schedule for one 
period corresponds to a matching in the graph and, conversely, each 
matching corresponds to a possible assignment of teachers to classes for one 
period. Our problem, therefore, is to partition the edges of G into as few 
matchings as possible or, equivalently, to properly colour the edges of G 
with as few colours as possible. Since G is bipartite, we know, by theorem 
6.1, that x' ~ li. Hence, if no teacher teaches for more than p periods, and if 
no class is taught for more than p periods, the teaching requirements can be 
scheduled in a p-period timetable. Furthermore, there is a good algorithm 
for constructing such a timetable, as is indicated in exercise 6.1.4. We thus 
have a complete solution to the timetabling problem. 

However, the situation might not be so straightforward. Let us assume 
that only a limited number of classrooms àre àvailable. With this additional 
constraint, how many periods are now needed to schedule a complete · 
timetable? 

Suppose that altogether there are l lessons to be given, and that they have 
been scheduled in a p-i:,•eriod timetable. Sinèe this timetable requires an 
average of l/p lessons to be given per period, it is clear that at least {l/p} 
rooms will be needed in some one period. It turns out that one can always 
arrange l lessons in a p-period timetable so that at most {l/p} rooms are 
occupied in any one period. This follows from theorem 6.3 below. We first 
have a lemma. 

Lemma 6.3 Let M and N be djsjoint matchings of G with. IMI > INI. Theo 
there are disjoint matchings M' and N' of G · such that IM'I =,IMl-1, 
IN'l=INl+l and M'UN'=MUN. 

Proof Consider the graph H = G[M UN]. As in the proof of theorem 
5 .1, each component of H is either an even cycle, witb edges alternately in 
M and N, or else a path with edges alternately in M and N. Since IMI > JNI, 
some path èomponent P of H must start and end with edges of M. Let 
p = Voe1V1,,, e2n+1V2n+t, and set 

M'= (M\{e1, e3, ... , e2n+1})U{e2, e4, ... , e2n}' 

N' = (N\{e2, e4, ... , e2n}) U {e1, e3, • .. , e2n+1} 

Tuen M' and N' are matchings of G that satisfy the conditions of the 
lemma D 
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Y, Y2 Y3 Y4 
x, 2 0 1 1 

X2 0 1 0 1 
P= 

X3 0 1 1 1 

X4 0 0 0 1 

{ a ) 

Y5 
0 x, 
0 X2 
0 X3 

1 X4 

Figure 6.4 
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Period 
1 2 3 4 

Y1 Y1 Y3 Y4 

Y2 - Y4 -

Y3 Y4 - Y2 

Y4 Y5 - -

( b) 

Theorem 6.3 If G is bipartite, and if p > t:., then there exist p disjoint 
matchings Mi, M2, ... , MP of G such that 

E = M 1 U M2 U ... U Mp (6.4) 

and, for 1 < i < p 

(6.5) 

(Note: condition (6.5) says that any two matchings Mi and M; differ in size 
by at most one.) · 

Proof Let G be a bipartite graph. By theorem 6 .. 1, the edges of G can be 
partitioned into f:a · matchings M;, M;, ... , M~. Therefore, for any p > t:., 
there exist p disjoint matchings M;, M~, ... , M~ (with M; = 0 for i > t:.) such 
that 

E = M~ U M~ U ... U M; 

By repeatedly applying lemma 6.3 to pairs of these matchings that differ in 
size by more than one, we eventually obtain p disjoint matchings 
Mi, M2, ... , MP of G satisfying (6.4) and (6.5), as requiréd □ 

x, X2 X3 X4 x, X2 X3 X4 

' \ \ 
\ 
\ 
\ 
\ 
\ 
\ 
b 

Y, Y2 Y3 ~ Y5 Y, Y2 Y3 Y4 
(a) ( b) 

Figure 6.5 
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Y3 
{a) 

X4 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

b 
Y4 Y5 

Figure 6.6 
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Period 
2 3 4 

x, Y4 Y, Y3 Y, 

X2 Y2 - Y4 -
X3 Y3 Y4 - Y2 

X4 - Y5 - Y4 

{ b ) 

As an example, suppose that there are four teachers and five classes, and 
that the teaching requirement matrix P = [pii] is as given in figure 6.4a. One 
possible 4-period timetable is shown in figure 6.4b. 

We can represent the above timetable by a decomposition into matchings 
of the edge set of the bipartite graph G corresponding to P, as shown in 
f;.gure 6.5a. (Normal edges correspond to period 1, broken edges to period 
2, wavy edges to period 3, and heavy edges to period 4.) 

From the timetable we see that four classes are taught in period 1, and so 
four rooms are needed. However e = 11 and so, by theorem 6.4, a 4-period 
timetable can be arranged so that in each period either 2( = [11/4]) or 
3( = {11/4}) classes are taught. Let M1 denote the normal matching and M4 
the heavy matching; notice that IM1I = 4 and IM41 = 2. We can now find a 
4-period 3-room timetable by considering G[M1 U M4] (figure 6.5b ). 
G[M1 U M4] has two components, each consisting of a path of length three. 
Both paths start · and end with normal edges and so, by interchanging the 
matchings on one of the two paths, we shall reduce the normal matching to 
one of three edges, and ·at the same time increase the heavy matching to one 
of three edges. If we choose the path y1x1y4X4, making the edges Y1X1 and 
y4X4 heavy and the edge X1Y4 normal, we obtain the decomposition of E 
shown in figure 6.6a. This then gives the revised timetable shown in figure 
6.6b; here, only three rooms are needed at any one time. 

Period 
1 2 3 4 5 6 

Y4 Y3 Y, - Y, -

Y2 Y4 - - - -
- - Y4 Y3 Y2 -
- - - Y4 - Y5 

Figure 6.7 
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However, suppose that there are just two rooms available. Theorem 6.4 
tells us that there must be a 6-period timetable that satisfies our require
ments (since {11/6}= 2). Such a timetable is given in figure 6.7. 

In practice, most problems on timetabling are complicated by preassign
ments ( that is, conditions specifying the periods during which certain 
teachers and classes must meet). This generalisation of the timetabling 
problem has been studied by Dempster (1971) and de Werra (1970). 

Exercise 

6.3.1 In a school there are seven teachers and twelve classes. The teaching 
requirements for a five-day week are given by the matrix 

Y1 Y2 y3 y4 Ys y6 Y1 Ys y9 Y10 Yu Y12 

X1 3 2 3 3 3 3 3 3 3 3 3 3 
X2 1 3 6 0 4 2 5 1 3 3 0 4 
x3 5 0 5 5 0 0 5 0 5 0 5 5 

P=X4 2 4 2 4 2 4 2 4 2 4 2 3 
Xs 3 5 2 2 0 3 1 4 4 3 2 5 
x6 5 5 0 0 5 5 0 5 0 5 5 0 
X1 0 3 4 3 4 3 4 3 4 3 3 0 

where pij is the number of periods that teacher Xi must teach class 
yj•• 

(a) Into how man y periods must a day be divided so that the 
requirements can be satisfied? 

(b) If an eight-period/day timetable is drawn up, how many class
rooms will be needed? 
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7 Independent Sets and 
Cliques 

7 .1 INDEPENDENT SETS 

A subset S of Vis called an independent set of G if no two vertices of S are 
adjacent in G. An independent set is maximum if G bas no independent set 
S' with 1S'I > 1S1. Examples of independent sets are shown in figure 7 .1. 

Recall that a subset K of V such that every edge of G bas at least one end 
in K is called a covering of G. The two examples of independent sets given 
in figure 7 .1 are both complements of coverings. lt is not difficult to see that 
this is always the case. 

Theorem 7.1 A set S c V is an independent set of G if and only if V\S is a 
covering of G. 

Proof By definition, S is an independent set of G if and only if no edge 
of G bas both ends in S or, equivalently, if and only if each edge bas at least 
one end in V\S. But this is so if and only if V\S is a covering of G D 

The number of vertices in a maximum independent set of G is called the 
independence number of G and is denoted by a ( G); similarly, the number of 
vertices in a minimum covering of G is the covering number of G and is 
denoted by (3( G). 

Corollary 7.1 a + {3 = v. 

Proof Let S be a maximum . independent set of G, and let K be a 
minimum covering of G. Then, by theorem 7.1, V\K is an independent set 

( a ) ( b ) 

Figure 7.1. (a) An independent set; (b) a maximum independent set 
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and V\S is a covering. Theref ore 

v - f3 = 1 V\KI < a 
and 

v- O'. = IV\SI > (3 

Combining (7.1) and (7.2) we have o:+(3=v D 

(7.1) 

(7.2) 

The edge analogue of an independent set is a set of links no two of which 
are adjacent, that is, a matching. The edge analogue of a covering is called 
an edge covering. An edge covering of G is a subset L of E such that each 
vertex of G is an end of some edge in L. Note that edge coverings do not 
always exist; a graph G has an edge covering if and only if 5 > O. We denote 
the number of edges in a maximum matching of G by o:'(G), and the 
number of edges in a minimum edge covering of G by (3'(G); the numbers 
o:'(G) and (3'(G) are the edge independence number and edge covering 
number of G, respectively. 

Matchings and edge coverings are not related to one another as simply as 
are independent sets and coverings; the complement of a matching need not 
be an edge covering, nor is the complement of an edge covering necessarily 
a matching. However, it so happens that the parameters o:' and (3' are 
related in precisely the same manner as are o: and (3. 

Theorem 7.2 (Gallai, 1959) If 5 > 0, then o:' + (3' . v. 

Proof Let M be a maximum matching in G and let U be the set of 
M-unsaturated vertices. Since 5 > 0 and M is maximum, there exists a set E' 
of I UI edges, one incident with each vertex in U. Clearly, MUE' is an edge 
covering of G, and so 

(3' < IM U E'I = o:' + (v -"20: 1
) = v - a' 

or 
0:' + f3·' < V (7.3) 

Now let L be a minimum edge covering of G, set H = G[L] and let M be 
a maximum matching in H. Denote the set of M-unsaturated vertices in H 
by U. Sin ce M is maximum, H[ U] has no links and therefore 

ILI-IMI = IL\Ml>IUI= v-2 IMI 
Because H is a subgraph of G, M is a matching in G and so 

o:' + (3' > IMI +ILI> V 

Combining (7.3) and (7.4), we have ex'+ (3' = v □ 

(7.4) 

We can now prove a theorem that bears a striking formai resemblance to 
Kônig's theorem (5.3). 
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Theorem 7.3 In a bipartite graph G with 5 > 0, the number of vertices in a 
maximum independent set is equal to the number of edges in a minimum 
edge covering. 

Proof Let G be a bipartite graph with 5>0. By corollary 7.1 and 
theorem 7 .2, we have 

a+f3=a'+f3' 

and, since G is bipartite, it follows from theorem 5.3 that a'= f3. Thus 
a=f3' D 

Even though the concept of an independent set is analogous to that of a 
matching, there exists no theory of independent sets comparable to the 
theory of matchings presented in chapter 5; for example, no good algorithm 
for finding a maximum independent set in a graph is known. However, there 
are two interesting theorems that relate the number of vertices in a max
imum independent set of a graph to various other parameters of the graph. 
These theorems will be discussed in sections 7.2 and 7.3. 

Exercises 

7.1.1 (a) Show that G is bipartite if and only if a(H)>½v(H) for every 
subgraph H of G. 

(b) Show that G is bipartite if and only if a(H) = f3'(H) for every 
subgraph H of G such that S(H) > O. 

7.1.2 A graph is a-critical if a(G-e)>a(G) for all eeE. Show that 
a connected a-critical graph has ·no eut vertices. 

7.1.3 A graph Gis f3-critical if f3(G-e)<f3(G) for all eeE. Show that 

(a) a' connected f3-critical graph has no eut vertices; 
(b )* if G is connected, then f3 < ½(e + 1). 

7. 2 RAMSEY'S THEO REM 

In this section we deal only with simple graphs. A clique of a simple graph G 
is a subset S of V such that G[S] is complete. Clearly, S is a clique of G if 
and only if S is an independent set of GC, and so the two concepts are 
complementary. 

If G bas no large cliques, then one might expect G to have a large 
independent set. That this is indeed the case was first proved by Ramsey 
(1930). He showed that, given any positive integers k and l, there exists a 
smallest integer r(k, l) such that every graph on r(k, l) vertices contains 
either a clique of k vertices or an independent set of l vertices. For example, 
it is easy to see that 

r(l, l) = r(k, 1) = 1 (7.5) 
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r(2, ,l) = l, r(k, 2) = k (7.6) 

The numbers r(k, l) are known as the Ramsey numbers. The following 
theorem on Ramsey numbers is due to Erdôs and Szekeres ( 1935) and 
Greenwood and Gleason (1955). 

Theorem 7.4 For any two integers k > 2 and l > 2 

r(k, l)sr(k, l- l}+r(k-1, l) (7.7) 

Furthermore, if r(k, l- 1) and r(k -1, l) are both even, then strict inequality 
holds in (7.7). 

Proof Let G be a graph on r(k, l-1) + r(k -1, l) vertièes, and let v EV. 
We distinguish two cases: 

(i) v is nonadjacent to a set S of at least r(k, l - l) vertices, or 
(ii) v is adjacent to a set T of at least r(k -1, l) vertices. 

Note that either case (i) or case (ii) must hold because the number of 
vertices to which v is nonadjacent plus the number of vertices to which v is 
adjacent is equal t~ r(k, l -1) + r(k -1, l)-1. 

In case (i), G[S] contains either a clique of k vertices or an independent 
set of l-1 vertices, and therefore G[S U{v}] contains either a clique of k 
vertices or an independent set of l vertices. Similarly, in case (ii), G[T U {v}] 
contains either a clique of k vertices or an independent set of l vertices. 
Since one of case (i) and case (ii) must hold, it follows that G contains either 
a clique of k vertices or an independent set of l vertices. This proves (7. 7). 

Now suppose that r(k, l- 1) and r(k -1, l) are both even, and let G be a 
graph on r(k, l-1) + r(k-1, l)-1 vertices. Since ·G bas an odd number of 
vertices, it follows from corollary 1.1 that somè vertex v is of even degree; 
in particular, v cannot be adjacent to precisely r(k -1, l)-1 vertices. 
Consequently, either case (i) or case (ii) . above holds, and therefore G 

· contains either a clique of k vertices or an independent set of l vertices. 
Thus 

r(k, l) s r(k, l- 1) + r(k -1, l)-1. 

as stated □ 

The determination of the Ramsey numbers in general is a very difficult 
unsolved problem. Lower bounds can be obtained by the construction of 
suitable graphs. Consider, for example, the four graphs in figure 7.2. 

The 5-cycle (figure 7.2a) contains no clique of thr'ee vertices and no 
independent set of three vertices. lt shows, therefore, that 

r(3, 3) ~6 (7.8) 
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Figure 7.2. (a) A (3,3)-Ramsey graph; (b) a (3,4)-Ramsey graph; (c) a (3,5)-Ramsey 
· graph; (d) a (4,4)-Ramsey graph 

The graph of figure 7 .2b con tains no clique of three vertices and no 
independent set of four vertices. Hence 

r(3, 4) > 9 

Similarly, the graph of figure 7. 2c shows that 

r(3, 5) > 14 

and the graph of figure 7 .2d yields 

r(4, 4) > 18 

(7.9) 

(7 .1 O) 

(7 .11) 

With the aid of theorem 7.4 and equations (7 .6) we can now show that 
equality in fact holds in (7.8), (7.9), (7.10) and (7.11). Firstly, by (7.7) and 
(7.6) 

r(3, 3) < r(3, 2) + r(2, 3) = 6 
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and therefore, using (7.8), we have r(3, 3) = 6. Noting that r(3, 3) and r(2, 4) 
are both even, we apply theorem 7 .4 and (7 .6) to obtain 

r(3, 4) < r(3, 3) + r(2, 4)-1 = 9 

With (7.9) this gives r(3, 4) = 9. Now we again apply (7.7) and (7.6) to obtain 

r(3, 5) < r(3, 4) + r(2, 5) = 14 
and 

r(4, 4) < r(4, 3) + r(3, 4) = 18 

which, together with (7.10) and (7.11), respectively, yield r(3, 5)= 14 and 
r(4, 4) = 18. 

The following table shows all Ramsey numbers r(k, l) known to date. 

1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 1 2 3 4 5 6 7 

3 1 3 6 9 14 18 23 

4 1 4 9 18 

A (k, l)-Ramsey · graph is a graph on r(k, l)-1 vertices that contains 
neither a clique of k vertices nor an independent set of l vertices. By 
definition of r(k, l) such graphs exist for all k > 2 and l > 2. Ramsey graphs 
often seem to possess interesting structures. Ali of the graphs in figure 7 .2 
are Ramsey graphs; the last two can be obtained from finite fields in the 
following way. We get the (3, 5)-Ramsey gré,1.ph by regarding the thirteen 
vertices as elements of the field of integers modulo 13, and joining two 
vertices by an edge if their difference is a cubic residue of 13 (either l, 5, 8 
or 12); the (4, 4)-Ramsey graph is obtained by regarding the vertices as 
elements of the field of integers modulo 17, and joining two vertices if their 
difference is a quadratic residue of 17 (either 1, 2, 4, 8, 9, 13, 15 or 16). 1t 
has been conjectured that the (k, k)-Ramsey graphs are always self
complementary (that is, isomorphic to their complements); this is true for 
k = 2, 3 and 4. 

In general, theorem 7.4 yields the following upper bound for r(k, l). 

. (k+l-2) 'fheorem 7.5 r(k, l) < k _ 1 

Proof By ; induction on k + l. Using (7.5) and (7 .6) we see that the 
theorem holds w.l:ien k + l < 5. Let m and n be positive integers, and assume 
that the theorem is valid for ail positive integers k and l such that 
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5 < k + l < m + n. Then, by theorem 7.4 and the induction hypothesis 

r(m, n) < r(m, n - l) + r(m - ] , n) 

< (m + n -3) + (m + n-3) = (m + n-2) 
m-1 m-2 m-1 

Thus the theorem holds for all values of k and l □ 
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A lower bound for r(k, k) is given in the next theorem. It is obtained by 
means of a powerful technique known as the probabilistic method (see Erdës 
and Spencer, 1974). The probabilistic method is essentially a crude counting 
argument. Although nonconstructive, it can often be applied to assert the 
existence of a graph with certain specified properties. 

Theorem 7.6 (Erdës, 1947) r(k, k) >2k12 

Proof. Since r{l, 1) = 1 and r{2, 2) = 2, we may assume that k > 3. De
note by CSn the set of simple graphs with vertex set {v1, V2, .•• , Vn}, and by 
CS~ the set of those graphs in CSn that have a clique of k vertices. Clearly 

(7.12) 

since each subset of the (;) possible edges ViVj determines a graph in CSn, 

Similarly, the number of graphs in C§., having a particular set of k vertices as 

a clique is 2m-m. Since there are (~) distinct k-element subsets of 
{v1, V2, ..• , Vn}, we have 

By (7.12) and (7.13) 

ICS~I < ( n) -m n k2-m 
l<snl - k 2 < k ! 

Suppose, now, that n < 2k'2 • From (7 .14) it follows that 

l'IJ~I 2k2/22-m 2k/2 t 

ICSnl < k ! = k ! < 2 

(7.13) 

(7.14) 

Therefore, fewer than half of the graphs in <Dn contain a clique of k vertices. 
Also, because CS"= {G j Ge E (§n}, fewer than half of the graphs in (§" 

contain an independent set of k vertices. Hence some graph in (§" contains 
neither a clique of k vertices nor an independent set of k vertices. Because 
this holds for any n <2k'2, we have r(k, k)>2k'2 D 

From theorem 7.6 we can immediately deduce a lower bound for r(k, l). 
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Corollary 7.6 If m = min{k, l}, then r(k, l) > 2m12 

AH known lower bounds for r(k, l) obtained by constructive arguments 
are much weaker tham. that given in corollary 7.6; the best is due to Abbott 
(1972), who shows that r(2n + 1, 2n + 1) > 5n + 1 (exercise 7.2.4). 

The Ramsey numbers r(k, l) are sometimes defined in a slightly different 
way from that given at the beginning of this section. One easily sees that 
r(k, l) can be thought of as the smallest integer n such that every 2-edge 
colouring (E1, E2) of Kn contains either a complete subgraph on k vertices, 
all of whose edges are in colour 1, or a complete subgraph on l vertices, all 
of whose edges are in colour 2. Expressed in this form, the Ramsey numbers 
have a natural generalisation. We define r(k1, k2, ... , km) to be the smallest 
integer n such that every m-edge colouring (E1, E2, ... , Em) of Kn contains, 
for some i, a complete subgraph on ki vertices, all of whose edges are in 
colour i. 

The following theorem and corollary generalise (7. 7) and theorem- 7 .5, 
and can be proved in a similar manner. They are left as an exercise (7.2.2). 

Theorem 7. 7 r(k i, k2 .... , km)< r(k1 - 1, k2, ... , km)+ 
t(k1, k2- l, ... , km)+ .. . +r(ki, k2, ... , km-1)-m +2 

Exercises 

7 .2.1 Show that, for all k and l, r(k, l) = r(l, k ). 
7.2.2 Prove theorem 7.7 and corollary 7.7. 
7.2.3 Let rn denote the Ramsey number r(k1, k2, ... , kn) with ki = 3 for all 

l. 

(a) Show that rn < n(rn-1 - 1) + 2. 
(b) Noting that r2 = 6, use (a) to show that rn < [n ! e] + 1. 
(c) Deduce that r3 < 17. 

(Greenwood and Gleason, 1955 have shown that r3 = 17.) 

7 .2.4 The composition of simple graphs Gand H is the simple graph G[H] 
with vertex set V(G) x V(H), in which (u, v) is adjacent to (u', v') if 
and_ only if either uu'E E(G) or u = u' and vv' E E(H). 

(a) Show that a(G[H])< a(G)a(H). 
(b) Using (a), show that · 

r(kl + 1, kl + 1.)- 1 > (r(k + 1, -k + 1)-1) x (r(l .+ 1, l + 1)-1) 

(c) Deduce that r(2n+1,2n+1)>5n+l for all n>O. 
(H. L. Abbott) 
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7.2.5 Show that the join of a 3-cycle and a 5-cycle contains no K6, but that 
every 2-edge colouring yields a monochromatic triangle. 

(R. L. Graham) 
(Folkman, 1970 bas constructed a graph containing no K4 in which 

every 2-edge colouring yields a monochromatic triangle-this graph 
bas a very large number of vertices.) 

7 .2.6 Let G1, G2, ... , Gm be simple graphs. The generalised Ramsey 
number · r( G1, G2, ... , Gm) is the smallest integer n such that every 
m-edge colouring (E1, E2, ... , Em) of Kn contains, for some i, a 
subgraph isomorphic to Gi in colour i. Show that 

(a) if G is a path of length three and H is a 4-cycle, then 
r(G, G) = 5, r(G, H) = 5 and r(H, H) = 6; 

(b)* if T is any tree on m vertices and if m -1 <livides n-1, then 
r(T, K1,n) = m + n-1; 

(c)* if T is any tree on m vertices, then r(T, Kn) = (m - l)(n -1) + 1. 
(V. Chvâtal) 

7 .3 TURÂN'S THEOREM 

In this section, we shall prove a well-known theorem due to Turan (1941). 
lt determines the maximum number of edges that a simple graph on v 
vertices èan have without containing a clique of size m + 1. Turan's theorem 
bas become the basis of a significant branch of graph theory known as 
extremal graph theory (see Erdos, 1967). We shall derive it from the 
following result of Erdos (1970). 

Theorem 7.8 If. a simple graph G con tains no Km+1, then G is degree
majorised by some complete m-partite giaph H. Moreover, if G bas the 
same degree sequence as H, then G ::::: H. 

Proof By induction on m. The theorem is trivial for m = 1. Assume that 
it holds for all m < n, and let G be a simple graph which contains no Kn+t• 
Choose a vertex u of degree â in G, and set G1 = G[N(u)]. Since G 
contains no Kn+1, G1 contains no Kn and therefore, by the induction 
hypothesis, is degree-majorised by some complete (n-1)-partite graph H1. 

Next, set V1 = N(u) and V2 = V\ V1, and denote by G2 the graph whose 
vertex set is V2 and whose edge set is empty. Consider the join G1 v G2 of 
G1 and G2. Since , 

(7.15) 

and since each vertex of V2 has degree â in G1 v G2, G is degree-majorised 
·by G1 v G2. Therefore G is also degree-majorised by the complete n-partite 
graph H = H1 v G2. (See figure 7.3 for illustration.) 
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4 

4 3 

G (3,3,4,4,4,4,5,5) 

5 5 5 

5 5 

5 5 

G, v G2 (5,5,5,5,5,5,5,5) 

Figure 7.3 

u 

Another diagram of G 
with G1=G[N(u)] indicated 

5 5 

5 5 

5 

5 

H=H, v G2(5,5,5,5,5,5,6,6) 

Suppose, now, that G bas the same degree sequence as H. Then G bas 
the same degree sequence as G1 v G2 and hence equality must hold in (7.15). 
Thus, in G, every vertex of Y1 must be joined to every vertex of V2. It 
follows that G = G1 v G2. Since G = G1 v G2 bas the same degree sequence 
as H = H1 v G2, the graphs G1 and H1 must have the same degree sequence 
and therefore, by the induction hypothesis, be isomorphic. We conclude that 
G:::::H D 

It is interesting to note that the above theorem bears a striking si~ilarity 
to theorem 4.6. 

Let T m,n de note the complete m -partite graph on n vertices in which all 
parts are as equal in size as possible; the graph H of figure 7.3 is TJ,s. 

Theorem 7.9 If Gis simple and contains no Km+1, then e(G)<e(Tm,.,). 
Moreover, e(G) = e(Tm,.,) only if G::::: Tm,v• 
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Proof Let G be a simple graph that contains no Km+1. By theorem 7.8, G 
is degree-majorised by some complete m-partite graph H. It follows from 
theorem 1.1 that 

(7.16) 

But (exercise 1.2.9) 

e(H) < e(Tm,v) (7 .17) 

Therefore, from (7.16) and (7.17) 

e(G) < e(Tm,v) (7.18) 

proving the first assertion. 
Suppose, now, that equality holds in (7.18). Then equality must hold in 

both (7.16) and (7.17). Since e(G)=e(H) and G isdegree-majorised by H, 
G must have the same degree sequence as H. Therefore, by theorem 7.8, 
G==H. Also, since e(H)=e(Tm,.,), it follows (exercise 1.2.9) that H==Tm,v• 
We conclude that G -Tm.v □ 

Exercises 

7 .3.1 In a group of nine people, one persan knows two of the others, two 
people each know four others, four each know five others, and the 
remaining two each know six others. Show that there are three 
people who ail know one another. 

7.3.2 A certain bridge club has a special rule to the effect tha~ four 
members may play together only if no two of them have previously 
partnered one another. At one meeting fourteen members, each of 
whom has previously partnered fiye others, turn up. Three games are 
played, and then proceedings corne to a hait because of the club rule. 
Just as the members are preparing to leave, a new member, unknown 
to any of them, arrives. Show that at least one more game can now 
be played. 

7.3.3 (a) Show that if G is simple and e > v2/4, then G contains a 
triangle. 

(b) Find a simple graph G with e = [v2/4] that con tains no triangle. 
(c)* Show that if G is simple and not bipartite with e > 

((v-1)2/4)+ 1, then G contains a triangle. 
(d) Find a simple non-bipartite graph G with e = [(v - 1)2/4] + 1 

that contains no triangle. (P. Erdos) 

7.3.4 (a)* Show_ that if G issimple andv~(d~v))>(m-1)(;), then G 
contams K2.m(m > 2). 

1 3 

(m - l)2v2 v 
(b) Deduce that if G is simple and e > 2 +4, then G 

contains K2.m(m > 2). 
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7.3.5 
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(c) Show that, given a set of n points in the plane, the number of 
pairs of points at distance exactly 1 is at most n~/J2 + n/4. 

(m - l)1'mv2-11m (m - l}v 
Show that if G is simple and e > 2 + 2 then G 

contains Km.m• 

APPLICATIONS 

7.4 SCHUR'S THEOREM 

Consider the partition ({l, 4, 10, 13}, {2, 3, 11, 12}, {5, 6, 7, 8, 9}) of the set 
of integers {1, 2, ... , 13}. We observe that in no subset of the partition are 
there integers x, y and z (not necessarily distinct) which satisfy the equation 

x+y=z (7.19) 

Yet, no matter how we partition {l, 2, ... , 14} into three subsets, there 
always exists a subset of the partition which con tains a solution to (7 .19). 
Schur (1916) proved that, in general, given any positive integer n, there 
exists an integer fn such that, in any partition of {l, 2, ... , /n} into n subsets, 
there is a subset which contains a solution to (7.19). We shall show how 
Schur's theorem follows from the existence of the Ramsey numbers rn 
(defined in exercise 7 .2.3). 

Theorem 7.10 Let (Si, S2, ... , Sn) be any partition of the set of integers 
{1, 2, ... , rn}, Then, for some i, Si contains three integers x, y and z 
satisfying the equation x + y = z . 

. Proof Consider the complete graph whose vertex set. is { 1, 2, ... , r n}. 
Colour the edges of this graph in colours 1, 2, ... , n by the rule that the 
edge uv is assigned colour j if and only if lu -vl ES;. By Ramsey's theorem 
(7. 7) there exists a monochromatic triangle; that is, there are three vertices 
a, b and c such that ab, be and ca have the same colour, say i. Assume, 
without loss of generality that a> b > c and write x = a - b, y= b- c and 
z = a - C. Then X, y, z E si and X + y = z □ 

Let Sn denote the least integer such that, in any partition of {1, 2, ... , Sn} 

into n subsets, there is a subset which contains a solution to (7.19). lt can be 
easily seen that s1 = 2, s2 = 5 and S3 = 14 (exercise 7.4.1). Also, from theorem 
7.10 and exercise 7.2.3 we have the upper bound 

SnS r0 s[n! e]+ 1 

Exercise 7.4.2b provides a lower bound for Sn, 
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Exercises 

7.4.1 Show that s1 = 2, s2 = 5 and S3 = 14. 
7.4.2 (a) Show that Sn> 3sn-1- l. 
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(b) Using (a) and the fact that S3 = 14, show that s0 > ½(27(3)0 - 3 + 1). 
(A better lower bound bas been obtained by Abbott and Moser, 
1966.) 

7.5 A GEOMETRY PROBLEM 

The diameter of a set S of points in the plane is the maximum distance 
between two points of S. It should be noted that this is a purely geometric 
notion and is quite unrelated to the graph-theoretic concepts of diameter 
and distance. 

We shall discuss sets of diameter 1. A set of n points determines (;) 

distances between pairs of these points. lt is intuitively clear that if n is 
'large', then some of these distances must be 'small'. Therefore, for any d 
between O and 1, we can ask how many pairs of points in a set 
{x1, X2, ••• , Xn} of diameter 1 can be at distance greater than d. Here, we 
shall present a solution to one special case of this problem, namely when 
d= 1/.J2 .. 

As an illustration, consider the case n = 6. We then have six points Xi, X2, 
X3, X4, Xs and x6. If we place them at the vertices of a regular hexagon so that 
the pairs (xi, X4), (x2, Xs) and (x3, x6) are at distance 1, as shown in figure 
7.4a, these six points constitute a set of diameter 1. 

lt is easily calculated that the pairs (xi, X2), (x2, X3), (x3, X4), (x4, Xs), (xs, x6) 
and (x6, X1) are at distance 1/2, and the pairs (xi, X3), (x2, X4), (X3, Xs), (X4, X6), 
(xs, X1) and (x6, xi) are at distance .J3/2. Since .J3/2 > J212 = 11.J2, there are 
nine pairs of points at distance greater than 1/.J2 in this set of diameter 1. 

x, 

(a} ( b} 

Figure 7.4 
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However, nine is not the best that we can do with six points. By placing the 
points in the configuration shown in figure 7 .4b, all pairs of points except 
(xi, X2), (X3, X4) and (xs, x6) are at distance greater than 11✓2. Thus we have 
twelve pairs at distance greater than l/.J2; this is, in fact, the best we can do. 
The solution to the problem in general is given by the following theorem. 

Theorem 7.11 If {x1, X2, ... , Xn} is a set of diameter 1 in the plane, the 
maximum possible number of pairs of points at distance greater than 1/.J2 is 
[n 2 /3]. Moreover, for each n, there is a set {xi, x2 , ••• , Xn} of diameter 1 with 
exactly [n2/3] pairs of points at distance greater than l/.J2. 

Proof Let G be the graph defined by 

V( G) = {xi, X2, . .. , Xn} 

and 
E( G) = {xixj I d(xi, x;) > l/.J2} 

where d(xi, X;) here denotes the euclidean distance between xi and Xj. We 
shall show that G cannot contain a K4. 

