
Draft revised entry for International Encyclopedia of Statistical Science, second edition, Lovric, Miodrag

(Ed.), Springer-Verlag, 2024.

Non-Uniform Random Variate Generation

Pierre L’Ecuyer
Professor, DIRO
Université de Montréal, Montréal, QC, Canada
http://www.iro.umontreal.ca/~lecuyer/

Introduction
As explained in ▶Uniform Random Number Generators the simulation of random vari-
ables on a computer operates in two steps: In the first step, uniform random number
generators produce imitations of i.i.d. U(0, 1) (uniform over (0,1)) random variables,
and in the second step these numbers are transformed in an appropriate way to imitate
random variables or vectors from non-uniform distributions, and other types of random
objects. Here we discuss the second step only, assuming that infinite sequences of i.i.d.
U(0, 1) random variables are available from the first step. This assumption is not real-
ized exactly in software implementations, but good-enough approximations are available
(L’Ecuyer, 2006; L’Ecuyer et al., 2021).

For some distributions, simple exact transformations from the uniform to the tar-
get distribution are available, often based on the inversion method. But for many types
of distributions and processes, in particular those having shape parameters, and multi-
variate distributions, one relies on approximations that require a compromise between
efficiency and approximation error. That is, the sampling is not always done exactly
from the target distribution, but the discrepancy between the sampling and target dis-
tributions can often be made smaller with more work. This work may include a one-time
setup cost to compute constants and tables that depend on the distribution parameters,
and a marginal cost for each random variate generated from this distribution. The
marginal speed and the quality of the approximation can often be improved by a larger
investment in the setup time, sometimes to precompute larger tables. This investment
can be worthwhile when a large number of random variates has to be generated from
the same distribution, with the same shape parameters. Robustness with respect to
shape parameters is another issue: Some methods provide a good approximation only
in a certain range of values of these parameters, so one must be careful not to use the
generator outside that range.

Inversion should be the preferred method whenever it is feasible and not too ineffi-
cient, because of its compatibility with important variance-reduction techniques such as
common random numbers, antithetic variates, randomized quasi-Monte Carlo, and sam-
ple average approximation for optimization (Law, 2014; L’Ecuyer, 2009, 2018, 2023b).
The rejection method is the most common alternative when inversion is inconvenient or

1

too slow. It is sometimes much faster than inversion, and applies in different settings.

These exact methods are not always sufficient, in particular for complicated mul-
tivariate distributions for which the density is often known only up to a multiplicative
constant. ▶Markov chain Monte Carlo (MCMC) methods often provide an approximate
solution in this case, by constructing an artificial Markov chain (see ▶Markov chains)
whose stationary distribution is the target distribution. A random variate that follows
approximately the target distribution is obtained by returning the current state after
running the Markov chain long enough. See also ▶Monte Carlo methods in statistics.

In the remainder, we briefly summarize the basic techniques for univariate and mul-
tivariate distributions, and some types of stochastic processes. More detailed coverages
can be found in Devroye (1986, 2006) and Hörmann et al. (2004).

Inversion
A general transformation that provides a univariate random variable X having the cu-
mulative distribution function (cdf) F from a U(0, 1) random variable U is X = F−1(U),
where F−1 : [0, 1] → R is the inverse distribution function, defined as

F−1(u)
def
= inf{x ∈ R | F (x) ≥ u}.

This is the inversion method.

As an illustration, if X is a binomial random variable with parameters (n, p) =
(2, 0.4), then we have P [X = i] = pi where p0 = (0.6)2 = 0.36, p1 = 2× 0.6× 0.4 = 0.48,
p2 = (0.4)2 = 0.16, and pi = 0 elsewhere. Inversion then returns X = 0 if U < 0.36,
X = 1 if 0.36 ≤ U < 0.84, and X = 2 if U ≥ 0.84. Another simple way of generating
X here is to generate two Bernoulli random variables X1 and X2 by inversion from two
independent uniforms U1 and U2, i.e., X1 = I[U1 < p] and X2 = I[U2 < p], where I is the
indicator function, and return X = X1 +X2. This method requires two uniforms and is
not inversion for X.

