
OPERATIONS RESEARCH
Vol. 56, No. 4, July–August 2008, pp. 958–975
issn 0030-364X �eissn 1526-5463 �08 �5604 �0958

informs ®

doi 10.1287/opre.1080.0556
© 2008 INFORMS

A Randomized Quasi-Monte Carlo
Simulation Method for Markov Chains

Pierre L’Ecuyer
GERAD and Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128,

Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7, lecuyer@iro.umontreal.ca

Christian Lécot
Laboratoire de Mathématiques, Université de Savoie, 73376 Le Bourget-du-Lac Cedex, France,

christian.lecot@univ-savoie.fr

Bruno Tuffin
IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France, bruno.tuffin@irisa.fr

We introduce and study a randomized quasi-Monte Carlo method for the simulation of Markov chains up to a random (and
possibly unbounded) stopping time. The method simulates n copies of the chain in parallel, using a (d+ 1)-dimensional,
highly uniform point set of cardinality n, randomized independently at each step, where d is the number of uniform random
numbers required at each transition of the Markov chain. The general idea is to obtain a better approximation of the state
distribution, at each step of the chain, than with standard Monte Carlo. The technique can be used in particular to obtain a
low-variance unbiased estimator of the expected total cost when state-dependent costs are paid at each step. It is generally
more effective when the state space has a natural order related to the cost function.

We provide numerical illustrations where the variance reduction with respect to standard Monte Carlo is substantial.
The variance can be reduced by factors of several thousands in some cases. We prove bounds on the convergence rate of
the worst-case error and of the variance for special situations where the state space of the chain is a subset of the real
numbers. In line with what is typically observed in randomized quasi-Monte Carlo contexts, our empirical results indicate
much better convergence than what these bounds guarantee.
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1. Introduction
A wide variety of real-life systems can be modeled as
Markov chains with a large state space. In most inter-
esting situations, analytic formulas are not available for
these Markov chains, and matrix-based numerical methods
require too much time, so Monte Carlo simulation becomes
the standard way of estimating performance measures for
these systems.

In this paper, we propose a randomized quasi-Monte
Carlo (RQMC) algorithm, based on deterministic methods
introduced by Lécot and Ogawa (2002) and Lécot and Tuf-
fin (2004), to improve simulation efficiency for discrete-
time Markov chains. The algorithm simulates n copies
of the chain in parallel and induces negative dependence
between the corresponding sample paths by using some
form of generalized antithetic variates (Wilson 1983, Ben-
Ameur et al. 2004). We would like the empirical distribu-
tion of the states of these n chains, at any given step j , to be
a better approximation of the corresponding theoretical dis-
tribution than if the n chains were simulated independently.
As a result, performance measure estimators obtained by

taking an average across the n copies of the chain will typ-
ically have much smaller variance.

Markov Chain Setting. We consider a Markov chain
�Xj� j � 0� with state space � ⊆ �l ∪ ��� for some inte-
ger l > 0. The chain evolves according to the stochastic
recurrence

X0 = x0� Xj = �j�Xj−1�Uj � j � 1� (1)

where the Uj are independent random vectors uniformly
distributed over the d-dimensional unit cube �0�1d (hence-
forth denoted Uj ∼ U�0�1d), for some functions �j� � ×
�0�1d → �. Each Uj represents the d uniform random
numbers required to simulate step j of the chain. Every
discrete-time Markov chain that can be simulated on a com-
puter fits this framework. It is also always possible to take
d = 1 by defining the chain so that each newly gener-
ated uniform random number in the simulation corresponds
to one step of the chain, although this representation is
not always natural. Here, for more flexibility, we simply
assume that d is a finite constant.
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We want to estimate the expected total cost � = E�Y �,
where

Y =
�∑

j=0

cj�Xj� (2)

cj � � → � is a cost function at step j , � is a stopping
time with respect to the filtration ��j � j � 0� generated by
��j�Xj� j � 0�, E��� <�, and we assume that the func-
tions �j and cj are easy to evaluate at any given point for
each j . We also assume (implicitly) that � , the �js, and
the cjs satisfy the appropriate measure-theoretic require-
ments so that all objects of interest in this paper are well
defined. The state � is an absorbing state used to indicate
that we have already reached the stopping time � at the
previous step or earlier; i.e., Xj = � for j > � . We also
have cj�� = 0, although the cost at the stopping time �
can be nonzero.

Given a sequence of vectors �Uj � j � 1� in �0�1d, we
can simulate the chain until hitting the stopping time �
by computing Xj = �j�Xj−1�Uj  iteratively, and we can
add the cj�Xjs to compute the realization of Y . Let
s = sup� �d, where the supremum is taken over all possi-
ble sample paths �, so s = � if � is unbounded. Then,
Y can be written as Y = f �U1� � � � �Us for some func-
tion f , where Uj = �U�j−1d+1� � � � �Ujd for each j . In the
first three methods to be discussed, we simulate n copies
of Y ; for the ith copy, we compute Yi = f �Vi, where Vi =
�Ui�1� � � � �Ui� s ∈ �0�1s , i= 0� � � � � n− 1, and we take the
average �Yn of Y0� � � � � Yn−1 as an estimator of �.

Estimation by Monte Carlo (MC). In the standard
MC method, all the Ui� js are taken as realizations of inde-
pendent uniform random variables over �0�1, so the Vi are
independent and uniformly distributed in �0�1s . Then, the
sample mean �Yn and the sample variance S2

n of Y0� � � � � Yn−1

are unbiased estimators of � and of the variance of Y ,
respectively. From this, we can compute a confidence inter-
val on �, e.g., via the central limit theorem.

Quasi-Monte Carlo (QMC). The classical QMC
method replaces the n independent random points Vi

used in MC by a deterministic set of distinct points
Pn = �v0� � � � �vn−1� that cover the unit cube �0�1s more
uniformly than typical random points. There are many ways
of measuring the uniformity of Pn. One of them is the star
discrepancy, defined as

D∗
n�Pn= sup

x∈�0�1s
�card�Pn ∩ �0�x/n− vol��0�x��

where �0�x is the s-dimensional rectangular box with
opposite corners 0 and x, vol denotes its volume, and
card�P means the cardinality of the set P (so card�Pn ∩
�0�x) is the number of points of Pn that fall in the box).
A classical worst-case error bound for numerical integra-
tion by QMC is given by the Koksma-Hlawka inequality

��Yn−��� V �f D∗
n�Pn� (3)

where V �f  is the Hardy-Krause total variation of the inte-
grand f (see Niederreiter 1992 for the details). For a one-
dimensional function g� �a� b�→�, where �a� b�⊂�, the
total variation is

V �g= sup
L�1� a=x0<···<xL=b

L∑
j=1

�g�xj− g�xj−1�

=
∫ b

a
�dg�x�� (4)

If �a� b� is replaced by �, then V �g = ∫ �
−� �dg�x�. For

s > 1, the total variation is much more complicated; we just
point out that V �f  is infinite whenever f has a disconti-
nuity not aligned with one of the axes (Owen 2005). This
happens frequently. Moreover, in most practical situations,
the bound (3) is too loose to be useful and is also much too
difficult to compute. Hlawka (1971) derives another error
bound in which V �f  is replaced by a different notion of
variation, called the mean oscillation of f . In fact, a large
family of bounds can be derived by adopting different def-
initions of discrepancy, together with corresponding defini-
tions of function variation (Hickernell 1998, L’Ecuyer and
Lemieux 2002). These bounds can be used to get asymp-
totic convergence rates, but are rarely convenient for prac-
tical error assessment.

Randomized Quasi-Monte Carlo (RQMC). The
usual RQMC method (we call it classical RQMC, to distin-
guish it from our new algorithm) turns QMC into a variance
reduction method by carefully randomizing Pn. This can be
seen as an application of the generalized antithetic variates
(GAV) principle (Wilson 1983), as explained in Ben-Ameur
et al. (2004). The idea is to induce “negative dependence”
between the points Vi (for example, assuming that each
Cov�Vi�Vj  is a diagonal matrix, we may ask for all diago-
nal elements of the diagonal matrix

∑
�i� j � i �=j Cov�Vi�Vj 

to be negative) by generating them in such a way that
(a) each point Vi has the uniform distribution over

�0�1s , and
(b) the point set �V0� � � � �Vn−1� covers �0�1s more uni-

formly (in some sense) than a set of independent random
points.

We call a point set that satisfies these two conditions an
RQMC point set. This definition is incomplete: we still need
to select a specific measure of uniformity so that “more uni-
formly” has a well-defined meaning. We leave this choice
open for now because we want to keep the generality. Spe-
cific measures and conditions are always adopted when
proving bounds on the convergence speed of the error and
variance for particular RQMC methods, and we will do
the same when we prove such results for our method, but
the RQMC method in general and the algorithm proposed
in this paper are defined independently of any measure
of uniformity. Examples of RQMC point sets include ran-
domly shifted lattice rules, scrambled digital nets, digital
nets with a random digital shift, a Latin hypercube sample
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or a stratified sample followed by a random permutation
of the points, and so forth (Owen 1998, L’Ecuyer and
Lemieux 2002, Glasserman 2004). For the stratified sam-
ple, we partition the unit cube into n boxes of equal volume
and generate one point randomly and uniformly in each
box. Then, we permute the n points randomly, so that for
each fixed i, Vi has probability 1/n of being in any given
box. The same permutation trick applies to Latin hypercube
sampling.

Under conditions (a) and (b) on the randomization, the
estimator �Yn is still unbiased for � and, although Y0� � � � � Yn
are not independent, an unbiased estimator of Var��Yn� can
be obtained by computing m independent replicates of �Yn,
e.g., with independent randomizations of the same point
set, and taking the sample variance of these m averages.
Further details on this classical RQMC approach (and
high-dimensional contexts) can be found in Owen (1998),
L’Ecuyer and Lemieux (2000, 2002), and other references
given there. This approach is typically more efficient than
MC when s is small (e.g., fewer than 20 or so) or if
the function f has low effective dimension in some sense,
as explained in Owen (1998) and L’Ecuyer and Lemieux
(2002).