First, note that any four points in the plane must determine an angle of at 
least 90°. For the convex bull of the points is either (a) a line, (b) a triangle, 
or (c) a quadrilateral (see figure 7.5). Clearly, in each case there is an angle 
XïXjXk of at least 90°. 

Now look at the three points Xï, X;, xk which determine this angle. Not all 
the distances d(xi, Xj), d(xi, xk) and d(x;, xk) can be greater than 1/.J2 and 
less than or equal to 1. For, if d(xi, Xj) > 11✓2 and. d(x;, xk) > 11✓2, then 
d(xi, xk) > 1. Since the set {xi, X2, ••• , Xn} is assumed to have diameter 1, it 
follows that, of any four points in G, at least one pair cannot be joined by an 
edge, and hence that G cannot contain a K4 . . By Turân's theorem (7.9) 

e(G) < e(T3,n) = [n 2/3] 

One can construct a set {x1, X2, ... , Xn} of diameter 1 in which exactly 

(a) ( b) ( C) 

Figure 7.5 
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Figure 7.6 

[n 2/3] pairs of points are at distance greater than 11J2 as follows. Choose r 
such that O < r < (1 - l/J2)/4, and draw three circles of radius r whose 
centres are at a distance of 1- 2r from one another (figure 7 .6). Place 
X1,, . , , X[n/J] in one circle, X[n/3]+1, •.. , X(2n/3] in another, and xr~n.':l]+l, .. ,,, Xn in 
the third, in such a way that d(x1, Xn) = 1. This set clearly has diameter 1. 
Also, d(xi, xi)> 11✓2 if and only if xi and xi are in different circles, and. so 
there are exactly [n 2/3] pairs (xi, xi) for which d(xi, xi)> 11J2 □ 

Exercises 

7.5.1 * Let {x1, X2, .•. , Xn} be a set of diameter 1 in the plane. 

(a) Show that the maximum possible number of pairs of points at 
distance 1 is n. 

(b) Construct a set {x1, X2, ••• , Xn} of diameter 1 in the plane in 
which exactly n pairs of points are at distance 1. (E. Pannwitz) 

7.5.2 A flat circular city of radius six miles is patrolled by eighteen police 
cars, which communicate with one another by radio. If the range of a 
radio is nine miles, show that, at any time, there are always at least 
two cars each of which can communicate with at least five other cars. 

REFERENCES 

Abbott, H. L. (1972). Lower bounds for some Ramsey numbers. Discrete 
Math., 2, 289-93 

Abbott, H. L. and Moser, L. (1966). Sum-free sets of integers. Acta Arith., 
11, 392-96 



116 Graph Theory with Applications 

Erdôs, P. (1947). Sorne remarks on the theory of graphs. Bull. Amer. Math. 
Soc., 53, 292-94 

Erdôs, P. ( 196 7). Extrema! problems in graph theory, in A Seminar on 
Graph Theory (ed. F. Harary), Holt, Rinehart and Winston, New York, 
pp. 54-59 

Erdôs, P. (1970). On the graph-theorem of Turân (Hungarian). Mat. Lapok, 
21, 249-51 . 

Erdôs, P. and Spencer, J. (1974). Probabilistic Methods in Combinatorics, 
Akadémiai Kiad6, Budapest 

Erdôs, P. and Szekeres, G. (1935). A combinatorial problem in geometry. 
Compositio Math., 2, 463-70 

Folkman, J. (1970). Graphs with monochromatic complete subgraphs in 
every edge coloring. SIAM J. Appl. Math., 18, 19-24 

Gallai, T. (1959). Über extreme Punkt- und Kantenmengen. Ann. Univ. Sei. 
Budapest, Eotvos Sect. Math., 2, 133-38 

Greenwood, R. E. and Gleason, A. M. (1955). Combinatorial relations and 
chromatic graphs. Canad. J. Math., 7, 1-7 

Ramsey, F. P. (1930). On a problem of formai logic. Proc. London Math. 
Soc., 30, 264-86 

Schur, 1. (1916). Über die Kongruenz xm+ ym = zm (mod p). Jber. Deutsch. 
Math.-Verein., 2S, 114-17 

Turan, P. (1941). An extremal problem in graph theory (Hungarian). Mat. 
Fiz. Lapok,48,436-52 



8 Vertex Colourings 

8 .1 CHROMA TIC NUMBER 

In chapter 6 we studied edge colourings of graphs. W e now turn our 
attention to the analogous concept of vertex colouring. 

A k-vertex colouring of G is an assignment of k colours, 1, 2, ... , k, to 
the vertices of G; the colouring is proper if no two distinct adjacent vertices 
have the same colour. Thus a proper k-vertex colouring of a loopless graph 
G is a partition (Vi, V2, ... , V1t) of V into k (possibly empty) independent 
sets. G is k-vertex-colourable if G has a proper k-vertex colouring. It will 
be convenient to refer to a 'proper vertex colouring' as, simply, a colouring 
and to a 'proper k-vertex colouring' as a k-colouring; we shall similarly 
abbreviate 'k-vertex-colourable' to k-colourable. Clearly, a graph is k
colourable if and only if its underlying simple graph is k-colourable. 
Therefore, in discussing colourings, wè shall restrict ou,rselves to simple 
graphs; a simple graph is 1-colourable if and only if it is empty, and 
2-colourable if and only if it is bipartite. The chromatic number, x(G), of G 
is the minimum k for which G is k-colourable; if x(G) = k, G is said to be 
k-chromatic. A 3-chromatic graph is shown in figure 8 .1. It has the indicated 
'3-colouring, and is not 2-colourable since it is not bipartite. 

It is helpful, when dealing with colourings, to study the properties of a 
special class of graphs called critical graphs. We say that a graph G is critical 
if x(H) < x( G) for every proper subgraph H of G. Such graphs were first 
investigated by D_irac (1954). A k-critical graph is one that is k-chromatic 
and critical; every k-chromatic graph has a k-critical subgrJlph. A 4-critical 
graph, due to Grotzsch (1958), is shown in figure 8.2. 

An easy consequence of the definition is that every critical graph is 
connected. The following theorems establish some of the basic properties of 
critical graphs. 

Theorem 8.1 If G is k-critical, then 6 > k - 1. 

Proof By contradiction. If possible, let G be a k-critical graph with 
6 < k-1, and let v be a vertex of degree 6 in G. Since Gis k-critical, G-v 
is (k-1)-colourable. Let (V1, V2, ... , Y1t-1)·be a (k-1)-colouring of G-v. 
By definition, v is adjacent in G to 6 < k -1 vertices, and therefore v must 
be nonadjacent in G to every vertex of some Vi. But then (V1 , V 2 , ••• , Vi U 
{v}, ... , Y1t-1) is a (k -1)-colouring of G, a contradiction. Thus 6 > k - 1 D 
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Figure 8.1. A 3-chromatic graph 

Corollary 8.1.1 Every k-chromatic graph bas at least k vertices of degree 
at least k - 1. 

Proof Let G be a k-chromatic graph, and let H be a k-critical subgraph 
of G. By theorem 8.1, each vertex of H bas degree at least k -1 in H, and 
hence also in G. The corollary now follows since H, being k-chromatic, 
clearly bas at least k vertices D 

Corollary 8.1.2 For any graph G, 

x<~+l 

Proof This is an immediate consequence of corollary 8.1.1 D 

Figure 8.2. The Grotzsch graph-a 4-critical graph 
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Let S be a vertex eut of a connected graph G, and let the components of 
G- S have vertex sets Y1, Y2, ... , Yn. Then the subgraphs Gi = G[V US] 
are called the S-components of G (see figure 8.3). We say that colourings of 
G1, G2, ... , Gn agree on S if, .for every v ES, vertex v is assigned the same 
colour in each of the colourings. 

Theorem 8.2 In a critical graph, no vertex eut is a clique. 

Proof By contradiction. Let G be a k-critical graph, and suppose that G 
has a vertex eut S that is a clique. Denote the S-components of G r 
G1, G2, ... , Gn, Since G is k-critical, each Gi is (k -1)-colourable. Furth~ . 
more, because S is a clique, the vertices in S must receive distinct colours in 
any (k -1)-colouring of Gi; It follows that there are (k -1)-colourings of 
Gi, G2, ... , Gn which agree on S. But these colourings together yield a 
(k-1)-colouring of G, a contradiction □ 

Corollary 8.2 Every critical graph is a block. 

Proof If v is a eut vertex, then { v} is a vertex eut which is also, trivially, à 
clique. lt follows from theorem 8.2 that no critical graph bas a eut vertex; 
equivalently, every critical graph is a block □ 

Another consequence of theorem 8.2 is that if a k-critical graph G has a 
2-vertex eut {u, v}, then u and v cannot be adjacent. We shall say that a 
{u, v}-component Gi of Gis of type 1 if every (k-l)-colouring of Gi assigns 
the same colour to u· and v, and of type 2 if every (k-1)-colouring of Gi 
assigns different colours to u and v (see figure 8.4). 

Theorem 8.3 (Dirac, 1953) Let G be a k-critical graph with a 2-vertex eut 
{u, v}. Then 

(i) G = G1 U G2, where Gi is a {u, v}-component of type i (i = 1, 2), and 

(a} ( b} 

Figure 8.3. (a) G; (b) the {u, v}-components of G 
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V V V 

Type 1 Type 2 

Figure 8.4 

(ii) both G1 + uv and G2 · uv are k-critical (where G2 · uv denotes the graph 
obtained from G2 by identifying u and v ). , 

Proof (i) Since G is critical-, each {u, v}-component of G is (k -1)
colourable. Now there cannot exist (k -1)-colourings of these {u, v}
components ail of which agree on {u, v}, since such colourings would 
together yield a (k -1)-colouring of G. Therefore there are two {u, v}
components G1 and G2 such that no (k -1)-colouring of G1 agrees with any 
(k -1)-colouring of G2. Clearly one, say G1,, must be of type 1 and the 
other, G2, of type 2. Since G1 and G2 are of different types, the subgraph 
G1 U G2 of G is not (k -1)-colourable. Therefore, because G is critical, we 
must have G = G1 U G2. 

(ii) Set H1 = G1 + uv. Since G1 is of type 1, H1 is k-chromatic. We shall 
prove that H1 is critical by showing that, for every edge e of H1, H1 - e is 
(k -1)-colourable. This is clearly so if e = uv, since then H1 - e = G1. Let e 
be some other edge of H1. ln any (k-1)-colouring of G-e, the vertices u 
and v must receive different colours, since G2 is a subgraph of G - e. The 
restriction of such a colouring to the vertices of G1 is a (k -1)-colouring of 
H 1 - e. Thus G1 + uv is k-critical. An analogous argument shows that G2 · uv 
is k -cri ti cal D 

Corollary 8.3 Let G be a k-critical graph with a 2-vertex eut {u, v }. Then 

d(u)+d(v)~3k-5 (8.1) 

Proof Let G1 be the {u, v}-component of type 1 and G2 the {u, v}
component of type 2. Set-H1 = G1 + uv and H2 = G2 · uv. By theorems 8.3 
and 8.1 

and 
dH2 (wJ>k-l 

where w is the new vertex obtained by identifying u and v. 
It foJlows that 



Vertex Colourings 

and 
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These two inequalities yield (8. 1) D 

Exercises 

8.1.1 
8.1.2 

8.1.3 

8.1.4 

8.1.5 

8.1.6* 

8.1.7 

8.1.8 

8.1.9 

8.1.10 

8.1.11 

8.1.12 
8.1.13 

Show that if G is simple, then x 2:. v2/(v 2 - 2e ). 
Show that if any two odd cycles of G have a vertex in common, 
then x<S. 
Show that if G has degree sequence (d,,d2, ... ,d.,) with d,>d22:!: 
... > d.,, then x < max min { d; + 1, i}. 

i 

(D. J. A. Welsh and M. B. Powell) 
U sing exercise 8 .1. 3, show tha t 

(a) x<{(2e)½}; 
(b) x(G)+x(Gc)<v+l. (E. A. Nordhaus and J. W. Gaddum) 
Show that x(G) < 1 +max S(H), where the maximum is taken over 
all induced subgraphs H of G. (G. Szekeres and H. S. Wilf) 
If a k-chromatic graph G bas a colouring in which each colour is 
assigned to at least two vertices, show that G bas a k-colouring of 
this type. (T. Gallai) 
Show that the only 1-critical graph is K1, the only 2-critical graph is 
K2, and the only 3-critical graphs are the odd k-cycles with k 2:!: 3. 
A graph G is uniquely k-colourable if any two k-colourings of G 
induce the same partition of V. Show that no vertex eut of a 
k-critical graph induces a uniquely (k-1)-colourable subgraph. 
(a) Show that if u and v are two vertices of a critical graph G, then 

N(u)~N(v). 
(b) Deduce that no k-critical graph bas exactly k + 1 vertices. 
Show that 

(a) x(G1 v G2) = x(G1)+ x(G2);_ 
(b) G1 v G2 is critical if and only if both G1 and G2 are critical. 

Let G1 and G2 be two k-critical graphs with exactly one vertex v in 
common, and let vv1 and vv2 be edges of G1 and G2. Show that the 
graph (G1 -vv1) U (G2-VV2)+ V1V2 is k-critical. (G. Haj6s) 
For n = 4 and ail n > 6, construct a 4-critical graph on n vertices. 
(a)* Let (X, Y) be a partition of V such that G[X] and G[Y] are 

both n-colourable. Show that, if the edge eut [X, Y] bas at 
most n -1 edges, then G is also n-colourable. 

(P. C. Kainen) 
(b) Deduce that every k-critical graph is (k -1)-edge-connected. 

(G. A. Dirac) 
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8 .2 BROOKS' THEOREM 

The upper bound on chromatic number given in corollary 8.1.2 is sometimes 
very much greater than the actual value. For example, bipartite graphs are 
2-chromatic, but can have arbitrarily large maximum degree. In this sense 
corollary 8.1.2 is a considerably weaker result than Vizing's theorem (6.2). 
There is another sense in which Vizing's result is stronger. Many graphs G 
satisfy x' = Â + 1 (see exercises 6.2.2 and 6.2.3). However, as is shown in the 
following theorem due to Brooks (1941), there are only two types of graph 
G for which x = Â + 1. The proof of Brooks' theorem given here is by 
Lovâsz (1973). 

Theorem 8.4 If G is a connected simple graph and is neither an odd cycle 
nor a complete graph, then x < Â. 

Proof Let G be a k-chromatic graph which satisfies the hypothesis of the 
theorem. Without loss of generality, we may assume that G is k-critical. By 
corollary 8.2, G is a block. Also, since 1-critical and 2-critical graphs are 
complete and 3-critical graphs are odd cycles (exercise 8.1.7), we have k >4. 

If G has a 2-vertex eut {u, v }, corollary 8.3 gives 

2Â>d(u)+ d(v)> 3k-5 > 2k-1 

This implies that x = k < Â, since 2Â is even. 
Assume, then, that G is 3-connected. Since G is not complete, there are 

three vertices u, v and w in G such that uv, vw E E and uw ~ E ( exercise 
1.6.14). Set u = v1 and w = V2 and let V3, V4, •.. , Vv = v be any ordering of 
the vertices of G -{ u, w} such that each Vi is adjacent to some v; with j > i. 
(This can be achieved by arranging the vertices of G - { u, w} in nonincreas
ing order of their distance from v.) We can now describe a Â-colouring of 
G: assign colour 1 to V1 = u and v2 = w; then successively colour 
V3, V4, •.. , Vv, each with the first available colour in the list 1, 2, ... , Â. By 
the construction ·of the sequence V1, V2, ••• , Vv, each vertex vi, 1 < i < v -1, is 
adjacent to some vertex V; with j > i, and therefore to at most Â-1 vertices 
V; with j < i. It follows that, when its turn cornes to be coloured, vj is 
adjacent to at most Â-1 colours, and thus that one of the colours 
1, 2, ... , Â will be available. Finally, since Vv is adjacent to two vertices of 
colour 1 (namely V1 and tl2), it is adjacent to at most Â-2 other colours and 
can be assigned one of the colours 2, 3, ... , Â O 

Exercises 

8.2.1 Show that Brooks' theorem is equivalent to the following statement: 
if G is k-critical (k > 4) and not complete, then 2e :2:: v(k -1) + 1. 
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8.2.2 Use Brooks' theorem to show that if G is loopless with ~ = 3, then 
x'<4. 

8.3 HAJÔS' CONJECTURE 

A subdivision of a graph G is a graph that can be obtained from G by a 
sequence of edge subdivisions. A subdivision of K4 is shown in figure 8.5. 
Although no necessary and suffi.cient condition for a graph to be k
chromatic is known when k > 3, a plausible necessary condition has been 
proposed by Haj6s (1961): if G is k-chromatic, then G contains a subdivi
sion of Kk. This is known as Hàj6s' conjecture. It should be noted that the 
condition is not sufficient; for example, a 4-cycle is a subdivision of K3, but 
is not 3-chromatic. 

For k = 1 and k = 2, the validity of Haj6s' conjecture is obvious. It is also 
easily verified for k = 3, because a 3-chromatic graph necessarily contains an 
odd cycle, and every odd cycle is a subdivision of K3. Dirac (l 952) settled 
the case k = 4. 

Theorem 8.5 If G is 4-chromatic, then G contains a subdivision of K4. 

Proof Let G be a 4-chromatic graph. Note that if some subgraph of G 
contains a subdivision of K4, then so, too, does G. Without loss of general
ity, therefore, we may assume that G is critical, and hence that G is a block 
with 8 2!: 3. If v = 4, then G is K4 and the theorem holds trivially. We 
proceed by induction on v. Assume the theorem true for all 4-chromatic 
graphs with fewer than n vertices, and let v( G) = n > 4. 

Suppose, first, that G has a 2-vertex eut{~, v}. By theorem 8.3, G bas two 
{u, v }-components G1 and G2, where G1 + uv is 4-critical. Since v( G1 + uv) < 
v(G), we can apply the induction hypothesis and deduce that G1 + uv 

Figure 8.5. A subdivision of K. 
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con tains a subdivision of K4. It follows that, if P is a ( u, v )-path in G2, then 
G1 U P contains a subdivision of K4. Hence so, too, does G, since G1 U P c G. 

Now suppose that G is 3-connected. Since ô > 3, G has a cycle C of 
length at least four. Let u and v be nonconsecutive vertices on C. Since 
G -{ u, v} is connected, there is a path P in G - { u, v} connecting the two 
components of C-{u, v}; we may assume that the origin x and the terminus 
y are the only vertices of P on C. Similarly, there is a path Q in G - { x, y} 
(see figure 8.6). 

If P and Q have no vertex in common, then CU PU Q is a subdivision of 
K4 (figure 8.6a). Otherwise, let w be the first vertex of P on Q, and let P' 
denote the (x, w )-section of P. Tuen CU P' U Q is a subdivision of K4 (figure 
8.6b). Hence, in both cases, G contains a subdivision of K4 D 

Haj6s' conjecture bas not yet been settled in general, and its resolution js 
known to be a very difficult problem. There is a related conjecture due to 
Hadwiger (1943): if G is k-chromatic, then G is 'contractible' to a graph 
which contains Kk, Wagner (1964) bas shown that the case k = 5 of 
Hadwiger's conjecture is equivalent to the famous four-colour conjecture, to 
be discussed in chapter 9. 

Exercises 

8.3.1 * Show that if G is simple and bas at most one vertex of degree less 
than three, then G contains a subdivision of K4. 

8.3.2 (a)* Show that if G is simple with v~4 and e>2v-2, then G 
contains a subdivision of K4, 

(b) For v > 4, find a simple graph G_ with e = 2v - 3 that contains 
no subdivision- of K4. 

X X 

( a } ( b) 

Figure 8.6 
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8.4 CHROMATIC POLYNOMIALS 

ln the study of colourings, some insight can be gained by considering not 
only the existence of colourings but the number of such colourings; this 
approach was developed by Birkhoff (1912) as a possible means of attacking 
the four-colour conjecture. 

We shall denote the number of distinct k-colourings of G by 1rk(G); thus 
1Tk( G) > 0 if and only if G is k-colourable. Two colourings are to be 
regarded as distinct if some vertex is assigned different colours in the two 
colourings; in other words, if ( Yi, V2, ... , Vk) and ( Y~, V~, ... , YD are two 
colourings, then (Y1, V2, ... , Yk) = (Y:, Y~, ... , VD if and only if Yi= v: 
for 1 < i < k. For example, a triangle has the six distinct 3-colourings shown 
in figure 8. 7. Note that even though there is exactly one vertex of each 
colour in each colouring, we still regard these six colourings as distinct. 

If G is empty, then each vertex can be independently assigned any one of 
the k available colours. Therefore 1Tt( G) = k ". On the other band, if G is 
complete, then there are k choices of colour for the first vertex, k - 1 
choices for the second, k - 2 for the third, and so on. Thus, in this case, 
1rk( G) = k(k -1) ... (k - v + 1). ln general, there is a simple recursion for
mula for 1Tt(G). It bears a close resemblance to the recursion formula for 
T( G) ( the n umber of spanning trees of G ), given in theorem 2.8. 

Figure 8.7 

Theorem 8.6 If Gis simple, then 1rk(G) = 1rk(G- e)-1rk(G · e) for any edge 
e of G. · 

Proof Let u and v be the ends of e. To each k-,colouring of G - e that 
assigns the same colour to u and v, there corresponds a k-colouring of G · e 
in which the vertex of G · e formed by identifying u and v is assigned the 
common colour of u and v. This correspondence is clearly a bijection (see 
figure 8.8). Therefore 1rt(G · e) is precisely the number of k-colourings of 
G - e in which u and v are assigned the same colour. 

Also, since each k-colouring of G- e that assigns different colours to u 
and v is a k-colouring of G, and conversely, 1Tt( G) is the number of 
k-colourings of G - e in which u and v are assigned different colours. It 
follows that 1rlG - e) = 1rk( G) + 1rk( G · e) D 
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( > 

Figure 8.8 

Corollary 8.6 For any graph G, 7rk( G) is a polynomial in k of degree v, 
with integer coefficients, leading term k" and constant term zero. Further
more, the coefficients of 7rk( G) alternate in sign. 

Proof By induction on e. We may assume, without loss of generality, 
that G is simple. If e = 0 then, as has already been noted, 7ri G) = k ", which 
trivially satisfies the conditions of the corollary. Suppose, now, that the 
corollary holds for all graphs with fewer than m edges, and let G be a graph 
with m edges, where m ~ 1. Let e be any edge of G. Then both G - e and 
G · e have m - 1 edges, and it follows from the induction hypothesis that 
there are non-negative integers a1, a2, ... , 0..-1 and bi, b2, ... , b.,-2 such that 

v-1 

7rk(G-e)= L (-1)"-jajkj+k" 
i•l 

and 
v-2 

7rk(G ·e) = L (-l)"-:-1biki+ k"-1 
i•l 

By theorem 8.6 

7rk(G) = 1rk(G- e)- 7rk(G · e) 
v-2 

= L (-1)"-i(ai+bi)ki-(a..-1+l)k"- 1 +k" 
i-1 

Thus G, too, satisfies the conditions of the corollary. The result follows by 
the principle of induction D 

By virtue of corollary 8.6, we can now refer to the function 7rk(G) as the 
chromatic polynomial of G. Theorem 8.6 provides a means of calculating the 
chroma tic polynomial of a graph recursively. lt can be used in either of two 
ways: 

(i) by repeatedly applying the recursion '1Tk( G) = 7rk( G - e)- 7rk( G · e ), and 
thereby ex pressing '1Tk( G) as a linear combination of chromatic polyno
mials of empty graphs, or 

(ii) by repeatedly applying the recursion 7rk( G - e) = 7rk( G) + 7rk( G · e ), and 



= ~ + 2 ~ + I = k(k-1)(k-2Hk-3)+2k(k-1)(k-2)+k(k-1) =k(k-1){k2 -3k+3) 

Figure 8.9. Recursive calculation of 1rk(G) 
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thereby ex pressing 1rk( G) as a linear combination of chromatic polyno
mials of complete graphs. 

Method (i) is more suited to graphs with few edges, whereas (ii) can be 
applied more efficiently to graphs with many edges. These two methods are 
illustrated in figure 8.9 (where the chromatic polynomial of a graph is 
represented symbolically by the graph itself). 

The calculation of chromatic polynomials can sometimes be facilitated by 
the use of a number of formulae relating the chromatic polynomial of G to 
the chromatic polynomials of various subgraphs of G (see exercises 8.4.5a, 
8.4.6 and 8.4. 7). However, no good algorithm is known for finding the 
chromatic polynomial of a graph. (Such an algorithm would clearly provide 
an efficient way to determine the chromatic number.) 

Although many properties of chromatic polynomials are known, no one 
has yet discovered which polynomials are chromatic. It bas been conjectured 
by Read ( 1968) that the sequence of coefficients of any chroma tic polyno
mial must first rise in absolute value and then fall-in other words, that no 
coefficient may be flanked by two coefficients having greater absolute value. 
However, even if true, this condition, together with the conditions of 
corollary 8.6, would not be enough. The polynomial k 4 - 3k 3 + 3k2, for 
example, satisfies all these conditions, but still is not the chromatic polyno
mial of any graph (exercise 8.4.2b ). 

Chromatic polynomials have been used with some success in the study of 
planar graphs, where their roots exhibit an unexpected regularity (see Tutte, 
1970). Further results on chromatic polynomials can be found in the lucid 
survey article by Read (1968). 

Exercises 
8.4.1 Calculate the chromatic polynomials of the following two graphs: 

8.4.2 (a) Show, by means of theorem 8.6, that if G is simple, then the 
coefficient of k"- 1 in 1riG) is -e. 

( b) Deduce that no graph bas ~hromatic polynomial k 4 - 3 k 3 + 3 k 2 • 

8.4.3 (a) Show that if G is a tree, then 1rk( G) = k(k - 1y-1• 

(b) Deduce that if G is connected, then 1rk( G) :s; k (k -1)"-1, and 
show that equality holds only when G is a tree. 
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8.4.4 Show that if G is a cycle of length n, then 71't( G) = 
(k- l)"+(-l)"(k-1). 

8.4.5 (a) Show that 7rk(G v K,) = k71'k-1(G). 
(b) Using (a) and exercise 8.4.4, show that if G is a wheel with n 

spokes, then 7rk(G)= k(k-2)°+(-l)°k(k-2). 
8.4.6 Show that if G1, G2, ... , G.., are the components of G, then 71't( G) = 

'1Tk(G1)'1Tk(G2) ... 71'k(G..,). 
8.4. 7 Show that if G n H is complete, then 7rk( G U H)'1Tk( G n H) = 

'1Tk( G)'1Tk(H). 
8.4.8* Show that no real root of 7rk(G) is greater than v. (L. Lovâsz) 

8.5 GIRTH AND CHROMATIC NUMBER 

In any colouring of a graph, the vertices in a clique must ail be assigned 
different colours. Thus a graph with a large clique necessarily has a high 
chroma tic number. What is perhaps surprising is that there exist triangle
free graphs with arbitrarily high chromatic number. A recursive construction 
for such graphs was first described by Blanches Descartes (1954). (Her 
method, in fact, yields graphs that possess no cycles of length less than six.) 
We describe here an 'easier construction due to Mycielski (1955). 

Theorem 8. 7 For any positive integer k, there exists a k-chromatic graph 
containing no triangle. 

Proof For k = 1 and k = 2, the gràphs K 1 and K2 have the required 
property. We proceed . by induction on k_ Suppose that we have already 
constructed a triangle-free graph Gk with chromatic number k > 2. Let the 
vertices of Gk be Vt, V2, ... , Vn• Fonn a ·new graph Gk+l from Gk as follows: 
add n + 1 new vertices u,, u2, ... , Un, v, and then, for 1 < i s n, join Uï to the 
neighbours of Vï and to v. For example, if G2 is K2 then GJ is the 5-cycle and 
G4 the Grotzsch graph (see figure 8.10). 

The graph Gk+1 clearly has no triangles. For, since {u1, u2, ... , un} is an 
independent set in Gk+1, no triangles can contain more than one ui; and ,if 
uivivkui were a triangle in Gk+1, then VïV;vkvi would be a triangle in Gk, 
contrary to assumption. 

We now show that Gk+t is (k + 1)-chromatic. Note, first, that Gk+1 is 
certainly (k + 1)-colourable, since any k-colouring of Gk çan be extended to 
a (k + 1)-colouring of Gk+1 by colouring ui the same as Vï, 1 < i < n, and then 
assigning a new colour to v. Therefore it remains to show that Gk+1 is not 
k-colourable. If possible, consider a k-colouring of Gk+1 in which, without 
loss of generality, v is assigned colour k. Clearly, no ui can also have colour 
k. Now recolour each vertex vi of colour k with the colour assigned to uj. 
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Figure 8 .10. Mycielski's construction 

This results in a (k -1)-colouring of the k-chromatic graph Gt. Therefore 
Gt+1 is indeed (k + 1)-chromatic. The theorem follows from the principle of 
induction D 

By starting with the 2-chromatic graph K2, the above construction yields, 
for all k ~ 2, a triangle-free k-chromatic graph on 3.2t-l_ 1 vertices. 

We have already noted that there are graphs with girth six and arbitrary 
chromatic number. Using the probabilistic method, Erdos (1961) bas, in 
fact, shown that, given àny two integers k ~ 2 and l > 2, there is a graph 
with girth k and chromatic number l. Unfortunately, this- application of the 
probabilistic method is not quite as straightforward as the one given in 
section 7 .2, and we therefore choose to omit it. A constructive. proof of 
Erdos' result bas been given by Lovâsz (1968). 

Exercises 

8.5.1 Let GJ, G4,... be the graphs obtained from G2 = K2, us1ng 
l\1ycielski's construction. Show that each Gt is k-critical. 
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8.5.2 (a)* Let G be a k-chromatic graph of girth at least six (k > 2). Form 

a new graph H as follows: Take ( :V) disjoint copies of Gand a 

set S of kv new vertices, and set up a one-one correspondence 
between the copies of G and the v-element subsets of S. For 
each copy of G, join its vertices to the members of the corre
sponding v-element subset of S by a matching. Show that H has 
chromatic number at least k + 1 and girth at least six. 

(b) Deduce that, for any k > 2, there exists a k-chromatic graph of 
girth six. (B. Descartes) 

APPLICATIONS 

8.6 A STORAGE PROBLEM 

A company manufactures n chemicals Ci, C2, ... , Cn. Certain pairs of these 
chemicals are incompatible and would cause explosions if brought into 
contact with each other. As a precautionary measure the company wishes to 
partition its warehouse into compartments, and store incompatible chemicals 
in diflerent compartments. What is the least number of compartments into 
which the warehouse should be partitioned? 

We obtain a graph G on the vertex set { Vi, V2, ••. , vn} by joining two 
vertices vi and Vj if and only if the chemicals Ci and Cj are incompatible. lt is 
easy to see that the least number of compartments into which the warehouse 
should be partitioned is equal to the chromatic number of G. 

The solution of many problems of practical interest (of which the storage 
problem is one instance) involves finding the chromatic number of a graph. 
Unfortunately, no good algorithm is known for determining the chromatic 
number. Here we describe a systematic procedure which is basically 
'enumerative' in nature. lt is not very efficient for large graphs. 

Since the chroma tic number of a graph is the least · number of independent 
sets into which its vertex set can be partitioned, we b'egin by describing a 
method for listing all the independent sets in a graph. Because every 
independent set is a subset of a maximal independent set, it suffices to 
determine all the maximal independent sets. In fact, our procedure first 
determines complements of maximal independent sets, that is, minimal 
coverings. 