For certain distributions, there is a closed-form formula for F−1. For example, if X
has a discrete uniform distribution over {0, . . . , k − 1}, we have X = F−1(U) = ⌊kU⌋.
If X has a ▶geometric distribution with parameter p, so P [X = x] = p(1 − p)x for
x = 0, 1, . . . , we have X = F−1(U) = ⌈ln(1−U)/ ln(1− p)⌉− 1 = ⌊ln(1−U)/ ln(1− p)⌋
with probability 1. If X is exponential, with rate λ, then X = F−1(U) = − ln(1−U)/λ.
To generate X with cdf F but truncated to an interval (a, b], it suffices to generate U
uniform over (F (a), F (b)], and to return F−1(U).

For certain distributions there is no closed-form expression for F−1 but good nu-
merical approximations are available. For distributions having a location and a scale
parameter, we only need a good approximation of F−1 for the standardized form of

2

the distribution, say with location at 0 and scale 1. We generate a variable from the
standardized distribution, then multiply by the scale parameter and add the location
parameter. This applies in particular to the normal distribution, for which good nu-
merical approximations of the standard inverse cdf Φ−1 are available. For example, the
probdist package of SSJ (L’Ecuyer, 2023a) implements a slight modification of a ratio-
nal Chebyshev approximation proposed by Blair et al. (1976), which is quite fast and
provides essentially machine-precision accuracy when using floating point numbers with
53 bits of precision. For any u ∈ (0, 1) that can be represented by such a floating-point
number (given as input), the approximation procedure returns Φ−1(u) with relative error
smaller than 10−15.

In general, given an approximation F̃−1 of F−1, the absolute error on X for a given
U is |F̃−1(U)−F−1(U)|. The corresponding error on U is |F (F̃−1(U))−U |. This second
error can hardly be less than the error in the representation of U , and we are also limited
by the machine precision on the representation of X. If one of these two limits is reached
for each U ∈ [0, 1], for practical purposes we have an exact inversion method.

When shape parameters are involved (e.g., for the gamma and beta distributions),
things are more complicated because a different approximation of F−1 must be con-
structed for each choice of shape parameters.

When we have an algorithm for computing F but not F−1, and F is continuous, as
a last resort we can always approximate X = F−1(U) by a numerical method that finds
a root of the equation U = F (X) for a given U . For instance, we can run the robust
Brent-Dekker iterative root finding algorithm of (Brent, 1973, Chapter 4) until we have
reached the required precision, as done by default in SSJ (L’Ecuyer, 2023a).

Faster inversion algorithms for fixed shape parameters can be constructed if we
are ready to invest in setup time. These methods are called automatic when the code
that approximates F−1 is produced automatically by a general one-time setup algorithm
(Hörmann et al., 2004). The setup computes tables that contain the interpolation points
and coefficients. With these tables in hand, random variate generation is very fast.
For example, a general adaptive method that constructs an accurate Hermite interpo-
lation method for F−1, given a function that computes F , is developed by Hörmann
and Leydold (2003). Derflinger et al. (2010) propose an algorithm that constructs an
approximation of F−1 to a given accuracy (specified by the user) for the case where only
the density of X is available. This algorithm is an improvement over similar methods
by Ahrens and Kohrt (1981). These methods assume that the distribution has bounded
support, but they can be applied to most other distributions by truncating the tails far
enough for the error to be negligible.

For discrete distributions, say over the values x1 < · · · < xk, inversion finds I =
min{i | F (xi) ≥ U} and returnX = xI . To do this repeatedly for several U , one may first

3

tabulate the pairs (xi, F (xi)) for i = 1, . . . , k, and then for each U , find I by sequential or
binary search in the table (L’Ecuyer, 2023b). However, the fastest implementation when
k is large is obtained by using an index (Chen and Asau, 1974; Devroye, 1986). The
idea is to partition the interval (0, 1) into c subintervals of equal sizes, [j/c, (j + 1)/c)
for j = 0, . . . , c − 1, and store the smallest and largest possible values of X for each
subinterval, namely Lj = F−1(j/c) and Rj = F−1((j + 1)/c). Once U is generated, we
find the corresponding interval number J = ⌊cU⌋ by direct calculation, and search for
I only in that interval, with linear or binary search. The fastest average time per call
is usually obtained by taking a large c (so that k/c does not exceed a few units), and
linear search in the subintervals (to minimize the overhead). The resulting algorithm
is as fast (on average) as the alias method (Law, 2014; Walker, 1974), which is often
presented as the fastest algorithm but does not preserve inversion. If k is large or even
infinite, for example for the ▶Poisson distribution or the ▶binomial distribution with
a large n, the pairs (xi, F (xi)) are precomputed and tabulated only in the areas where
the probabilities are not too small, usually around the center of the distribution. Other
values are computed dynamically only in the very rare cases where they are needed.
Similar indexing techniques can also be used for piecewise-polynomial approximations
of F−1 for continuous distributions.