Introductory overviews of the QMC and RQMC methods
can be found in Kollig and Keller (2002), Owen (2003a),
Glasserman (2004), L’Ecuyer (2004a), and the user’s guide
of the package hups in SSJ (L’Ecuyer 2004b), for example.
For more advanced material, see Niederreiter (1992), Owen
(1998), L’Ecuyer and Lemieux (2002), and the proceedings
of the biennial MCQMC Conference.

Array-RQMC. The RQMC method proposed in this
paper, called array-RQMC, operates differently. We simu-
late n copies of the chain in parallel. To simulate step j
for all copies, we use a randomized �d + 1-dimensional
highly uniform (or “low-discrepancy”) point set P ′

n� j of car-
dinality n, as explained in the next section, where d � s
typically. These point sets are randomized independently at
the different steps in such a way that the sample path of any
given copy of the chain obeys the correct probability law
(the same as with the MC method). As a result, we have
an unbiased estimator �Yn for the average cost �. The aim
of the proposed method is to induce dependence across the
n copies so that the empirical distribution of the n realiza-
tions of Xj (at step j) gives a better approximation of the
distribution Fj of the random variable Xj than if the chains
were simulated independently.

The original deterministic method of Lécot and Tuffin
(2004) was designed to approximate transient measures
over a fixed number of steps for discrete-time and discrete-
state Markov chains with a totally ordered state space, and
with d = 1. That method uses a �0�2-sequence in base 2
(Niederreiter 1992). At step j of the chain, it reorders the
n copies according to their current states and “simulates”
the transitions (next states) for the n copies by employ-
ing the elements nj to nj + n− 1 of the �0�2-sequence

in place of uniform random numbers to drive the simula-
tion. Convergence to the correct value (in the deterministic
sense) was proved by Lécot and Tuffin (2004) under a con-
dition on the structure of the transition probability matrix
of the Markov chain. In contrast, our method is a random-
ized algorithm that provides an unbiased estimator. It also
applies to Markov chains with a more general state space,
with a random and unbounded number of steps, and allows
d > 1. It thus covers a much broader range of applications.

We prove bounds on the convergence rate of the vari-
ance of the mean estimator (as n→ �) only for simpli-
fied special cases of the algorithm, with � ⊆ �−����
and d = 1. For a setting where each P ′

n� j is constructed
by stratified sampling in the unit square, and under mild
additional assumptions, we prove that the variance con-
verges as O�n−3/2. Under a less restrictive assumption than
stratified sampling (see Assumption 2), we show that the
worst-case error converges as O�n−1/2 (this is a stronger
result than the probabilistic rate of O�n−1/2 for MC).
Under even milder assumptions on the sampling (we only
assume that the chain transitions are generated by inver-
sion), but only for chains with finite state spaces, we obtain
an upper bound of O�n−1 logn on the convergence rate,
also in the worst case. Related results have been obtained
by Lécot (1996) for general real-valued functions defined
over the unit cube and having bounded variation, in a deter-
ministic setting, under the stronger assumption that Pn is
a (t�m� s)-net, and with different methods of proof. We
conduct empirical experiments with other types of RQMC
point sets as well, with a variety of examples. The results
indicate that the variance goes down much faster (as a func-
tion of n) with the proposed method than for standard MC
and faster than classical RQMC in many situations. In our
experiments, popular RQMC point sets such as randomized
lattice rules and Sobol’ nets also perform much better than
the stratified sampling mentioned earlier. This gap between
theoretical and empirical results (we often get much bet-
ter variance improvements in practice than what we can
prove) is common with the QMC and RQMC methods
(Tuffin 1996, Tezuka 2002), where the theoretical bounds
have limited applicability in general and the surprisingly
good empirical results are often only heuristically justified.
The theoretical results are nevertheless a first step toward
a better understanding of the proposed algorithm. We also
believe that they could be extended in several directions
(different sampling schemes, higher dimensions, etc.), and
some of the ideas in our proofs could be useful for that
purpose.

2. The Array-RQMC Algorithm
We now assume that there is a sorting function h� � →
� ∪ ��� that assigns a real number to each state of the
chain, with h��=�. This h is used to order the states:
we say that state x1 is smaller than state x2 if h�x1 < h�x2
and that the two states are h-equivalent if h�x1 = h�x2.
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The h-equivalent states can be placed in arbitrary order by
the sort. A similar type of function h is used in the splitting
methodology for rare-event simulation, where it is called
the importance function (Garvels et al. 2002, Glasserman
et al. 1999). Just like for splitting, a good choice of h is cru-
cial for the performance of the algorithm, especially when
� has more than one dimension.

The array-RQMC algorithm works by simulating
n copies of the chain in parallel as follows. In step 1, we
take an RQMC point set Pn�1 = �u0�1� � � � �un−1�1� in �0�1d,
define Xi�1 = �1�x0�ui�1 for i= 0� � � � � n− 1, and estimate
the distribution function F1 of X1 by the empirical distribu-
tion �F1 of X0�1� � � � �Xn−1�1. This gives

F1�x=
∫
�0�1d

I��1�x0�u� xdu (5)

≈ 1
n

n−1∑
i=0

I��1�x0�ui�1� x (6)

= 1
n

n−1∑
i=0

I�Xi�1 � x
def= �F1�x�

where I denotes the indicator function. The approximation
in (6) amounts to estimating the integral (5) by RQMC.
If �1 is well behaved, this should give better accuracy than
using standard MC.

In step j , we start with the empirical distribution �Fj−1

of X0� j−1� � � � �Xn−1� j−1 as an approximation of the distri-
bution function Fj−1 of Xj−1, and want to compute a good
approximation �Fj of Fj . We can write

Fj�x=
∫
�

∫
�0�1d

I��j�y�u� xdudFj−1�y (7)

≈
∫
�

∫
�0�1d

I��j�y�u� xdud �Fj−1�y (8)

= 1
n

n−1∑
i=0

E�I��j�Xi� j−1�Ui� j � x�� (9)

where the approximation in (8) is obtained by replacing
Fj−1 in (7) with �Fj−1. When the n copies of the Markov
chain are simulated independently via standard MC, (9) is
estimated by its realization (the expectation is removed),
where the Ui� js are independent and uniformly distributed
over �0�1d. Our aim here is to estimate the (d + 1)-
dimensional integral (8) by RQMC instead.

To do that, we introduce a (d+ 1)-dimensional modified
RQMC point set P ′

n� j defined as P ′
n� j = �u′i� j = ��i+ 0�5/

n�ui� j , 0 � i < n�, where Pn� j = �u0� j � � � � �un−1� j � is an
RQMC point set in �0�1d, and with the following two
properties:

(c) ui� j is a random vector uniformly distributed over
�0�1d for each i, and

(d) P ′
n� j is “highly uniform” in �0�1d+1, in a sense that

we leave open for now (as in our definition of RQMC
point set).

This P ′
n� j is not quite an RQMC point set because the

first coordinate is not a random variable with the uniform
distribution over �0�1. A typical way of defining P ′

n� j is
to take a (d + 1)-dimensional RQMC point set, sort the
points by order of their first coordinate, and then replace
the first coordinate of the ith point by �i+0�5/n for each i.
Item (b) is not needed for the proofs of Propositions 1
and 2 later in this section, but is crucial to obtain a variance
reduction in the array-RQMC algorithm.

To explain how the integral (8) is approximated by
RQMC with the point set P ′

n� j , we first consider the spe-
cial case where l= 1 (so � ⊆ �−����) and h�x= x. Let
X�0� j−1� � � � �X�n−1� j−1 be the states at step j − 1 sorted by
increasing order. Define the inverse of �Fj−1 by �F −1

j−1�v =
inf�x ∈� � �Fj−1�x� v� for all v ∈ �0�1�. We approximate
(8) as follows:

∫
�

∫
�0�1d

I��j�y�u� xdud �Fj−1�y

=
∫
�0�1d+1

I��j� �F −1
j−1�v�u� xdudv (10)

≈ 1
n

n−1∑
i=0

I��j� �F −1
j−1��i+ 0�5/n�ui� j � x (11)

= 1
n

n−1∑
i=0

I��j�X�i� j−1�ui� j � x (12)

= 1
n

n−1∑
i=0

I�Xi� j � x
def= �Fj�x�

In (11), we approximate the integral in (10) by RQMC
over �0�1d+1 with the point set P ′

n� j . The sorting at step
j − 1 is needed for (12) to be true; i.e., the ith point of
P ′
n� j must be assigned to the chain whose state is X�i� j−1.

Observe that this point set gives a perfect stratification of
the distribution �Fj−1, with exactly one observation per stra-
tum (the strata are the jumps of �Fj−1). On the other hand,
these observations are generally not independent across the
strata. The distribution Fj is estimated by the empirical dis-
tribution �Fj of the realizations Xi� j = �j�X�i� j−1� ui� j , i=
0� � � � � n−1. This RQMC approximation in (11) is expected
to be more accurate than using standard MC. The approx-
imation error in (8) depends on how well Fj−1 is approxi-
mated by �Fj−1, i.e., on an accumulation of integration errors
in (11) over the previous stages. The rationale of the array-
RQMC method is to reduce this integration error by using
RQMC at each stage.

In the case where l > 1, the inverse function �F −1
j−1 is

not well defined, so (10) no longer stands. However, sup-
pose that the function h is selected so that whenever two
states X1� j and X2� j are h-equivalent, the distribution of
the future costs cj ′�Xj ′ for j ′ > j conditional on Xi� j is
the same for i = 1 and i = 2. In this idealistic setting,
knowing the value of Zj = h�Xj at Step j provides as
much relevant information as knowing the state Xj , so it
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suffices to approximate the (univariate) distribution func-
tion Gj of Zj instead of approximating Fj . Assuming that
Zj = ��j�Zj−1�Uj  for some functions ��j , denoting Zi� j−1 =
h�Xi� j−1, and denoting �Gj the empirical distribution of the
sorted values Z�0� j � · · · � Z�n−1� j , we can use the same
argument as above with G instead of F :

Gj�z=
∫ �

−�

∫
�0�1d

I� ��j�y� u� zdudGj−1�y

≈
∫ �

−�

∫
�0�1d

I� ��j�y� u� zdud �Gj−1�y

=
∫
�0�1d+1

I� ��j� �G−1
j−1�v�u� zdudv

≈ 1
n

n−1∑
i=0

I� ��j� �G−1
j−1��i+ 0�5/n�ui� j � z

= 1
n

n−1∑
i=0

I� ��j�Z�i� j−1� ui� j � z= �Gj�z�

In practice, it is usually not possible (or too difficult) to
select h so that h-equivalent states X are exactly equivalent
in the sense that they give the same distributions for the
future costs, but a good choice of h should try to approxi-
mate this. The performance of the method depends on this
choice. With a bad choice of h, the variance may not be
reduced at all or may even increase, but reasonable heuristic
choices may suffice to reduce the variance, as our examples
will illustrate. The following algorithm and Propositions 1
and 2 that follow are valid regardless of h.