Observe that a subset K of V is a minimal covering of G if and only if, for 
each vertex v, either v belongs to K or all the neighbours of v belong to K 
(but not both). This provides us with a procedure for finding minimal 
coverings: 

FOR EACH VERTEX V, CHOOSE EITHER V, OR ALL THE NEIGHBOURS OF V 

(8.2) 
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To implement this procedure eflectively, we make use of an algebraic 
device. First, we denote the instruction 'choose vertex v' simply by the 
symbol v. Tuen, given two instructions X and Y, the instructions 'either X 
or Y' and 'both X and Y' are denoted by X+ Y (the logical sum) and XY 
(the logical product), respectively. For example, the instruction 'choose 
either u and v or v and w' is written uv + vw. Formally, the logical sum and 
logical product behave like U and n for sets, and the algebraic laws that 
hold with respect to U and n also hold with respect to these two operations 
(see exercise 8.6.1). By using these laws, we can often simplify logical 
expressions; thus 

(uv + vw)(u + vx) = uvu + uvvx + vwu + vwvx 

= UV+ UVX + VWU + VWX 

= uv+vwx 

Consider, now, the graph G of figure 8.11. Our prescription (8.2) for 
finding the minimal coverings in G is 

(a+ bd)(b + aceg)(c + bdef)(d + aceg)(e + bcdf)(f + ceg)(g + bd/) (8.3) 

It can be checked (exercise · 8.6.2) that, on simplification, (8.3) reduces to 

aceg + bcdeg + bdef + bcdf 

In other words, 'choose a, c, e and g or b, c, d, e and g or b, d, e and f or b, 
c, d and f'. Thus {a, c, e, g}, {b, c, d, e, g}, {b, d, e, f} and {b, c, d,f} are the 
minimal coverings of G. On complementation, we obtain the list of all 
maximal independent sets of G: {b, d, f}, {a, f}, {a, c, g} and {a, e, g}. 

b 

a 

f 

Figure 8.11 
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Now let us return to the problem of determining the chromatic number of 
a graph. A k-colouring (V1, V2, ... , Vk) of G is said to be canonical if V1 is 
a maximal independent set of G, V2 is a maximal independent set of G - V1, 
V3 is a maximal independent set of G - (V1 U V2), and so on. It is easy to see 
(exercise 8.6.3) that if G is k-colourable, then there exists a canonical 
k-colouring of G. By repeatedly using the above method for finding maxi
mal independent sets, one can determine ail the canonical colourings of G. 
The least number of colours used in such a colouring is then the chromatic 
number of G. For the graph G of figure 8.11, x = 3; a corresponding canonical 
colouring is ({b, d, /}, {a, e, g}, {c }). 

Christofides (1971) gives some improvements on this procedure. 

Exercises 

8.6.1 Verify the associative, commutative, distributive and absorption laws 
for the logical sum and logical product. 

8.6.2 Reduce (8.3) to aceg+bcdeg+bdef+bcdf. 
8.6.3 Show that if G is k-vertex-colourable, then G has a canonical 

k-vertex colouring. 
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9 Planar Graphs 

9 .1 PLANE AND PLAN AR GRAPHS 

A graph is said to be embeddable in the plane, or planar, if it can be drawn in 
the plane so that its edges intersect only at their ends. Such a drawing of a 
planar graph G is called a planar embedding of G. A planar embedding G 
of G can itself be regarded as a graph isomorphic to G; the vertex set of G 
is the set of points representing vertices of G, the edge set of G is the set of 
lines repre~enting edges of G, and a vertex of G is incident with ail the 
edges of G that contain it. We therefore sometimes refer to a planar 
embedding of a planar graph as a plane graph. Figure 9 .1 b shows a planar 
embedding of the planar graph in figure 9 .1 a. 

It is clear from the above definition that the study of planar graphs 
necessarily involves the topology of the plane. However, we shall not 
attempt here to be strictly rigorous in topological matters, and will be 
content to adopta naïve point of view toward them. This is done so as not to 
obscure the combinatorial aspect of the theory, which is our main interest. 

The results of topology that are especially relevant in the study of planar 
graphs are those which deal with Jordan curves. (A Jordan curve is a 
continuous non-self-intersecting curve whose origin and terminus coïncide.) 
The union of the edges in a cycle of a plane graph constitutes a Jordan 
curve; this is the reason why properties of Jordan curves corne into play in 
planar graph theory. We shall recall a well-known theorem about Jordan 
curves and use it to demonstrate the nonplanarity of Ks. 

Let J be a Jordan curve in the plane. Then the rest of the plane is 
partitioned into two disjoint open sets ~alled the interior ,an,d exterior of J. 
We shall denote the interior and exterior of J, respectively, by int J and 
ext J, and their closures by lnt J and Ext J. Clearly Int J n Ext J = J. The 
Jordan curve theorem states that any line joining a point in int J to a point in 
ext J must meet J in some point (see figure 9 .2). Although this theorem is 
intuitively obvious, a formai proof of it is quite difficult. 

Theorem 9.1 Ks is nonplanar. 

Proof By contradiction. If possible let G be a plane graph corresponding 
to Ks. Denote the vertices of G by V1, V2, V3, V4 and Vs. Since G is complete, 
any two of its vertices are joined by an edge. Now the cycle C = V1 V2V3V1 is a 
Jordan. curve in the plane, and the point V4 must lie either in int C or ext C. 
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(a) (b) 

Figure 9.1. (a) A planar graph G; (b) a planar embedding of G 

We shall suppose that V4 e int C. (The case where V4 e ext C can be dealt with 
in a similar manner.) Tuen the edges V4V1, V4V2 and V4V3 divide int Cinto the 
three regions int C1, int C2 and int C3, where C1 = V1 V4V2V1, C2 = V2V4V3V2 

and C3 = V3V4V1V3 (see figure 9.3). 
Now Vs must lie in one of the four regions ext C, int C1, int C2 and int C3. 

If Vs e ext C then, since v!4 e int C, it follows from the Jordan curve theorem 
that the edge V4Vs must meet C in some point. But this contradicts the 
assumption that G is a plane graph. The ·cases Vs e int Ci, i = 1, 2, 3, can be 
disposed of in like manner D 

ext J 

Figure 9.2 

A similar argument can be used to establish that K3,3, too, is nonplanar 
(exercise 9.1.1). We shall see in section 9.5 that, on the other band, every 
nonplanar graph contains a subdivision of either Ks or K3,3• 

The notion of a planar embedding extends to other. surfaces. t A graph G 
is said to be embeddable on a surface S if it can be drawn in S so that its 

t A surf ace is a 2-dimensional manifold. Closed surfaces are divided into two classes, 
orientable and non-orientable. The-sphere and the torus are examples of orientable surfaces; 
the projective plane and the Môbius band are non-orientable. For a detailed account of 
embeddings of graphs on surfaces the reader is referred to Fréchet and Fan (1967). 
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ext C 

Figure 9.3 

edges intersect only at their ends; such a drawing (if one exists) is called an 
embedding of G on S. Figure 9 .4a shows an embedding of Ks on the torus, 
and figure 9 .4b an embedding of KJ,J on the Môbius band. The torus is 
represented as a rectangle in which opposite sides are identified, and the 
Môbius band as a rectangle whose two ends are identified after one 
half-twist. 

We have seen that not ail graphs can be embedded in the plane; this is 
also true of other surfaces. lt can be shown (see, for example, Fréchet and 
Fan, 1967) that, for every surface S, there exist graphs which are not 
embeddable on S. Every graph can, however, be 'embedded' in 3-
dimensional space ~ 3 (exercise 9.1.3). 

p,--------,Qr-------,p P.-----------,S 

Q R 

R 0 
p.__ ____ .__~ _ _.p 

Q 
s p 

(a) (b) 

Figure 9.4. (a) An embedding of K5 on the toms; (b) an embedding of K3.3 on the 
Môbius band 
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Planar graphs and graphs embeddable on the sphere are one and the 
same. To show this we make use of a mapping known as stereographic 
projection. Consider a sphere S resting on a plane P, and denote by z the 
point of S that is diagonally opposite the point of contact of S and P. The 
mapping 1T: S\{z} ~ P, defined by 1T(s) = p if and only if the points z, s and 
p are collinea:r, is called stereographic projection from z; it is illustrated in 
figure 9.5. 

Figure 9.5. Stereographic projection 

Theorem 9.2 A graph G is embeddable in the plane if and only if it is 
embeddable on the sphere. 

Proof Suppose G has an embedding G on the sphere. Choose a point z 
of the sphere not in G. Tuen the image of G under stereographic projection 
from z is an embedding of G in the plane. The converse is proved 
similarly □ 

On many occasions it is advantàgeous to consider embeddings of planar 
graphs on the sphere; one instance is provided by the proof of theorem 9.3 
in the next section. 

Exercises 

9.1.1 Show that K3,3 is nonplanar. 
9.1.2 (a) Show that Ks- e is planar for any edge e of Ks. 

(b) Show that K3,3 - e is planar for any edge e of KJ,3• 

9.1.3 Show that all graphs are 'embeddable' in ~ 3 • 
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9 .1.4 Verify that the f ollowing is an embedding of K 1 on the torus: 

9 .1.5 Find a planar embedding of the following graph in which each edge 
is a straight line. 
(Fâry, 1948 bas proved that every simple planar graph bas such an 
embedding.) 

9.2 DUAL GRAPHS 

A plane graph G partitions the rest of the plane into a number of connected 
regions; the closures of these regions are called the faces of G. Figure 9.6 
shows a plane graph with six faces, {1, {2, f 3, {4, f s and f 6• The notion of a face 
applies also to embeddings of graphs on other surfaces. We shall denote by 
F(G) and <J,(G), respectively, the set of faces and the number of faces of a 
plane graph G. 

Each plane graph bas exactly one unbounded face, called the exterior face; 
in the plane graph of figure 9.6, /1 is the exterior face. 

Theorem 9.3 Let v be a vertex of a planar graph G. Then G can be 
embedded in the plane in such a way that v is on the exterior face of the 
embedding. 
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Figure 9.6. A plane graph with six faces 

Proof Consider an embedding· G of G on the sphere; such an embed
ding exists by virtue of theorem 9.2. Let z be a point in the interior of some 
face containing v, and let 1r(G) be the image of G under stereographic 
projection from z. Clearly 1r( ô) is a planar embedding of G of the desired 
typ'e □ 

We denote the boundary of a face f of a plane graph G by b(f). lf G is 
connected, then b(f) can be regarded as a closed walk in which each eut 
edge of G in b(f) is traversed twice; when b(f) contains no eut edges, it is a 
cycle of G. For example, in the plane graph ·of figure 9.6, 

b(f2) = v1e3V2e4V3esv4e1 V1 

and 

A face f is said to be incident with the vertices and edges in its boundary. 
If e is a eut edge in a plane graph, just one face is incident with e; otherwise, 
there are two faces incident with e. We say that an edge separates the faces 
incident with it. The degree, da(f), of a face f is the number of edges with 
which it is incident (that is, the number of edges in b(f)), eut edges being 
counted twice. In figure 9.6, fi is incident with the vertices V1, V3, V4, Vs, v6, 
v, and the edges ei, e2, es, e6, e,, e9, e10; e1 separates /1 from /2 and eu 
separates fs from fs; d(/2) = 4 and d(fs) = 6. · 

Given a plane graph G, one can define another graph G* as follows: 
corresponding to each face f of G tliere is a vertex f* of G *, and 
corresponding to each edge e of G thete is an edge e* of G*; two vertices 
f* and g* are joined by the edge e* in G* if and only if their corresponding 
faces f and gare separated by the edge e in G. The graph G* is called the 
dtJal of G. A plane graph and its dual are shown in figures 9.7a and 9.7b. 

1t is easy to see that the dual G * of a plane graph G is planar; in fact, 
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G 

(a) 

(c) 

G* 
(b) 

Figure 9. 7. A plane graph and its dual 
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there is a natural way to embed G* in the plane. We place each vertex f* in 
the corresponding face f of G, and then draw each edge e * in such a way 
that it crosses the corresponding edge e of G exactly once ( and crosses no 
other edge of G). This procedure is iUustrated in figure 9. 7 c, where the -~ ·. , d, 

is indicated by heavy points and lines. It is intuitively clear that we can 
always draw the dual as a plane graph in this way, but we shall not prove 
this fact. Note that if e is a loop of G, then e* is·a eut edge of G*, and.vice 
versa. 

Although defined abstractly, it is sometimes convenient to regard the dual 
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(a) (b) 

Figure 9.8. Isomorphic plane graphs with nonisomorphic duals 

G* of a plane graph G as a plane graph (embedded as described above). 
One can then consider the dual G** of G*, and it is not difficult to prove 
that, when G is connected, G**:::: G (exercise 9.2.4); a glance at figure 9.7c 
will indicate why this is so. 

Jt should be noted that isomorphic plane graphs may have nonisomorphic 
duals. For example, the plane graphs in figure 9.8 are isomorphic, but their 
duals are not-the plane graph of figure 9 .8a bas a face of degree five, 
whereas the plane graph of figure 9.8b bas no such face. Thus the notion of 
a dual is meaningful only for plane graphs, and cannot be extended to planar 
graphs in general. 

The following relations are direct consequences of the definition of G *: 

v( G*) = cf,( G) 

e(G*) = e(G) 

do•(/*)= do(/) for ail f E F( G) 

Theorem 9.4 If G is a plane graph, then 

L d(f)=2e 
fEF 

Proof Let G* be the dual of G. Tuen 

> d(f) = > d(f *) 
re'i!t.o> retFto•> 

Exercises 

= 2e(G*) 

= 2e(G) 

by (9.1) 

by theorem 1.1 

by (9.1) D 

(9.1) 

9.2.1 (a) Show that a graph is planar if and only if each of its blocks is 
planar. 

(b) Deduce that a minimal nonplanar graph is a simple block. 
9.2.2 A plane graph is self-dual if it is isomorphic to its dual. 

(a) Show that if G is self-dual, then e = 2 v - 2. 
(b) For each n > 4, find a self-dual plane graph on n vertices. 
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9.2.3 (a) Show that B is a bond of a plane graph G if and only if 
{e* E E( G*) 1 e E B} is a cycle of G*. 

(b) Deduce that the dual of an eulerian plane graph is bipartite. 
9.2.4 Let G be a plane graph. Show that 

(a) G** == G if and only if G is connected; 
(b) x(G**) = x(G). 

9.2.5 Let T be a spanning tree of a connected plane graph G, and let 
E* = {e* E E(G*) 1 ee E(T)}. Show that T* = G*[E*] is a spanning 
tree of G*. 

9.2.6 A plane triangulation is a plane graph in which each face has degree 
three. Show that every simple plane graph is a spanning subgraph of 
some simple plane triangulation (v > 3). 

9.2.7 Let G be a simple plane triangulation with v > 4. Show that G* is a 
simple 2-edge-connected 3-regular planar graph. 

9.2.8* Show that any plane triangulation G contains a bipartite subgraph 
with 2e ( G)/3 edges. (F. Harary, D. Matula) 

9.3 EULER'S FORMULA 

There is a simple formula relating the numbers of vertices, edges and faces 
in a connected plane graph. It is known as Euler' s formula because Euler 
established it for those plane graphs defined by the vertices and edges of 
polyhedra. 

Theorem 9.5 If G is a connected plane graph, then 

v-e+q,=2 

Proof By induction on et,, the number of faces of G. If et,= 1, then each 
edge of G is a eut edge and so G, being connected, is a tree. ln this case 
e = v- l, by theorem 2.2, and the theorem clearly holds. Suppose that it is 
true for ail connected plane graphs with fewer than n faces, and let G be a 
connected plane graph with n > 2 faces. Choose an edge e of G that is not a 
eut edge. Then G - e is a connected plane graph and has n - 1 faces, since 
the two faces of G separated by e combine to form one face of G - e. By the 
induction hypothesis 

v( G - e )- e ( G - e) + et,( G - e) = 2 

and, using the relations 

v(G-e) = v(G) 
we obtain 

e(G-e)=e(G)-1 q,(G-e) = ct,(G)-1 

v(G)- e(G)+ ct,(G) = 2 

The theorem follows by the principle of induction D 
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Corollary 9.5.1 All planar embeddings of a given connected planar graph 
have the same number of faces. 

Proof Let G and H be two planar embeddings of a given connected 
planar graph. Since G ==: H, v(G) = v(H) and E(G) = E(H). Applying 
theorem 9.5, we have 

cf,(G)= E(G)-v(G)+2= E(H)-v(H)+2= cf,(H) 0 

Corollary 9.5.2 If G is a simple planar graph with v > 3, then E < 3 v - 6. 

Proof It clearly suffices to prove this for connected graphs. Let G be a 
simple connected graph with v > 3. Then d(f) > 3 for all f E F, and 

By theorem 9.4 

Thus, from theorem 9.5 

or 

L d(f) > 3cp 
fEF 

2€ > 3cf, 

v- E +2€/3 >2 

€ <3v-6 D 

Corollary 9.5.3 If G is a simple planar graph, then 8 < 5. 

Proof This is trivial for v = 1, 2. If v > 3, then, by theorem 1.1 and 
corollary 9.5.2, 

8v< L d(v)=2e<6v-12 
vEV 

lt follows that 8 < 5 □ 

We have already seen that Ks and K3,3 are nonplanar (theorem 9.1 and 
exercise 9.1.l). Here, we shall derive these two results as corollaries of 
theorem 9.5. 

Corollary 9.5.4 Ks is nonplanar. 

Proof If Ks were planar then, by corollary 9.5.2, we would have 

10= e(Ks)<3v{Ks)-6= 9 

Thus Ks must be nonplanar D 

Corollary 9.5.5 K3,3 is nonplanar. 

Proof Suppose that K3,3 is planar and let G be a planar embedding of 
K3,3· Since K3,3 bas no cycles of length less than four, every face of G must 
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have degree at least four. Therefore, by theorem 9.4, we have 

4cp < L d (f) = 2e = 18 
fEF 

That is 
cp<4 

Theorem 9.5 now implies that 

2= v-e+cp<6-9+4= 1 
which is absurd □ 

Exercises 
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9.3.1 (a) Show that if O is a connected planar graph with girth k ~ 3, 
then e < k(v -2)/(k-2). 

(b) Using (a), show that the Petersen graph is nonplanar. 
9.3.2 Show that every planar graph is 6-vertex-colourable. 
9.3.3 (a) Show that if O is a simple planar graph with v > 11, then oc is 

nonplanar. 
(b) Find a simple planar graph O with v = 8 such that oc is also 

planar. 
9.3.4 The thickness 8(0) of O is the minimum number of planar graphs 

whose union is O. (Thus O(G) = 1 if and only if O is planar.) 

(a) Show that 8(0) ~{e/(3v- 6)}. 
(b) Deduce that O(K.,) >{v(v-1)/6(1'.'-2)} and show, using exercise 

· 9.3.3b, that equality holds for all v < 8. 

9.3.5 Use the result of exercise 9.2.5 to deduce Euler's formula. 
9.3.6 Show that if G is a plane triangulation, then e = 3v- 6. 
9.3. 7 Let S = {~i, X2, ••• , Xn} be a set of n ~ 3 points in the plane such that 

the distance between any two points is at least one. Show that there 
are at most 3 n - 6 pairs of points at distance exactly one. 

9.4 BRIDGES 

In the study of planar graphs, certain subgraphs, called bridges, play an 
important rôle. We shall discuss properties of these subgraphs in this 
section. 

Let H be a given subgraph of a graph G. We define éJ relation -- on 
E(G)\E(H) by the condition that e1 -- e2 if there exists a walk W such that 

(i) the first and last edges of W are e1 and e2, respectively, and 
(ii) W is internally-disjoint from H (that is, no internai vertex of W is a 

vertex of H). 

It is easy to verify that -- is an equivalence relation on E(G)\E(H). A 
subgraph of G - E (H) induced by an equivalence class under the relation --
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is called a bridge of H in G. It follows immediately from the definition that 
if B is a bridge of H, then B is a connected graph and, moreover, that any 
two vertices of B are connected by a path that is internally-disjoint from H. 
It is also easy to see that two bridges of H have no vertices in corn
mon except, possibly, for vertices of H. For a bridge B of H, we write 
V(B) n V(H) = V(B, H), and call the vertices in this set the v~rtices of attach
ment of B to H. Figure 9.9 shows a variety of bridges of a cycle in a graph; 
edges of different bridges are represented by different kinds of Iines. 

In this section we are concerned with the study of bridges of a cycle C. 
Thus, to avoid repetition, we shall abbreviate 'bridge of C' to 'bridge' in the 
coming discussion; all bridges will be understood to be bridges of a given 
cycle C. 

In a connected graph every bridge has at least one vertex of attachment, 
and in a block every bridge has at least two vertices of attachment. A bridge 
with k vertices of attachment is called a k-bridge. Two k-bridges with the 
same vertices of attachment are equivalent k-bridges; for example, in figure 
9.9, B1 and B2 are equivalent 3-bridges. 

The vertices of attachment of a k-bridge B with k > 2 effect a partition of 
C into edge-disjoint paths, called the segments of B. Two bridges avoid one 
another if all the vertices of attachment of one bridge lie in a single segment 
of the other bridge; otherwise they overlap. ln figure 9.9, B2 and B3 avoid 
one another, whereas B1 and B2 overlap. Two bridges B and~, are skew if 
there are four distinct vertices u, v, u' and v' of C such that u and v are 
vertices of attachment of B, u' and v' are vertices of attachment of B', and 
the four vertices appear in the cyclic order u, u', v, v' on C. In figure 9.9, B3 
and B4 are skew, but B1 and B2 are not. 

Figure 9.9. Bridges in a graph 
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Theorem 9.6 If two bridges overlap, then either they are skew or else they 
are equivalent 3-bridges. 

Proof Suppose that the bridges B and B' overlap. Clearly, each must 
have at least two vertices of attachment. Now if either B or B' is a 2-bridge, 
it is easily verified that they must be skew. We may therefore assume that 
both B and B' have at least three vertices of attachment. There are two 
cases. 

Case 1 B and B' are not equivalent bridges. Then B' bas a vertex of 
attachment u' between two consecutive vertices of attachment u and v of B. 
Since B and B' overlap, some vertex of attachment v' of B' does not lie in 
the segment of B connecting u and v. It now follows that B and B' are 
skew. 

Case 2 B and B' are equivalent k-bridges, k > 3. If k > 4, then B and 
B' are clearly skew; if k = 3, they are equivalent 3-bridges D 

Theorem 9. 7 If a bridge B has three vertices of attachment V1, V2 and V3, 

then there exists a vertex Vo in V(B)\ V( C) and three paths Pi, P2 and P3 in 
B joining Vo to V1, V2 and V3, respectively, such that, for i :/- j, Pi and P; have 
only the vertex Vo in common (see figure 9.10). 

Proof Let P be a (v1, v2)-path in B, internally-disjoint from C. P must 
have an internai vertex v, since otherwise the bridge B would be just P, and 
would not con tain a third vertex V3. Let Q be a ( V3, v )'-path in B, internally
disjoint from C, and let Vo be the first vertex of Q on P. Denote by P1 the 
( Vo, V1)-section of p-i, by P2 the ( Vo, V2)-section of P, and by P3 the 
( Vo, V3)-section of 0-1. Clearly Pi, P2 and P3 satisfy the required 
conditions D 

Figure 9.10 
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We shall now consider bridges in plane graphs. Suppose that G is a plane 
graph and that C is a cycle in G. Then C is a Jordan curve in the plane, and 
each edge of E(G)\E(C) is contained in one of the two regions Int C and 
Ext C. It follows that a bridge of C is contained entirely in Int Cor Ext C. A 
bridge contained in lot C is called an inner bridge, and a bridge contained in 
Ext C, an outer bridge. In figure 9.11 B1 and B2 are inner bridges, and B3 
and B4 are outer bridges. 

Theorem 9.8 Inner (outer) bridges avoid .one another. 

Proof By contradiction. Let B and B' be two inner bridges that overlap. 
Then, by theorem 9.6, they must be either skew or equivalent 3-bridges. 

Case 1 B and B' are skew. By definition, there exist distinct vertices u 
and vin Band u' and v' in B', appearing in the cyclic order u, u', v, v' on 
C. Let P be a (u, v)-path in B and P' a (u', v')-path in B', both internally
disjoint from C. The two paths P and P' cannot have an internai vertex in 
common ·because they belong to different bridges. At the same time, both P 
and P' must be contained in Int C because B and B' are inner bridges. By 
the Jordan curve theorem, G cannot be a plane graph, contrary to 
hypothesis (see figure 9.12). 

Case 2 B and B' are equivalent 3-bridges. Let the common set of 
vertices of attachment be {v1, V2, V3}. By theorem_ 9.7, there exist in B a 
vertex Vo and three paths Pi, P2 and P3 joining Vo to Vi, V2 and V3, 

respectively, such that, for i #- j, Pi and Pj have only the vertex Vo in common. 
Similarly, B' has a vertex Vb and three paths P~, P; and P; joining Vb to V1, 
V2 and V3, respectively, such that, for i #- j, Pf and Pi have only the vertex Vb 
in common (see figure 9.13). 

Figure 9 .11. Bridges in a plane graph 
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Now the paths P1, P2 and P3 divide lot C into three regions, and v~ must 
be in the interior of one of these regions. Since only two of the vertices V1, 

v2 and V3 can lie on the boundary of the region containing v~, we may 
assume, by symmetry, that V3 is not on the boundary of this region. By the 
Jordan curve theorem, the path P; must cross either Pi, P2 or C. But since B 
and B' are distinct inner bridges, this is clearly impossible. 

We conclude that inner bridges avoid one another. Similarly, outer 
bridges avoid one another □ 

Let G be a plane graph. An inner bridge B of a cycle C in G is 
transf erable if there exists a planar embedding Ô of G which is identical to 
G itself, except that B is an outer bridge of C in ô. The plane graph Ô is 
said to be obtained from G by transf erring B. Figure 9 .14 illustra tes the 
transfer of a bridge. 

Theorem 9.9 An inner bridge that avoids every outer bridge 1s 
transferable. 

Figure 9.13 
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) 

Figure 9.14. The transfer of a bridge 

Proof Let B be an inner bridge that avoids every outer bridge. Then 
the vertices of attachment of B to C all lie on the boundary of some face of 
G contained in Ext C. B can now be drawn in this face, as shown in figure 
9.15 0 

) 

Figure 9.15 

Theorem 9.9 is crucial to the proof of Kuratowski's theorem, which will 
be proved in the next section. 

Exercises 

9.4.1 Show that if B and B' are two distinct bridges, then V(B) n V(B') c 

V(C). 
9.4.2 Let u, x, v and y (in that cyclic order) be four distinct vertices of 

attachment of a bridge B to a cycle C in a plane graph. Show that 
there is a (u, v )-path P and an (x, y )-path Q in B such that (i) P and 
Q are internally-disjoint from C, and (ii) IV(P) n V(O)I ~ 1. 
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9.4.3 (a) Let C = V1V2 ••• VnV1 be a longest cycle in a nonhamiltonian 
connected graph G. Show that 

(i) there exists a bridge B such that V(B)\ V( C) ;/; 0; 
1,ii) if Vi and Vj are vertices of attachment of B, then Vi+1 Vj+t é E. 

(b) Deduce that if oc < K, then Gis hamiltonian. 
(V. Chvâtal and P. Erdôs) 

9. 5 KURA TOWSKI'S THEO REM 

Since planarity is such a fondamental property, it is clearly of importance to 
know which graphs are planar and which are not. We have already noted 
that, in particular, Ks and K3,3 are nonplanar and that any proper subgraph 
of either of these graphs is planar (exercise 9.1.2). A remarkably simple 
characterisation of planar graphs was given by Kuratowski (1930). This 
section is devoted to a proof of Kuratowski's theorem. 

The f ollowing lemmas are simple observations, and we leave their proofs 
as an exercise (9.5.1). 

Lemma 9.10.1 If G is nonplanar, then every subdivision of G is 
nonplanar. 

Lemma 9.10.2 If G is planar, then every subgraph of G is planar. 

Since Ks and K3,3 are nonplanar, we see from these two lemmas that if G 
is planar, then G cannot contain a subdivision of Ks or of K3,3 (figure 9.16). 
Kuratowski showed that this necessaty condition is also suffi.dent. 

Before proving Kuratowski's theorem, we need to establish two more 
simple lemmas. 

Let G be a graph with a 2-vertex eut {u, v}. Then there exist edge-disjoint 
subgraphs G1 and G2 such that V(G1) n V(G2) = {u, v} and G1 U G2 = G. 
Consider such a separation of G into subgraphs. In both G1 and G2 join u 

(a) (b) 

Figure 9.16. (a) A subdivision of K,; (b) a subdivision of K3,3 
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Figure 9.17 

and v by a new edge e to obtain graphs H 1 and H2, as in figure 9 .17. Clearly 
G = (H1 U H2)- e. lt is also easily seen that e (Hi)< e ( G) for i = l, 2. 

Lemma 9.10.3 If G is nonplanar, then at least one of H1 and H2 is also 
nonplanar. 

Proof By contradiction. Suppose that both H1 and H2 are planar. Let iii 
be a planar embedding of H1, and let f be a face of H1 incident with e. If H2 
is an embedding of H2 in f such that H1 and H2 have only the vertices u and 
v and the edge e in common, then (H1 U H2)- e is a planar embedding of G. 
This contradicts the hypothesis that G is nonplanar D 

Lemma 9.10.4 Let G be a nonplanar conriected graph that contains no 
subdivision of Ks or K3.3 and bas as few edges as possible. Then G is simple 
and 3-connected. · 

Proof By contradiction. Let G satisfy the hypotheses of the lemma. 
Then G is clearly a minimal nonplanar graph, and therefore ( exercise 
9.2.lb) must be a simple black. If Gis not 3-connected, let {u,v} be a 
2-vertex eut of G and let H1 and H 2 be the graphs obtained from this eut as 
described above. By lemma 9.10.3, at least one of H1 and H2, say Hi, is 
nonplanar. Since e(H1) < e(G), H1 must contain a subgraph K which is a 
subdivision of Ks or K3,3; moreover K ~ G, and so the edge e is in K. Let P 
be a (u, v )-path in H2- e. Then G con tains the subgraph (KU P)- e, which 
is a subdivision of K and hence a subdivision of Ks or K3,3· This contradic
tion establishes the lemma D 

We shall find it convenient to adopt the following notation in the proof of 
Kuratowski's theorem. Suppose that C is a cycle in a plane graph. Then we 
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can regard the two possible orientations of C as 'clockwise' and 'anticlock
wise'. For any two vertices, u and v of C, we shall denote by C[u, v] the 
(u, v)-path which follows the clockwise orientation of C; similarly we shall 
use the symbols C(u, v ], C[u, v) and C(u, v) to denote the paths C[u, v ]- u, 
C[ u, v] - v and C[ u, v ]-{ u, v}. We are now ready to prove Kuratowski's 
theorem. Our proof is based on that of Dirac and Schuster (1954). 

Theorem 9.10 A graph is planar if and only if it con tains no subdivision of 
Ks or KJ,J. 

Proof We have already noted that the necessity follows from lemmas 
9.10.1 and 9.10.2. We shall prove the sufficiency by contradiction. 

If possible, choose a nonplanar graph G that contains no subdivision of 
Ks or K3,3 and has as few edges as possible. From lemma 9.10.4 it follows 
that G is simple and 3-connected. Clearly G must also be a minimal 
nonplanar graph. 

Let uv be an edge of G, and let H be a planar embedding of the planar 
graph G - uv. Since G is 3-connected, H is 2-connected and, by corollary 
3.2.l, u and v are contained together in a cycle of H. Choose a cycle C of H 
that contains u and v and is such that the number of edges in Int C is as 
large as possible. 

Since H is simple and 2-connected, each bridge of C in H must have at 
least two vertices of attachment. Now all outer bridges of C must be 
2-bridges that overlap uv because, if some outer bridge were a k-bridge for 
k > 3 or a 2-bridge that avoided uv, then there would be a cycle C' 
containing u and v with more edges in its interior than C, contradicting the 
choice of C. These two cases are illustrated in figure 9.18 (with C' indicated 
by heavy lin es). 

In fact, all outer bridges of C in H must be single edges. For if a 2-bridge 
with vertices of attachment x and y had a third vertex, the set {x, y} would 
be a 2-vertex eut of G, contradicting the fact that G is 3-connected. 

(a) (b) 

Figure 9.18 
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By theorem 9.8, no two inner bridges overlap. Therefore some inner 
bridge skew to uv must overlap some outer bridge. For otherwise, by 
theorem 9.9, all such bridges could be transferred (one by one), and then the 
edge uv could be drawn in Int C to obtain a planar embedding of G; since 
G is nonplanar, this is not possible. Therefore, there is an inner bridge B 
that is both skew to uv and skew to some outer bridge xy. 

Two cases now arise, depending on whether B bas a vertex of attachment 
different from u, v, x and y or not. 

Case 1 B has a vertex of attachment different from u, v, x and y. We 
can choose the notation so that B has a vertex of attachment V1 in C(x, u) 
(see figure 9 .19). We consider two subcases, depending on whether B has a 
vertex of attachment in C(y, v) or not. 

Case la B has a vertex of attachment v2 in C(y, v). In this case there is 
a ( v·1, v2)-path P in B that is internally-disjoint from C. But then (CU P) + 
{uv, xy} is a subdivision of K3,3 in G, a contradiction (see figure 9.19). 

Case lb B has no vertex of attachment in C(y, v). Since B is skew to uv 
and to xy, B must have vertices of attachment V2 in C(u, y] and V3 in 
C[v, x). Thus B bas three vertices of attachment v1, v2 and V3. By theorem 
9.7, there exists a vertex Vo in V(B)\V(C) and three paths P1, P2 and PJ in B 
joining Vo to V1, V2 and VJ, respectively, such that, for i-:/- j, Pi and Pi have 
only the vertex Vo iri common. But now (CUP1 UP;zUPJ)+{uv, xy} contains 
a subdivision of KJ,3, a contradiction. This case is illustrated in figure 9.20. 
The subdivision of K3,3 is indicated by heavy lines. 