Rejection Methods and Thinning
When inversion is too costly, the best alternative is often a rejection method. It works
as follows. Suppose we want to generate X from density f . It suffices to know f up to
a multiplicative constant, i.e., to know κf , where κ might be unknown. If f is known,

we take κ = 1. We pick a density r such that κf(x) ≤ t(x)
def
= a r(x) for all x for some

constant a, and such that sampling random variates Y from r is easy. The function t is
called a hat function. we see that we must have κ ≤ a. To generate X with density f ,
we generate Y from the density r and U ∼ U(0, 1) independent of Y , repeat this until
U t(Y) ≤ κf(Y), and return X = Y (Devroye, 1986; von Neumann, 1951). The number
of times we have to retry is a geometric random variable with mean a/κ − 1 ≥ 0. We
want a/κ to be as small as possible.

If κf is expensive to compute, computations can often be accelerated by using
squeeze functions q1 and q2 that are less costly to evaluate and such that q1(x) ≤ κf(x) ≤
q2(x) ≤ t(x) for all x. After generating Y , we first check if U t(Y) ≤ q1(Y). If so we
accept Y immediately. Otherwise if U t(Y) ≥ q2(Y), we reject Y immediately. We verify
the condition U t(Y) ≤ κf(Y) explicitly only when none of the two previous inequalities
is satisfied. We may also use multiple levels of embedded squeezing, with crude squeezing
functions that are very quick to evaluate at the first level, then tighter but slightly more

4

expensive ones at the second level, and so on.

In most practical situations, rejection is combined with a change of variable to
transform the original density into a nicer one, for which a more efficient implementation
of the rejection method can be constructed. The change of variable can be selected so
that the transformed density is concave and a piecewise linear hat function is easy to
construct. Typical examples of transformations can be T (x) = log x and T (x) = −x−1/2,
for instance (Devroye, 1986; Hörmann et al., 2004). The rejection method also works for
discrete distributions; we just replace the densities by the probability mass functions.

One special case of change of variable combined with rejection leads to the ratio-
of-uniforms method. It is based on the observation that if X has density f over R, κ is
a positive constant, and the pair (U, V) has the uniform distribution over the set

C =
{
(u, v) ∈ R2 such that 0 ≤ u ≤

√
κf(v/u)

}
,

then V/U has the same distribution as X (Devroye, 1986; Kinderman and Monahan,
1977). Thus, one can generate X by generating (U, V) uniformly over C, usually by a
rejection method, and returning X = V/U .

A special form of rejection called thinning is frequently used to generate non-
homogeneous ▶point processes. For example, suppose we want to generate the jump
times of a ▶Poisson process whose time-varying rate is {λ(t), t ≥ 0}, where λ(t) ≤ λ̄ at
all times t for some constant λ̄. Then we can generate pseudo-jumps at constant rate
λ̄ by generating the times between successive jumps as i.i.d. exponentials with mean
1/λ̄. A pseudo-jump at time t is accepted (becomes a real jump) with probability λ(t)/λ̄
(Law, 2014).

Multivariate Distributions
A d-dimensional random vector X = (X1, . . . , Xd)

t has distribution function F if P[X1 ≤
x1, . . . , Xd ≤ xd] = F (x1, . . . , xd) for all x = (x1, . . . , xd)

t ∈ Rd. The distribution
function of a random vector does not have an inverse in general, so the inversion method
does not apply directly to multivariate distributions. There are situations where one can
generate X1 directly by inversion from its marginal distribution, then generate X2 by
inversion from its marginal distribution conditional on X1, then generate X3 by inversion
from its marginal distribution conditional on (X1, X2), and so on. But this is not always
possible or convenient.

There are important classes of multivariate distributions for which simple and ele-
gant methods are available. For example, suppose X has a ▶multinormal distribution
with mean vector µ and covariance matrix Σ. When µ = 0 and Σ = I (the identity), we
have a standard multinormal distribution. This one is easy to generate: the coordinates

5

are independent standard normals, and they can be generated separately by inversion.
For the general case, it suffices to decompose Σ = AAt, generate Z standard multinor-
mal, and return X = µ+AZ. The most popular way to decompose Σ is the Cholesky
decomposition, for which A is lower triangular, but there are other possibilities, includ-
ing for example the eigendecomposition as in ▶principal component analysis. The choice
of decomposition can have a large impact on the variance reduction in the context of ran-
domized quasi-Monte Carlo integration, by concentrating much of the variance on just
a few underlying uniform random numbers (Glasserman, 2004; L’Ecuyer, 2009, 2018).