The array-RQMC algorithm can be summarized as fol-
lows. We first select a d-dimensional QMC point set �Pn =
��u0� � � � � �un−1 and a randomization method for �Pn such
that the randomized version Pn defines a modified RQMC
point set P ′

n in the sense of (c) and (d). Then, we simulate
in parallel n copies of the chain, numbered 0� � � � � n− 1,
as follows (the braces delimit the scope of the “while”
loops):

Array-RQMC Algorithm

Let X0�0 ← x0� � � � �Xn−1�0 ← x0, and j ← 1;
While X0� j−1 <� do {

Randomize �Pn afresh into Pn� j = �u0� j � � � � �un−1� j �

(i.e., Pn� j is a new randomization of �Pn,
independent of all previous randomizations);

Let i← 0;
While (i < n and Xi� j−1 <�) do {
Xi� j ← �j�Xi� j−1�ui� j ; i← i+ 1;
}

Sort the states X0� j � � � � �Xn−1� j by increasing order
of their values of h�Xi� j ,
and renumber them in this order, i.e.,
so that h�X0� j � · · ·� h�Xn−1� j ;

j ← j + 1;
}

Return the average �Yn of the n realizations of Y as an
estimator of �.

Let �Yn� j denote the average cost at step j , across the
n copies. We have �Yn =

∑�
j=1

�Yn� j . The randomness of �
may, of course, affect the performance of the algorithm
because the number of copies of the chain that remain alive
decreases with the number of steps, so it could happen that
there remain just a few copies for several steps near the
end, in which case only a few points from Pn are used in
these steps. Two of our numerical examples, in §§4.3 and
4.6, have a random � .

Proposition 1. The averages �Yn� j and �Yn are unbiased
estimators of E�cj�Xj� and �, respectively.

The successive steps of the chain use independent ran-
domizations. Therefore, for each chain, from the assump-
tion made in item (c) of the definition of a modified RQMC
point set, the vectors that take the place of the Ujs in
the recurrence (1) to generate the successive steps j of
the chain are independent random variables uniformly dis-
tributed over �0�1d. Thus, any given copy of the chain
obeys the correct probabilistic model defined by (1) and (2),
so cj�Xj and Y have the correct expectations, E�cj�Xj�
and �, and their averages over the n copies as well.

To estimate the variance of �Yn and compute a confidence
interval on �, we can replicate this entire procedure inde-
pendently m times. That is, across the m replications, all
randomizations are independent. Because this gives m inde-
pendent unbiased estimators of �, we have:

Proposition 2. The empirical variance of the m copies of
�Yn is an unbiased estimator of Var��Yn�.

This proposition implies that the variance of the overall
average converges as O�1/m when m→ �. In the next
section, we examine the convergence rate as a function of n
when n→� for simplified cases.

3. Convergence
How can we prove theoretical results on the convergence
speed (or rate) of �Yn� j and �Yn to their expectations? A first
idea would be to bound the integration error represented
by the approximation signs in (6), (8), and (11), via the
Koksma-Hlawka inequality (3). This is generally ineffective
because the integrand I��j� �F −1

j−1�v�u � x in (10) may
have infinite Hardy-Krause variation: this integrand is equal
to one in part of the unit cube, zero elsewhere, and the
shape and complexity of the boundary between these two
regions depends on �1� � � � ��j . This boundary (on which f
is discontinuous) is often not aligned with one of the axes.
In the appendix, we prove bounds on the convergence rate
directly from first principles for special cases for which l=
d = 1 and P ′

n� j has special properties. Here we summarize
the main results. Let

0j = sup
x∈�

� �Fj�x− Fj�x� = sup
x∈�

� �Fj�x− Fj�x�� (13)
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the Kolmogorov distance between �Fj and Fj (with 00 = 0),
and

V �cj=
∫ �

−�
�dcj�x�� (14)

the total variation of the cost function cj . The error on the
expected cost at step j is bounded by the product of these
two quantities:

Proposition 3. We have ��Yn� j −E�cj�Xj���0jV �cj.

When cj has bounded variation, this proposition tells us
that the square error of �Yn� j converges in the worst case
at the same rate as 02

j when n → �. If � is bounded,
this implies that ��Yn −��2 converges as O�

∑�
j=10

2
j  in the

worst case. The next results provide bounds on 0j , under
two different sets of assumptions. Proposition 4 gives a
better asymptotic rate than Proposition 5, under a milder
assumption on the sampling, but the bound also increases
linearly with the cardinality of the state space, whereas in
Proposition 5 it is independent of the cardinality.

Assumption 1. We have l = 1, and at each step j of the
chain, we use inversion from a single uniform random
variable to generate the next state Xj from its conditional
distribution given Xj−1. This means that each �j is nonde-
creasing with respect to its second argument.

Proposition 4. Let Assumption 1 hold. Suppose that the
Markov chain has a finite state space � = �1� � � � �L� and
that the star discrepancy of each P ′

n� j satisfies D
∗
n�P

′
n� j =

O�n−1 logn w.p.1 �this can easily be achieved, for exam-
ple, by constructing P ′

n� j as follows: take the first n points
of a �0�2-sequence in some base b, either randomized
or deterministic, sort them by their first coordinate, and
replace the first coordinate of point i by �i + 0�5/n for
each i. Then,

0j � LK
�1
j n−1 logn (15)

for all j , for some constants K�1
j that depend only on j .

Assumption 2. Suppose that n is a square number, so
√
n

is an integer, and that if we partition the unit square into n
subsquares of size n−1/2 × n−1/2, each of those subsquares
contains exactly one point from P ′

n� j .

Proposition 5. Under Assumptions 1 and 2, we have

0j �K
�2
j n−1/2 (16)

for all j , for some constants K�2
j that depend only on j .

Several well-known RQMC point sets satisfy Assump-
tion 2; for example, a digitally shifted version of the two-
dimensional Hammersley point set (or Sobol’ net, or Faure
net) in prime base b, or an affine matrix scramble of it,
when n is a power of b (Matoušek 1999, Owen 2003b), or
even a stratified sample of n points in the n subsquares.

Assumption 3. Let Assumption 2 hold, and let the ran-
dom variables vi = uimodn−1/2 be pairwise independent
and uniformly distributed over �0� n−1/2 �the uis are one-
dimensional in this case. This means that the second coor-
dinate of each point of P ′

n� j is uniformly distributed over
the �vertical interval determined by the box that contains
this point, independently of the position of any other point
in its box.

Proposition 6. Under Assumptions 1 and 3,

E
[
��Yn� j −E�cj�Xj�

2
]
� 2jV �cj

2n−3/2� (17)

for all j , for some constants 2j that depend only on j . If the
chain is stochastically increasing, we can take 2j = j/2.

This gives a convergence rate of O�n−3/2 for the vari-
ance of the average cost at step j . It beats the O�n−1
rate of MC. A point set that satisfies Assumption 3 is eas-
ily obtained by stratified sampling over the unit square:
generate one point in each subsquare of the partition, uni-
formly over the subsquare and independently across the
different subsquares, sort these points by the first coordi-
nate, and then replace the first coordinate of the ith point
by �i + 0�5/n. Any point set that satisfies Assumption 3
is also equivalent to this stratified sampling construction in
the array-RQMC algorithm.

Proving the result without the independence assumption
is more difficult because it is more complicated to bound
the variance of the array-RQMC estimator. Intuitively, with
RQMC point sets that have more uniformity and negative
dependence (e.g., good lattice rules and nets), we would
expect an even better variance reduction than with stratified
sampling. This is indeed what we have observed in all our
numerical experiments (see §4). It may also be possible
to prove error bounds that are at least as good, or even
tighter. Potential generalizations of these results to higher-
dimensional settings are discussed in the appendix.

In our numerical experiments of §4, instead of generat-
ing the points independently in the different squares as in
Assumption 3, we will generate them according to RQMC
schemes that provide more uniformity, with the aim of
inducing more negative dependence (and more variance
reduction). Some of these RQMC schemes (e.g., the two-
dimensional Sobol’ nets) have one point per subsquare as in
Assumption 3, but none of them fully satisfies this assump-
tion because the locations of the points in two different
squares are not independent. These RQMC schemes turn
out to work better in practice.

4. Numerical Illustrations
We compare MC, classical RQMC, and array-RQMC on
a set of examples. We first describe the different RQMC
point sets used in our examples; then we explain our exper-
imental setting.

For the RQMC methods, we use Korobov lattice rules
and Sobol’ point sets. A Korobov rule is defined by two
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parameters 0<a< n, and the corresponding s-dimensional
point set is

Pn = �vi = �i/n� �iamodn/n� � � � � �ias−1modn/n�

i= 0� � � � � n− 1�

(Niederreiter 1992, Sloan and Joe 1994, L’Ecuyer and
Lemieux 2000). Given n and a, there is no limit on s,
so Pn can be viewed as an infinite-dimensional point set
(L’Ecuyer and Lemieux 2000). This Pn is randomized by
applying a random shift modulo 1 to all the points simul-
taneously. We also consider applying the baker’s trans-
formation, which transforms each coordinate u to 2u if
u < 1/2 and to 2�1 − u if u � 1/2, after the random
shift. This transformation has a “locally antithetic” effect
and provably improves the convergence rate when inte-
grating a smooth function with a randomly shifted lat-
tice rule (Hickernell 2002). For the parameters, we take
n equal to the largest prime number smaller than 2k for
k = 10�12� � � � �20, a equal to the odd integer nearest to
n/1�61803399 when s = 2 (so a/n is near the golden ratio;
the rule always performs well in the two-dimensional spec-
tral test with this choice), and a from Table 1 of L’Ecuyer
and Lemieux (2000) for point sets in dimensions s > 2
(which is always the case for classical RQMC).