Figure 9.19 
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Figure 9.20 

Case 2 B bas no vertex of attachment other than u, v, x and y. Since B 
is skew to both uv and xy, it follows that u, v, x and y must all be vertices of 
attachment of B. Therefore (exercise 9.4.2) there exists a (u, v)-path P and 
an (x, y )-path Q in B such that (i) P and Q are iriternally-disjoint from C, 
and (ii) 1 V(P) n V( O)I > 1. We consider two subcases, depending on whether 
P and Q have one or more vertices in common. 

Case 2a IV(P) n V(O)I= 1. In this case (CU PU Q) +{uv, xy} is a sub
division of Ks in G, again a contradiction (see figure 9.21). 

u 

Figure 9.21 
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Case 2b IV(P)n V(O)l>2. Let u' and v' be the first and last vertices of 
P on Q, and let P1 and P2 denote the (u, u')- and (v', v)-sections of P. Tuen 
(CUP1UP2UO)+{uv, xy} contains a subdivision of K3,3 in G, once more a 
contradiction (see figure 9.22). 

u 

Figure 9.22 

Thus ail the possible cases lead to contradictions, and · the proof is 
complete D 

There are several other characterisations of planar graphs. For example, 
Wagner (1937) has shown that a graph is planar if and only if it contains no 
subgraph contractible to Ks or KJ,J. 

Exercises 

9.5.1 Prove lemmas 9.10.1 and 9.10.2. 
9.5.2 Show, using Kuratowski's theorem, that the Petersen graph is non

planar. 

9.6 THE FIVE-COLOUR THEOREM AND THE FOUR-COLOUR CONJECTURE 

As has alr_eady been noted (exercise 9.3.2), every planar graph is 6-vertex
colourable. Heawood (1890) improved upon this result by showing that one 
can always properly colour the vertices of a planar graph with at most five 
colours. This is known as the five-colour theorem. 

Theorem 9.11 Every planar graph is 5-vertex-colourable. 

Proof By contradiction. Suppose that the theorem is false. Then there 
exists a 6-critical plane graph G. Since a critical graph is simple, we see from 



Planar Graphs 157 

V, 

v3 
Figure 9.23 

corollary 9.5.3 that S<S. On the other band we have, by theorem 8.1, that 
8 > 5. Therefore 6 = 5. Let v be a vertex of degree five in G, and let (V1, V2, 
V3, V4, Vs) be a proper 5-vertex colouring of G - v; such a colouring exists 
because G is 6-critical. Since G itself is not 5-vertex-colourable, v must be 
adjacent to a vertex of each of the five colours. Therefore we can assume 
that the neighbours of v in clockwise order about v are Vi, V2, V.3, V4 and Vs, 

where Vi E vi for 1 < i < 5. 
Denote by Gi; the subgraph G[ V; U Vj] induced by Yi U Yi. Now vi and V; 

must belong to the same component of Gi;• For, otherwise, consider the 
component of Gi; that contains vj. By interchanging the colours i and j in 
this component, we obtain a new proper 5-vertex colouring of G - v in 
which only four colours (all but i) are assigned to the neighbours of v. We 
have already shown that this situation cannot arise. Therefore vi and V; must 
belong to the same component of Gi;• Let Pi; be a ( vi, v;)-path in Gi;, and let 
C denote the cycle vv1P13V3V (see figure 9.23). 

Since C separates V2 and V4 (in figure 9.23, v2 E int C and V4 E ext C), it 
follows from the Jordan curve theorem that the path P24 must meet C in 
some poînt. Because G is a plane graph, this point must be a vertex. But this 
is impossible, since the vertices of P24. have colours 2 and 4, whereas no 
vertex of C has either of these colours □ 

The question now arises as to whether the five-colour theorem is best 
possible. lt bas been conjectured that every planar graph is 4-vertex
colourable; this is known a~ the four-colour conjecture. The four-colour 
conjecture bas remained unsettled for more than a century, despite man y 
attempts by major mathematicians td solve it. If it were true, then it would, 
of course, be best possible because there do exist planar graphs which 

· are not 3-vertex-coloùrable (K4 is the simplest such graph). For a history of 
the four-colour conjecture, see Ore {1967)t. 

t The four'."colour conjecture has now been settled in the affirmative by K. Appel and 
W. Ha ken; see page 253. 
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The problem of deciding whether the four-colour conjecture is true or 
false is called the four-colour problem. t There are several problems in graph 
theory that are equivalent to the four-colour problem; one of these is the 
case n = 5 of Hadwiger's conjecture (see section 8.3). We now establish the 
equivalence of certain problems concerning edge and face colourings with 
the four-colour problem. A k-face colouring of a plane graph G is an 
assignment of k colours 1, 2, ... , k to the faces of G; the colouring is proper 
if no two faces that are separated by an edge have the same colour. G is k
f ace-colourable if it bas a proper k-face colouring, and the minimum k for 
which G is k-faée-colourable is the face chromatic number of G, denoted by 
x*(G). It follows immediately from these definitions that, for any plane 
graph G with dual G*, 

x*( G) = x( G*) (9.2) 

Theorem 9.12 The following three statements are equivalent: 

(i) every planar graph is 4-vertex-colourable; 
(ii) every plane graph is 4-face-colourable; 

(iii) every simple 2-edge-connected 3-regular planar graph 1s 3-edge
colourable. 

Proof We shall show that (i) => (ii) => (iii) => (i). 
(a) (i) => (ii). This is a direct consequence of (9.2) and the fact that the dual 

of a plane graph is planar. 
(b) (ii) => (iii). Suppose that (ii) holds, let G be a simple 2-edge-connected 

3-regular planar graph, and let Ô be a planar embedding of G. By (ii), Ô 
has a proper 4-face-colouring. It is, of course, immaterial which symbols 
are used as the 'colours', and in this case we shall denote the four 
colours by the vectors Co= (0, 0), C1 = (1, 0), c2 = (0, 1) and C3 = (1, 1), 
ove~ the field of integers modulo 2. We now obtain a 3-edge-colouring 
of G by assigning to each edge the sum of the colours of the faces it 
separates (see figure 9 .24 ). If Ci, ci and Ck are the three colours assigned 
to the three faces incident with a vertex v, then Ci+ ci, ci+ Ck and Ck + Ci 

are the colours assigned to the three edges incident with v. Since Ô is 2-
edge-connected, each edge separates two distinct faces, and it follows 
that no edge is assigned the colour Co under this scheme. It is also clear 
that the three edges incident with a given vertex are assigned diff~rent 
colours. Thus we have a proper 3-edge-colouring of G, and hence of G. 

t The four-colour problem is often posed in the following terms: can the countries of any 
map be coloured in four colours so that no two countries which have a common boundary are 
assigned the same colour? The equivalence of this problem with the four-colour problem 
follows from theorem 9.12 on observi11g that a map can be regarded as a plane graph with its 
countries as the faces. 
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Figure 9.24 

(c) (iii) ~ (i). Suppose that (iii) holds, but that (i) does not. Then there is a 
5-critical planar graph G. Let Ô be a planar embedding of G. Then 
(exercise 9.2.6) Ô is a spanning subgraph of a simple plane triangulation 
H. The dual H* of H is a simple 2-edge-connected 3-regular planar 
graph (exercise 9.2.7). By (iii), H* bas a proper 3-edge colouring 
(Ei, E2, E3). For i ;if j, let Ht denote the subgraph of H* induced by 
Ei U E;. Since each vertex of H* is incident with one edge of Ei and one 
edge of Eh H~ is a union of disjoint cycles and is therefore (exercise 
9.6.1) 2-face-colourable. Now each face of H* is the intersection of a 
face of Hf2 and a face of H13. Given proper 2-face colourings of Hf2 and 
H!3 we can obtain a 4-face colouring of H* by assigning to each face f 
the pair of colours assigned to the faces whose intersection is f. Since 
H* = H!2 U H!3 it is easily verified that this 4-face colouring of H* is 
proper. Since H-is a supergraph of G we have 

5 = x(G) < x(H) = x*(H*) <4 

This contradiction shows that (i) does, in fact, hold D 

That statement (iii) of theorem 9.12 is equivalent to the four-colour 
problem was first observed by Tait (1880). A proper 3-edge colouring of a 
3-regular graph is often called a Tait colouring. In the next section we shall 
discuss Tait's ill-fated approach to the four-colour conjecture. Grotzsch 
(1958) has verified the four-colour conjecture for planar graphs without 
triangles. In fact, he has shown that every such graph is 3-vertex-colourable. 

Exercises 
9.6.1 Show that a plane graph G is 2-face-colourable if and only if G is 

eulerian. 
9.6.2 Show that a plane triangulation G is 3-vertex colourable if and only 

if G is eulerian'. 
9.6.3 Show that every hamiltonian plane graph is 4-face-colourable. 
9.6.4 Show that every hamiltonian 3-regular graph bas a Tait colouring. 
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9.6.5 Prove theorem 9.12 by showing that (iii)::;>(ii)::;>(i)::;>(iii). 
9.6.6 Let G be a 3-regular graph with K' = 2. 

(a) Show that there exist subgraphs G1 and G2 of G and non
adjacent pairs of vertices u1, v1 E V( G1) and u2, V2 E V( G2) such 
that G consists of the graphs G1 and G2 joined by a 'ladder' at 
the vertices U1, V1, U2 and V2. 

(b) Show that if G1 + U1V1 and G2+ U2V2 both have Tait colourings, 
then so does G. 

( c) Deduce, using theorem 9 .12, that the four-colour conjecture is 
equivalent to Tait's conjecture: every simple 3-regular 3-
connected planar graph has a Tait colouring. 

9.6. 7 Give an example of 

(a) a 3-regular planar graph- with no Tait colouring; 
(b) a 3-regular 2-connected graph with no Tait colouring. 

9.7 NONHAMILTONIAN PLANAR GRAPHS 

In his attempt to prove the four-colour conjecture, Tait (1880) observed 
that it would be enough to show that every 3-regular 3-connected planar 
graph has a Tait colouring (exercise 9.6.6). By mistakenly assuming that 
every such graph is hamiltonian, he gave a 'proof' of the four-colour 
conjecture (see exercise 9.6.4). Over half a century later, Tutte (1946) 
showed Tait's proof to be invalid by constructing a nonhamiltonian 3-
regular 3-connected planar graph; it is depicted in figure 9.25. 

Tutte proved. that his graph is nonhamiltonian by using ingenious ad hoc 
arguments (exercise 9.7.1), and for many years the Tutte graph was the only 
known example of a nonhamiltonian 3-regular 3-connected planar graph. 
However, Grinberg ( 1968) then discovered a necessary condition for a plane 
graph to be hamiltonian. His discovery has led to the construction of many 
nonhamiltonian planar graphs. 
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Figure 9.25. TheTutte graph 

Theorem 9.13 Let G be a loopless plane graph with a Hamilton cycle C. 
Theo 

V 

I (i - 2Hct>:-ct>':> = o (9.3) 
i=l 

where cp{ and cf>'{ are the numbers of faces of degree i contained in Int C and 
Ext C, respectively. 

Proof Denote by E' the subset of E(G)\E(C) contained in lnt C, and let 
e' = IE'I. Theo lnt C contains exactly e' + 1 faces (see figure 9.26), and so 

V 

Ict>t=e'+_t (9.4) 
i= l 

Now each edge in E' is on the boundary of two faces in Int C, and each edge 

Figure 9.26 
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of C is on the boundary of exactly one face in Int C. Therefore 
.. 
L icp( = 2e' + v (9.5) 
i•l 

Using (9.4), we can eliminate e' from (9.5) to obtain 
.. 
L (i - 2)ct,: = v - 2 (9.6) 
i=l 

Similarly .. 
L (i - 2)ct,': = v - 2 (9.7) 
i•l 

Equations (9.6) and (9. 7) now yield (9.3) D 

With the aid of theorem 9.13, it is a simple matter to show, for example, 
that the Grinberg graph (figure 9.27) is nonhamiltonian. 

Suppose that this graph is hamiltonian. Then, noting that it only bas faces 
of degrees five, eight and nine, condition (9.3) yields 

3( et,;- et,;)+ 6( cf,~ - et,;)+ 7( cf,~ - cf,~)= 0 
We deduce that 

7 ( cf,~ - et,;) = 0 (modulo 3) 

But this is clearly impossible, since the value of the left-hand side is 7 or -7, 
f 

depending on whether the face of degree nine is in lnt C or Ext C. 
Therefore the graph cannot be hamiltonian. 

Figure 9.27. The Grinberg graph 
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Although there exist nonhamiltonian 3-connected planar graphs, Tutte 
(1956) has shown that every 4-connected planar graph is hamiltonian. 

Exercises 

9.7.1 (a) Show that no Hamilton cycle in the graph G1 below can contain 
both the edges e and e '. 

(b) Using (a), show that no Hamilton cycle in the graph G2 can 
contain both the edges e and e'. 

(c) Using (b), show that every Hamilton cycle in the graph GJ must 
contain the edge e. 

(d) Deduce that the Tutte graph (figure 9.25) is nonhamiltonian. 
9.7.2 Show, by applying theorem 9.13, that the Herschel graph (figure 

4.2b) is nonhamiltonian. (It is, in fact, the smallest nonhamiltonian 
3-connected planar graph.) 

9. 7 .3 Give an example of a simple nonhamiltonian 3-regular planar graph 
with co~nectivity two. · 

APPLICATIONS 

9.8 A PLANARITY ALGORITHM 

There are many practical situations in which it is important to decide 
whether a given graph is planar, and, if so, to then find a planar embedding 
of the graph. For example, in the layout of printed circuits one is interested 
in knowing if a particular electrical network is planar. In this section, we 
shall present an algorithm for solving this problem, due to Demoucron, 
Malgrange and Pertuiset (1964). 

Let H be a planar subgraph of a graph G and let fI be an embedding of 
H in the plane. We say that fI is G-admissible if G is planar and there is a 
planar embedding G of G such that fI c G. In figure 9 .28, for example, two 
embeddings of a planar subgraph of G are shown; one is G-admissible and 
the other is not. 
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(a) (b) (c) 

Figure 9.28. (a) G; (b) G-admissible; (c) G-inadmissible 

If B is any bridge of H (in G), then B is said to be drawable in a face f of 
H if the vertices of attachment of B to H are contained in the boundary of 
f. We write F(B, H) for the set of faces of H in which B is drawable. The 
following theorem provides a necessary condition for G to be planar. 

Theorem 9.14 If H is G-admissible then, for every bridge B of H, 
F(B, H) ;# 0. 

Proof If H is G-admissible then, by definition, there exists a planar 
embedding G of G such that H c G. Clearly, the subgraph of G which 
corresponds to a bridge B of H must be confined to on~ face of H. Hence 
F(B, H) ;# 0 0 

Since a graph is planar if and only if each block of its underlying simple 
graph is planar, it suffices to consider simple blocks. Given such a graph G, 
the algorithm determines an increasing sequence G1, G2, ... of planar 
subgraphs of G,_ and corresponding planar embeddings q_., Ô2, .... When G 
is planar, each Gi is G-admissible and the sequence G., G2, ... terminates in 
a planar embedding of G. At each stage, the necessary condition in theorem 
9.14 is used to test G for nonplanarity. 

Planarity Algorithm 
1. Let G1 be a cycle in G. Find a planar embedding Ô1 of G1. Set i = 1. 
2. If E(G)\E(Gi) = 0, stop. Otherwise, determine ail bridges of Gi in- G; for 

each such bridge B find the set F(B, Ôï). · 
3. If there exists a bridge B such that F(B, Gi) = 0, stop; by' theorem 9.14, 

G is nonplanar. If there exists a bridge B such that IF(B, Gi)I = 1, let 
{f} = F(B, Gi), Otherwise, let B be any bridge and f any face such that 
f E F(B, Gi), 

4. Choose a path Pï ç; B connecting two vertices of attachment of B to Gï, 
Set Gi+1 = Gi U Pi and obtain a planar embedding Gi+1 of Gi+1 by drawing 
Pi in the face f of Gi. Replace i by i + 1 and go to step 2. 

To illustrate this algorithm, we shall consider the graph G of figure 9.29. 
We start with the cycle Ô1 = 2345672 and a list of its bridges (denoted, for 
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brevity, by their edge sets); at each stage, the bridges B for which 
IF(B, Ôi)I = 1 are indicated in bold face. In this example, the algorithm 
terminates with a planar embedding 09 of G. Thus G is planar. 

Now let us apply the algorithm to the graph H obtained from G by 
deleting edge 45 and adding edge 36 (figure 9.30). Starting with the cycle 
23672, we J>roceed as shown in figure 9.30. It can be seen that, having 
constructed H3, we find a bridge B = {12, 13, 14, 15, 34, 48, 56, 58, 68, 78} 

5 4 

7.0---------02 

,.._, 
H, 6 3 

{26},{37} 

{12,13,14,15,34,48,~6.58,68,78} 

{ 12, 13,14,15,34,48,56,58,68, 78} 

H 

""' 
H2. 

{37} 

{12,13,14,15,34,48,56,58;68,78} 

? 

Figure ~.30 
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such that F(B, H.3) = 0. At this point the algorithm stops (step 3), and we 
conclude that H is nonplanar. 

In order to establish the validity of the algorithm, one needs to show that 
if G is planar, then each term of the sequence G1, G2, ... , Ge-v+1 is 
G-admissib]e. Demoucron, Malgrange and Pertuiset prove this by induction. 
We shall give a general outline of their proof. 

Suppose that G is planar. Clearly G1 is G-admissible. Assume that Gi is 
G-admissible for 1 < i < k < e - v + 1. By definition, there is a planar em
bedding G of G such that Gk c G. We wish to show that Gk+1 is G
admissible. Le~ B and f be as defined in step 3 of the algorithm. If, in G, B 
is drawn in f, Gk+t is clearly G-admissible. So assume that no bridge of Gk is 
drawable in only one face of Gk, and that, in G, B is drawn in some other 
face f'. Since no bridge is drawable in just one face, no bridge whose 
vertices of attachment are restricted to the common boundary of f and f' 
can be skew to a bridge not having this property. Hence we can interchange 
bridges across the common boundary of f and f' and thereby obtain a planar 
embedding of Gin which B is drawn in f (see figure 9.31). Thus, again, Gk+t 
is G"'."admissible. 

Figure 9.31 

The algorithm that we have described is good. From the ftow diagram 
(figure 9.32), one sees that the main operations involved are 

(i) finding a cycle G1 in the block G; 
(ii) determining the bridges of G; in G and their vertices of attachment to 

G;; 
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• 1 

connectmg two vertices 
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Chooseany 
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Figure 9.32. Planarity algorithm 
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(iii) determining b(f) for each face f of Gi; 
(iv) determining F(B, G\) for each bridge B of Gi; 
(v) finding a path Pi in some bridge B of Gi between two vertices of 

V(B, Gj), 

There exists a good algorithm for each of these operations; we leave the 
details as an exercise. 

More sophisticated algorithms for testing planarity than the above have 
since been obtained. See, for example, Hopcroft and Tarjan (1974). 

Exercise 

9.8.1 Show that the Petersen graph is nonplanar by applying the above 
algorithm. 
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10 Directed Graphs 

10 .1 DIRECTED GRAPHS 

Although many problems lend themselves naturally to a graph-theoretic 
formulation, the concept of a graph is sometimes not quite adequate. When 
dealing with problems of traffic flow, for example, it is necessary to know 
which roads in the network are one-way, and in which direction traffic is 
permitted. Clearly, a graph of the network is not of much use in such a 
situation. What we need is a graph in which each link has an assigned 
orientation-a directed graph. Formally, a directed graph D is an ordered 
triple (V(D), A(D), t/lo) consisting of a nonempty set V(D) of vertices, a set 
A(D), disjoint from V(D), of arcs, and an incidence function t/lo that 
associates with each arc of D an ordered pair of (not necessarily distinct) 
vertices of D. If a is an arc and u and v are vertices such that t/lo(a) = (u, v), 
then a is said to join u to v; u is the tail of a, and v is its head. For 
convenience; we shall abbreviate 'directed graph' to digraph. A digraph D' 
is a subdigraph of D if V(.D') c V(D), A(D') c A(D) and tJ,o· is the 
restriction of t/lo to A(D'). The terminology and notation for subdigraphs is 
similar to that used for· subgraphs. 

With each digraph D we can associate a graph G on the same vertex set; 
corresponding to each arc of D there is an edge of G with the same ends. 
This graph is the underlying graph of D. Conversely, given any graph G, we 
can obtain a digraph from G by specifying, for each link, an order on its 
ends. Such a digraph is called an orientation of G. 

Just as with graphs, digraphs have a simple pictorial representation. A 
digraph is represented by a diagram of its underlying graph together with 
arrows on its edges, each arrow painting towards the head of the corre
sponding arc. A digraph and its underlying graph are shown in figure 10.1. 

Every concept that is valid for graphs automatically applies to digraphs 
too. Thus the digraph of figure 10.1 a is connected and has no cycle of length 
three because its underlying graph (figure 10.1 b) has these properties. 
However, there are many concepts that involve the notion of orientation, 
and these apply only to digraphs. 

A directed ·walk m D 1s a finite non-null sequence W = 
(vo, a1, v1, . .. , ak, vk), whose terms are alternately vertices and arcs, such 
that, for i = 1, 2, ... , k, the arc ai has head Vi and tail Vï-1. As with walks in 
graphs, a directed walk ( Vo, ai, v1, ... , ak, Vk) is often represented simply by 
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( a ) ( b ) 

Figure 10.1. (a) A digraph D; (b) the underlying graph of D 

its vertex sequence (vo, V1, ... , vk). A directed trail is a directed walk that is 
a trail; directed paths, directed cycles and directed tours are similarly defined. 

If there is a directed ( u, v )-path in D, vertex v is said to be reachable from 
vertex u in D. Two vertices are diconnected in D if each is reachable from 
the other. As in the case of connection in graphs, diconnection is an 
equivalence relation on the vertex set of D. The subdigraphs 
D[V1], D[V2], ... , D[Vm] induced by the resulting partition 
(V1, V2, ... , Vm) of V(D) are called the dicomponents of D. A digraph Dis 
diconnected if it has exactly one dicomponent. The digraph of figure 10.2a 
is not diconnected; it has the three dicomponents shown in figure 10.2b. 

The indegree do( v) of a vertex v in D is the number of arcs with head v; 
the outdegree d-;,(v) of v is the number of arcs with tail v. We denote the 
minimum and maximum indegrees and outdegrees in D by s-(D), ~-(D), 
8+(D) and ~+(D), respectively. A digraph is strict if it has no loops and no 
two arcs with the same ends have the same orientation. 

Throughout this chapter, D will denote a digraph and G its underlying 
graph. This is a useful convention; it allows us, for example, to denote the 
vertex set of D by V (since V= V( G)), and the numbers of vertices and arcs 
in D by v and e, respectively. Also, as with graphs, we shall drop the letter 
D from our notation whenever possible; thus we write A for A(D), d+(v) 
for d-;,(v), s- for s-(D), and so on. 

(a) ( b ) 

Figure 10.2. (a) A <ligraph D; (b) the three dicomponents of D 
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Exercises 

10.1.1 How man y orientations does a simple graph G have·? 

10.1.2 Show that L d-(v) = e = L d+(v) 
vEV vEV 

10.1.3 Let D be a digraph with no directed cycle. 

(a) Show that 5- = O. 

173 

(b) Deduce that there is an ordering V1, v2, ..• , Vv of V such that, 
for 1 < i < v, every arc of D with head Vï bas its tail in 
{ Vt, V2, •.• , Vï-1}. 

10 .1.4 Show that D is diconnected if and only if D is connected and each 
block of D is diconnected. · 

10.1.5 The converse D of D is the digraph obtained from D by reversing 
the orientation of each arc. 

(a) Show that 
:: 

(i) D = D; 
(ii) dt(v) = di>(v); 

(iii) v is reachable from u in D if and only if u is reachable 
from v in D. 

(b) By using part (ii) of (a), deduce from exercise 10.1.3a that if D 
is a digraph with no directed cycle, then 5+ = O. 

10.1.6 Show that if D is strict~ tJ..-~n D contains a directed path of length at 
least max{8-, s+}. 

10.1.7 Show that if Dis strict and max{8-,8+}=k>O, then D contains a 
directed cycle of length at least k + 1. 

10.1.8 Let V1, V2, ... , Vv be the vertices of a digraph D. The adjacency 
matrix of D is the v x v matrix A= [~ij] in which aï; is the number 
of arcs of D with tail vi and head v;. Show that the (i, j)th entry of 
Ak is the number of directed (vi, v;)-walks of length k in D. 

10.1.9 Let Di, D2, ... , Dm be the dicomponents of D. The condensation D 
of D is a directed graph with m vertices .w1., W2, ••. , wm; there is an 
arc in D with tail wi and head W; if and only if there is an arc in D 
with tail in Di and head in D;. Show that the condensation D of D 
contains no directed cycle. 

10.1.10 Show that G bas an orientation D such that ld+(v)-d-(v)l<l for 
all v EV. 

10. 2 DIRECTED PA THS 

There is no close relationship between the lengths of paths and directed 
paths in a digraph. That this is sois clear from the digraph of figure 10.3, which 
has no directed path of length greater than one. 
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Figure 10.3 

Surprisingly, some information about the lengths of directed paths in a 
digraph can be obtained by looking at its chromatic number. The following 
theorem, due to Roy (1967) and Gallai (1968), makes this precise. 

Theo rem 10.1 A digraph D con tains a directed path of length x - 1. 

Proof Let A' be a minimal set of arcs of D such that D' = D-A' 
contains no directed cycle, and let the length of a longest directed path in D' 
be k. Now assign colours 1, 2, ... , k + 1 to the vertices of D' by assigning 
colour i to vertex v if the length of a longest directed path in D' with origin 
v is i -1. Denote by Yi the set of vertices with colour i. We shall show that 
(Yi, Y2, ... , Yk+1) is a proper (k + 1)-vertex colouring of D. 

First, observe that the origin and terminus of any directed path in D' have 
different colours. For let P be a directed (u, v )-path of positive length in D' 
and suppose v e Vj. Then there is a directed path Q = ( vi, v2, ... , Vi) in D', 
where v1 = v. Sînce D' contains no directed cycle, PQ is a directed path with 
origin u and length at least L Thus u ft Yj. 

We can now show that the ends of any arc of D have different colours. 
Suppose (u,v)EA(D). If (u,v)eA(D') then (u,v) is a directed path in D' 
and so u and v have different colours. Otherwise, (u, v) E A'. By the 
minimality of A', D'+(u, v) contains a directed cycle C. C-(u, v) is a 
directed (v, u)-path in D' and hence in this case, too, u and v have different 
colours. 

Thus (Yi, Y2, ... , Yk+1) is a proper vertex colouring of D. It follows that 
x < k + 1, and so D has a directed path of length k ~ x -1 D 

Theorem 10.1 is best possible in that every graph G bas an orientation in 
which the longest directed path is of length x ---- 1. Given a proper x-vertex 
colouring (Y1, Y2, ... , Yx) of G, we orient G by converting edge uv to arc 
(u, v) if u e Yi and v E Y; with i<j. Clearly, no directed path in this 
orientation of G can contain more than x vertices, since no two vertices of 
the path can have the same colour. 

An orientation of a complete graph is called a tournament. The tourna
ments on four vertices are shown in figure 10.4. Each can be regarded as 
indicating the results of games in a round-robin tournament between four 
players; for example, the first tournament in figure 10.4 shows that one 
player bas won ail three games and that the other three have each won one. 

A directed Hamilton path of D is a directed path that includes every 
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Figure 10.4. The tournaments on four vertices 

vertex of D. An immediate corollary of theorem 10.1 is that every tourna
ment has such a path. This was first proved by Rédei (1934). 

Corollary 10.1 Every tournament has a directed Hamilton path. 

Proof If D is a tournament, then x = v □ 

Another interesting fact about tournaments is that there is always a vertex 
from which every other vertex can be reached in at most two steps. We shall 
obtain this as a special case of a theorem of Chvâtal and Lovâsz (197 4). An 
in-neighbour of a vertex v in D is a vertex u such that _(u, v)E A; an 
out-neighbour of v is a vertex w such that (v, w)E A. We denote the sets of 
in-neighbours and out-neighbours of v in D by No(v) and N~(v ), respec
tively. 

Theorem 10.2 A loopless digraph D has an independent set S such that 
each vertex of D not in S is reachable from a vertex in S by a directed path 
of length at most two. 

Proof By induction on v. The theorem holds trivially for v = l. Assume 
that it is true for all digraphs with fewer than v vertices, and let v be an 
arbitrary vertex of D. By the induction hypothesis there exists in D' = 
D - ({ v} U N+(v )) an independent set S' such tliat each vertex of D' not in S' 
is reachable from a vertex in S' by a directed path of length at most two. If v 
is an out-neighbour of some vertex u of S', then every vertex of N+(v) is 
reachable from u by a directed path of length two. Hence, in this case, 
S = S' satisfies the required property. If, on the other band, v is not an 
out-neighbour of any vertex of S', then v is joined to no vertex of S' and the 
independent set S = S' U {v} has the required property D 

Corollary 10.2 A tournament con tains a vertex from which every other 
vertex is reachable by a directed path of length at most two. 

Proof If D is a tournament, then a= 1 D 
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Exercises 

10.2.1 Show that every tournament is either diconnected or can be trans
formed into a diconnected tournament by the reorientation of just 
one arc. 

10.2.2* A digraph D is unilateral if, for any two vertices u and v, either v is 
reachable from u or u is reachable from v. Show that D is unilateral 
if and only if D has a spanning directed walk. 

10.2.3 (a) Let P = (v1, v2, ... , vk) be a maximal directed path in a tourna
ment D. Suppose that P is not a directed Hamilton path and let 
v be any vertex not on P. Show that, for some i, both (vi, v) and 
( v, Vï+1) are arcs of D. 

(b) Deduce Rédei's theorem. 
10.2.4 Prove corollary 10.2 by considering a vertex of maximum 
~ outdegree. 
10.2.5* (a) Let D be a digraph with x > mn, and let f be a real-valued 

function defined on V. Show that D has either a directed path 
(uo, U1, .•. , Um) with /(uo) < f(u1) < ... < f(um) or a directed path 
(vo, V1, • •., Vn) with f(vo) > f(vi) > · • • > f(vn). 

(V. Chvâtal and J. Koml6s) 
(b) Deduce that any sequence of mn + 1 distinct integers contains 

either an increasing subsequence of m terms or a decreasing 
subsequence of n terms. (P. Erdos and G. Szekeres) 

10.2.6 (a) Using theorem 10.1 and corollary 8.1.2, show that G bas an 
orientation in which each directed path is of length at most ~

(b) Give a constructive proof of (a). 

10.3 DIRECTED CYCLES 

Corollary 10.1 tells us that every tournament contains a directed Hamilton 
path. Much stronger conclusions can be drawn, however, if the tournament 
is assumed to be diconnected. The following theorem is due· to Moon 
(1966). If S and T are subsets of V, we denote by (S, T) the set of arcs of D 
that have their tails in S and their heads in T. 

Theorem 10.3 Each vertex of a diconnected tournament D with v > 3 is 
contained in a directed k-cycle, 3 < k < v. 

Proof Let D be a diconnected tournament with v > 3, and let u be any 
vertex of D. Set S = N+(u) and T = N-(u). We first show that u is in a 
directed 3-cycle. Since D is diconnected, neither S nor T can be empty; and, 
for the same reason, (S, T) must be i:ionempty (see figure 10.5). There is 
thus some arc (v, w) in D with v ES and w ET, and u is in the directed 
3-cycle (u, v, w, u). 
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u 

Figure 10.5 

The theorem is now proved by induction on k. Suppose that u is in 
directed cycles of ail lengths between 3 and n, where n < v. We shall show 
that u is in a directed (n + 1)-cycle. 

Let C = ( Vo, V1, •.. , Vn) be a directed n-cycle in which Vo = Vn = u. If there 
is a vertex v in V(D)\ V(C) which is both the head of an arc with tail in C 
and the tail of an arc with head in C, then there are adjacent vertices Vi and 
Vï+t on C such that both (vi, v) and (v, Vï+1) are arcs of D. In this case u is in 
the directed (n + 1)-cycle (vo, V1, . •. , Vi, v, Vi+t, • .• , Vn). 

Otherwise, denote by S the set of vertices in V(D)\ V(C) which are heads 
of arcs joined to C, and by T the set of vertices in V(D)\ V(C) which are 
tails of arcs joined to C (see figure 10.6). 