Our second type of point set is a Sobol’ net with n= 2k

points for k= 10�12� � � � �20 (Bratley and Fox 1988), ran-
domized by a left (upper-triangular) matrix scrambling fol-
lowed by a random digital shift (Matoušek 1999, L’Ecuyer
and Lemieux 2002, Owen 2003b, Glasserman 2004), as
implemented in the SSJ software (L’Ecuyer 2004b). Avail-
able implementations of Sobol’ nets have an upper bound
on the dimension s of the point set, so we cannot use these
point sets when the dimension is large or unbounded.

With classical RQMC, we consider the following point
sets (in each case, the name in parentheses will refer to the
corresponding combination): a randomly shifted Korobov
rule (Classical-Korobov); a randomly shifted Korobov rule
with the baker’s transformation (Classical-Korobov-Baker);
and a randomized Sobol’ point set (Classical-Sobol) when
the dimension s is small.

For array-RQMC, the randomization is not applied to the
first coordinate, but only to the subsequent coordinates, as
explained when we gave our conditions on P ′

n� j . The first
coordinate is skipped and is only used to enumerate the
points. The Korobov points are always enumerated by order
of their (skipped) first coordinate, which takes the values
0�1/n� � � � � �n− 1/n in succession (in the implicit defini-
tion of P ′

n, we add 0�5/n to these values). For example, if
d = 1, the ith point of Pn before the shift is �iamodn/n.
The points of a Sobol’ net are usually enumerated by order
of their Gray code because this is a bit faster than enumer-
ating them in their natural order (see, e.g., Antonov and
Saleev 1979, Bratley and Fox 1988, and L’Ecuyer 2004b).
Enumerating the points of Pn by their Gray code is equiv-
alent to applying a permutation to the second and further

coordinates of the points of P ′
n, i.e., it performs an addi-

tional scrambling for these coordinates. It is also possible
to enumerate the points by order of their first coordinate.
We tried both. (Note that for classical RQMC, the order of
enumeration is irrelevant.)

In summary, for array-RQMC, we have the follow-
ing types of d-dimensional RQMC point sets for Pn:
a �d+ 1-dimensional Korobov lattice rule with its first
coordinate skipped, randomly shifted (Array-Korobov); the
same Korobov rule with the random shift followed by a
baker’s transformation (Array-Korobov-Baker); the first n
points of a randomized Sobol’ sequence where the points
are enumerated by order of their Gray code (Array-Sobol);
the same randomized Sobol’ point set but with the points
enumerated in their natural order (Array-Sobol-NoGray);
and for d= 1, in the first example, we also tried a stratified
sample that satisfies Assumption 3 (Array-Stratification).

For each combination and each value of n considered,
we estimate the variance reduction factor (VRF) compared
with standard MC, defined as Var�Y �/�n Var��Yn�, where
�Yn is the estimator with the RQMC method considered. We
estimate Var��Yn� by the sample variance of m= 100 inde-
pendent copies of �Yn and Var�Y � by the empirical variance
of a very large number of independent replicates of Y (up
to several millions). Thus, Var�Y � is very accurately esti-
mated, but Var��Yn� is not. As a result, the VRF estimates
are noisy; as a crude assessment, they have about 10% to
20% relative accuracy. They are all rounded to the nearest
integers. The simulations were performed in Java, using the
SSJ simulation library (L’Ecuyer 2004b).

If we measure the work by the number of simulated
copies of the chain, then the VRF as we have defined it
also measures the efficiency improvement of the RQMC
method compared with MC. Another possibility would be
to measure the work in terms of CPU time. In fact, the
CPU times to simulate the chains (excluding the sorting)
are about the same for all the methods, with one excep-
tion: there is an overhead of 10% to 40% for the baker’s
transformation, presumably because we have implemented
it as an additional layer that applies to any point set and
involves more method calls. On the other hand, sorting the
chains at each step of the array-RQMC algorithm brings
significant additional overhead. It requires an O�n logn
effort as n → �, whereas the simulation itself requires
O�n time. In our experiments, we just used the general-
purpose sorting procedures available in the standard Java
libraries of JDK 1.5 from SUN. When the state space
was one-dimensional (in the examples of §§4.1, 4.2, 4.3,
and 4.6), we stored the states of the chains in an array
of real numbers and just sorted that array at each step of
array-RQMC. Then, the additional CPU time for sorting
the chains ranged from approximately 50% (for n = 210)
to 90% (for n= 220), so the overall CPU time was multi-
plied by a factor between 1.5 and 1.9 with array-RQMC.
For higher-dimensional state spaces (the examples of §§4.4
and 4.5), the chains were stored as an array of Java objects,
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and in that case the sorting algorithm invokes a compar-
ison method each time it compares two objects. This is
very general and flexible, but certainly not very efficient.
In this case, using array-RQMC multiplied the CPU time
by a factor from 2 to 5 with n = 210 and from 8 to 14
with n = 220 (depending on the example). These factors
could be reduced by implementing specialized sorting pro-
cedures with many fewer method invocations, but we did
not do that and made no serious attempt at optimizing our
programs for speed. Just as a quick test after completing
our experiments, we tried replacing the sorting procedure
of JDK 1.5 by another general-purpose procedure taken
from the Colt library (Hoschek 2004) (which also invokes a
comparison method but uses a different sorting algorithm).
For array-RQMC with n= 220, on the same computer, the
CPU times were approximately halved. To obtain efficiency
improvement factors in terms of CPU times, the VRFs
reported in the tables would have to be divided by the fac-
tors just mentioned. We did not divide by these factors in
the tables because they are highly dependent on the Java
libraries and Java virtual machine that are used, the choice
of programming language, the size of cache memory on
the computer, etc., and they can probably be reduced. The
VRFs given in the tables are independent of programming
implementations.

For array-RQMC with the stratification, the overhead is
even more important because the randomization is more
expensive, and because we have to sort the points explicitly
at each step of the chain. In our implementation (for the
first example only), the stratified version takes about the
same time as the other array-RQMC versions for n = 210

and about twice the time for n= 220.

4.1. An M/M/1 Queue with d = 1

Consider a single-server queue with i.i.d. exponential inter-
arrival times Aj with mean 1 and i.i.d. exponential service
times Sj with mean 6 < 1. This 6 is also the utilization
factor of the server. We want to estimate the expected aver-
age waiting time of the first t customers, denoted by �. We
could compute � numerically without simulation; we just
use this simple academic example to illustrate our method.

Let Wj denote the waiting time of customer j in this
system, where the first customer (who arrives to the empty
system) has number 0. These Wjs satisfy the Lindley recur-
rence: W0 = 0 and Wj = max�0�Wj−1 + Sj−1 − Aj for
j � 1 (Kleinrock 1975). We estimate � by the sample aver-
age Y = �W0 + · · · +Wt−1/t. To compute Y , we need to
generate the 2�t − 1 random variates S0�A1� � � � � St−1�At .
This estimator Y is unbounded (so the Koksma-Hlawka
inequality gives an infinite bound for it), but it has bounded
variance.

We define a Markov chain that moves by one step each
time one of these random variates is generated. That is,
X0 = W0, X1 = W0 + S0, X2 = W1, X3 = W1 + S1, and so
on. In this case, d = 1 and s = 2�t − 1. Later, we will
consider the case where the chain moves by one step every

d/2 customers (where d is even), so Xj =Wjd/2 and s =
2�t−1/d. In all cases, this Markov chain is stochastically
increasing.

Our results are for t = 100, with 6= 0�2, 0.5, and 0.8.
The MC variance per run 82 was estimated by making
100 × 218 independent simulation runs and our best esti-
mates of � were obtained via array-RQMC with n = 220.
These estimates are (with an accuracy up to the given dig-
its): � = 0�04922 and 8 2 = 0�0005393 for 6 = 0�2, � =
0�48000 and 8 2 = 0�06307 for 6 = 0�5, and � = 2�48004
and 82 = 3�1544 for 6= 0�8.

Table 1 reports the empirical VRFs for this example.
The array-RQMC methods clearly outperform both MC and
classical RQMC, even though classical RQMC is already
significantly more efficient than MC (up to 100 times more
efficient in one case). The improvement factor is larger
when the queue has more traffic (i.e., for larger 6, which is
also when the variance is larger) and larger for the Sobol’
nets than for the Korobov rules. For the Korobov rules,
adding the baker’s transform really makes a difference for
both the classical and array methods. This shows that the
transformation can be very effective even when the inte-
grand is not smooth (as in the array-RQMC case). We have
seen that in all the examples we tried. For this reason, we
do not report results for Korobov rules without the baker’s
transform in what follows (with one exception).

For the Sobol’ nets, the results are better when the points
are enumerated in Gray code order. The corresponding
scrambling appears helpful, yet we do not have a clear
explanation of why.

The stratification provides a significant improvement
compared with MC and is even better than classical
RQMC, but not quite competitive with the other array-
RQMC implementations. We implemented it only for the
present example. An interesting fact is that the VRF with
Array-Stratification is multiplied roughly by 2 when n is
multiplied by 4 (i.e., from one column to the next), so it
seems to be proportional to

√
n. This means that the vari-

ance appears to be proportional to n−3/2, which corresponds
exactly to the upper bound proved in Proposition 6.

For classical RQMC, the improvement is much better for
the Korobov rules with the baker’s transform than for the
Sobol’ nets. Without the baker’s transform (not shown in
the table), the Korobov rules are just slightly better than
the Sobol’ nets.

4.2. Increasing d

Suppose that at each step of the Markov chain, we gener-
ate d random variates to compute the waiting times of d/2
customers (d = 1 represents the case examined in the pre-
vious subsection). Then, the integral (10) approximated by
array-RQMC at each step is a �d+1-dimensional integral
and we anticipate that the integration error will increase
with d. This is confirmed by the following results.

Table 2 shows the empirical VRFs for various values
of d, with n ≈ 218. For classical RQMC, the exact VRF
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Table 1. Empirical VRFs of RQMC with respect to MC for the average waiting time of 100 customers in
an M/M/1 queue with utilization factor 6, with n≈ 2k points.

k= 10 k= 12 k= 14 k= 16 k= 18 k= 20
a for classical Korobov-Baker 306 1,397 5,693 944 118,068 802,275

6 a for array-Korobov 633 2,531 10,125 40,503 162,013 648,055

0.2 Classical-Korobov-Baker 5 8 15 16 59 117
Classical-Sobol 1 1 3 1 13 28
Array-Korobov 18 55 49 292 850 2�169
Array-Korobov-Baker 43 159 306 991 3�168 10�590
Array-Sobol 87 282 836 3�705 10�640 47�850
Array-Sobol-NoGray 46 112 276 874 2�914 7�429
Array-Stratification 12 17 31 57 104 183

0.5 Classical-Korobov-Baker 10 7 13 6 14 14
Classical-Sobol 2 1 4 5 9 10
Array-Korobov 14 46 33 231 686 2�034
Array-Korobov-Baker 44 200 241 1�155 3�540 15�650
Array-Sobol 123 504 1�083 5�651 13�830 55�160
Array-Sobol-NoGray 55 130 302 1�188 3�507 11�260
Array-Stratification 14 23 40 81 142 281

0.8 Classical-Korobov-Baker 11 2 15 17 21 26
Classical-Sobol 3 2 4 6 10 11
Array-Korobov 15 85 33 337 727 5�119
Array-Korobov-Baker 70 463 287 2�225 10�080 75�920
Array-Sobol 370 1�281 3�240 19�730 57�290 233�100
Array-Sobol-NoGray 117 288 996 4�580 13�210 48�660
Array-Stratification 21 40 77 153 246 535

does not depend on d and the variation observed in the
table is only statistical noise; it gives an idea of the accu-
racy of our VRF estimators. For Array-Sobol, the VRF
decreases with d, but not so fast. Moreover, the “NoGray”
version becomes comparable to the regular one for d > 2.
The VRFs are still substantial even for d = 8, where the
array-RQMC method approximates 9-dimensional integrals
at each step of the Markov chain.

Table 2. Estimated VRFs of classical RQMC and
d-dimensional array-RQMC with respect to
MC for the mean waiting time of 100
customers in an M/M/1 queue with utilization
factor 6� for selected values of d and n≈ 218.

6 d= 1 d= 2 d= 4 d= 8

0.2 Classical-Korobov-Baker 59 70 73 78
Classical-Sobol 13 13 12 12
Array-Korobov-Baker 3�168 571 283 137
Array-Sobol 10�640 4�329 2�247 352
Array-Sobol-NoGray 2�914 5�294 2�476 403

0.5 Classical-Korobov-Baker 14 22 16 18
Classical-Sobol 9 6 9 7
Array-Korobov-Baker 3�540 918 152 150
Array-Sobol 13�830 8�067 5�566 667
Array-Sobol-NoGray 3�507 6�206 5�205 702

0.8 Classical-Korobov-Baker 21 22 20 28
Classical-Sobol 10 12 14 10
Array-Korobov-Baker 10�080 2�296 1�074 597
Array-Sobol 57�290 33�360 22�550 2�515
Array-Sobol-NoGray 13�210 23�850 15�570 2�117

4.3. Random Dimension: A Regenerative System

So far in this example, s was fixed at 2�t − 1. We now
modify the example so that s =� (variable stopping time).
Recall that the M/M/1 queue is a regenerative system
that regenerates whenever a customer arrives to an empty
system. Each regenerative cycle contains a random and
unbounded number of customers. Suppose that we want to
estimate �= E�Y �, where we take the following two pos-
sibilities for Y : (i) the total waiting time of all customers
in a regenerative cycle, and (ii) the number of customers
in a cycle whose waiting time exceeds c for some con-
stant c > 0. In this case, slightly changing the values of Uj

in (1) may split or merge regenerative cycles, making the
function f highly discontinuous in both cases. Moreover,
in case (ii), Y is integer valued, so it is not as smooth as
in case (i). For our numerical illustration of case (ii), we
take c= 1. The exact values of � for case (i) are 0.0625, 1,
and 16 for 6 = 0�2, 0.5, and 0.8 (computed via standard
queueing formulas). For case (ii), they are approximately
0.00458, 0.368, and 3.115 for 6 = 0�2, 0.5, and 0.8 (esti-
mated by simulation).

Tables 3 and 4 give the estimated VRFs of classical
RQMC and array-RQMC compared with standard MC,
again with m = 100. The improvement factors are not as
large as in the two previous tables, but they are still sig-
nificant, increase with n, and are much larger for the array
versions than for the classical ones. The smaller improve-
ments observed here could be due in part to the random-
ness of � , as explained earlier: some chains reach � much
later than others, and the advantage of a good uniformity
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Table 3. Estimated VRFs for the regenerative M/M/1 queue with utilization factor 6, case (i).

6 k= 10 k= 12 k= 14 k= 16 k= 18 k= 20

0.2 Classical-Korobov-Baker 3 5 6 5 14 24
Array-Korobov-Baker 13 28 49 116 289 1�093
Array-Sobol 7 21 46 99 239 756

0.5 Classical-Korobov-Baker 2 3 3 1 6 5
Array-Korobov-Baker 11 16 37 79 159 438
Array-Sobol 6 11 24 72 228 469

0.8 Classical-Korobov-Baker 1 1 2 1 2 2
Array-Korobov-Baker 6 12 22 36 151 237
Array-Sobol 3 5 19 32 92 225

of the point set P ′
n� j decreases with the number of chains

left because we use a smaller and smaller subset of the
points. The gain decreases with 6 in case (i) and increases
with 6 in case (ii). Note that in case (ii), �Y > 0� is a
rare event when 6 is very small, so in that case something
else (such as importance sampling) would have to be done
to reduce the variance. The fact that the gain decreases
with 6 in case (i) here whereas the opposite was true in
Table 1 for the same performance measure might be an
indication of a loss of efficiency due to a larger variance of
� when 6 increases. For classical RQMC, we need infinite-
dimensional RQMC point sets because the number of steps
of the chain is unbounded, so we cannot use Sobol’ nets.

4.4. Markovian Queues in Series

For an example with a higher-dimensional state space, we
consider a system of l Markovian queues in series. Cus-
tomers arrive to the first queue according to a Poisson pro-
cess with rate :, go through queue 1, then queue 2, etc.,
in FIFO order. Service rate at queue q is �q > :, for q =
1� � � � � l. We uniformize this continuous-time Markov chain
(CTMC) model so that the global transition rate is always
< = :+�1 + · · · +�l. At each step, the next transition is
an arrival with probability :/< and a service completion
at queue q with probability �q/<. A service completion
at an empty queue is just a dummy event that does not
change the state of the system. The embedded discrete-time
Markov chain is �Xj = �Nj�1� � � � �Nj� l� j � 0�, where Nj�q

is the number of customers in queue q just after the jth
transition. Therefore, if we are in state Xj at step j , with

Table 4. Estimated VRFs for the regenerative M/M/1 queue with utilization factor 6, case (ii).

6 k= 10 k= 12 k= 14 k= 16 k= 18 k= 20

0.2 Classical-Korobov-Baker 1 1 2 2 3 2
Array-Korobov-Baker 3 5 15 22 72 113
Array-Sobol 2 5 9 23 46 108

0.5 Classical-Korobov-Baker 3 3 4 2 7 6
Array-Korobov-Baker 22 35 146 253 540 1�655
Array-Sobol 13 33 85 245 645 1�847

0.8 Classical-Korobov-Baker 2 1 3 2 3 3
Array-Korobov-Baker 16 40 100 76 442 997
Array-Sobol 10 27 81 198 629 1�844

probability :/< the next state is Xj+1 = �Nj�1+1� � � � �Nj� l,
and with probability �q/< the next state is

Xj+1 =




�Nj�1� � � � �Nj� l (unchanged) if Nj�q = 0�

�Nj�1� � � � �Nj�q − 1�Nj�q+1 + 1� � � � �Nj�l

if q < l and Nj�q > 0�

�Nj�1� � � � �Nj� l − 1 if q = l and Nj�l > 0�

We assume that the system starts empty and evolves for t
transitions, so X0 = �0� � � � �0 and � = t in (2). The perfor-
mance measure � that we want to estimate is the expected
average number of customers in the system over the first t
transitions. The corresponding cost function at each step is
cj�Xj=Nj�1+· · ·+Nj� l. Each transition is simulated from
a single uniform Uj ∈ �0�1 (so d = 1) as follows: if Uj >
1− :/<, we have an arrival; otherwise, we have a service
completion at queue q =min�i� Uj � ��1 + · · ·+�i/<�.

The sorting function h is defined by

h�Nj�1� � � � �Nj� l=Nj� l�1+ >+Nj� l−1�1+ >2

+ · · ·+Nj�1�1+ >l�

where > is a very small constant (e.g., 10−6). This has the
effect of sorting the states primarily according to the total
number of customers in the system, then (in case of equali-
ties) according to the number of customers in the last queue,
then by the number in the next-to-last queue, and so on.
This choice is only a heuristic to regroup “similar” states.
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Table 5. Estimated VRFs for the average number of customers in a network of l queues in series, with
n= 2k points.

l k= 10 k= 12 k= 14 k= 16 k= 18 k= 20

2 Classical-Korobov-Baker 6 1 16 11 16 12
Classical-Sobol 3 3 5 8 11 9
Array-Korobov-Baker 34 82 316 476 1�733 3�233
Array-Sobol 40 143 480 1�104 3�785 14�340

3 Classical-Korobov-Baker 8 2 15 13 20 15
Classical-Sobol 4 5 8 7 12 14
Array-Korobov-Baker 13 78 196 190 884 783
Array-Sobol 21 55 169 479 1�884 4�663

We tried two numerical examples. The first one has
l= 2 (a tandem queue), := 1, �1 = 1�75, �2 = 1�25, and
t = 200. The second one has l= 3, := 6, �1 = 10, �2 = 9,
�3 = 7, and t = 200. Table 5 reports the estimated VRFs
of RQMC compared with standard MC. Array-RQMC
clearly outperforms classical RQMC for both examples,
and Array-Sobol does better than Array-Korobov-Baker.
We also observe a smaller variance reduction for the three-
dimensional example than for the two-dimensional one.