As before, since D is dicpnnected, S, T and (S, T) are ail nonempty, and 
there is some arc ( v, w) in D with v E S and w E T. Hence u is in the 
directed ( n + l )-cycle ( Vo, v, w, V2, .•. , Vn) D 

A directed Hamilton cycle of D is a directed cycle that includes every 
vertex of D. It follows from theorem 10.3 (and was first proved by Camion, 
1959) that every diconnected tournament contains such a cycle. The next 

C 

Figure 10.6 
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theorem extends Dirac's theorem (4.3) to digraphs. It is a special case of a 
theorem due to Ghouila-Houri {1960). 

Theorem 10.4 If D is strict and min{s-, 8+}> v/2 > 1, then D contains a 
directed Hamilton cycle. 

Proof Suppose that D satisfies the hypotheses of the theorem, but does 
not contain a directed Hamilton cycle. Denote the length of a longest 
directed cycle in D by l, and let C = (v1, v2, ... , v1, v1) be a directed cycle in 
D of length l. We note that l > v/2 (exercise 10.1.7). Let P be a longest 
directed path in D - V(C) and suppose that P bas origin u, terminus v and 
length m (see figure 10.7). Clearly 

and, since l > v/2, 

Set 

v>l+m+l 

m<v/2 

s ={i 1 (Vi-1, u) E A} and T={i 1 (v, Vï) E A} 

(10.1) 

(10.2) 

We first show that S and T are disjoint. Let Cj,k denote the section of C 
with origin vi and terminus vk, If some integer i were in both S and T, D 
would contain the directed cycle Ci,i-1(Vi-1, u)P(v, vi) · of length l + m + 1, 
contradicting the choice of C. Thus 

SnT=0 (10.3) 

Now, because P is a maximal directed path in D- V(C), N-(u) c 
V(P) U V( C). But the number of in-neighbours of u in C is precisely ISI and 
so do(u)=d;(u)+ISI, Since do(u)~8-~v/2 and d;(u)sm, 

A similar argument yields 
1s1 > v/2- m (10.4) 

ITl~v/2-m 

C 

Figure 10.7 

u 

1p 
1 
1 
1 
1 

V 

(10.5) 
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Note that, by (10.2), both S and T are nonempty. Adding (10.4) and 
(10.5) and using (10.1), we obtain 

ISl+ITI> l-m+l 
and therefore, by (10.3), 

ISUTl>l-m+l (10.6) 

Since S and T are disjoint and nonempty, there are positive integers i and k 
such that i E S, i + k E T and 

i + j fi. S U T for 1 < j < k ( 10. 7) 

where addition is taken modulo l. 
From (10.6) and (10.7) we see that k ~ m. Thus the directed cycle 

Ci+k,i-1(Vi-1, u)P(v, Vi+k), which bas length l + m + 1- k, is longer than C. This 
contradiction establishes the theorem D 

Exercises 

10.3.1 Show how theorem 4.3 can be deduced from theorem 10.4. 
10.3.2 A directed Euler tour of D is a directed tour that traverses each arc 

of D exactly once. Show that D contains a directed Euler tour if 
and only if D is connected and d+(v) = d-(v) for ail v EV. 

10.3.3 Let D be a digraph such that 

(i) d+(x)-d-(x)= l =d-(y)-d+(y); 
(ii) d+(v) = d-(v) for v E V\{x, y}. 

Show, using exercise 10.3.2, that there exist l arc-disjoint directed 
(x, y )-paths in D. 

10.3.4* Show that a diconnected digraph which contains an odd cycle, also 
contains a directed odd cycle. 

10.3.5 A nontrivial digraph D is k-arc-connected if, for every nonempty 
proper subset S of V, l(S, S)I > k. Show that a nontrivial digraph is 
diconnected if and only if it is 1-arc-connected. 

10.3.6 The associated digraph D(G) of a graph G is the digraph obtained 
when each edge e of G is replaced by two oppositely oriented arcs 
with the same ends as e. Show that 

(a) there is a one-one correspondence between paths in G and 
directed paths in D ( G); 

(b) D(G) is k-arc-connected if and only if G js k-edge-connected. 

APPLICATIONS 

10.4 A JOB SEQUENCING PROBLEM 

A number of jobs 11, 12, .. . , ln, have to be processed on one machine; for 
example, each Ji might be an order of bottles or jars in a glass factory. After 
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eaçh job, the machine must be adjusted to fit the requirements of the next 
job. If the time of adaptation from job Ji to job Ji is tïi, find a sequencing 
of the jobs that minimises the total machine adjustment time. 

This problem is clearly related to the travelling salesman problern, and no 
efficient method for its solution is known. lt is therefore desirable to have a 
method for obtaining a reasonably good (but not necessarily optimal) 
solution. Our method makes use of Rédei's theorem (corollary 10.1). 

· Step 1 Construct a digraph D with vertices v 1, V2, ••. , Vn, such that ( V;, v;) E 

•· A if and only if ti;.< t;;. By definition, D con tains a spanning tournament. 

Step 2 Find a directed Hamilton path (v;i, V;2 , ••• , v;J of D (exercise 
10.4.1), and sequence the jobs accordirigly . 

. Since step 1 discards the Iarger half of the adjustment matrix [t;;], it is a 
reasonable supposition that this method, in general, produces a fairly good 
job séquence. Note, however, that when the adjustment matrix is symmetric, 
the method is of no help whatsoevet. 

·· As an example, suppose that there are six jobs 11, 12, ]3, ]4, ]5 and 16 and 
that the adjustment matrix is 

11 12 ]3 }4 ]5 16 

11 0 5 3 4 2 1 
12 1 0 1 2 3 i 
13 . 2 5 ·o 1 2 3 
14 . 1 4 4 0 1 2 
]5 1 3 4 5 0 5 
16 4 4 2 3 1 0 

The sequence 11-+ 12-+ ]3-+ ]4-+ ls-+ 16 requires 13 units .in adjustment 
time. To find a better sequence, construct the digraph D as in step 1 (figure 
10.8). 

(v1, v6, V3, V4, Vs, v2) is a directed Hamilton path of D;and yields the sequence 

11~ 16-+ l3-+J4~ ]5~ 12' 

which requires only eight units of adjustment time. Note that the reverse 
sequence 

is far worse, requiring 19 units of adjustment time. 

Exercises 

10.4.1 . With the aid of exercise 10.2.3, describe a good algorithm for 
finding a directed Hamilton path in a tournament. 
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Figure 10.8 

10.4.2 Show, by means of an example, that a sequencing of jobs obtained 
by the above method may be far from optimal. 

10 .5 DESIGNING AN EFFICIENT COMPUTER DRUM 

The position of a rotating drum is to be recognised by means of binary 
signais produced at a number of electrical contacts at the surface of the 
drum. The surface is divided into 2° sections, each consisting of either 
insulating or conducting material. An insulated section gives signal 0 (no 
current), whereas a conducting section gives signal 1 (current). For example, 
the position of the drum in figure 10.9 gives a reading 0010 at the four 

Contacts . 

Figure 10.9. A computer drum 
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contacts. If the drum were rotated clockwise one section, the reading would 
· be 1001. Thus these two positions can be distinguished, since they give 
different readings. However, a further rotation of two sections would result 
in another position with read~ng 0010, and therefore this latter position is 
indistinguishable from the initial orie. 

We wish to design the drum surface in such a way that the 2" different 
positions of the drum · can be distinguished by k contacts placed consecu
tively around part of the drum, and -we would like this number k to be as 
small as possible. How can this be accomplished? 

First note that k contacts yield a k-digit binary number, and there are 2k 
such numbers, Therefore, if all 2" positions are to give different readings, we 
must have 2k > 2", that is, k > n. We shall show that the surface of the drum 
can be designed in such a way that n contacts suffice to distinguish all 2" 
positions. 

We define a digraph Dn as follows: the vertices of Dn are the (n -1)-digit 
binary numbers p1p2 ... Pn-1 with pi= 0 or 1. There is an arc with tail 
P1P2 ... Pn-1 and head q1q2 ... qn-1 if and only if Pï+1 = qi for 1 < i < n -2; in 
other words, all arcs are of the form (p1p2 ... Pn-i, p2p3 ... Pn), In addition, 
each arc (p1p2 ... Pn-1, p2p3 ... Pn) of Dn is assigned the label P1P2 .. •Pn• D4 is 
shown in figure 10.10. , . 

Clearly, Dn is connected and each vertex of Dn has indegree two and 
outdegree two. Therefore (exercise 10.3.2) Dn has a directed Euler tour. 
This directed Euler tour, regarded as a sequence of arcs of Dn, yields a 
binary sequence of length 2° suitable for the design of the drum surface. 

For example, the digraph D4 of figure 10.10 has a directed Euler tour 
(a1, a2, ... , a16), giving the 16-digit binary sequence 0000111100101101. 
(Just read off the first digits of the labels of the aj.) A drum constructed from 
this sequence is shown in figure 10 .11. 

This application of directed Euler tours is due to Good ( 1946). 

Exercises 

10.5.1. Find a circular sequence of seven 0's and sev~n 1 's such that all 
4-digit binary numbers except 0000 and 1111 appear as blocks of 
the sequence. 

10.5.2 Let S be an alphabet of n letters; Show that there is a circular 
sequence containing n 3 copies of each letter such that every four
letter 'word' formed from letters of S appears as a black of the 
sequence. 

10.6 MAKING A ROAD SYSTEM ONE-WAY 

Given a road system, how can it be converted to one-way operation so that 
traffic may :ftow as smoothly as possible? 
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Arc Label 
a, 0000 
02 0001 
03 00 1 1 
04 0 1 1 1 
05 1 1 1 1 

as 1 1 1 0 
07 1 1 00 
oa 1001 

09 0010 
o,o 0101 
o,, 1 0 1 1 
o,2 0 1 1 0 

013 1 1 0 1 

0 14 1010 

015 0100 
o,s 1000 

Figure 10.10 

Figure 10 .11 
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This is clearly a problem on orientations of graphs. Consider, for exàmple, 
the two graphs, representing road networks, in figures 10.12a and 10.12b. 

No matter how G1 may be oriented, the resulting orientation cannot be 
diconne~ted-traffic will not be able to flow freely through the system. The 
trouble is that G1 has a eut edge. On the other hand G2 has the 'balanced' 
orientation D2 (figure 10.12c), in which each vertex is reachable from each 
other vertex in at most two steps; in particular D2 is diconnected. 

Certainly, a necessary condition for G to have a diconnected orientation 
is that G be 2-edge-connected. Rabbins (1939) showed that this condition is 
also sufficient. 

Theorem 10.5 If G is 2-edge-connected, then G has a diconnected orien
tation. 

Proof Let G be 2-edge-connected. Then G contains a cycle G1. We 
define inductively a sequence G1, G2, ... of connected subgraphs of G as 
follows: if Gi (i = 1, 2, ... ) is not a spanning subgraph of G, let vi be a vertex 
of G not in G;. Then (exercise 3.2.1) there exist edge-disjoint paths -P; and 
Q; from V; to G;. Define 

Gi+l = Gi u pi u Qi 

Since v( G;+1) > v( G;), this sequence must terminate in a spanning subgraph 
G" of G. 

We now orient G" by orienting G1 as a directed cycle, each path Pi as a 
directed path with origin V;, and each path Q; as a directed path with 
terminus V;. Clearly every G;, and hence in particular Gn, is thereby given a 
diconnected orientation. Since Gn is a spanning subgraph of G it follows that 
G, too, has a diconnected orientation 0 

Nash-Williams (1960) has generalised Rabbins' theorem by showing that 
every 2k-edge-connected graph G has a k-arc-connected orientation. Al
though the proof of this theorem is difficult, the special case when G has an 
Euler trail admits of a simple proof. 

( a ) ( b) ( C) 
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Theorem 10.6 Let G be a 2k-edge-connected graph with an Euler trail. 
Then G bas a k-arc-connected orientation. 

Proof Let voe1V1 •.. eevE be an Euler trail of G. Orient G by converting 
the edge ei with ends Vi-1 and vi to an arc ai with tail Vï-1 and head Vï, for 
1 < i < e. Now let [S, S] be an m-edge eut of G. The number of times the 
directed trail (vo, a1, V1, ..• , ae, Ve) crosses from S to S- differs from the 
number of times it crosses from S to S by at most one. Since it includes ail 
arcs of D, both (S, S) and (S, S) must contain at least [m/2] arcs. The result 
follows D 

Exercises 

10.6. l Show, by considering the Petersen graph, that the following state
ment is false: every graph G bas an orientation in which, for every 
Sc V, the cardinalities of (S, S) and (S, S) differ by at most one. 

10.6.2 (a) Show that Nash-Williams' theorem is equivalent to the follow
ing statement: if every bond of G bas at least 2k edges, then 
there is an orientation of G in which every bond has at Ieast k 
arès in each direction. 

( b) Show, by considering the Grotzsch graph (figure 8 .2 ), that the 
following analogue of Nash-Williams' theorem is false: if every 
cycle of G has at Ieast 2k edges, then there is an orientation of 
G in which every cycle has at least k arcs in each direction. 

} Ü. 7 RANKING THE PARTICIPANTS IN A TOURNAMENT 

A number of players_ each play one another in a tennis tournament. Given 
the outcomes of the games, how should the participants be ranked? 

Consider, for example, the tournament of figure 10.13; This represents 
the result of a tournament between six players; we see that player 1 beat 
players 2, 4, 5 and 6 and lost to player 3, and so on. 

One possible approach to ranking the participants would be to find a 
directed Hamilton path in the tournament (such a path exists by virtue of 
corollary 10.1), and then rank according to the position on the path. For 
instance, the directed Hamilton path (3, 1, 2, 4, 5, 6) would declare player 3 
the winner, player 1 runner-up, and so on. This method of ranking, 
however, does not bear further examination, since a tournament generally 
bas many directed Hamilton paths; our example has (1, 2, 4, 5, 6, 3), (1, 4, 
6, 3, 2, 5) and several others. 

Another approach would be to compute the scores (numbers of games 
won by each player) and compare them. If we do this we obtain the score 
vector . 

S1 . ( 4, 3, 3, 2, 2, 1) 
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1 

5 

Figure 10.13 

Graph Theory with Applications 

2 

4 

The drawback here is that this score vector does not distinguish between 
players 2 and 3 even though player 3 beat players with higher scores than 
did player 2. We are thus led to th~ second-level score vector 

S2 = (8, 5, 9, ~' 4, 3) 
,, 

in which each player's second-level score is the sum of the scores of the 
players he beat. Player 3 now ranks first. Continuing this procedure we 
obtain further vectors 

S3 = (15, 10, 16, 7, 12, 9) 

S4 = (38, 28, 32, 21, 25, 16) 

Ss = (90, 62, 87, 41, 48, 32) 

s6= (183, 121, 193, 80, 119, 87) 

The ranking of the players is seen to fluctuate a little, player 3 vying with 
player 1 for first place. We shall show that this procedure always converges 
to a fixed ranking when the tournament in question is diconnected and has 
at least four vertices. This will then lead to a method of ranking the players 
in any tournament. 

In a diconnected digraph D, the length of a shortest directed (u, v)-path is 
denoted by do{u, v) and is called the distance /rom u to v; the directed 
diameter of D is the maximum distance from any one vertex of D to any 
other. 

Theorem 1 O. 7 Let D be a diconnected tournament with v > 5, and let A be 
the adjacency matrix of D. Then Ad+) >O (every entry positive), where d is 
the directed diameter of D. 
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Proof The (i, j)th entry of A1. is precisely the number of directed (vi, v;)
walks of length k in D (exercise 10.1.8). We must therefore show that, for 
any two vertices vi and V; (possibly identical), there is a directed (vi, v;)-walk 
of length d + 3. 

Let di;= d( vi, v;). Then 0 <di;< d < v - 1 and therefore 

3 < d - dij + 3 < v + 2 

If d - di;+ 3 < v then, by theorem 10.3, there is a directed (d- di;+ 3)-cycle 
C containing V;. A directed (vi, v;)-path P of length di; followed by the 
directed cycle C together form a directed ( vi, v;)-walk of length d + 3, as 
desired. 

There are two special cases. If d - di;+ 3 = v + 1, then P followed by a 
directed (v- 2)-cycle through V; followed by a directed 3-cycle through v; 
constitute a directed (vi, v;)-walk of length d + 3 (the (v- 2)-cycle exists since 
v ~ 5); and if d- di;+ 3 = v + 2, then P followed by a directed (v-1)-cycle 
through V; followed by a directed 3-cycle through V; constitute such a 
walk D 

A real matrix R is called primitive if Rk > 0 for some k. 

Corollary 10. 7 The adjacency matrix A of a tournament D is primitive if 
and only if D is diconnected and v > 4. 

Proof If D is not diconnected, then there are vertices vi and V; in D such 
that -V; is not reachable from vj. Thus there is no directed (vi, v;)-walk in D. 
It follows that the (i, j)th entry of Ak is zero for ail k, and hence A is not 
primitive. 

Conversely, suppose that D is diconnected. If v > 5 then, by theorem 
10.7, Ad+ 3 >0 and so Ais primitive. There is just one diconnected tourna
ment on three vertices (figure 10.14a), and just one diconnected tournament 
on four vertices (figure 10.14b). It is readily checked ,that the adjacency 

( a ) ( b) 

Figure 10.14 
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matrix of the 3-vertex tournament is not primitive, and it can be shown that 
the ninth power of the adjacency matrix of the 4-vertex tournament has all 
entries positive D 

Returning now to the score vectors, we see that the ith-level score vector 
in a tournament D is given by 

where A is the adjacency matrix of D, and J is a column vector of l 's. If the 
matrix A is primitive then, by the Perron-Frobenius theorem (see 
Gantmacher, 1960), the eigenvalue of A with largest absolute value is a real 
positive number r and, furthermore, 

. (Ai 
~lm -) J = S 
,__.,oo r 

where s is a positive- eigenvector of A corresponding to r. Therefore, by 
corollary 10.7, if D is a diconnected tournament on at least four vertices, 
the normalised vector s (with entries summing to one) can be taken as the 
vector of relative strengths of the· players in D. In the example of figure 
.10.13, we find that (approximately) 

r = 2.232 and s = (.238, .164, .231, .113, .150, .104) 

Thus the ranking of the players given by this method is 1, 3, 2, 5, 4, 6. 
If the tournament is not diconnected, then (exercises 10.1.9 and 10.1.3b) 

its dicomponents can be linearly ordered so that the ordering preserves 
dominance. The participants in a round-robin tournament can now be 
ranked according to the following procedure. 

Step 1 In each dicomponent on four or more vertices, rank the players 
using the eigenvector s; in a dicomponent on three vertices rank ail three 
players equal. 

Step 2 Rank the dicomponents in their dominance-preserving linear order 
D1, D2, ... , Dm; that is, if i < j then every arc with one end in Di and one 
end in Di has its head in Di. 

This method of ranking is due to Wei (1952) and Kendall (1955). For 
other ranking procedures, see Moon and Pullman (1970). 

Exercises 

10.7.1 Apply the method of ranking described in section 10.7 to 

(a) the four tournaments shown in figure 10.4; 
(b) the tournament with adjacency matrix 
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A B C D E F G H I J 

A 0 1 1 1 1 1 0 0 1 1 
B 0 0 1 0 0 1 0 0 0 0 
C 0 0 0 0 0 0 0 0 0 .0 
D 0 1 1 0 1 1 0 0 1 0 
E 0 1 1 0 0 0 0 0 0 0 
F 0 0 1 0 1 0 0 0 0 0 
G 1 1 1 1 1 1 0 0 1 0 
H 1 1 1 1 1 1 1 0 1 1 
I 0 l 1 0 1 0 0 0 0 0 
J 0 1 1 1 1 1 1 0 1 0 

10.7.2 An alternative method of ranking IS to consider 'loss vectors' 
instead of score vectors. 

(a) Show that this amounts to ranking the converse tournament 
and then reversing the ranking so found. 

(b) By considering the diconnected tournament on four vertices, 
show that the two methods of ranking do not necessarily yield 
the same result. 
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11 Networks 
11.1 FLOWS 

Transportation networks, the means by which commodities are shipped from 
their production centres to their markets, can be most effectively analysed 
when they are viewed as digraphs that possess some additional structure. 
The resulting theory is the subject of this chapter. lt bas a wide range of 
important applications. 

A network N is a digraph D (the underlying digraph of N) with two 
distinguished subsets of vertices, X and Y, and a non-negative integer
valued function c defined on its arc set A; the sets X and Y are assumed to 
be disjoint and nonempty. The vertices in X are the sources of N and those 
in Y are the sinks of N. They correspond to production centres and 
markets, respectively. Vertices which are neither sources nor sinks are called 
intermediate vertices; the set of such vertices will be denoted by I. The 
function 'c is the capacity function of N and its value on an arc a the 
capacity of a. The capacity of an arc can be thought of as representing the 
maximum rate at which a commodity can be transported along it. 

We represent a network by drawing its underlying digraph and labelling 
each arc with its capacity. Figure 11.1 shows a network with two sources X1 

and x2, three sinks Yi, y2 and y3, and four intermediate vertices v1, v2, V3 and 
V4. 

If Sc V, we denote V\S by S. In addition, we shall find the following 
notation useful. If f is a real-valued function defined on the arc set A of N, 
and if K c A, we denote L f(a) by f(K). Furthermore, if K is a set of arcs 

_ aEK 

of the form (S, S), we shall write f+(S) for f(S, S) and f-(s) for f(S, S). 
A ftow in a network N is an integer-valued function f defined on A such 

that 

O<f(a)<c(a) forall aEA (11.1) 
and 

(11.2) . 

The value f(a) of f on an arc a can be likened to the rate at which 
material is transported along a _ under the flow f. The upper bound in 
condition (11.1) is called the capacity constraint; it imposes the natural 
restriction that the rate of flow along an arc cannot exceed the capacity of 
the arc. Condition (11.2), called the conservation condition, requires that, for 
any intermediate vertex v, the rate at which material is transported into v is 
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Figure 11.1. A network 

equal to the rate at which it is transported out of v. Note that every network 
has at least one flow, since the function f defined by tea) = 0, for ail a E A, 
clearly satisfies both (11.1) and e11.2); it is called the zero flow. A less trivial 
example of a flow is given in figure 11.2. The flow along each arc is indicated 
in bold type. 

If S is a subset of vertices in a network N and f is a flow in N, then 
f+es)- ,-es) is called the resultant flow out of S, and ,-es)- f+es) the 
resultant flow into S, relative to f. Since the conservation condition requires 
that the resultant flow out of any intermediate vertex is zero, it is intuitively 
clear and not difficult to show eexercise 11.1.3) that, relative to any flow f, 
the resultant flow out of X is equal to the resultant flow into Y. This 
common quantity is called the value of f, and is denoted by val f; thus 

val f = f+ex)-t-ex) 

The value of the flow indicated in figure 11.2 is 6. 
A flow f in N is a maximum flow if there is no flow f' in N such that 

val f' > val f. Such flows are of obvious importance in the context of trans
portation networks. The problem of determining a maximum flow in an 
arbitrary network can be reduced to the case of networks that have just one 

Figure 11.2. A flow in a network 
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x, 

X 

Figure 11.3 

source and one sink by means of a simple device. Given a network N, 
construct a new network N' as follows: 

(i) adjoin two new vertices x and y to N; 
(ii) join x to each vertex in X by an arc of capacity oc; 

(iii) join each vertex in Y to y by an arc of capacity oo; 
(iv) designate x as the source and y as the sink of N'. 

Figure 11.3 illustrates this procedure as applied to the network N of figure 
11. 1. 

Flows in N and N' correspond to one an1other in a simple way. If f is a 
flow in N such that the resultant ftow out of each source and into each sink is 
non-negative (it suffices to restrict our attention to such flows) then the function 
f' defined by 

lf(a) if a is an arc of N 

f'(a) = f+(v)- f~(v) if a= (x, v) 

f-(v)-f+(v) if a=(t:,y) 

(11.3) 

is a flow in N' such that val f' = val f (exercise 11.1.4a). Conversely, the 
restriction to the arc set of N of a ftow in N' is a flow in N having the same 
value (exercise l l. l.4b). Therefore, throughout the next three sections, we 
shall confine our attention to networks that have a single source x and a 
single sink y. 

Exercises 

11. 1. 1 For each of the following networks (see diagram, p. 194), determine 
ail possible flows and the v~lue of a maximum flow. 

11.1.2 Show that, for any flow. f in N and any Sc V, 

L (/+(v) ~ f-(v)) = f+(S)- /-(s) 
vES 



194 Graph Theory with Applications 

X y 

1 

X y 

Exercise 11.1.1 1 

11.1.3 Show that, relative to any ftow f in N, the resultant ftow out of X is 
equal to the resultant ftow into Y. 

11.1.4 Show that 

(a) the• function f' given by (11.3) is a flow in N' and that 
val f' = val f; 

(b) the restriction to the arc set of N of a flow in N' is a flow in N 
having the same value. 

11.2 CUTS 

Let N be a network with a single source x and a single sink y. A eut in N is 
a set of arcs of the form (S, S), where x ES and y ES. In the networ.k of 
figure 11.4, a eut is indicated by heavy lines. 

The capacity of a eut K is the sum of the capacities of its arcs. We denote 
the capacity of K by cap K; thus 

cap K = L c(a) 
aEK 

The eut indicated in figure 11.4 has capacity 16. 

3 5 

X y 

5 3 

Figure 11.4 .. A eut in a network 
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Lemma 11.1 For any ftow f and any eut (S, S) in N 

(11.4) 

Proof Let f be a ftow and (S, S) a eut in N. From the definitions of flow 
and value of a flow, we have 

f+(v)-f-(v) = {val f ~f v = x 
0 1f VE S\{x} 

Summing these equations over S and simplifying (exercise 11.1.2), we 
obtain 

val f = L (f+(v)- f-(v)) = /+(S)-/-(S) D 
vES 

lt is convenient to call an arc a /-zero if /(a)= 0, /-positive if f(a) > 0, 
f-unsaturated if /(a)< c(a) and f-saturated if /(a)= c(a). 

Theorem 11.1 For any flow f and any eut K = (S, S) in N 

val f <cap K (11.5) 

Furthermore, equality holds in (11.5) if and only if each arc in (S, S) is 
f-saturated and each arc in (S, S) is /-zero. 

Proof By (11.1) 

and 
(11.6) 

(11.7) 

We obtain (11.5) by substituting inequalities (11.6) and (11.7) in (11.4). 
The second statement follows, on noting that equality holds in (11.6) if and 
only if each arc in (S, S) is f-saturated, and equality holds in (11. 7) if and 
onlY, if eaeh arc in (S, S) is /~zero □ 

A eut K in N is a minimum eut if there is no eut K' in N sueh that 
cap K' < cap K. If f * is a maximum flow and K. is a minimum eut, we have, 
as a special case of theorem 11.1, that 

valf*<capK (11.8) 

Corollary 11.1 Let f be a flow and K be a eut such that val f = cap K. Then 
f is a maximum flow and K is a minimum eut. 

Proof Let f* be a maximum flow and K. a minimum eut. Then, by (11.8), 

val f < val f *<cap K.< cap K 

Since, by hypothesis, val f = cap K, it follows that val f = val f* and cap K = 
cap K. Thus f is a maximum flow and K is a minimum eut □ 



196 Graph Theory with Applications 

In the next section, we shall prove the converse of corollary 11.1, namely 
that equality always holds in (11.8). 

Exercises 

11.2.1 In the following network: 

(a) determine ail cuts; 
(b) find the capacity of a minimum eut; 
( c) show that the flow indicated is a maximum flow. 

X 

22 

11.2.2 Show that, if there exists no directed (x, y )-path in N, then the 
vatue of a maximum flow and the capacity of a minimum eut are 
both zero. 

11.2.3 If (S, S) and €T, T) are minimum cuts in N, show that (Su T, Sun 
and (Sn T, Sn n are also minimum cuts in N. 

11.3 THE MAX-FLOW MIN-CUT THEOREM 

In this section we shall present an algorithm for determining a maximum 
flow in a network. Since a basic requirement of 'any such algorithm is that it 
be able to decide when a given flow is, in fact, a maximum flow, we first look 
at this question. 

Let f be a flow in a network N. With each path P in N we associate a 
non-negative integer t(P) defined by 

t(P) = min t(a) 
aEA(P) 

where 

( ) = {c(a) - f(a) if a is a forward arc of P 
t a f(a) if a is a reverse arc of P 

As may easily be seen, t(P) is the Iargest amount by which the flow along P 
can be increased (relative to f) without violating condition (11.1). The path 
P is said to be f-saturated if t(P) = 0 and f-unsaturated if t(P) >0 (or, 
equivalently, if each forward arc of P is f-unsaturated and each reverse arc 
of Pis /-positive). Put simply, an f-unsaturated path is one that is not being 
used to its full capacity. An f-incrementing path is an f-unsaturated path 
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from the source x to the sink y. For example, if fis the flow indicated in the 
network of figure 11.5a, then one f-incrementing path is the path P = 
XV1V2V3y. The forward arcs of Pare (x,v1) and (v3,y) and t(P)=2. 

The existence of an f-incrementing path P in a network is significant since 
it implies that fis not a maximum flow; in fact, by sending an additional flow 
of t(P) along P, one obtains a new flow / defined by 

lf (a)+ t (P) if a is a forward arc of P 

/(a)= f(a)- t(P). if a is a reverse arc of P (11.9) 

f(a) otherwise 

for which val/= val f + t(P) (exercise 11.3.1). We shall refer to / as the 
revised flow based on P. Figure 11.5 b shows the revised flow in the network 
of figure 11.Sa, based on the f-incrementing path XV1V2V3y. 

The rôle played by incrementing paths in flow theory is analogous to that 
of augmenting paths in matching theory, as the following theorem shows 
(compare theorem 5.1). 

Theorem 11.2 A flow f in N is a maximum flow if and only if N contains 
no f-increménting path. 

Proof If N contains an f-incrementing path P, then f cannot be a 
maximum flow since /, the revised flow based on P, has a larger value. 

Converse]y, suppose that N con tains no f-incrementing path. Our aim is 
to show that f is a maximum flow. Let S denote the set of all vertices to 
which x is connected by f-unsaturated paths in N. Clear1y x ES. Also, since 
N has no f-incrementing path, y ES. Thus K = (S, S) is a eut in N. We shall 
show that each arc in (S, S) is f-saturated and each arc in (S, S) is f-zero. 

Consider an arc a with tail u ES and head v ES. Since u ES, there exists 
an f-unsaturated (x, u)-path Q. If a were f-unsaturated, then Q could be 
extended by the arc a to yield an f-unsaturated (x, v )-path. But v ES, and so 
there is no such path. Therefore a must be f-saturated. Similar reasoning 
shows that if a E (S, S), then a must be· f-zero. 

X y X y 

(a) (b) 

Figure 11.5. (a) An f-incrementing path P; (b) revised flow based on P 
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On applying theorem 11.1, we obtain 

val f = cap K 

It now follows from corollary 11.1 that f is a maximum flow (and that K is a 
minimum eut) D 

In the course of the above proof, we established the existence of a 
maximum flow f and a minimum eut K such that val f = cap K. We thus have 
the following theorem, due to Ford and Fulkerson (1956). 

Theorem 11.3 In any network, the value of a maximum flow is equal to the 
capacity of a minimum eut. 

Theorem 11.3 is known as the max-flow min-eut theorem. lt is of central 
importance in graph theory. Many results on graphs tum out to be easy 
consequences of this theorem as applied to suitably chosen networks. In 
sections 11.4 and 11.5 we shall demonstrate two such applications. 

The proof of theorem 11.2 is constructive in nature. We extract from it an 
algorithm for finding a maximum flow in a network. This algorithm, also due 
to Ford and Fulkerson (1957), is known as the labelling method. Starting 
with a known flow, for instance the zero flow, it recursively constructs a 
sequence of flows of increasing value, and terminates with a maximum flow. 
After the construction of each new flow f, a subroutine called the labelling 
procedure is used to find an f-incrementing path, if one exists. If such a path 
P is found, then Î, the revised flow based on P, is constructed and taken as 
the next ftow in the sequence. If there is no such path, the algorithm. 
terminates; by theorem 11.2, fis a maximum ftow. 

To describe the labelling procedure we need the following definition. A 
tree Tin N is an f-unsaturated tree if (i) x E V(T), and (ii) for every vertex v 
of T, the unique (x, v )-path in T is an f-unsaturated path. Such a tree is 
shown in the network of figure 11.6. 

The search for an f-incrementing path. involves growing an f-unsaturated 
tree Tin N. Initially, T consists of just the source x. At any stage, there are 
two ways in which the tree may grow: 
1. If there exists an f-unsaturated arc a in (S, S), where S = V(T), then bath 

a and its head are adjoined to T. 