We then repeated the same experiment, but with �
defined as the fraction of the time where the number of cus-
tomers at the last queue exceeds some constant K; that is,
with cj�Xj= I�Nj� l > K�. We took K = 4 for the tandem
queue example and K = 6 for the three-queue example. The
results are in Table 6. They are quite similar to those of
Table 5.

4.5. Pricing an Asian Option

We consider the pricing of an Asian option on a sin-
gle asset. Under the risk-neutral measure, the asset price
at time t, denoted by S�t, obeys a geometric Brownian
motion: dS�t = rS�tdt + 8S�tdB�t, where r is the
risk-free interest rate, 8 is the (risk-neutral) volatility
parameter, and B�· is a standard Brownian motion. The
option’s value can be written as �= E�e−rT Ca�T  � S�0�,
where

Ca�T =max
[
0�
(

1
s

s∑
j=1

S�tj

)
−K

]

Table 6. Estimated VRFs for the fraction of the time where the number of customers at the last queue
exceeds K for a network of l queues in series, with n= 2k points.

l k= 10 k= 12 k= 14 k= 16 k= 18 k= 20

2 Classical-Korobov-Baker 4 4 9 10 11 7
Classical-Sobol 4 6 4 9 9 6
Array-Korobov-Baker 39 161 595 929 1�477 6�408
Array-Sobol 55 226 582 2�438 8�659 38�030

3 Classical-Korobov-Baker 4 2 4 5 5 5
Classical-Sobol 4 3 3 4 7 5
Array-Korobov-Baker 11 46 134 358 610 607
Array-Sobol 16 50 132 450 2�091 6�082

and 0< t1 < · · ·< ts = T are the discrete observation times.
See, e.g., Hull (2000) and Glasserman (2004) for further
details. We have

S�tj= S�tj−1 exp��r −82/2�tj − tj−1

+8�tj − tj−1
1/2D−1�Uj� (18)

for j = 1� � � � � s, where the Ujs are independent U�0�1
random variables and D is the standard normal distribution
function. To get an unbiased estimator of �, it suffices to
generate S�t1� � � � � S�ts via (18), with s i.i.d. U�0�1 ran-
dom variates, and compute the estimator X = e−rT Ca�T .

To apply the array-RQMC method, we define the state
of the chain at step j as the two-dimensional vector Xj =
�S�tj� �Sj, where �Sj = �S�t1 + · · · + S�tj/j . We order
these states simply by increasing order of their value of
S�tj, i.e., we define the sorting function by h�x1� x2= x1

(there are other possibilities, probably better ones).
For a numerical illustration, let S�0 = 100, K = 90,

T = 240/365 (in years), tj − tj−1 = 1/365 for all j ,
t1 = T − �s− 1/365, r = ln 1�09, 8 = 0�2, and s = 10, 60,
120, and 240. Table 7 gives the estimated VRFs of RQMC
compared with standard MC. The classical RQMC meth-
ods uses the straightforward simulation approach described
above. Efficiency can be further improved by combining
RQMC with bridge sampling and other variance-reduction
techniques such as control variates and importance sam-
pling (Caflisch and Moskowitz 1995, Glasserman 2004,
L’Ecuyer and Lemieux 2000, L’Ecuyer 2004a), but we do
not go in that direction.
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Table 7. Estimated VRFs for an Asian option with s observation times, with n= 2k points.

s k= 10 k= 12 k= 14 k= 16 k= 18 k= 20

10 Classical-Korobov 188 594 2�601 5�505 18�050 11�040
Classical-Korobov-Baker 2�629 10�600 5�104 83�450 27�560 93�620
Classical-Sobol 4�844 11�460 28�740 46�020 142�900 222�800
Array-Korobov-Baker 4�783 13�280 23�960 45�990 36�670 39�950
Array-Sobol 5�080 13�030 37�460 38�320 36�360 32�430

60 Classical-Korobov 81 17 352 406 552 497
Classical-Korobov-Baker 481 567 919 610 1�362 1�745
Classical-Sobol 282 488 907 787 1�654 2�413
Array-Korobov-Baker 1�187 1�742 1�218 2�231 1�680 1�998
Array-Sobol 1�234 1�742 2�050 2�203 2�189 1�866

120 Classical-Korobov 73 27 152 209 252 276
Classical-Korobov-Baker 244 380 452 407 581 498
Classical-Sobol 68 92 234 253 531 410
Array-Korobov-Baker 816 1�263 1�355 1�736 1�456 1�635
Array-Sobol 1�423 1�485 1�260 1�390 1�333 1�477

240 Classical-Korobov 30 9 93 116 95 148
Classical-Korobov-Baker 76 167 233 303 375 319
Classical-Sobol 29 32 54 69 151 217
Array-Korobov-Baker 445 703 375 758 773 601
Array-Sobol 744 769 670 725 702 667

Here, classical RQMC is already very effective when s
is small, and array-RQMC is not really better. For larger s,
however, array-RQMC eventually provides larger VRFs,
especially when k is small. For s = 240 and k = 10, for
example, the variance is approximately seven times smaller
for Array-Sobol than for the best classical RQMC method.
On the other hand, it is disappointing to see that the VRFs
eventually stabilize when we increase n. This suggests a
O�1/n asymptotic rate of convergence of the variance for
this particular implementation and choice of sorting func-
tion h. Another important point to notice is that, once again,
the baker’s transformation applied on top of the Korobov
rules really helps. In previous experiments with this Asian
option example, the lattice rules were used only without
the baker’s transformation (L’Ecuyer and Lemieux 2000).

4.6. Estimating a Small Ruin Probability with
Importance Sampling and Array-RQMC

A (simplified) insurance company receives premiums at
constant rate c > 0 and claims according to a Poisson pro-
cess �N �t� t � 0� with rate : > 0. The claim sizes Cj ,
j � 1, are i.i.d. random variables with density h. The
reserve (amount of money in hand) at time t is

R�t=R�0+ ct−
N�t∑
j=1

Cj�

where R�0 is the initial reserve. We want to estimate the
ruin probability, i.e., the probability � that R�t eventu-
ally becomes negative. Ruin can occur only at the time
of a claim. The reserve just after claim j is Xj = Xj−1 +
Ajc − Cj , j � 1, where X0 = R�0 and Aj is the time
between claims j − 1 and j . The process �Xj� j � 0� is

a random walk. This process cannot be simulated directly
to estimate the ruin probability because: (1) we cannot be
100% sure that ruin does not occur if we simulate only
for a finite time; and (2) in practice, ruin occurs very
rarely. We can get around these difficulties by using impor-
tance sampling (IS) with exponential twisting as follows
(Asmussen 1985). Assuming that h has a finite moment
generating function Mh around zero, we replace the density
h�x by hF�x= h�xeFx/Mh�F and increase the rate : of
the Poisson process to :F = :+ Fc, where F is the largest
solution to the Lundberg equation Mh�F = �: + Fc/:.
Under this IS scheme, ruin occurs with probability one and
the (unbiased) estimator of � is

eF�X�−X0� (19)

where � = inf�j� Xj < 0�, a random stopping time. Here,
there is no need to store the intermediate values of the
likelihood ratio during the simulation because its final
value depends only on X� . Thus, the state space is one-
dimensional. We are interested in seeing if a combination
of IS with array-RQMC is more efficient than IS alone.
A priori, because the function f �u= eF�X�−X0 is sawtooth-
like (not smooth at all) with respect to each coordinate of u,
we do not expect RQMC to perform well.

For a numerical experiment, we take : = 1, exponen-
tial claim sizes with mean 1/G = 2, and R�0 = 200. We
use d = 1, i.e., one step of the chain each time a uniform
random number is generated. The number of steps before
ruin occurs is random. Table 8 gives the estimated VRFs
compared with MC (with IS) for c= 3, 5, and 10. For clas-
sical RQMC, we need an infinite-dimensional point set; this
rules out classical-Sobol. The exact ruin probability � is
approximately �= 2�2× 10−15 for c = 3, �= 3�5× 10−27
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Table 8. Estimated VRFs for the ruin probability example, with inflow rate c and n= 2k points.

c k= 10 k= 12 k= 14 k= 16 k= 18 k= 20

10 Classical-Korobov-Baker 1 1 1 1 1 1
Array-Korobov-Baker 3 3 7 3 15 27
Array-Sobol 2 2 6 10 19 45

5 Classical-Korobov-Baker 1 1 1 1 2 1
Array-Korobov-Baker 3 4 10 5 21 37
Array-Sobol 2 4 8 13 33 73

3 Classical-Korobov-Baker 1 1 1 1 1 1
Array-Korobov-Baker 2 4 8 7 24 38
Array-Sobol 2 5 7 17 30 49

for c = 5, and � = 3�6 × 10−36 for c = 10. The gains are
not as spectacular as for the previous examples, but they
are nevertheless significant for large n.

5. Conclusion
We have proposed a new RQMC method for Markov
chains, proved results on its convergence for special cases,
and tested it numerically. The new method provides large
efficiency gains compared with standard MC in our exam-
ples. It performs better than classical RQMC in the exam-
ples where the Markov chain has a one-dimensional state
space and evolves over several steps. Generally speak-
ing, the performance of the array-RQMC method tends to
degrade when the integrand has higher variability, or when
the dimension of the state space becomes larger than one
and there is no natural (or obvious) sorting function for
the states. However, even in these cases, there can be sig-
nificant variance reductions compared with standard MC,
and sometimes compared with classical RQMC as well.
Our paper also provides novel empirical evidence of the
effectiveness of applying the baker’s transformation over
a randomly shifted lattice rule, an idea that was studied
theoretically by Hickernell (2002).

From the practical viewpoint, an interesting challenge is
to find good ways of defining the sorting function h for
specific classes of problems where the Markov chain has a
multidimensional state space. Our ongoing and future work
also includes studying the application of array-RQMC to
other settings that fit a general Markov chain framework,
such as Markov chain Monte Carlo methods and stochastic
approximation algorithms.

Appendix

Worst-Case Error Bounds on the Expected
Average Cost

Proof of Proposition 3. Using integration by parts for
the third equality, we get

��Yn� j −E�cj�Xj�� =
∣∣∣∣1n

n−1∑
i=0

cj�Xi� j −E�cj�Xj�

∣∣∣∣
=
∣∣∣
∫ �

−�
cj�zd �Fj�z−

∫ �

−�
cj�zdFj�z

∣∣∣

=
∣∣∣
∫ �

−�
� �Fj�z− Fj�zdcj�z

∣∣∣
�

∫ �

−�
0j �dcj�z�

�0jV �cj� �

Histogram and Integral Discrepancies

We introduce notions of histogram and integral discrepan-
cies, and examine their properties in this subsection. This
will be used to obtain bounds on 0j .

A histogram with L intervals over the unit square is
defined as the region under a step function over the interval
[0,1]: partition the unit interval �0�1 at the bottom of the
square into L subintervals, say of lengths q1� � � � � qL, where
q1 + · · · + qL = 1. Over the ith interval, put a rectangle of
height hi, where 0 � hi � 1, and with the same width as
the interval. The histogram H is the union of these rect-
angles. We say that the histogram is monotone (increasing
or decreasing) if h1 � · · ·� hL or h1 � · · ·� hL. Let ��L
be the family of all histograms with L intervals over the
unit square, and �+�L the subfamily of all monotone his-
tograms. The L-histogram discrepancy of a point set Pn in
the unit square is defined as

Dh�L�Pn= sup
H∈��L

�card�Pn ∩H/n− area�H��

where area�H=∑L
i=1 qihi denotes the area of H . If ��L

is replaced by �+�L, we get the L-staircase discrepancy
of Pn, denoted D+

h �L�Pn.

Lemma 1. Let Pn denote the first n points of a two-
dimensional low-discrepancy sequence whose star discrep-
ancy satisfies D∗

n�Pn = O�n−1 logn. Then, there is a
constant K such that for all L,

D+
h �L�Pn�Dh�L�Pn� LKn−1 logn�

Proof. In every histogram H , each rectangle can be writ-
ten as a difference of two rectangular boxes anchored at
the origin. Thus, H can be written as a sum and differ-
ence of 2L such boxes. However, we know that the star
discrepancy of Pn is in O�n−1 logn, and the last inequality
follows. The first inequality is obvious. �
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Several two-dimensional sequences that satisfy this
requirement are readily available (Niederreiter 1992); for
example, one can take the two-dimensional Sobol’
sequence. However, the bound in Lemma 1 is linear in L,
so it is not very useful for Markov chains with large state
spaces (assuming that each state of the chain is associated
with one of the L subintervals, and vice versa). The next
lemma provides a bound that does not depend on L. It is
based on Assumption 2 and a notion of integral discrepancy
obtained when L→�.

Let � �v denote the set of functions f � �0�1�→ �0�1�
such that V �f  � v, where V �f  is the variation of f ,
defined in (4). It is well known that a function of bounded
variation over a given interval is Riemann integrable over
that interval. For f � �0�1�→ �0�1�, let H�f  = ��x� y ∈
�0�1�2� 0 � y � f �x� be the area under f . For a point
set Pn, we define the integral discrepancy at variation v by

Di�Pn� v= sup
f∈� �v

�card�Pn ∩H�f /n− area�H�f �� (20)

(An equivalent quantity is defined in Niederreiter 1992,
p. 17.) If f has bounded variation, H�f  can be approx-
imated arbitrarily closely by a histogram H having L
rectangles of heights h1 = f �x1� � � � � hL = f �xL, where
0 < x1 < · · · < xL = 1 for some large L. If V �f  � v,
the step function fH that corresponds to this H has total
variation

V �fH=
L∑
i=2

�hi −hi−1�� V �f � v�

Hence, we have that

Di�Pn� v= sup
L�1�H∈��L�V �fH�v

�card�Pn ∩H/n− area�H��

Lemma 2. Under Assumption 2, for any v � 0, we have
Di�Pn� v� �v+ 1n−1/2.

Proof. Consider a function f � �0�1�→ �0�1� with V �f �
v. We define the extended graph of f , denoted G�f , as
the boundary between H�f  and �0�1�2\H�f . This is the
graph of f , ��x� f �x� 0� x� 1�, to which we add vertical
lines that link the graph pieces where f is discontinuous.
The idea of the proof is to bound the number of subsquares
that intersect G�f  and then bound the error in terms of this
number. The n squares are partitioned into

√
n columns that

correspond to
√
n intervals on the horizontal axis. Suppose

that G�f  goes into lj different subsquares in column j .
Clearly, these lj subsquares must form a connected rect-
angle (see Figure A.1). For any of these subsquares S, we
have an overestimation of area�H�f  ∩ S if the point of
Pn lying in subsquare S is in H�f , and underestimation
otherwise. The total error in any given column is the total
amount of overestimation minus the total amount of under-
estimation. Let St� j and Sb� j denote the top and bottom

Figure A.1. Illustration of the proof of Lemma 2.
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Notes. The shaded surface is H�f  for a given column j . Here, lj = 3, we
overestimate in each of those three subsquares, and Vj = �b−a+�b−c.

subsquares from this rectangle, respectively. They may be
the same subsquare if lj = 1.

Suppose that we are overestimating in St� j (as in Fig-
ure A.1). If we are underestimating in Sb� j , or if the top
and bottom subsquares are the same, the combined error
in the top and bottom subsquares cannot exceed 1/n, so
the error in column j is at most �lj − 1/n. Otherwise—
i.e., if we are also overestimating in Sb� j and lj � 2 (as
in Figure A.1)—then the error in the bottom subsquare is
the surface of this subsquare, which is above G�f . This
surface cannot exceed Vb� jn

−1/2, where Vb� j is the variation
of f in this subsquare. Then, in this second case, the error
in column j is at most �lj − 1/n + Vb� jn

−1/2. However,
in both cases, the total variation Vj in column j satisfies
Vj � �lj − 2n−1/2 + Vb� j , so the error in column j can-
not exceed Vjn

−1/2 + n−1. This same error bound can be
obtained by a symmetrical argument in the case where we
are underestimating in St� j .

By adding these inequalities over all columns, we obtain
that the total error cannot exceed V �f n−1/2 + n1/2n−1 =
�V �f + 1n−1/2 � �v+ 1n−1/2. By taking the sup over f
as in (20), the result follows. �

Let � + be the set of monotone functions f � �0�1� →
�0�1� and define

D+
i �Pn= sup

f∈�+
�card�Pn ∩H�f /n− area�H�f ��

For f ∈� +, V �f  cannot exceed one. This gives:

Corollary 1. Under Assumption 2, we have D+
i �Pn �

2n−1/2.
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To see that this discrepancy bound is tight, consider the
constant function f �x = n−1/2�1 + > for a small > > 0,
and suppose that each column has two points in H�f .
Then, V �f = 0 and the error is �1−>n−1/2, which can be
arbitrarily close to the bound n−1/2. Theorem 1 of Hlawka
(1971) yields an alternative bound for this situation: if we
apply it with s = 2 and a two-dimensional function that
equals one in the histogram and zero elsewhere, we get the
looser bound D+

i �Pn� 18n−1/2.
Instead of asking only for the points of Pn to be

evenly distributed among the n subsquares, we could have
the stronger requirement that they form a �0� k�2-net in
base 2, assuming that n = 2k for some integer k. This
means that for every partition of the unit square into
n rectangles of width 2−q and height 2−k+q for some
q = 0�1� � � � � k, every rectangle contains exactly one point.
Consider the function f �x = x. Proposition 5 of Lécot
(1996) shows that for this example, there is a �0� k�2-net
(namely the Hammersley point set in base 2) for which the
error is n−1/2/2. In other words, the rate of the bound of
Lemma 2 is tight even under this stronger assumption.

Error Bounds on the State Distribution

At step j of the Markov chain, define 0j�z= �Fj�z−Fj�z,
so 0j = supz∈� �0j�z�. For x ∈� and z ∈�, let

Fj�z � x= P�Xj � z �Xj−1 = x��

Ij�z= V �Fj�z � · def=
∫ �

−�
�dFj�z � x�� and

Ij = sup
z∈�

Ij�z�

where the differential dFj�z � x in the definition of Ij�z
is with respect to x. Thus, Ij�z is the total variation of
the function Fj�z � ·. If the Markov chain is stochasti-
cally monotone, which means that Fj�z � y = P�Xj � x �
Xj−1 = y� is monotone in y for each j , then Ij cannot
exceed one.

Let �Fj be the empirical distribution of the states of the n
copies of the chain at step j and

�Fj�z=
∫ �

−�
Fj�z � xd �Fj−1�x=

1
n

n−1∑
i=0

Fj�z �X�i� j−1�

so �Fj is the conditional distribution function of Xj when
Xj−1 is generated from �Fj−1. The value of �Fj�z is equal to
the area of the histogram Hj�z whose height over the inter-
val �i/n� �i + 1/n is Fj�z � X�i�j−1 for i= 0� � � � � n− 1.
This histogram Hj�z is inside the unit square �0�12 (see
Figure A.2 for an illustration). We also have that

V �fHj�z
�=

n−1∑
i=1

�Fj�z �X�i−1� j−1− Fj�z �X�i� j−1�

�Ij�z�Ij� (21)

where we have exploited the fact that the states are sorted
by increasing order.

The proofs of Propositions 4 and 5 are based on the
following lemma.

Figure A.2. An example of a histogram Hj�z for n= 4.
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Notes. The histogram is the shaded area, with height Fj�z � X�i� j−1, and
�Fj�z is the fraction of P ′

n� j that falls in Hj�z.