X 

V1 23 V4 22 V5 

Figure 11.6. An f-unsaturated tree 

y 
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2. If there exists an {-positive arc a in (S, S), then both a and its tail are 
adjoined to T. 

Clearly, each of the above procedures results in an enlarged f-unsaturated 
tree. 

Now either T eventually reaches the sink y or it stops growing before 
reaching y. The former case is referred to as breakthrough; in the event of 
breakthrough, the (x, y )-path in T is our desired f-incrementing path. If, 
however, T stops growing before reaching y, we deduce from theorem 11.1 
and corollary 11.1 that f is a maximum flow. In figure 11. 7, two iterations of 
this tree-growing procedure are illustrated. The first leads to breakthrough; 
the second shows that the resulting revised flow is a maximum flow. 

The labelling procedure is a systematic way of growing an f-unsaturated 
tree T. In the process of growing T, it assigns to each vertex v of T the label 
l (v) = i(Pv), where Pv is the unique (x, v )-path in T. The advantage of this 
labelling is that, in the event of breakthrough, we not only have the 
f-incrementing path Py, but also the quantity i{Py) with which to calculate 
the revised flow based on Py, The labelling procedure begins by assigning to 
the source x the label l (x) = oo. It continues according to the following rules: 

1. If a is an f-unsaturated arc whose tail u is already labelled but whose 
head v is not, then v is labelled l(v) = min {l(u), c(a)- f(a)}. 

2. If a is an /-positive arc whose head u is already labelled but whose tail v 
is not, then vis labelled l(v)=min{l(u),f(a)}. 

In each of the above cases, v is said to be labelled based on u. To scan a 
labelled vertex u is to label ail unlabelled vertices that can be labelled based 
on u. The labelling procedure is continued until either the sink y is labelled 
(breakthrough) or all labelled vertices have been scanned and no more 
vertices can be labelled (implying that f is a maximum ftow). 

A ftow diagram summari~ing the labelling method is given in figure 11.8. 
It is worth pointing out that the labelling method, as described above, is 

not a good algorithm. Consider, for example, the network Nin figure 11.9. 
Clearly, the value of a maximum ftow in N is 2m. The labelling method will 
use the labelling procedure 2m + 1 times if it starts with the zero flow and 
alternates between selecting xpuvsy and xrvuqy as an incrementing path; 
for, in each case, the flow value increases by exactly one. Since m is 
arbitrary, the number of computational steps required to implement the 
labelling method in this instance can be bounded by no functjon of .,, and e. 
In other words, it is not a good algorithm. 

However, Edmonds and Karp (1970) have shown that a slight refinement 
of the labelling procedure tums it into a good algorithm. The refinement 
suggested by them is the following: in the labelling procedure, scan on a 
'first-labelled first-scanned' basis; that is, before ~canning a labelled vertex 
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X 

Find revised flow 

f bosed on P 

YES: 

3 an f
incrementing path P 

X 

Figure 11.7. (Cont'd) 

STÀRT: 

Input ftow f 
(e.g. zero flow) 

{x}-L 

0--s 
co-+- l(x) 

3 11ertex u € L\S 

Scan u 
LUL(u)---L 

NO: 

3 vertex 
U€ L\S 

NO 

v, 

~-------1 s u { u) -- s 

YES 

Figure 11.8. The labelling method (L, set of labelled vertices; S, set of scanned 
vertices; L(u), set of vertices labelled during scanning of u) 

STOP: 
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u, scan the vertices that were labelled before u. It can be seen that this 
amounts to selecting a shortest incrementing path. With this refinement, 
clearly, the maximum ftow in the network of figure 11.9 would be found in 
just two iterations of the labelling procedure. 

Exercises 

11.3.1 Show that the function / given by (11.9) is a ftow with val Î = 
val f + 1,(P). 

11.3.2 A certain commodity is produced at two factories X1 and X2. The 
commodity is to be shipped to markets yi, Yi and y3 through the 
network shown below. Use the labelling method to determine the 
maximum amount that can be shipped from the factories to the 
markets. 

11.3.3 Show that, in any network N (with integer capacities), there is a 
maximum ftow f such that f (a) is an integer for ail a E A. 
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11.3.4 Consider a network N such that with each arc a is associated an 
integer b (a) < c (a). Modify the labelling method to find a maximum 
flow f in N subject to the constraint f(a) > b(a) for all a E A 
(assuming that there is an initial flow satisfying this condition). 

11.3.5* Consider a network N such that with each intermediate vertex v is 
associated a non-negative integer m(v). Show how a maximum flow 
f satisfying the constrain t f-( v) < m ( v) for all v E V\ { x, y} can be 
found by applying the labelling method to a modified network. 

APPLICATIONS 

11.4 MENGER'S THEOREMS 

In this section, we shall use the max-flow min-eut theorem to obtain a 
number of theorems due to Menger (1927); two of these have already been 
mentioned in section 3.2. The following lemma provides a basic link. 

Lemma 11.4 Let N be a network with source x and sink y in which each 
arc has unit capacity. Then 

(a) the value of a maximum flow in N is equal to the maximum number m 
of arc-disjoint directed (x, y )-paths in N; and 

(b) the capacity of a minimum eut in !'J' is equal to the minimum number n 
of arcs whose deletion destroys ail directed (x, y )-paths in N. 

Proof Let f* be a maximum flow in N and let D* denote the digraph 
obtained from D by deleting ail /*-zero arcs. Since each arc of N has unit 
capacity, f*(a) = 1 for ail a E A(D*). lt follows that 

(i) dt,.(x )- do•(x) = val f * = do•(Y )- dt,.(y); 
(ii) dt,.(v) = do•(v) for all vE V\{x, y}. 

Therefore (exercise 10.3.3) there exist val f* arc-disjoint directed (x, y)
paths in D*, and hence also in D. Thus 

val/*< m (11.10) 

Now let P1, P2, ... , Pm be any system of m arc-disjoint directed (x, y)
paths in N, and define a function f on A by 

· . { 1 if a is an arc of O Pi 
f(a) = i=l 

0 otherwise 

Clearly fis a ftow in N with value m. Since f* is a maximum ftow, we have 

valf*>m (11.11) 
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It now follows from (11.10) and (11.11) that 

val f* = m 

Let K.= (S, S) be a minimum eut in N. Then, in N ~ K., no vertex of S is 
reachable from any vertex in S; in particular, y is not reachable from x. 
Thus K. is a set of arcs whose deletion destroys ail directed (x, y )-paths, and 
we have 

cap K = 1.KI> n (11.12) 

Now let Z be a set of n arcs whose deletion destroys ail directed 
(x, y )-paths, and denote by S the set of ail vertices reachable from x in 
N - Z. Since x ES and y ES, K = (S, S) is a eut in N. Moreover, by the 
definition of S, N - Z can contain no arc of (S, S), and so K c Z. Since K is 
a minimum eut. we conclude that 

cap K. <cap K = IKl<IZI = n 

Together, (11.12) and (11.13) now yield 

cap K = n □ 

(11.13) 

Theorem 11.4 Let x and y be two vertices of a digraph D. Then the 
maximum number of arc-disjoint directed (x, y )-paths in D is equal to the 
minimum number of arcs whose deletion destroys a~l directed (x, y )-paths in 
D. 

Proof We obtain a network N with source x and sink y by assigning unit 
capacity to each arc of D. The theorem now follows from lemma 11.4 and 
the max-flow min-eut theorem (11.3) D 

A simple trick immediately yields the undirected version of theorem 11.4. 

Theorem 11.5 Let x and y be two vertices of a graph G. Then the· 
maximum number of edge-disjoint (x, y )-paths in G is equal to the 
minimum number of edges whose de let ion destroys all (x, y )-paths in G. 

Proof Apply theorem 11.4 to D(G), the associated digraph of G (exer
cise 10.3.6) D 

Corollary 11.5 A graph G is k-edge-connected if and only if any two 
distinct vertices of G are connected by at least k edge-disjoint paths. 

Proof This follows directly from theorem 11.5 and the definition of k
edge-connectedness D 

We now turn to the vertex versions of the above theorems. 
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Theorem 11.6 Let x and y be two vertices of a digraph D, such that x is 
not joined to y. Then the maximum number of internally-disjoint directed 
(x, y )-paths in D is equal to the minimum number of vertices whose deletion 
destroys all directed (x, y )-paths in D. 

Proof Construct a new digraph D' from D as follows: 

(i) split each vertex v E V\{x, y} into two new vertices v' and v", and join 
them by an arc ( v', v"); 

(ii) replace each arc of D with head ve V\{x, y} by a new arc with head v', 
and each arc of D with tail v E V\{x, y} by a new arc with tail v". This 
construction is illustrated in figure 11.10. 

Now to each directed (x, y )-path in D' there corresponds a directed 
(x, y )-path in D obtained by contracting all arcs of type ( v', v"); and, 
conversely, to each directed (x, y')-path in D, there corresponds a directed 
(x, y )-path in D' obtained by splitting each internai vertex of the path. 
Furthermore, two directed (x, y )-paths in D' are arc-disjoint if and only if 
the corresponding paths in D are internally-disjoint. It follows that the 
maximum number of arc-disjoint directed (x, y )-paths in D' is equal to the 
maximum number of internally-disjoint directed (x, y )-paths in D. Similarly, 
the minimum number of arcs in D' whose deletion destroys ail directed 
(x, y )-paths is equal to the minimum number of vertices in D whose deletion 
destroys all directed (x, y )-paths ( exercise 11.4.1). The theorem now follows 
from theorem 11.4 D 

Theorem 11. 7 Let x and y be two nonadjacent vertices of a graph G. Tuen 
the maximum number of internally-disjoint (x, y )-paths in G is equal to the 
minimum number of vertices whose deletion destroys all (x, y )-paths. 

Proof Apply theorem 11.6 to D(G), the associated digraph of G D 

The following corollary is immediate. 

Corollary 11. 7 A graph G with v ~ k.+ 1 is k-connected if and only if any 
two distinct vertices of G are connected by at least k internally-disjoint 
paths. 

u V u' u" v' v" 

w z w' w" z' · z" 

Figure 11.10 



206 Graph Theory with Applications 

Exercises 

11.4.1 Show that, in the proof of theorem 11.6, the minimum number of 
arcs in D' whose deletion destroys ail directed (x, y )-paths is equal 
to the minimum number of vertices in D whose deletion destroys 
ail directed (x, y )-paths. 

l l.4.2 Derive Kônig's theorem (5.3) from theorem 11.7: 
11.4.3 Let G be a graph and let S and T be two disjoint subsets of V. 

Show that the maximum number of vertex-disjoint paths with one 
end in S and one end in T is equal to the minimum number of 
vertices whose deletion separates S from T (that is, after deletion 
no component contains a vertex of S and a vertex of T). 

11.4.4 * Show that if G is k-connected with k > 2, then any k vertices of G 
are contained together in some cycle. (G. A. Dirac) 

11.5 FEASIBLE FLOWS 

Let N be a network. Suppose that to each source xi of N is assigned a 
non-negative integer u(xi), called the supply at xi, and to each sink Y; of N is 
assigned a non-negative integer a(y;), called the demand at y;. A flow f in N 
is said to be feasible if 

f+(xi)- /-(xi)< u(xi) for ail xi EX 
and 

f-(y;)-f+(y;)>a(y;) for all Y;E Y 

In other words, a ftow f is feasible if the resultant ftow out of each source Xi 

relative to f does not exceed the supply at Xi, and the resultant ftow into 
each sink y; relative to f is at least as large as the demand at y;. A natural 
question, then, is to ask for necessary and· sufficient conditions for the 
existence of a feasible flow in N. Theorem 11.8, due to Gale (1957), 
provides an answer to this question. lt says that a feasible flow exists if and 
only if, for every subset S of V, the total capacity of arcs from S to S is at 
least as large as the net demand of S. · 

For any subset S of V, we shall denote L u(v) by u(S) and L a(v) by 
vES vES 

a(S). 

Theorem 11.8 There exists a feasible ftow in Nif and only if, for all Sc V 

c(S, S) >a(Y n S)-u(X n S) 

Proof Construct a new network N' from N as follows: 

(i) adjoin two new vertices x and y to N; 
(ii) join x to each xi EX by an arc of capacity u(xi); 

(11.14) 
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(iii) join each yj E Y to y by an arc of capacity a(yj); 
(iv) designate x as the source and y as the sink of N'. 

This construction is illustrated in figure 11.11. 
It is not diffi.cult to see that N has a feasible flow if and only if N' bas a 

flow that saturates each arc of the eut (Y, {y}) (exercise 11.5.1). Nowa flow 
in N' that saturates each arc of (Y,{y}) clearly bas value a(Y)=cap(Y,{y}), 
and is therefore, by corollary 11.1, a maximum flow. It follows that N has a 
feasible flow if and only if, for each eut (SU {x }, SU {y}) of N' 

cap (SU {x}, SU {y})> a(Y) (11.15) 

But conditions (11.14) and (11.15) are precisely the same; for, denoting the 
capacity function in N' by c', we have 

cap (SU {x}, SU {y})= c'(S, S) + c'(S, {y})+ c'({x}, S) 

=c(S,S)+a(YnS)+a(XnS) D 

There are man y applications of theorem 11.8 to problems in graph theory. 
We shall discuss one such application. 

Let p = (p1, p2, ... , Pm) and q = (q1, q2, ... , qn) be two sequences of non
negative integers. We say that the pair (p, q) is realisable by a simple bipartite 
graph if there exists a simple bipartite graph G with bipartition 
({xi, X2, ••• , Xm}, {y1, Y2, ... , Yn}), such that 

d(xi) = pi for 1 < i ::5 m 
and 

d(y;)=q; for l<j::5n 

For ex ample, the pair (p, q), where 

p = (3, 2, 2, 2, 1) and q = (3, 3, 2, 1, 1) 

is realisable by the bipartite graph of figure 11.12. 

X 

Figure 11.11 
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3 2 2 2 1 

3 3 2 

Figure 11.12 

An obvious necessary condition for realisability is that 

(11.16) 

However, (11.16) is not in itself sufficient. For instance, the pair (p, q), 
where 

p = (5, 4, 4, 2, 1) and q = (5, 4, 4, 2, 1) 

is_ not realisable by any simple bipartite graph (exercise 11.5.2). In the 
following theorem we present necessary. and sufficient conditions for the 
realisability of a pair of sequences by a simple bipartite graph. The order of 
the terms in the sequences clearly bas no beari_ng on the question of 
realisability, and we shall find it convenient to assume that the terms of q are 
arranged in nonincreasing order 

(11.17) 

Th.eorem 11. 9 Let p = (pi, p2, ... , Pm) and q = (q 1, q2, ... , qn) be two se
quences of non-negative integers that satisfy (11.16) and ·(11.17). Then (p; q) 
is realisable by a simple bipartite graph if and only if 

m k 

·L min{pi, k}> L qj for 1 < k :5 n (11.18) 
i•t j-=1 

Proof Let X= {x1, X2, . , . , Xm} and Y= {yi, Y2, ... , Ynl be two disjoint 
sets, and let D be the digraph obtained from the complete bipartite graph 
with bipartition (X, Y) by orienting each edge from X to Y. We obtain a 
network N by assigning unit capacity to each arc of D and designating the 
vertices in X and Y as its sources and sinks, respèètively. We shall ·assume, 
further, that the supply at source xi is pi; 1 < i < m, · and that the demand at 
sink Yi is qh 1 :5j < n. 

Now, to each spanning subgraph of D, there corresponds a ftow in N 
which saturates precisely the ar~s of the subgraph, and this correspondence 
is clearly one-one. In view of (11.16), it follows that (p, q) is realisable by a 
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simple bipartite graph if and only if the network N has a feasible flow. We 
now use theorem 11.8. 

For any set S of vertices in N, write 

I(S) = {i I xi ES} and J(S) = {j j Yi ES} 

Then, by definition, 
c(S, S) = IJ(S)I IJ(S)I } 

<T(X n S) = L p; and a( Y n S) = I qi 
iEI(S) jEJ(S) 

(11.19) 

Suppose that N has a feasible flow. By theorem 11.8 and (11.19) 

II(S)I IJ(S)I > I q;- I Pi 
jEJ(S) iEI(S) 

for any Sc X U Y. Setting S = {xi I pi> k} U{y; 1 j > k}, we have 
k 

L min{pi, k} > L qi - L min{pi, k} 
iEl(S) j = 1 iEl(S) 

Since this holds for ail values of k, ( 11.18) follows. 
Conversely, suppose that (11.18) is satisfied. Let S be any set of vertices 

in N. By (11.18) and (11.19) 

k 

c(S, S)> L min{pi, k}> L q;- L min{pï, k}>a(YnS)-<T(XnS) 
iEl(S) j = 1 jEI(S) 

where k = IJ(S)I. It follows from theorem 11.8 that N bas a feasible flow D 

We conclude by looking at theorem 11.9 from the viewpoint of matrices. 
With each simple bipartite graph G having bipartition ({x1, X2, ••• , Xm}, 
{y1, Y2, ... , Yn}), we can associate an m x n matrix B in whieh _bi; = 1 or 0, 
depending on whether XïY; is an edge of G or not. Conversely, every m x n 
(0, 1)-matrix corresponds in this way to a simple--bipartite graph. Thus 
theorem 11.9 provides necessary and sufficient conditions for the existence 
of an m x n (0, 1)-matrix B with row sums p1, p2, ... , Pm and column sums 
q1, q2, • • • , qn, 

There is a simple way of visualising condition (11.18) in terms of matrices. 
Let B* denote the (0, 1)-matrix in which the pi leading terms in each row i 
are ones, and the remaining entries are zeros, and let pf, pt ... , p~ be the 
column sums of B*. The sequence p* = (pT, p!, ... , p!) is called the conju
gate of p. The conjugate of (5, 4, 4, 2, 1) is (5, 4, 3, 3, 1), for example (see 
figure 11.13). 

k 

Now consider the sum L p;. Row i of B* con tri butes min{pi, k} to this 
j=l 

k 

sum. Therefore the left-hand side of (11.18) is equal to L pf, and (11.18) is 
j=l 
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p* 

5 4 3 3 1 

5 1 1 1 1 1 

4 1 1 1 1 0 

p 4 1 1 1 1 0 

2 1 1 0 0 0 

1 1 0 0 0 0 

Figure 11.13 

equivalent to the condition 
k k 

L pf > L qj for 1 < k < n 
j=-1 j=l 

This formulation of theorem 11.9 in terms of (0, 1)-m~trices is due to Ryser 
(1957). For other applications of the theory of flows in networks, we refer 
the reader to Ford and Fulkerson (1962). 

Bxercises 

11.5 .1 Show that the network N in the proof of theorem 11.8 has · a 
feasible flow if and only if N' has a flow that saturates each arc of 
the eut (Y, {y}). 

11.5.2 Show that the pair (p, q), where 

p = (5, 4,4, 2, 1) and q = (5, 4, 4, 2, 1) 

is not realisable by any simple bipartite graph. 
11.5.3 Given two sequences, p = (pi, p2, ... , Pn) and q = (q1, q2, ... , qn), 

find necessary and suffi.cient conditions for the existence of a 
digraph D on the vertex set {v1, v2, ... , vn}, such that (i) d-(v;) = p; 
and d+(vï) = qi, 1 < i < n, and (ii) D bas a (0, 1) adjacency matrix. 

11.5 .4 * Let p = (pi, P2, ... , Pm) and q = ( q 1, q2, ... , qn) be two nonincreasing 
sequences of non-negative integers, and denote the sequences 
(p2, p3, ... 'Pm) and (q1 -1, q2- l, ... 'qpl -1, qp1+h ... 'qn) by p' and 
q', respectively ._ · 

(a) Show that (p, q) is realisable by asimple bipartite graph if and 
only if the same is true of (p', q'). 

(b) Using (a), describe an algorithm for constructing a simple 
bipartite graph which realises (p, q), if such a realisation exists. 

11.5.5 An (m + n)-regular graph Gis (m,n)-orientable if it can be oriented 
so that each indegr~e is either m or n. 
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(a)* Show that G is (m,n)-orientable if and only if there is a 
partition (V1, V2) of V such that, for every Sc V, 

l(m - n)(IV1 n SI-IV2 n Sl}I < l[S, S]I 

(b) Deduce that if G is (m,n )-orientable and m > n, then G is also 
(m - 1, n + I )-orientable. 
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12 The Cycle Space and 
Bond Space 

12.1 CIRCULATIONS AND POTENTIAL DIFFERENCES 

Let D be a digraph. A real-valued function f on A is called a circulation in 
D if it satisfies the conservation condition at each vertex: 

(12.1) 

If we think of D as an electrical network, then such a function f represents a 
circulation of currents in D. Figure 12.1 shows a circulation in a digraph. 

If f and g are any two circulations and r is any real number, then it is easy 
to verify that both f + g and rf are also circulations. Thus the set of all 
circulations in D is a vector space. We denote this space by ~- In what 
follows, we shall find it convenient to identify a subset S of A with D[S], 
the subdigraph of D induced by S. 

There are certain circulations of special interest. These are associated with 
cycles in D. Let C be a cycle in D with an assigne9 orientation and let c+ 
denote the set of arcs of C whose direction agrees with this orientation. We 
associate with C the function [c defined by 

{ 
1 if ·a E C+ 

f c(a) = -1 if a E C\C+ 

0 if afi C 

Clearly, /c satisfies (12.1) and hence is a circulation. Figure 12.2 depicts a 
circulation associated with a cycle. 

We shall see later on that each circulation is a linear combination of the 
circulations associated with cycles. For this reason we refer to ~ as the cycle 
space of D. 

We now turn our attention to a related class of functions. Given a 
function p on the vertex set V of D, we define the function 8p on the arc set 
A by the rule that, if an arc a has tail x and head y, then 

8p(a) = p(x)- p(y) (12.2) 

If D is thought of as an electrical network with potential p(v) at v, then, by 
(12.2), 8p represents the potential difference along the wires of the network. 
For this reason a function g on A is called a potential difference in D if 
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5 

Figure 12 .1. A circulation 

g = 8p for some function p on V. Figure 12.3 shows a digraph with an 
assignment of potentials to its vertices and the corresponding potential 
difference. 

As with circulations, the set 00 of all potential differences in D is closed 
under addition and scalar multiplication and, hence, is a vector space. 

Analogous to th~ function f c associated with a cycle C, there is a function 
ga associated with a bond B. Let B = [S, S] be a bond of D. We define ga by 

It can be verified that ga = 8p where 

p(v) = {~ 

if a E (S, S) 

if a E (S, S) 

if aé B 

if VE S 

if VE S 
Figure 12.4 depicts the potential difference associated with a bond. 

We shall see that each potential difference is a linear combination of 
potential differences ass0ciated' with bonds. For this reason we refer to 00 as 
the bond space of D. 

In studying the properties of the two vector spaces 00 and Cf6, we shall find 

1 
Figure 12.2 
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-1 -3 

4 -3 
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2 

5/4 

1 

Figure 12.3. A potential difference 

· it conventent to regard a function on A as a row vector whose coordinates 
are labelled with the elements of A. The relationship between 00 and Cf6 is 
best seen by introducing the incidence matrix of D. With each vertex v of D 
we associate the function mv on . A defined by 

{ 
1 if a is a link and v is the tail of a 

mv(a) = -1 if ais a link and v is the head of a 

0 otherwise 

The incidence matrix of D is the matrix M whose rows are the functions mv, 
Figure 12.5 shows à digraph and its incidence matrix. 

Theorem 12.1 Let M be the incidence matrix of a digraph D. Tuen 00 is 
the row space of M and Cf6 is its orthogonal complement. 

Proof Let g = 6p be a potential difference in D. It follows from (12.2) 
that 

g(a) = L p(v)mv(a) for all a E A 
vEV 

Thus g is a linear combination of the rows of M. Conversely, any linear 
combination of the rows of Mis a potential difference. Hence 00 is the row 
space of M. 

1 0 

Figure 12.4 

0 

0 

1 
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X 

V 

(a) 

a b c d e 
X 10100 
u _, 1 0 -1 0 
V 0 0 -1 1. 1 
y O _, 0 0 -1 

( b) 

Figure 12.5. (a) D; (b) the incidence matrix of D 
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Now let f be a fun~tion on A. The condition (12.1) for f to be a 
circulation can be rewritten as 

L mv(a)f(a) = 0 for ail v EV 
aEA 

This implies that f is a circulation if and only if it is orthogonal to each row 
of M. Hence ~ is the orthogonal complement of 00 □ 

The support of a function f on A is the set of elements of A at which the 
value off is nonzero. We denote the support off by 11/11-

Lemma '12.2.1 If f is a nonzero circulation, then llfll contains a cycle. 

Proof This follows immediately, since 11/11 clearly cannot con tain a vertex 
of degree one □ 

Lemma 12.2.2 If g is a nonzero potential difference, then 11&11 contains a 
bond. 

Proof Let g = 8p be a nonzero potential difference in D. Choose a vertex 
u EV which is incident with an arc of 11&11 and set 

U {v E YI p{v) = p(u)} 

Clearly, 11&11 ;2 [U, Ü] since g(a) # 0 for all a E [U, Ü]. But, by the choice of 
u, [U, Ü] is nonempty. Thus llgfl contains a bond D 

A matrix B is called a basis matrix of 00 if the rows of B form a basis for 
!!JJ ; a basis matrix of ~- is similarly defined. We shall find the following 
no'tation convenient. If R is a matrix whose columns are labelled with the 
elements of A, and if S c A, we shall denote by R I S the submatrix of R 
consisting of those columns of R labelled with elements in S. If R has a 
single row, our notation is the same as the usual notation for the restriction 
of a function to a subset of its domain. 
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Theorem 12.2 Let B and C be basis matrices of 00 and cg, respectîvely. 
Theo, for any S c A 

(i) the columns of BIS are linearly independent if and only if S is acyclic, 
and 

(ii) the columns of CI S are linearly independent if and only if S contains no 
bond. 

Proof Denote the column of B corresponding to arc a by B(a). The 
columns of B I S are linearly dependent if and only if there exists a function f 
on A such that 

and 

f(a) ~ 0 for some a ES 

f(a) = 0 for all aé S 

L f(a)B(a) = 0 
aEA 

We conclude that the columns of BIS are linearly dependent if and only if 
there exists a nonzero circulation f such that llfll s; S. Now if there is such an 
f then, by lemma 12.2.1, S contains a cycle. On the other hand, if S contains 
a cycle C, then f c is a nonzero circulation with llf dl= Cc S. It follows that 
the columns of BIS are linearly independent if and only if S is acyclic. A 
similar argument using lemma 12.2.2 yields a proof of (ii) □ 

Corollary 12.2 The dimensions of 00 and cg are given by 

dim 00 = v-w 

dim cg = e - v + w 

Proof Consider a basis matrix B of 00. By theorem 12.2 

rank B = max{ISI I Sc A, S acyclic} 

(12.3) 

(12.4) 

The above maximum is attained when S is a maximal forest of D, and is 
therefore (exercise 2.2.4) equal to v - w. Since dim 00 ~ rank B, this estab
lishes (12.3). Now (12.4) follows, since '€ is the orthogonal complement of 
00 □ 

Let T be a maximal forest of D. Associated with T is a special basis 
matrix of cg_ If a is an arc of f, then T+ a contains a unique cycle. Let C. 
denote this cycle and let f. denote the circulation corresponding to C., 
defined so that f.(a) = 1. The (e :- v + w) x e matrix C whose rows are f., 
a E f, is a basis matrix of cg_ This follows from the fact that each row is a 
circulation and that rank C = e - v + w (because CI f is an identity matrix). 
We refer to C as the basis matrix of cg corresponding to T. Figure 12.6b 
shows the basis matrix of cg corresponding to the tree indicated in figure 
12:6a. 
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(a) 

a b c d e 

fd -1 Q 1 1 Q 
fe -1 .:..1 1 0 1 

( b ) 

Figure 12.6 

a b c d e 
g0 1 0 0 1 1 
gb Q 1 Ü O 1 
% 0 0 1 -1 -1 

( C) 
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Analogously, if a is an arc of T, then f + a contams a unique bond (see 
theorem 2.6). Let Ba denote this bond and &a the potential difference 
corresponding to Ba, defined so that ga(a) = 1. The (v- w) x e matrix B 
whose rows are &a, a ET, is a basis matrix of 00, called the basis matrix of 00 
corresponding to T. Figure 12.6c gives an example of such a matrix. 

The relationship between cycles and bonds that has become apparent 
from the foregoing discussion finds its proper setting in the theory of 
matroids. The interested reader is referred to Tutte ( 1971 ). 

Exercises 

12.1.1 (a) In figure (i) below is indicated a fonction on a spanning tree and 
in figure (ii) a function on the complement of the tree. Extend 
the function in (i) to a potential difference and the function in 
(ii) to a circulation. 

8 6 

( i ) ( i i ) 

(b) Let f be a circulation and g a potential difference in D, and let 
T be a spanning tree of D. Show that f is uniquely determined 
by f l f' and g by gr T. 

12.1.2 (a) Let B and C be basis matrices of 00 and l€ and let T be any 
spanning tree of D. Show that B is uniquely determined by BI T 
and C is uniquely determined by C I f. 
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(b) Let T and T1 be two fixed spanning trees of D. Let B and B1 
denote the basis matrices of 00, and C and C1 the basis matrï'ces 
of ~, corresponding to the trees T and T1. Show that B = 
(BI T1)B1 and C =(Cl f'i)C1. 

12.1.3 Let K denote the matrix obtained from the incidence matrix M of a 
connected digraph D by deleting any one of its rows. Show that K 
is a basis matrix of 00. 

12.1.4 Show that if Gis a plane graph, then OO(G):::::~(G*) and '€(G)::::: 
OO(G*). 

12.1.5 A circulation of D over a field F is a function f: A ~ F which 
satisfies (12.1) in F; a potential difference of D over F is similarly 
defined. The vector spaces of these potential differences and circu
lations are denoted by OOF and ~F- Show that theorem 12.2 remains 
valid if 00 and ~ are replaced by OOF and ~F, respectively. 

12.2 THE NUMBER OF SPANNING TREES 

In this section we shall derive a formula for the numbe~ of spanning trees in 
a graph. 

Let G be a connected graph and let T be a fixed spanning tree of G. 
Consider an arbitrary orientation D of G and let B be the basis matrix of 00 
corresponding to T. It follows from theorem 12.2 that if S is a subset of A 
with ISI = v-1 then the square submatrix BIS is nonsingular if and only if S 
is a spanning tree of G. Thus the number of spanning trees of G is equal to 
the number of nonsingular submatrices of B of order v - l. 

A matrix is said to be unimodular if ail its full square submatrices have 
determinants 0, + r or -1. The proof of the following theorem is due to 
Tutte (1965b ). 

Theorem 12.3 The basis matrix B is unimodular. 

Proof Let P be a full submatrix of B (one of order v -1). Suppose 
•that P =BI T1. We may assume that T1 is a spanning tree of D since, 
otherwise, det P = 0 by theorem 12.2. Let B1 denote the basis matrix of 00 
corresponding to T1. Tuen (exercise l 2. l.2b) 

(BI T1)B1 = B 

Restricting both sides to T, we obtain 

(B I T1)(B1 1 _T) = B I T 

Nofing that B I T is an identity matrix, and taking determinants, we get 

det(B I T1)det(B1 1 T) = 1 (12.5-) 
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Both determinants in (12.5), being determinants of integer matrices, are 
themselves integers. It follows that det(8 1 T1) = ± 1 D 

Theo rem 12 .4 -r( G) = det 88' (12.6) 

Proof Using the formula for the determinant of the product of two 
rectangular matrices (see Hadley, 1961), we obtain 

det88'= L (det(8IS))2 (12.7) 
SçA 

ISl=»-1 

Now, by theorem 12.2, the number of nonzero terms in (12.7) is equal to 
-r(G). But, by theorem 12.3, each such term bas value 1 D 

One can similarly show that if C is a basis matrix of C€ corresponding to a 
tree, then C is unimodular and 

-r(G) = det CC' 

Corollary 12.4 T(G) = ±de{:J 
Proof By (12.6) and (12.8) [ 881 : O ] 

(-r(G))2 =det88'detCC'=det -----~------ . 
0 : CC' 

Since ~ and C€ are orthogonal, 8C' = C8' = O. Thus 

_ [88' : 8C'] ([8][8' ! C'J (-r(G))2 = det -----+----- = det --- . 
C8': CC' C 

= de{:}et[B' i C'] = ( de{:J) 2 

The corollary follows on taking square. roots D 

(12.8) 

Since theorem 12.2 is valid for ail basis matrices of !i, (12.6) clearly holds 
for any such matrix 8 that is unimodular. In particular, a matrix K obtained 
by deleting any one row of the incidence matrix Mis unimodular (exercise 
12.2.la). Thus 

-r( G) = det KK' 

This expression for the number of spanning trees in a graph is implicit in the 
work of Kirchhoff (1847), and is known as the matrix-tree theorem. 
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Exercises 

12.2.1 Show that 

(a)* a matrix K obtained from M by deleting any one row 1s 
unimodular; 

(b) T(G) = ±de{:] 

12.2.2 The conductance matrix C = [c;;] of a loopless graph G is the v x v 
matrix in which 

C;; = L aii for all i 
j" i 

c;i = -a;i for ail i and j with i-::/: j 

where A= [a;i] is the adjacency matrix of G. Show that 

(a) C= MM', where Mis the incidence matrix of any orientation of 
G; 

(b) all cofactors of C are equal to ,-( G ). 