Lemma 3. Under Assumption 1, we have

0j �

j∑
k=1

sup
z∈�

� �Fk�z− �Fk�z�
j∏

i=k+1

Ii� (22)

where an empty product is assumed to be one. We also have

�Fj�z− �Fj�z= card�P ′
n� j ∩Hj�z/n− area�Hj�z (23)

and

� �Fj�z− �Fj�z��Di�P
′
n� j � V �Hj�z�Di�P

′
n� j �Ij�z� (24)

Proof. At step j , we have

�0j�z� = � �Fj�z− Fj�z�� � �Fj�z− �Fj�z�
+ � �Fj�z− Fj�z�� (25)

To bound 0j , we will bound the two quantities on the right
of (25). We have

�Fj�z− Fj�z=
∫ �

−�
Fj�z �xd �Fj−1�x−

∫ �

−�
Fj�z �xdFj−1�x

=
∫ �

−�
�Fj−1�x− �Fj−1�xdFj�z � x� (26)

where the second equality is obtained via integration by
parts. Therefore,

� �Fj�z− Fj�z��
∫ �

−�
� �Fj−1�x− Fj−1�x��dFj�z � x�

�Ij�z0j−1 �Ij0j−1� (27)

From (27) and (25), we have

0j = sup
z∈�

� �Fj�z− Fj�z��Ij0j−1 + sup
z∈�

� �Fj�z− �Fj�z��

Together with the fact that 00 = 0, this gives (22).
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We recall that �Fj�z is the area of the histogram Hj�z and
observe that �Fj�z is the fraction of the points of P ′

n� j that
fall in Hj�z (Figure A.2). This gives (23), which implies (24)
using (20). �

Proof of Proposition 4. Using Lemmas 1 and 3, we find
that � �Fj�z− �Fj�z�� LKn−1 logn for some constant K, and
then

0j � LKn−1 logn
j∑

k=1

j∏
i=k+1

Ii (28)

for all j . �

Proof of Proposition 5. Assuming that P ′
n� j satisfies

Assumption 2, Lemmas 2 and 3 assure us that for all j � 1
and z ∈�, � �Fj�z− �Fj�z�� �Ij�z+ 1n−1/2 and

0j � n−1/2
j∑

k=1

�Ik + 1
j∏

i=k+1

Ii� (29)

If the Markov chain is also stochastically increasing, i.e.,
P�Xj � x �Xj−1 = y� is nondecreasing in y for each j , then
Fj�z � y is nondecreasing in y, so Ij � 1 for each j , and
the bound (29) becomes 0j � 2jn−1/2. �

Variance Bounds for Array-RQMC

Proposition 5 gives a worst-case deterministic bound of
O�1/n for the square error of �Yn� j , in contrast with an
expected square error of O�1/n for ordinary Monte Carlo.
In what follows, we obtain a better bound on the conver-
gence rate of the variance by exploiting randomization in a
setting where Assumption 3 holds.

Proof of Proposition 6. Define

2j =
1
4

j∑
k=1

�Ik + 1
j∏

i=k+1

I2
i � (30)

We will prove that for each j and z,

Var� �Fj�z− �Fj�z�� �Ij + 1n−3/2/4� (31)

Var� �Fj�z− Fj�z�� 2jn
−3/2� (32)

and use this to show the final result.
To prove (31), we first recall that �Fj�z is the area of the

histogram Hj�z, whereas �Fj�z is the fraction of P ′
n� j that

falls in this histogram. We enumerate the n subsquares with
i= 0� � � � � n− 1. Let Si be the ith subsquare and Jj�z� i=
card�P ′

n� j ∩Hj�z ∩ Si− n area�Hj�z ∩ Si. We have

�Fj�z− �Fj�z= card�P ′
n� j ∩Hj�z/n− area�Hj�z

=
n−1∑
i=0

Jj�z� i/n�

For any given j and each i, Jj�z� i is a Bernoulli ran-
dom variable minus its mean, so E�Jj�z� i� = 0 and

Var�Jj�z� i�� 1/4. These Bernoulli random variables have
nonzero variance only for the subsquares that intersect the
histogram boundary (that separates Hj�z from �0�1�2 \Hj�z)
because for the other subsquares they are constant.

Here we consider a fixed j and drop the subscript j for
a moment. Let Sb� c and St� c denote the lowest and highest
subsquares that intersect the histogram boundary in col-
umn c, and let Vb� c and Vt� c be n1/2 times the variation of
the histogram in these two subsquares. Let pc be n times
the area of St� c contained in the histogram and qc be n
times the area of Sb� c not contained in the histogram. We
suppose, until indicated otherwise, that Sb� c and St� c are not
the same subsquare. Then, the Bernoulli variables Jj�z� i
that correspond to these two subsquares are independent
and have variances bounded by pc�1− pc and qc�1− qc
(which cannot exceed 1/4), respectively. We will now prove
the following bound on the sum of their variances:

pc�1−pc+ qc�1− qc�
Vb� c +Vt�c + 1

4
� (33)

Denote v = Vb� c + Vt� c. If v � 1, (33) holds trivially, so
let us assume that v� 1. At any given point on the horizon-
tal axis, the histogram boundary cannot be in Sb� c and St� c

at the same time. Let 6 be the fraction of the horizontal
interval in column c where the histogram is in St� c. Then,
we have pc � 6Vt� c and qc � �1− 6Vb� c. We now observe
that either 6Vt� c � v/4 or �1 − 6Vb� c � v/4. To see this,
consider a rectangle of width one and height v, with the
bottom-left corner at point �0�0, divided into four subrect-
angles by a vertical line at 6 and a horizontal line at Vt� c.
The quantities 6Vt� c and �1 − 6Vb� c are the surfaces of
two opposite subrectangles of this rectangle, so these sur-
faces cannot both be larger than a quarter of the rectangle’s
surface v. Indeed, suppose that 6Vt� c > v/4. Then, Vt� c >
v/�46, and therefore �1−6�v−Vt� c > v/4 would imply
that �1−6�v− v/�46 > v/4, i.e., 0< �1−6�46− 1−
6 = −�26 − 12, which is a contradiction. Therefore,
we have either pc�1 − pc � v/4 or qc�1 − qc � v/4,
and because these two quantities never exceed 1/4, the
bound (33) follows. If Sb� c and St� c are the same subsquare,
the variance of Jj�z� i in this subsquare cannot exceed 1/4.

If other subsquares intersect the histogram in column c,
between Sb� c and St� c, then in each of these subsquares the
histogram variation is at least n−1/2 and the variance of the
corresponding Jj�z� i is at most 1/4. By adding the above
inequalities over all the columns, we obtain that the sum
(over i) of variances of all Bernoulli variables Jj�z� i is
bounded by �Ij + 1n1/2/4.

Because these Jj�z� is are pairwise independent across
the different values of i, we obtain

Var� �Fj�z− �Fj�z�=
n−1∑
i=0

Var�Jj�z� i/n�

� n1/2�Ij + 1/�4n2

= �Ij + 1n−3/2/4�

which proves (31).
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We now prove (32) by induction on j . It obviously holds
for j = 0 because �F0 = F0. Suppose that it holds for j − 1
for all z. Observe that from the proof of Proposition 1,
E� �Fj�x�= P�Xj � x�= Fj�x, so E�0j�x�= 0. Then,

E�0j−1�x0j−1�y�= Cov�0j−1�x� 0j−1�y�

� sup
z∈�

Var�0j−1�z� � 2j−1n
−3/2

for all states x� y. Therefore, using (26) for the first equality
and assuming that we can interchange the expectation and
integral in the third equality,

E�� �Fj�z− Fj�z
2�

= E
[(∫ �

−�
� �Fj−1�x− Fj−1�xdFj�z � x

)2]

= E
[∫ �

−�

∫ �

−�
�0j−1�x0j−1�ydFj�z � xdFj�z � y

]

=
∫ �

−�

∫ �

−�
E�0j−1�x0j−1�y�dFj�z � xdFj�z � y

�

∫ �

−�

∫ �

−�
2j−1n

−3/2 dFj�z � xdFj�z � y
�I2

j �z2j−1n
−3/2�

Combining this with (31) and (25), and observing that
�Fj�z − �Fj�z has mean zero and is uncorrelated with
�Fj�z− Fj�z, we obtain that

E�� �Fj�z− Fj�z
2�= E�� �Fj�z− �Fj�z2�

+E�� �Fj�z− Fj�z
2�

�I2
j �z2j−1n

−3/2 + �Ij + 1n−3/2/4

� 2jn
−3/2�

and this completes the induction. To prove the proposition’s
statement, we have

E
[∣∣∣1
n

n−1∑
i=0

cj�Xi�j −E�cj�Xj�
∣∣∣2
]

= E
[∣∣∣
∫ �

−�
cj�zd �Fj�z−

∫ �

−�
cj�zdFj�z

∣∣∣2
]

= E
[∣∣∣
∫ �

−�
� �Fj�z− Fj�zdcj�z

∣∣∣2
]

�

∫ �

−�

∫ �

−�
E�0j�x0j�y�dcj�x��dcj�y�

�

∫ �

−�

∫ �

−�
2jn

−3/2�dcj�x��dcj�y�
� �V �cj

22jn
−3/2� �

This result could be generalized in principle to higher-
dimensional settings, although we quickly hit the curse of
dimensionality when l or d increases. A potential extension

would need a counterpart of Lemma 2. To illustrate the
idea, we sketch how this can be done for d = 2 and l= 1
(the state space is still one-dimensional, but we need two
uniforms per step) for a stochastically increasing Markov
chain, so that we have a two-dimensional increasing his-
togram in the unit cube. Partition the cube into n subcubes
by partitioning each axis into n1/3 equal parts (assuming
that n1/3 is an integer). The histogram boundary is now a
surface. If we fix one of the two horizontal coordinates to a
multiple of n−1/3, this determines a vertical plane, and the
intersection of this plane with the histogram boundary can
be covered by at most 2n1/3 subcubes in a similar manner
as in the proof of Lemma 2. We can do this for each mul-
tiple of n−1/3, and repeat in each direction. We find that
the histogram boundary can be covered by at most Kn2/3

subcubes for some constant K. Press et al. (1992, p. 314)
sketch a similar argument in a setting where the integral
of an indicator function over the three-dimensional unit
cube is approximated by averaging over the (deterministic)
points of a Sobol’ point set. However, their argument is
highly heuristic; it would only stand if the locations of the
points in the n subcubes were independent uniform random
variables instead of being deterministic.

In general, for a d+1-dimensional cube and a stochasti-
cally increasing Markov chain, the histogram boundary can
be covered by Kn−d/�d+1 subcubes for some constant K
that may depend on d but not on n. This can be turned
into a variance bound of O�n2−d/�d+1=O�n1+1/�d+1. The
result could also be generalized to the case where cj has
infinite variation (e.g., unbounded state spaces and cost
functions) if we assume that large-variation areas have low
probability.
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