12.2.3 A matrix is totally unimodular if ail square submatrices have 
determinants 0, + 1 or -1. Show that 

(a) any basis matrix of ~ or Cfi corresponding to a tree is totally 
unimodular; 

(b) the incidence matrix of a simple graph G is totally unimodular 
if and only if G is bipartite. 

12.2.4 Let F be a field of characteristic p. Show that 

(a) if B and C are basis matrices of ~F and CfiF, respectively, 

corresponding to a tree, then det[:J = + T(G)(mod p); 

(b) dim(!1JFn CfGF) >0 if and only if p 1-r(G). (H. Shank) 

APPLICATIONS 

12.3 PERFECT SQUARES 

A squared rectangle is a rectangle dissected into at least two {but a finite 
number of) squares. If no two of the squares in the dissection have the same 
size, then the squared rectangle is perfect. The order of a squared rectangle is 
the numbcr of squares into which it is dissected. Figure 12. 7 shows a perfect 
rectangle of order 9. A squared rectangle is simple if it does not contain a 
rectangle which is itself squared. Clearly, every squared rectangle is com
posed of ones that are simple. 
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15 
18 

... ----·-~---
7 8 

4 

1 

14 

10 9 

Figure 12. 7. A pcrfcct rectangle 

For a long time no perfect squares were known, and it was conjectured 
that such squares did not exist. Sprague ( 1939) was the first to publish an 
example of a perfect square. About the same time, Brooks et al. (1940) 
developed systematic methods for their construction by using the theory of 
graphs. In this section, we shall present a brief discussion of their methods. 

We first show how a digraph can be associated with a given squared 
rectangle R. The union of the horizontal sides of the constituent squares in 
the dissection consists of horizontal line segments; each such segment is 
called a horizontal dissector of R. In figure 12.8a, the horizontal dissectors 
are indicated by solid lines. We can now define the digraph D associated 
with R. To each horizontal dissector of R there corresponds a vertex of D; 
two vertices V; and Vj of D are joined by an arc (vï, v;) if and only if their 
corresponding horizontal dissectors Hi and H; flank some square of the 
dissection and Hi lies above H; in R. Figure 12.Sb shows the digraph 
associated with the squared rectangle in figure 12.8a. The vertices corre
sponding to the upper and lower sides of R are called the poles of D and 
are denoted by x and y, respectively. 

We now assign to each vertex v of D a potential p(v) equal to the height 
(above the lower side of R) of the corresponding horizontal dissector. If we 
regard D as an electrical network in which each wire has unit resistançe, the 
potential difference g = Sp determines a flow of currents from x to y (see 
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figure 12.8c). These currents satisfy Kirchhoff's current law: the total 
amount of current entering a vertex v E V\{x, y} is equal to the total amount 
leaving it. For example, the total amount entering u in figure 12.8c is 
25 + 9 + 2 = 36, and the same amount leaves this vertex. 

Let D be the digraph corresponding to a squared rectangle R, with pales 
x and y, and let G be the underlying graph of D. Then the graph G + xy is 
called the horizontal graph of R. Brooks et al. (1940) showed that the 
horizontal graph of any simple squared rectangle is a 3-connected planar 
graph (their definition of connectivity differs slightly from the one used in 
this book). They also showed that, conversely, if H is a 3-connected planar 
graph and xy E E(H), then any flow of currents from x to y in H - xy 
determines a squared rectangle. Thus one possible way of searching for 
perf ect rectangles of order n is to 

(i) list ail 3-c~nnected planar graphs with n + 1 edges, and 
(ii) for each such graph H and each edge xy of H, determine a flow of 

currents from x to y in H-xy. 

Tutte ( 1961) showed that every 3-connected planar graph can be derived 
from a wheel by a sequence of operations involving face subdivisions and 
the taking of duals. Bouwkamp, Duijvestijn and Medema (1960) then 
applied Tutte's theorem to list all 3-connected planar graphs with at most 16 
edges. Here we shall see how the theory developed in sections 12.1 and 12.2 
can be used in computing a flow of currents from x to y in a digraph D. 

Let g(a) denote the current in arc a of D, and suppose that the total 
current leaving x is <J'. Then 

L mx(a)g(a) = <J' (12.9) 
aEA 

Kirchhoff's current law can be formulated as 

L mv(a)g(a) = 0 for all v E V\{x, y} (12.10) 
aEA 

Now, since g is a potential difference, it is orthogonal to every circulation. 
Therefore, 

Cg'=O (12.11) 

where C is a basis matrix of C€ corresponding to a tree T of D and g' is the 
transpose of the vector g. Equations (12. 9)-( 12 .11) together give the matrix 
equatioQ 

(12.12) 

where K 1s the matrix obtained from M by deleting the row mr This 
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X 

y 

(a) 

Figure 12.9 
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y 

( b) 

equation can be solved usmg Cramér's rule. Note that, since de{~-]= 

±-r( G) (exercise 12.2.1 b ), we obtain a solution in integers if a-= T( G). Thus, 
in computing the currents, it is convenient to take the total current leaving x 
to be equal to the number of spanning trees of D. 

We illustrate the above procedure with an example. Consider the 3-
connected planar graph in figure 12.9a. On deleting the edge xy and 
orienting each edge we obtain the digraph D- of figure 12.9b. 

lt can be checked that the number of spanning trees in D is 66. By 
considering the tree T = { a1, a2, a3, a4, as} we obtain the following nine 
equations, as in ( 12.12), (with g(aï) written simply as gï). 

g2 - g3- g4 

g3 - gs- g6 

g4 + g6- g1 

=66 

- gs- g9= 0 

-:-0 

+g9=0 

=O 

g3- g4 + g6 = 0 

-g3+g4-g5 +g1 =0 

g1 - g2- g3 

g1 - g2- g3 
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The solution to this system of equations is given by 

(g1, g2, g3, g4, gs, g6, g1, gs, g9) = (36, 30, 14, 16, 20, 2, 18, 28, 8) 

The squared rectangle based on this flow of currents is just the one in figure 
12. 7 with ail dimensions doubled. 

Figure 12 .10 shows a simple perfect square of order 25. It was discovered 
by Wilson ( 196 7), and is the smallest (least order) such square known. 

Further results on perfect squares can be found in the survey article by 
Tutte ( 1965a). 

Exercises 

12.3. l Show that the constituent squares m a squared rectangle have 
commensurable sides. 

12.3.2 The vertical graph of a squared rectangle R is the horizontal graph 
of the squared rectangle obtained by rotating R through a right 
angle. If no point of R is the corner of four constituent squares, 
show that the horizontal and vertical graphs of R are duals. 

12.3.3* A perfect cube is a cube dissected into a finite number of smaller 
cubes, no two of the same size. Show that there exists no perfect 
cube. 

135 157 

211 

22 

113 

62 179 
25 

149 88 
87 

100 
93 

167 
143 

27116 
33 

50 __,J15l 67 
23[191 34 

Figure 12.1 O. A simple perfect square of order 25 
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Appendix I 
Hints to Starred Exercises 

l.2.9(b) If G:!ÉTm,n, then G has parts of size n1, n2, ... , nm, with ni-n;> 
1 for some i and j. Show that the complete m-partite graph with 
parts of size n1, n2, ... , ni-1, ... , n;+ 1, ... , nm has more edges 
than G. 

1.3.3 In terms of the adjacency matrix A, an automorphism of G is a 
permutation matrix P such that P AP' = A or, equivalently, PA= 
AP (since P' = p- 1). Show that if x is an eigenvector of A 
belonging to an eigenvalue À, then, for any _automorphism P of 
G, so is Px. Since the eigenvalues of A are distinct and P is 
orthogonal, P2x = x for ail eigenvectors x. 

1.4.5 Suppose that ail induced subgraphs of G on n vertices have m 
edges. Show that, for any two vertices vi and v;, 

e(G)-d(vi)=e(G-vi)=m(v n 1)/(~=~) 
e(G)-d(vi)-d(v;)+aij= e(G-vi,--v;)= m(v n 2)/ (~=~) 

where ai;= 1 or O according as Vi and v; are adjacent or not. 
Deduce that ai; is independent of i and j. 

1.5.7(a) To prove the necessity, first show that if G is simple with U1V1, 
U2V2 E E and U1V2, U2V1 i! E, then G -{u1 Vi, u2v2} + {u1v2, U2V1} 
has the same degree sequence as G. Using this, show that if d is 
graphie, then there is a simple graph G with V= {v1, v2, . •• , Vn} 
such that (i) d ( vi) = di for 1 < i < n, and (ii) V1 is joined to 
V2, VJ, ... , vd 1+1• The graph G- V1 bas degree sequence d'. 

1.5.8 Show that a bipartite subgraph with the largest possible number 
of edges has this property. 

1.5.9 Define a graph on S in which Xi and X; are adjacent if and only if 
they are at distance one. Show that in this graph each vertex has 
degree at most six. 

1. 7 .3 Consider a longest path and the vertices adjacent to the origin of 
this path. 

1. 7 .6(b) By contradiction. Let G be a smallest counter-example. Show 
that (i) the girth of G is at least five, and (ii) 8 > 3. Deduce that 
v < 8 and show that no such graph exists. 

2.1.10 To prove the ~ufficiency, consider a graph G with degree se
quence d = (d 1 , d2 , ••• , dv) and as few components as possible. If 
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2.2.12 

2.4.2 

3.2.6 

3.2.7(a) 

(b) 
4.1.6 

4.2.4 

4.2.6 

4.2.9 

4.2.ll(b) 

Graph Theory with Applications 

G is not connected, show that, by a suitable exchange of cdges 
(as in the hint to exercise l .5.7a), there is a graph with degree 
sequence d and fewer components than G. 
Define a labelled graph G as follows: the vertices of G are the 
subsets A1, A2, ... , An, and Ai is joined to A; (i ~ j) by an edge 
labelled a if either Ai= Ai U {a} or Ai= A; U {a}. For any sub
graph H of G, let L(H) be the set of labels on edges of H. Show 
that if F is a maximal forest of G, then L(F) = L(G). Any 
element x in S\L (F) has the required property. 
Several applications of theorem 2.8 yield the recurrence relation 

Wn-4Wn- 1 +4Wn--2- 1 = Ü 

where Wn is the number of spanning trees in the wheel with n 
spokes. Solve this recurrence relation. 
Form a new graph G' by adding two vertices x and y, and join_ing 
x to ail vertices in X and y to ail vertices in Y. Show that G' is 
2-connected and apply theorem 3.2. 
Use induction on e. Let e1 E E. If G · e1 is a critical block, then 
G · e1 has a vertex of degree two and, hence, so does G. If G · e1 
is not critical, there is an e2EE\{e1} such that (G·ei)-e2 is a 
block. Using the fact that (G · ei)- e2 = (G- e2) · e1, show that e1 
and e2 are incident with a vertex of degree two in G. 
Use (a) and induction on v. 
Necessity: if G - v contains a cycle C, consider an Euler tour 
(with origin v) of the component of G - E( C) that con tains v. 
Sufficiency: let Q be a ( v, w )-trail of G which is not an Euler 
tour. Show that G- E(Q) has exactly one nontrivial component. 
Form a new graph G' by adding a new vertex and joining it to 
every vertex of G. Show that G bas a Hamilton path if and only 
if G' has a Hamilton cycle, and apply theorem 4.5. 
Form a new graph G' by adding edges so that G'[X] is complete. 
Show that G is hamiltonian if and only if G' is hamiltonian, and 
apply theorem 4.5. 
Let P be a longest path in G. If P has length l < 28, show, using 
the proof technique of theorem 4.3, that G has a cycle of length 
l + 1. Now use the fact that G is connected to obtain a contradiction. 

., even vodd 
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4.2.13 

4.4.1 

5. l.5(a) 

5.1.6 

5.2.3(b) 

5.2.8 

5.3.1 

5.3.4 

6.2.1 
6.2.8 
7.1.3(b) 

7.2.6(b) 

Use the fact that the Petersen graph is hypohamiltonian (exercise 
4.2.12). 
Consider an Euler tour Q in the weighted graph formed from T 
by duplicating each of its edges. Now make use of triangle 
inequalities to obtain from Q a Hamilton cycle in G of weight at 
most w(Q). 

To show that K2n is 1-factorable, arrange the vertices in the form 
of a regular (2n - 1)-gon with one vertex in the centre. A radial 
edge together with the edges perpendicular to it is a perfect 
matching. 

Label the vertices 0, 1, 2, ... , 2n and arrange the vertices 1, 
2, ... , 2n in a circÎe with O at the centre. Let C = (O, 1, 2, 2n, 3, 
2n -1, 4, 2n - 2, ... , n + 2, n + 1, 0) and consider the rotations of C. 

Let G be a 2k-regular graph with V= {vi, v2, ... , v.,}; without 
loss of generality, assume that G is connected. Let C be an Euler 
tour in G. Form a bipartite graph G' with bipartition (X, Y), 
where X= {x1, X2, ... , x.,} and Y= {y1, y2, ... , y.,} by joining xi to 
Y; whenever vi immediately precedes v; on C. Show that G' is 
1-factorable and hence that G is 2-factorable. 

Construct a bipartite graph G with bipartition (X, Y) in which X 
is the set of rows of Q, Y is the set of columns of Q, and row i is 
joined to column j if and only if the entry qi; is positive. Show that 
G has a perfect matching, and then use induction on the 
number of nonzero entries of Q. 
Let G be a bipartite graph with bipartition (X, Y). Assume that 
v is even (the case when v is odd requires a little modification). 
Obtain a graph H from G by joining all pairs of vertices in Y. G 
has a matching that saturates every vertex in X if and only if H 
has a perfect matching. 
Let G* be a maximal spanning supergraph of G such that the 
number of edges in a maximum matching of G* is the same as 
for G. Show, using the proof technique ot theorem 5.4, that if U 
is the set of vertices of degree v - l in G* then G*- U is a 
disjoint union of complete graphs. 
See the hint to exercise 5 .1.5a. 
Use the proof technique of theorem 6.2. 
Let v 1v 2 ••• v 0 be a longest path in G. Show that G - V2 has at 
most one nontrivial component, and use induction on e. 
Let p(m -1) = n -1. The complete (p + 1)-partite graph with 
m -1 vertices in each part shows that r(T, K1.n) > (p + l)(m - 1) = 
m + n - 2. To prove that r(T, K1,n) < m + n -1, show that any 
simple graph G with 6 > m - 1 contains every tree Ton m vertices. 
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(c) The complete (n -1)-partite graph with m -1 vertices in each 
part shows that r(T, Kn) > (m - l)(n - 1). To prove that 
r(T, Kn) < (m - l)(n - 1) + 1, use induction on n and the fact that 
any simple graph with 8 > m - 1 contains every tree T on m 
vertices. 

7.3.3(c) Assume G contains no triangle. Choose a shortest odd cycle C 
in G. Show that each vertex in V(G)\ V(C) can be joined to at 
most two vertices of C. Apply exercise 7 .3.3a to G - V( C), and 
obtain a contradiction. 

7 .3 .4( a) G contains K2.m if and only if there are m vertices with a pair of 

common neighbours. Any vertex v has ( d~v)) pairs of neigh-

bours. Therefore ifv~( d~v)) > (m - o(;), G contains K2,m-

7.5.l Define a graph G by V(G)={x1, ... ,xn}, and E(G)= 
{xix; 1 d(xi, x;) = l}, and show that if ail edges of G are drawn as 
straight line segments, then (i) any two edges of G are either 
adjacent or cross, and (ii) if some vertex of G has degree greater 
than two, it is adjacent to a vertex of degree one. Then prove (a) 
by induction on n. 

8.1.o Let cg= (Vi, V2, ... , Vk) be a k-colouring of G, and let cg' be a 
colouring of G in which each colour class contains at least two 
vertices. If I Vil > 2 for ail i, there is nothing to prove, so assume 
that V1 = {v1}. Let u2 E V2 be a vertex of the same colour as V1 in 
cg'_ Clearly I V2I > 2. If I Y2I > 2, transfer u2 to V1. Otherwise, let 
V2 be the other vertex in V2. In cg', v1 and V2 must be assigned 
different colours. Let U3 E V3 be a vertex of the same colour as V2 
in cg'. As bef ore, 1 V 31 > 2. Proceeding in this way, one must 
eventually find a set Vi with IVd >2. G can now be recoloured so 
that fewer colour classes contain only one vertex. 

8. l.13(a) Let (X1, X2, ... , Xn) and (Y1, Y2, ... , Yn) be n-colourings of 
G[X] and G[Y], respectively. Construct a bipartite graph H 
with bipartition ({x1, X2, • •• , Xn}, {y1, Y2, ... , YnD by joining Xi 

and y; if and only if the edge eut [Xi, Y;] is empty in G. Using 
exercise 5.2.6b, show that H has a perfect matching. If Xi is 
matched with Yr<ï> under this matching, let Yi= Xi U Ytco- Show 
that (V1, V2, ... , Vn) is an n-colouring of G. 

8.3.1 Show that it suffices to consider 2-connected graphs. Choose a 
longest cycle C in G and show that there are two paths across C 
as in theorem 8.5. 

8.3.2(a) If 8 > 3, use exercise 8.3.1. If there is a vertex of degree less 
· than three. delete it and use induction. 
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8.4.8 

8.5:2(a) 

9.2.8 

10.2.2 

10.2.5 

10.3.4 

11.3.5 

11.4.4 
11.5.4 
1 l.5.5(a) 

12.2.l(a) 

12.3.3 

Consider the expansion of 1Tk(G) in terms of chromatic polyno
mials of complete graphs. 
It is easily verified that H has girth at least six. If H is 
k-colourable, there is a v-element subset of S ail of whose 
members receive the same colour. Consider the corresponding 
copy of G and obtain a contradiction. 
The dual G* is 2-edge-connected and 3-regular and, hence 
(corollary 5.4), has a perfect matching M. (G* · M)* is a bipar
tite subgraph of G. 
Form a new digraph on the same vertex set joining u to v if v is 
reachable from u, and apply corollary 10.1. 
Let D1 and D2 be the spanning subdigraphs of D such that the 
arcs of D1 are the arcs (u, v) of D for which f(u) < f( v ), and the 
arcs of D2 are the arcs (u,v) for which f(u)>f(v). Show that 
either x(D1) > m or x(D2) > n, and apply theorem 10.1. 
Let V1 V2 ... V2n+ 1 V1 be an odd cycle. If ( Vï, Vi+J) E A, set pi= 
(vj, Vi+1); if (v;, Vi+1) t A, let P; be a directed (vi, Vï+1)-path. If 
sonie Pi is of even length, P;+(V;+1, vi) is a directed odd cycle; 
otherwise, P1P2 ... P211+1 is a closed directed trail of odd length, 
and therefore contains a directed odd cycle. 
Use the construction given in the proof of theorem 11.6, and 
assign capacity m(v) to arc (v', v"). 
Use induction on k and exercise 11.4.3. 
Use an argument similar to that in exercise 1.5.7. 
~ecessity follows on taking V1 as the set of vertices with indegree 
m and V2 as the set of vertices with indegree n. To prove 
sufficiency, construct a network N by forming the associated 
digraph of G, assigning unit capacity to each arc, and regarding 
the elements of V1 as sources and the elements of V2 as sinks. By 
theorem 11.8, there is a flow f in N (which can be assumed 
integral) in which the supply at each source and demand at each 
sink is lm - n 1- The f-saturated arcs induce an (m,n )-orientation 
on a subgraph H of G. An (m,n)-orientation of G can now be 
obtained by giving the remaining edges an eulerian orientation. 
Use induction on the order of the submatrix. Let P be a square 
submatrix. If each column of P contains two nonzero entries, 
then det P = O. Otherwise, expand det P about a column with 
exactly one nonzero entry, and apply the induction hypothesis. 
Show, first, that in any perfect rectangle the smallest constituent 
square i-s not on the boundary of the rectangle. Now suppose that 
there is a perfect cube and consider the perfect square induced 
on the base of this cube by the constituent cubes. 



Appendix II 
Four Graphs and a 
Table of their Properties 

G1 G2 

8 Â 
1 (3 /3 1 V E: w K K a a X 

G1 7 12 3 4 1 3 3 3 3 4 4 4 
G2 11 28 4 8 1 3 4 4 5 7 6 3 
GJ 14 21 3 3 1 3 3 7 7 7 7 2 
G4 16 15 1 3 3 0 0 9 7 7 9 3 

1 

X 

4 
8 
3 
3 
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G3 G4 

diameter girth bipartite? eulerian? hamiltonian? êritical? planar? 

2 3 No No Yes Yes Yes 
2 3 No Yes No No No 
3 6 Yes No Yes No No 
00 4 No No No No Yes 



Appendix III 
Some Interesting Graphs 

There are a number of graphs which are interesting because of their special 
structure. We have already met some of these (for example, the Grinberg 
graph, the Grotzsch graph, the Herschel graph and the Ramsey graphs). 
Here we present a selection of other interesting graphs and families of 
graphs. 

THE PLATONIC GRAPHS 

These are the graphs whose vertices and edges are the vertices and edges of 
the platonic solids (see Fréchet and Fan, 1967). 

(a) (b) (c) 

(d) Ce) 

(a) The tetrahedron; (b) the octahedron; (c) the cube; (d) the icosahedron; (e) the 
dodecahedron 
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AUTOMORPHISM GROUPS 

235 

(i) As bas already been noted (exercise 1.2.1~), every group is isomorphic to 
the automorphism group of some graph. Frucht (1949) showed, in fact, that 
for any group there is a 3-regular graph with that group. The smallest 
3-regular graph whose group is the identity is the following: 

(ii) Folkman (1967) proved that every edge- but not vertex-transitive 
regular graph bas at least 20 vertices. This result is best possible: 

The Folkman graph 

The Gray graph (see Bouwer, 1972) is a 3-regular edge- but not vertex
transitive graph on 54 vertices. It has the following description: take three 
copies of K3,3· For a particular edge e, subdivide e in each of the three 
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copies and join the resulting three vertices to a new vertex. Repeat this with 
each edge. 

CAGES 

An m-regular graph of girth n with the least possible number of vertices is 
called an (m, n)-cage. If we denote by f(m, n) the _number of vertices in an 
(m, n)-cage, it is easy to see that {(2, n) = n and for m > 3, 

m(m-lY-2 
if n = 2r+ 1 m-2 

f(m, n) > 
2(m-1Y-2 

(III.1) 
if n=2r m-2 

The (2, n)-cage is the n-cycle, the (m, 3)-cage is Km+1, and the (m, 4)-cage 
is Km,m• ln each of these cases, equality holds in (111.1). It has been shùwn by 
Hoffman and Singleton (1960) that, for m > 3 and n > 5, equality can hold 
in (III.1) only if n = 5 and m = 3, 7 or 5 7, or n = 6, 8 or 12. When m - 1 is a 
prime power, the (m, 6)-cage is the p·oint-line incidence graph of the 
projective plane of order m -1; the (m, 8)- and (m, 12)-cages are also 
obtained from projective geometries (see Biggs, 1974 for further details). 
Sorne of the smaller (m, n)-cages are depicted below: 

(3,5)-coge 

The Petersen graph 

(3,6)- cage 

The Heawood graph 
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( 3,7}- cage 

The McGee graph 

(4,5}-cage 

The Robertson graph 
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(3,8}-cage 

The Tutte-Coxeter graph 
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(4,6)-cage 

(5,5)-cage 
The Robertson-Wegner graph 
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The (7, 5)-cage (the Hoffman-Singleton graph) can be described as fol
lows: it has ten 5-cycles Po, P1, P2, P3, P4, Oo, Oi, 02, Q3, Q4, labelled as 
shown below; vertex i of Pi is joined to vertex i + jk (mod 5) of Qk. (For 
example, vertex 2 of P2 is connected as indicated.) 

(7,5)-cage 

The Hoffman-Singleton graph 

NONHAMILTONIAN GRAPHS 

(i) Conditions for a graph to be hamiltonian have been sought ever since Tait 
made bis conjecture on planar graphs. Listed here are counter-examples to 
several conjectured results. 

(a) Every 4-regular 4-connected gràph is hamiltonian (C. St. J. A. Nash
Williams). 

The Meredith graph 

(b) There is no hypotraceable graph (T. Gallai). 
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. The Thomassen graph 

(The first hypotraceable graph was discovered by J. D. Horton.) 
(c) Every 3-regular 3-connected bipartite graph is hamiltonian (W. T. 

Tutte). 

The Horton graph 
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(ii) An example of a nonhamiltonian graph with a high degree of 

symmetry-there is an automorphism taking any path of length three into 
any other. (The Petersen graph also has this property.) See Tutte (1960). 

CHROMATIC NUMBER 

(i) Grünbaum ( 1970) bas conjectured that, for every m > 1 and n > 2, there 
exists an m-regular, m-chromatic graph of girth at least n. For n = 3, this is 
trivial, and for m = 2 and 3, the validity of the conjecture follows from the 
existence of the cagest. Apart from this, only two such graphs are known: 

The Chvâtal graph 
. t This conjecture has now been disproved: (Borodin, O. V. and Kostochka, A. V. (1976). 

On an upper bound of the graph's chromatic number depending on graph's degree and density. 
Jnst. Maths., Novosibirsk, preprint GT-7). 
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The Grünbaum graph 

(ii) Since r(3, 3, 3) = 17 (see exercise 7 .2.3), there is a 3-edge colouring of 
K 16 without monochromatic triangles. Kalbfleisch and Stan ton (1968) 
showed that, in such a colouring, the subgraph induced by the edges of any 
one colour is isomorphic to the following graph: 

The Greènwood-Gleason graph 
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EMBEDDINGS · 
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(i) Simple examples of self-dual plane graphs are the wheels. Sorne more 
interesting plane graphs with this property are depicted below (see, for 
example, Smith and Tutte, 1950). 

(ii) The chromatic number x(S) of a surface S is the maximum number of 
colours required to properly colour the faces of any map on S. (The 
four-colour conjecture claims that the sphere is 4-,chromatic.) Heawood 
( 1890) proved that if S bas characteristic n < 2, then 

· x(S)<(½(7 + J49-24n)] (111.2) 

For the projective plane and Mobius band (characteristic 1) and for the 
torus (characteristic 0), the bound given in (111.2) i~ attained, as is shown by 
the following graphs and their embeddings: 

1 
1 1 5 1 
1 

+ 2 3 4 2 ♦ 
' . 

1 

6 1 
1 
1 
1 

(a) (b) 

(a) The Tietze graph; (b) an embedding on the Môbius band 

(a) (b) 

(a) The Petersen graph; (b) an embedding on the projective plane 
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(a) (b) 

(a) The Heawood graph; (b) an embedding on the torus 

Although the Klein bottle bas characteristic 0, Franklin (1934) proved 
that it is only 6-chromatic, and found the following 6-chromatic map on the 
Klein bottle: 

- -

i - - 1 

1 4 1 1 

! 1 
1 

t 2 5 2 ♦ 
1 

1 1 1 3 6 3, 
! 1 - - - 1 

~ -

(a) (b) 

(a) The Franklin graph; (b) an embedding on the Klein bottle 

It bas been shown that, with the sole exception of the Klein bottle, 
equality holds in (111.2) for every surface S of characteristic n < 2. This 
result is known as the map colour theorem (see Ringel, 1974). 

REFERENCES 

Biggs, N. (1974). Algebraic Graph Theory, Cambridge University Press 
Bouwer, L Z. (1972). On edge but not vertex transitive regular graphs. J. 

Combinatorial Theory B, 12, 32-40 
Coxeter, H. S. M. (1950). Self-dual configurations and regular graphs. Bull. 

Amer. Math, Soc., 56, 413-55 



Appendix III: Some Interesting Graphs 245 

Folkman, J. (1967). Regular line-symmetric graphs~ J. Combinatorial 
Theory, 3, 215-32 

Franklin, P. (1934). A six color problem. J. Math. Phys., 13, 363-69 
Fréchet, M. and Ky Fan (1967). Initiation to Combinatorial Topology, 

Prindle, Weber and Schmidt, Boston 
Frucht, R. (1949). Graphs of degree three with a given abstract group. 

Canad. J. Math., 1, 365-78 
Grünbaum, B. (1970). A problem in graph coloring. Amer. Matb. Monthly, 

77, 1088-1092 
Heawood, P. J. (1890). Map colour theorem. Quart. J. Math., 24, 332-38 
Hoffman, A. J. and Singleton, R. R. (1960). On Moore graphs with 

diameters 2 and 3, IBM J. Res. Develop., 4, 497-504 
Horton, J. D. (1974) to be published 
Kalbfleisch, J. and Stanton, R. (1968). On the maximal triangle-free edge

chromatic graphs in three colors. J. Combinatorial Theory, 5, 9-2Ç> 
Meredith, G. H. J. (1973). Regular n-valent n-connected nonhamiltonian 

non-n-edge-colorable graphs. J. Combinatorial Theory B, 14, 55-60 
Ringel, G. (1974). Map Color Theorem, Springer-Verlag, Berlin 
Smith, C. A. B. and Tutte, W. T. (1950). A class of self-dual maps. Canad. 

J. Math., 2, 179-96 
Thomassen, C. (1974). Hypohamiltonian and hypotraceable graphs. Discrete 

Math., 9, 91-96 
Tutte, W. T. (1960). A non-Hamiltonian graph. Canad. Math. Bull., 3, 1-5 
Wegner, G. (1973). A smallest graph of girth 5 and valency 5. J. Com

binatorial Theory B, 14, 203-208 



Appendix IV 
Unsolved Problems 
Collected here are a number of unsolved problems of varying difficulty, with 
originators, dates and relevant bibliography. Conjectures are displayed in 
bold type. Problems marked t have now been solved; see page 253. 

1. Two graphs G and H are hypomorphic (written G;:::H) if there is a 
bijection u: V(G)-+ V(H) such that G-v:::H-u(v) for ail v E V(G). 
A graph G is reconstructible if G;::: H implies G ::: H. The reconstruction 
conjecture claims that every graph G with v > 2 is reconstructible (S. M. 
Ulam, 1929). This has been verified for disconnected graphs, trees and a 
few other classes of graphs (see Harary, 1974). 

There is a corresponding edge reconstruction conjecture: every graph 
G witb E > 3 is edge reconstructible. Lovâsz (1972) has shown that 

every simple graph G with e > (1) / 2 is edge _reconstructible. 

P. K. Stockmeyer has found an infinite family of counterexamples to 
the analogous reconstruction conjecture for digraphs. 

Bondy, J. A. and Hemminger, R. L. (1976). Graph reconstruction-a 
survey. J. Graph Theory, to be published 

Lovâsz, L. (l 972). A note on the line reconstruction problem. J . 
. Combinatorial Theory B, 13, 309-10 

2. A graph G is embeddable in a graph H if G is isomorph_ic to a subgraph 
of H. Characterise the graphs embeddable in the k -cube (V. V. Firsov, 
1965). 
Garey, M. ·R. and Graham, R. L. (1975). On cubical graphs. J. Com

binatorial Theory (B), 18, 84-95 

3. Every 4-regular simple graph contains a 3-regular subgraph (N. Sauer, 
1973). 

4. U k > 2, tbere exists no graph with the property that every pair of 
· vertices is connected by a unique path of lengtb k (A. Kotzig, 197 4). 

Kotzig bas verified his conjecture for k < 9. 
5. Every connected graph G is the union of at most [(v+ 1)/2] edge

disjoint paths (T. Gallai, 1962). Lovâsz (1968) bas shown that every 
graph G is the union of at most [v/2] edge-disjoint paths and cycles. 
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Lovâsz, L. (1968). On coverings of graphs, in Theory of Graphs (eds. P. 
Erdos and G. Katona), Academic Press, New York, pp. 231-36 

6. Every 2-edge-connected simple graph G is the union of v- 1 cycles (P. 
Erdos, A. W. Goodman and L. Posa, 1966). 

Erdôs, P., Goodman, A. W. and Posa, L. (1966). The representation of 
a graph by set-intersections. Canad. J. Math., 18, 106-12 

7. If G is a simple block with at least v/2 + k vertices of degree at least k, 
tben G bas a cycle of length at least 2k (D. R. Woodall, 1975). 

8. Let f(m, n) be the maximum possible number of edges in a simple graph 
on n vertices which contains no m-cycle. lt is known that 

{ 
[ n 2 / 4] if m is odd, m < ½( n + 3) 

f(m, n) = ( - + 2) ( -1) n ; _ + m 2 if m ~ ½( n + 3) 

Determine f(m, n) -for the remaining cases (P. Erdos, 1963). 

Bondy, J~ A. and Simonovits, M. (1974). Cycles of even length in 
graphs. J. Combinatorial Theory (B), 16, 97-105 · 

Woodall, D. R. (1972). Sufficient conditions for circuits in graphs. Proc. 
London Math. Soc., 24, 739-S5 

9. Let f(n) be the maximum possible number of edges in a simple graph on 
n vertices which contains no 3-regular subgraph. Determine f(n) (P. 
Erdos and N. Sauer, 1974). Since there is a constant c such that every 
simple graph G with e ~ cv815 contains the 3-cube (Erdôs and 
Simonovits, ~970), clearly f(n) < cn 815 • 

Erdos, P. and Simonovits, M. (1970). Somé extremal problems in graph 
theory, in Combinatorial Theory and its Applications I (eds. P. Erdos, 
A. Rényi and V. T. Sos), North-Rolland, Amsterdam, pp. 378-92 

10. Determine which simple graphs G have exactly one cycle of each length 
l, 3 s l :s; v (R. C. Entringer, 1973). 

11. Let f(n) be the maximum possible number of edges in a graph on n 
vertices in which no two cycles have the same length. Determine f(n) 
(P. Erdos, 1975). 

12. HG is simple and t:>v(k-1)/2, then G contains every tree with k 
· edges (P. Erdos and V. T. Sos, 1963). It is known that every such graph 

contains a path of length k (Erdos and G_allai, 1959). 

Erdôs, P. and GaHai, T. (1959); On maximal paths and circuits of 
graphs. Acta Math. Acad. Sei. Hungar., 10, 337-56 

13. Find a (6, 5)-cage (see appendix III). 
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14. The bandwidth of G is defined to be 

min maxll(u)- l(v)I 
/ uveE 

where the mm1mum is taken over all labellings / of V in distinct 
integers. Find bounds for the bandwidth of a graph (L. H. Harper, 
1964). The bandwidth of the k-cube has been determined by Harper 
(1966). 

Chvâtalovâ, J. (1975). Optimal labelling of a product of two paths. 
Discrete Math., 11, 249-53 

Harper, L. H. ( 1966). Optimal numberings and isoperimetric problems 
on graphs. J. Combinatorial Theory, 1, 385-93 

15. A simple graph G is graceful if there is a labelling l of its vertices with 
distinct integers from the set {O, 1, ... , e }, so that the induced edge 
labelling l' defined by 

l'(uv) = IHu )- l(v )1 

assigns each· edge a different label. Charact!rise the graceful graphs (S. 
·. Golomb, 1972). lt bas been conjectured that, in particular, every tree is 

graceful (A. Rosa, 1 966). 

Golomb, S. (1972). How to number a graph, in Graph Theory and 
Computing (ed. R. C. Read), Academic Press, New York, pp. 23-37 

t 16. The 3-connected planar graph on lm edges with the least possible number of 
spanning trees is the wheel with m spokes (W. T. Tutte, 1940). 

Kelmans, A. K. and Chelnokov, V. M. (1974). A certain polynomial of 
a graph and graphs with an extremal number of trees. J. Combiriatorial 
Theory (B), 16, 197-214 

17. Let u and v be two vertices in a graph G. Denote the minimum number 
of vertices whose deletion destroys ail (u. vf-paths of length at most n by 
an, and the maximum number of internally disjoint (u, v )-paths of 
length at most n by bn. Let /(n) denote the maximum possible value of 
an/bn. Determine f(n) (V. Neumann, 1974). L. Lovâsz bas conjectured 
that f(n) < Jn. it is known that 

[ Jnfi.]< f(n) < [n/2] 

18. Every 3-regular 3-connected bipartite planar graph is hamiltonian (D. 
Barnette, 1970). P. Goodey has verified this conjecture for plane graphs 
whose faces are all of degree four or six. Note that if the planarity 
condition· is dropped, the conjecture is no longer valid (see appendix 
Ill). 

19. A graphie sequence d is f orcibly hamiltonian if every simple graph with 
degree sequence d is hamiltonian. Characterise the forcibly hamiltonian 
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sequences (C. St. J. A. Nash-Williams, 1970). (Theorem 4.5 gives a 
partial solution.) 

Nash-Williams, C. St. J. A. (1970). Valency sequences which force 
graphs to have Hamiltonian circuits: interim report, University of 
Waterloo preprint 

20. Every connected vertex-transitive graph bas a Hamilton path (L. 
Lovâsz, 1968). L. Babai has verified this conjecture for graphs with a 
prime number of vertices. 

21. A graph Gis t-tough if, for every vertex eut S, w(G-S)<ISl/t. (Thus 
theorem 4.2 says that every hamiltonian graph is 1-tough.) 

(a) If G is 2-tough, then G is hamiltonian (V. Chvâtal, 1971). C. 
Thomassen has obtained an example of a nonhamiltonian t-tough graph 
with t >3/2 

( b) If G is 3/2-tough, then G has a 2-factor (V. Chvâtal, 1971). 

Chvâtal. V. (1973 ). Tough graphs and hamiltonian circuits. Discrete 
Math., S, 215-28 

22. The binding number of G is defined by 

bind G = min IN(S)l/1S1 
B"Sç;;V 
'°ISI,; V 

(a) If bind G > 3/2, then G contains a triangle (D. R. Woodall, 
1973). 

(b) If bind G > 3/2, then G is pancyclic (contains cycles of ail Iengths 
l, 3 < l < v) (D. R. Wooda11, 1973). 

Woodall (1973) has shown that G,is hamiltonian if bind G 2=.3/2, and 
that G contains a trianglë if bind G >½(1 +J5). 

Woodall. D. R. (1973). The binding number of a graph and its Ander
son number. J. Combinatorial Theory (B), 15, 225-55 

23. Every nonempty regular simple graph contains two di$joint maximal 
independent sets (C. Payan, 1973) 

24. Find the Ramsey number r(3, 3, 3, 3). It i~ known that 

51 < r(3, 3, 3, 3) < 65 

Chung. F .. R. K. (1973). On the Ramsey numbers N(3, 3, ... , 3; 2), 
Disctete Math., S, 317-21 

Folkman, J. (1974). Notes on the Ramsey number N(3, 3, 3, 3). J. 
Combinatorial Theory (A), 16, 371-79 

25. For m < n, let f(m, n) denote the least possible number of vertices in a 
graph which contains no K" but has the property that in every 2-edge 
colouring there is a monochromatic Km. (Folkman, 1970 bas estab
Hshed the existence of such graphs.) Determine bounds for f(m, n). It is 
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known that 
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f(3,n)=6 for n>7 

/(3, 6) = 8 (see exercise 7 .2.5) 

10</(3, 5)< 18 

Folkman, J. (1970). Graphs with monochromatic complete subgraphs in 
every edge coloring. SIAM J. Appl. Math., 18, 19-24 

Irving, R. W. ( 1973). On a bound of Graham and Spencer for a 
graph-colouring constant. J. Combinatorial Theory (B), 15, 200-203 

Lin, S. On Ramsey numbers and Kr-coloring of graphs. J. Combinatorial 
Theory (B), 12, 82-92 

26. If Gis n-chromatic, then r(G, G) > r(n, n) (P. Erdôs, 1973). (r{G, G) is 
defined in exercise 7 .2.6.) 

27. What is the maximum possible chromatic number of a graph which can 
be drawn in the plane so that each edge is a straight line segment of unit 
length? (L. Moser, 1958). 

Erdôs. P., Harary, F. and Tutte, W. T. (1965). On the dimension of a 
graph. Mathematika, 12, 118-22 

28. The absolute values of the coefficients of any chromatic polynomial form 
a unimodal sequence (that is, no term is flanked by terms of greater 
value) (R. C. Read, 1968). 

Chvâtal, V. (1970). A note on coefficients of chromatic polynomials. J. 
Combinatorial Theory, 9, 95-96 

29. If G is not complete and x = m + n -1, where m > 2· and n > 2, then 
there exist disjoint subgraphs G1 and G2 of G such that x( G1) = m _ and 
x(G2) = n (L. Lovâsz, 1968). 

30. A simple graph G is perfect if, for every induced subgraph H of G, the 
number of vertices in a maximum clique is x(H). G is perfect if and 
only if no induced subgraph of G or Ge is an odd cycle of length greater 
than three (C. Berge. 1961). This is the strong perfect graph conjecture. 
Lovas~ (1972) has shown that the complement of any perfect graph is 

-perfect. 

Lovâsz, L. ( 1972). Normal hypergraphs and the perfect graph conjec
ture. Discrete Math., 2, 253-67 

Parthasarathy, K. R. and Ravindra, G. (to be published). The strong 
perfect-graph conjecture is true for K1,3-free graphs. J. Combina
torial Theory 

31. If G is a 3-regular simple block and ff is obtained from G by 
duplicating each edge, then x'(H) = 6 (D. R. Fulkerson, 1971). 

32. If G issimple, with·v even a~d x'(G)=~(G)+l, then x'(G--v)=x'(G) 



Appendix IV: Unsolved Problems 251 

for some v eV (I. T. Jakobsen, L. W. Beineke and R. J. Wilson, 1973). 
This bas been verified for ail graphs G with v < 10 and ail 3-regular 
graphs G with v = 12. 

Beineke, L. W. and Wilson, R. J. (1973). On the edge-chromatic 
number of a graph. Discrete Math., S, 15-20 

33. For any simple graph G, the elements of VUE can be coloured in 4+2 
colours so that no two adjacent or incident elements receive the same 
colour (M. Behzad, 1965). This is known as the total colouring conjecture. 
M. Rosenfeld and N. Vijayaditya have verified it for ail graphs G with 
â<3. 

Vijayaditya, N. (1971). On total chromatic number of a graph. J. 
London Math. Soc., 3, 405-408 

34. If Gis simple and E >3v-6, then G contains a subdivision of KJ (G. A. 
Dirac, 1964). Thomassen (1975) bas shown that G contains a subdivi
sion of Ks if e ~4v-10. 
Dirac, G. A. (1964 ). Homomorphism theorems for graphs. Math. Ann., 

153, 69-80 
Thomassen, C. (1974). Sorne homeomorphism properties of graphs, 

Màth. Nachr., 64, 119-33 
35. A sequence d of non-negative integers is potentially planar if there is a 

simple planar graph with degree sequence d. Characterise the poten
tially planar sequences (S. L. Hakimi, 1963). 

Owens, A. B. (1971). On the planarity of regular incidence sequences. 
J. Combinatorial Theory (B), 11, 201-12 

t36. If Gis a loopless planar grap.b, then a~v/4 (P. Erdos, 1968). Albertson 
( 197 4) bas shown that every such graph satisfies a > 2 v/9. 

Albertson, M. O. (1974). Finding an independent set in a planar graph, 
in Graphs and Combinatorics (eds. R. A. Bari and F. Harary), 
Springer~Verlag, New York, pp. 173-79 

t 37. Every planar graph is 4-colourable (F. Guthrie, 1852). 

Ore, O. (1969). The Four-Color Problem, Academic Press, New York 
38. Every k-chromatic graph contains a subgraph contractible to Kk (H. 

Had wiger, 1943). Dirac (1964) bas proved that every 6-chromatic graph 
contains a subgraph contractible to K6 less one edge. 

Dirac, G. A. ( 1964). Generalizations of the five colour theorem, in 
Theory of Graphs and its Applications (ed. M. Fiedler), Academic 
Press, New York, pp. 21-27 

39. Every k-chromatic graph contains a subdivision of Kk (G. Haj6s, 1961). 
Pelikân (1969) bas shown that every 5-chromatic graph contains a 
subdivision of Ks less one edge. 
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Pelikân, J. (1969). Valency conditions for the existence of certain 
subgraphs, in Theory of Graphs (eds. P. Erdôs and G. Katona), 
Academic Press, New York, pp. 251-58 

40. Every 2-edge-connected 3-regular simple graph which bas no Tait 
colouring contains a subgraph contractible to the Petersen graph (W. T. 
Tutte, 1966). 

Isaacs, R. (1975). lnfinite families of nontrivial trivalent graphs which 
are not Tait colourable. Amer. Math. Monthly, 82, 221-39 

Tutte, W. T. (1966). On the algebraic theory of graph colorings. J. 
Combinatorial Theory, 1, 15-50 

41. For every surface S, there- exists a finite number of graphs which have 
minimum degree at least tbree and are minbnally nonembeddable on S. 

t 42. HD is diconnected, then D bas a directed cycle of length at least x (M. 
Las Vergnas, 197 4). 

43. H D is a toumament with .., odd and every indegree and outdegree 
equal to (v-1)/2, then D is the union of (v-1)/2 arc-disjoint directed 
Hamilton cycles (P. Kelly, 1966). 

44. H D is a toumament with .., even, then D is the union of 
L max{O, d+(v)-d-(v)} arc-disjoint direded paths (R. O'Urien, 1974). 

•EV 

This wo:µld imply the truth of conjecture 43. 
45. Characterise the toumaments D with the property that all subtouma

ments D -v are isomorphic (A. Kotzig, 1973). 
46. If D is a digraph which contains a directed cycle, then there is some arc 

whose reversai decreases the number of directed cycles in D (A. Adâm, 
1963). 

4 7. Given a positive integer n, there exists a least integer f ( n) such that in 
any digraph witb at most n arc-disjoint direded cycles there are f(n) 
arcs whose deletion destroys al direded cydes (T. Gallai, 1964; D. 
H. Younger, 1968). 

Erdôs. P. and P6sa, L. (1962). On the maximal number of disjoint 
circuits of a graph. Publ. Math. Debrecen, 9, 3-12 

Younger, D. H. (1973). Graphs with interlinked directed circuits, in 
Proceedings of Midwest Symposium on Orcuit Theory 

48. An (m + n)-regular graph is (m, n)-orientable if it can be oriented so, 
that each indegree is either m or n. Every S-regular simple graph with 
no 1-edge eut or 3-edge eut is (4, 1)-orientable (W. T. Tutte, 1972). 
Tutte bas shown that this would imply Grotzsch 's theorem 

49. Obtain an algorithm to find a maximum ftow in a network with two 
sources X1 and X2, two sinks Y• and· y2, and two commodities, the 
requirement being to ship commodity 1 from X1 to y1 and commodity 2 
from X2 to Y2 (L. R. Ford and D. R. Fulkerson, 1962). 
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Rothschild, B. and Whinston, A. ( 1966 ). On two commodity network 
ftows. Operations Res., 14, 377-87 

50. Every 2-edge-connected digraph D bas a circulation f over the &eld of 
integers modulo S in which f(a) ;é O for all arcs a (W. T. Tutte, 1949). 
Tutte bas shown that this would imply the fi.ve-colour theorem. 

Ref erences for problems solved since first printing: 

16. Gobel, F. and Jagers, A. A. (1976). On a conjecture of Tutte concerning 
minimal tree numbers. J. Combinatorial Theory (B), to be published. 

36 and 37. Appel, K. and Haken, W. (1976). Every planar map is four 
colorable. Bull. Amer. Math. Soc., 82, 711-2 

42. Bondy, J. A. (1976). Diconnected orientations and a conjecture of Las 
Vergnas. J. London Math. Soc., to be published . 



Appendix V 
Suggestions for . Further 
Reading 

BOOKS OF A GENERAL NATURE, LISTED ACCORDING TO LEVEL OF TREATMENT 

Ore, O. (1963). Graphs and Their Uses, Random House, New York 
Rouse Ball, W. W. and Coxeter, H. S. M. '(1974). Mathematical Recreations 

and Essays, University of Toronto Press, Toronto 
Liu, C. L. (1968). Introduction to Combinatorial Mathematics, McGraw-Hill, 

New York 
Wilson, R. J. (1972). Introduction to Graph Theory, Oliver and Boyd, 

Edinburgh 
Deo, N. (1974). Graph Theory with Applications to Engineering and Compu

ter Science, Prentice-Hall, Englewood Cliffs, N.J. 
Behzad, M. and Chartrand, G. (1971). Introduction_to the Theory of Graphs, 

Allyn and Bacon, Boston 
Harary, F. (cd.) (1967). A Seminar on Graph Theory, Holt, Rinehart and 

Winston, New York 
Ore, O. (1962). Theory of Graphs, American Mathematical Society, Provi

dence, R.I. 
Kônig, D. (1950). Theorie der Endlichen und Unendlichen Graphen, 

Chelsea, New York 
Sachs, H. (1970). Einführung in die Theorie der Endlichen Graphen, Teubner 

Verlagsgesellschaft, Leipzig 
Harary, F. (1969). Graph Theory, Addison-Wesley, Reading, Mass. 
Berge, C. (1973). Graphs and Hypergraphs, North Bolland, Amsterdam 

SPECIAL TOPICS 

Biggs, N. (1974). Algebraic Graph Theory, Cambridge University Press, 
Cambridge 

Tutte, W. T. (1966). Connectivity in Graphs, University of Toronto Press, 
Toronto 

Ore, O. (1967). The Four-Color Problem, Academic Press, New York 
Ringel, G. ( 197 4). Map Color Theorem, Springer-Verlag, Berlin 
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Moon, J. W. (1968). Topics on Tournaments, Holt, Rinehart and Winston, 
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Ford, L. R. Jr. and Fulkerson, D. R. (1962). Flows in Networks, Princeton 
University Press, Princeton 

Berge, C. and Ghouila-Houri, A. (1965). Programming, Garnes, and 
Transportation Network~, John Wiley, New York 

Seshu, S. and Reed, M. B. (1961). Linear Graphs and Electrical Networks, 
Addison-Wesley, Reading, Mass. 

Tutte, W. T. (1971). Introduction to the Theory of Matroids, American 
Elsevier, New York "' 

Harary, F. and Palmer, E. (1973). Graphical Enumeration, Academic Press, 
New York 

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. (1974). The Design and 
Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. 

Welsh, D. J. A. (1976). Matroid Theory, Academic Press, New York 
Biggs, N., Lloyd, E. K. and Wilson, R. J. (1976). Graph Theory 1736-/936, 

Clarendon Press, Oxford 



Glossary of Symbols 
GENERAL MA THEMA TI CAL SYMBOLS Page 

u union 
n intersection 
~ subset 
C proper subset 
\ set-theoretic difference 
4 symmetric difference 
[x] greatest integer s x 
{x} least integer> x 
llfll support off 215 
RIS restriction of R to S 215 
R' transpose of R 

GRAPH-THEORETIC SYMBOLS 

A arc set 171 
A adjacency matrix of a graph 7 
A adjacency matrix of a digraph 173 
b(f) boundary of f 140 
ri bond space 213 
c(G) closure of G 56 
capK capacity of eut K 194 
C€ cycle space 212 
do(v) deg·ree of vertex v in G 10 
do(f) degree of face f in G 140· 
do(v) indegree of tJ in D i12 
dt(v) outdegree of v in D 172 
da(u,v) distance between u and v in G 14 
D directed graph 171 
D(G) associated digraph of G 179 
extJ exterior of J 135 
ExtJ closure of ext J 135 
E edge set 1 
1-<s> ftow into S 191 
f+(S) ftow out of S 191 
F face set 139 
F(B, H) set of faces of H in which B is drawable 164 
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Page 
G graph 1 
G[S] subgraph of G induced by S 9 
int J interior of J 135 
IntJ closure of int J 135 
Kn complete graph 4 
Km,n complete bipartite graph 5 
M incidence matrix of a graph 7 
M incidence matrix of a digraph 214 
N network 191 
No(S) neighbour set of S in G 72 
No(v) in-neigh~our set of v in D 175 
N;(v) out-neighbour set of v in D 175 
r(k, l) Ramsey number 103 
r(k1, k2, ... , km) Ramsey number 108 
rn r(3, 3, ... , 3) 108 
val/ value of ftow f 192 
V vertex set 1 
V(B, H) set of vertices of attachment of B to H 146 
a . independence number 101 
a' edge independence number 102 
/3 covering number 101 
/3 I edge covering number 102 
8 minimum degree 10 
s- minimum indegree 172 
s+ m~nimum outdegree 172 
4 maximum degree 10 
4- maximum indegree 172 
4+ maximum outdegree 172 
B number of edges 3 
K connectivity 42 

I edge connectivity 42 K 

V number of vertices 3 
0 number of odd components 76 
1Tt chromatic polynomial 125 
'T number of spanning trees 32 
cf, number of faces 139 
X chromatic number 117 
x' edge chromatic number 91 
x* face chromatic number 158 
w number of components 13 
fJ converse of D 173 

A 173 D condensation of D 
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Page 
ac complement of G 6 
G* dual of G 140 
é; planar embedding of G 135 
w-1 reverse of walk W 12 
G · e contraction of e 32 
G-e deletion of e 9 
G+e addition of e 9 
G-v deletion of v 9 
G+E' addition of E' 9 
G-S deletion of S 9 
G:::H isomorphism 4 
HcG subgraph 8 
HcG proper subgraph 8 
GUH union 9 
GnH intersection 10 
G+H disjoint union 10 
GxH product 96 
GvH join 58 
H(G) complement of H in G 29 
[S, T] set of edges between S and T 29 
(S, T) set of arcs from S to T 176 
WW' concatenation of walks 12 



Index 
This index is arranged strictly in alphabetical order according to the first 
significant word. Thus, 'edge connectivity' is listed under E and 'k-chromatic 
graph' under C. 

Acyclic graph, 25 
Adjacency matrix 

of a digraph, 173 
of a graph, 7 

Adjacent vertices, edges, 3 
M-alternating path, 70 
M-alternating tree, 81 
Arc, 171 
k-arc-connected digraph, 179 
Associated . digraph, 179 
M-augmenting path, 70 
Automorphism, 6 
Automorphism group, 7 
Avoiding bridges, 146 

Bandwidth, 248 
Basis matrix, 215 
Basis matrix corresponding to a tree, 216 
Berge's theorem, 80 · 
Binding number, 249 
Bipartite graph, 4 
Bipartition, 5 
Block, ·44 
Block qf a graph, 44 
Bond, 29 
Bond space, 213 
Breakthrough, 199 
Bridge, 146 
k-bridge, 146 
Brooks' theorem, 122 
Brouwer's fixed-point theorem, 21 

Cage, 236 
Capacity 

of a eut, 194 
of an arc, 191 

·Capacity fonction, 191 
-Cayley's formula, 32 
Centre, 27 
Chinese postman problem, 62 
k-chromatic graph, 117 
Chromatic number, 117 
Chromatic number of a surface, 243 

Chromatic polynomial, 126 
Chvâtal graph, 241 
Circulation, 212 
Clique, 103 
Closed walk, 14 
Closure, 56 
k-colourable graph, 117 
k-colouring, 117 
Complement 

of a graph, 6 
of a subgr~ph, 29 

Complete bipartite graph, 5 
Complete graph, 4 
Complete k-partite graph, 6 
Component, 13 
S-component, 119 
Composition of two graphs, 108 
Condensation, 173 
Conductance matrix, 220 
Connected graph, 13 
k-connected graph, 42 
Connected vertices, 13 
Connectivity, 42 
Connector problem, 36 
Conservation condition, 191 
Contraction of an edge, 32 
Converse, 173 
Cotree, 29 
Covering, 73 

· Covering number, 101 
Coxeter graph, 241 
Critical graph, 117 
k_-critical graph, 117 
a -critical graph, 103 
/3-critical graph, 103 
K -critical graph, 4 7 
Cube, 234 
k-cube, 6 
Cut, 194 
Cut edge, 27 
Cut vertex, 31 
Cycle, 14 
k-cycle, 14 
Cycle space, 212 
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Degree 

of a face, 140 
of a vertex, 10 

Degree-majorised, 58 
Degree sequence, 11 
Demand, 206 
Diameter, 14 
Diameter of a plane set, 113 
Dicomponent, 172 
Diconnected digraph, 172 
Digraph, 171 
Dijkstra's algorithm, 19 
Dirac's theorem, 54 
Directed cycle, 172 
Directed diameter, 186 
Directed Euler tour, 179 
Directed graph, 171 
Directed Hamilton cycle, 177 
Directed Hamilton path, 174 
Directed path, 172 
Directed tour, 172 
Directed trail, 172 
Directed walk, 171 
Disconnected graph, 13 
Disjoint subgraphs, 9 
Distance 

in a digraph, 186 
in a graph, 14 
in a weighted graph, 16 

Dodecahedron, 234 
Dual, 140 
Duplication of an edge, 63 

Edge, 1 
Edge chroma tic number, 91 
k-èdge-chromatic graph, 91 
k-edge-colourable graph, 91 
k-edge colouring, 91 
k-edge-connected graph, 42 
Edge connectivity, 42 
Edge covering, 102 
Edge covering number, 102 
Edge eut, 29 
k-edge eut, 42 
Edge-disjoint subgraphs, 9 
Edge graph, 11 
Edge independence number, 102 
Edge-induced subgraph, 9 
Edge-transitive graph, 7 
Embeddable on a surf ace,· 136 
Embedding, 137 
Empty graph, 4 
End, 1 
Equivalent k""bridges, 146 
Eulerian graph, 51 
Euler's formula, 143 
Euler's theorem, 5 l 

Euler tour, 51 
Euler trait, 51 · 
Even component, 76 
Even cycle, 14 

Index 

Exterior of a Jordan cutve, 135 
Exterior face, 139 
Extrema} graph theory, 109 

Face, 139 
Face chromatic number, 158 
k-face-colourable plane graph, 158 
k-face colouring, 158 
k-factor, 71 
k-factorable graph, 71 
Fâry's theorem, 139 
Feasible ftow f 206 
Finite graph, 3 
Five-colour theorem, 156 
Fleury's algorithm, 62 
Flow, 191 
Folkman graph, 235 
Forcibly hamiltonian sequence, 248 
Forest, 26 
Four-colour conjecture, 157 
Four-colour problem, 158 
Franklin graph, 244 
Frucht's theorem, 7 

Generalised Ramsey numbers, 109 
Girth, 15 
Good algorithm, 19 
Graceful graph, 248 
Graph, l 
Graphie sequence, 11 
Gray graph, 235 
Greenwood-Gleason graph, 242 
Grinberg graph, 162 
Grotzsch graph, 118 
Grôtzsch's theorem, 159 
Grünbaum graph, 242 

Hadwiger's conjecture, 124 
Haj6s' conjecture, 123 
Hall's theorem, 72 
Hamilton cycle; 53 
Hamilton path, 53 
Hamilton-connected graph, 61 
Hamiltonian graph, 53 
Head, 171 
Heawood graph, 236 
Herschel graph, 53 
Hoffman-Singleton graph, 2.39 
Horton graph, 240 
Hungarian method, 82 
Hypohamiltonian graph, 61 
Hypotraceable graph, 61 



Index 
lcosahedron, 234 
Identical graphs, 4 
Improvement of an edge colouring, 92 
Incidence function 

of a digraph, 171 
of a graph, 1 

Incidence matrix 
of a digraph, 214 
of a graph, 7 

Incident 
edge with vertex, 3 
face with edge or vertex, 140 

f-incrementing path, 196 
Indegree, 172 
Independence number, 101 
Independent set, 101 
lnduced subgraph, 9 
In-neighbour, 175 
lnner bridge, 148 
Interior of a Jordan curve, 135 
Intermediate vertices, 191 
Internai vertices, 12 
lnternally-disjoint paths, 44 
Intersection of graphs, 10 
Isomorphic graphs, 4 
Isomorphism, 4 

Join of two graphs, 58 
Joined vertices 

in a digraph, 171 
in a graph, 1 

Jordan curve, 135 
Jordan curve theorem, 135 

Kirchhoff's current law, 223 
Kônig's theorem, 74 
Kruskal's algorithm, 37 
Kuhn-Munkres algorithm, 87 
Kuratowski's theorem, 153 

Labelling method, 198 
Labelling procedure, 198 
Length of walk, 12 
Link, 3 
Loop, 3 

Map colour theorem, 244 
Marriage theorem, 73 
Matching, 70 
Matrix-tree theorem, 219 
Max-ftow min-eut theorem, 198 
Maximum ftow, 192 
Maximum independent set, 101 
Maximum matching, 70 
McGee graph, 237 
Menger's theorems, 46 
Meredith graph, 239 
Minimum covering, 73 

Minimum eut, 195 
Multiplicity, 95 

Neighbour set, 72 
Network, 191 
Nontrivial graph, 3 

Octahedron. 234 
Odd component, 76 
Odd cycle, 14 
Optimal assignment problem, 86 
Optimal cycle, 65 
Optimal k -edge colouring, 92 
Optimal matching, 86 
Optimal tour, 62 
Optimal tree, 36 
Order of a squared rectangle, 220 
Order of magnitude of a function, 19 
Orientation, 171 
Origin of a walk, 12 
Outdegree, 172 
Outer bridge, 148 
Out-neighbour, 175 
Overlapping bridges, 146 

k-partite graph, 6 
Path, 12 
Perfect graph, 250 
Perfect matching, 70 
Perf ect recta(!gle, 220 
Personnel assignment problem, 80 
Petersen graph, 55 
Petersen 's theorem, 79 
Planar embedding, 135 
Planar graph, 135 
Plane graph, 135 
Plane triangulation, 143 
Platonic graphs, 234 
/-positive arc, 195 
Potential difference, 212 
Potentially planar sequence, 251 
Probabilistic method, 107 

· Product of graphs, 96 
Proper colouring, 117 
Proper edge colouring, 91 
Proper face colouring, 158 
Proper subgraph, 8 

Ramsey graphs, 106 
Ramsey numbers, 104 
Ramsey's theorem, 103 
Reachable vertex, 172 
Reconstruction conjecture, 246 
Rédei's theorem, 175 
Regular graph, 11 
k-regular graph, 11 
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Represented (colour at a vertex), 91 
Resultant flow, 192 
Revised flow, 197 
Robbins' theorem, 184 
Robertson graph, 237 
Robertson--Wegner graph, 238 

Saturated (vertex by a matching), 70 
f-saturated arc, 195 
f-saturated path, 196 
M-saturated vertex, 70 
Schur's theorem, 112 
Section of a walk, 12 
Self-complementary graph, 6 
Self-dual plane graph, 142 
Separated (faces by an edge), 140 
Shortest path problem, 16 
Simple graph, 3 
Simple squared rectangle, 220 
Sink, 191 
Skew bridges, 146 
Source, 191 
Spanning subgraph, 8 
Spanning supergraph, 8 
Spanning tree, 28 
Sperner's lernma, 22 
Squared rectangle, 220 
Stereographic projection, 138 
Strict digraph, 172 
Strong pcrfect graph conjecture, 250 · 
Subdigraph, 171 .· 
Subdivision 

of a graph, 123 
of an edge, 45 

Subgraph, 8 
Supergraph, 8 

· Supply, 206 
Surface, 136 

Tail, 171 
Tait colouring, 159 . 
Tait's conjecture, 160 
Terminus of a walk, · 12 
Tetrahedron, 234 
Thickness,· 145 
Thomassen graph, 240 
Tietze graph, 243 
Timetabling problem, 96 
Total colouring conjecture, 251 
Totally unimodular matrix, ~20 ·. 
t-tough graph, 249 

Tour, 51 
Tournament, 174 
Trail, 12 . 
Transfer of a bridge, 149 
Traveliing salesman problem, 65 
Tree, 25 
Tree graph, 41 
Triangle, 14 
Trivial graph, 3 
Turân's theorem. 109 
Tutte-Coxeter graph, 237 
Tutte graph. 161 
Tutte's theorem, 76 
Type 1 {u,v}-component, 119 
Type 2 { u, v }-component, 119 

Underlying digraph, 191 
Underlying graph, 171 
Underlying simple graph, 8 
Unilateral digraph, 176 
Unimodular matrix, 218 
Union of graphs, 9 

Index 

Uniquely k-colourable graph, 121 
Uniquely k-edge-colourable graph, 96 
f-unsaturated arc, 195 
f-unsaturated path, 196 

· f-unsatnrated tree, 198 
M-unsaturated vertex, 70 

Value of a flow, 192 
Vertex, 1 
k-vcrtex-colourable graph, 117 
k-vertex colouring, 117 · 
Vertex eut, 42 
k -vertex eut, 42 
Vertex-transitive graph, 7 
Vertices of attachment, 146 
Vizing's theorem, 93 

Walk, 12 
Weight 

of a subgraph, 16 
of an edge, 15 

Weighted graph, 15 
\\'heel, 36 

/-zero arc, 195 
Zero flow, 192 