Multivariate normals are useful for various purposes. For example, to generate a
random point X on a sphere of radius 1 centered at zero in d dimensions, generate a
standard multinormal vector Z, then normalize its length to the desired radius: X =
Z/∥Z∥. This is equivalent to generating a random direction. A more general class of
multivariate distributions named radially symmetric are defined by putting X = RZ
where R has an arbitrary distribution over (0,∞). A further generalization yields an
elliptic multivariate random variable: X = µ+RAZ whereZ is a standard multinormal
in k dimensions and A is a d × k matrix. It is easy to generate X if we know how to
generate R. As a special case, if R2 = ν/Y where Y is chi-square with ν degrees of
freedom, then X is multivariate Student with ν degrees of freedom.

The most general way to define multivariate distributions is via ▶copulas (Hörmann
and Derflinger, 2002; Nelsen, 2006). Any multivariate cdf C over (0, 1)d with uniform
one-dimensional marginals is a copula. To generate a vector X = (X1, . . . , Xd)

t with ar-
bitrary marginal cdf’s Fj and a dependence structure specified by the copula C, generate
U = (U1, . . . , Ud) with cdf C, then put Xj = F−1

j (Uj) for each j.

One way to define a copula is to start with an arbitrary d-dimensional cdf G with
continuous marginals Gj, generate Y = (Y1, . . . , Yd)

t from G, and let U = (U1, . . . , Ud) =
(G1(Y1), . . . , Gd(Yd))

t. At this point, the Uj have the uniform distribution over (0, 1), but
they are not independent in general. The cdf C of U is the copula associated with G. A
popular choice for G is the multinormal cdf with standard normal marginals; then Y and
U are easy to generate, and one can select the correlation matrix of Y to approximate
a target correlation (or rank correlation) matrix for X. This is a normal copula. It
can usually match the correlations pretty well, but to capture the whole dependence
structure in general, it is often not sufficient (Blum et al., 2002; Nelsen, 2006).

Archimedean copulas are a popular alternative class. They are defined as follows.
One selects a generating function φ : (0, 1] → R which is d times continuously differ-
entiable and satisfies φ(u) → ∞ when u → 0+, φ(1) = 0, φ′(u) < 0 for all u, and

6

(−1)kdkφ−1(x)/dxk > 0 for all x ∈ [0,∞). The Archimedean copula is defined by

C(u1, . . . , ud) =

{
φ−1(φ(u1) + · · ·+ φ(ud)) if φ(u1) + · · ·+ φ(ud) ≤ φ(0);

0 otherwise.

Examples of generating functions that depend on a single parameter are φ(u) = u−λ − 1
for λ > 0 (Clayton’s copula), φ(u) = (− lnu)λ for λ > 1 (the Gumbel copula), and
φ(u) = − ln[(e−λu − 1)/(e−λ − 1) for λ ̸= 0 (Frank’s copula). Marshall and Olkin
(1988) have shown that if Y is a positive continuous random variable whose density
is the inverse of the Laplace transform of φ, V = (V1, . . . , Vd) ∼ U(0, 1)d a vector of
independent uniforms, and Uj = φ((lnVj)/Y) for j = 1, . . . , d, then U = (U1, . . . , Ud)
has the distribution of the Archimedean copula C with generating function φ. This
provides an easy way of generating random vectors from such a copula. A much larger
variety of copulas and details about their sampling can be found in Nelsen (2006); Hofert
(2008); Mai and Scherer (2012).

The rejection method extends rather straightforwardly to multivariate distributions.
For a known target d-dimensional density f , pick a d-dimensional density r such that
f(x) ≤ a r(x) for all x and some constant a, and such that sampling random vectors
Y from r is easy. To generate X with density f , generate Y from r and U ∼ U(0, 1)
independent of Y , until Ua r(Y) ≤ f(Y), and return X = Y .

A practical limitation of this simple and direct approach is that it is often too
hard to find an “easy” r for which the acceptance probability is large enough, especially
when the dimension d is large. A popular alternative in this case is MCMC, mentioned
earlier. More generally, MCMC is often used to sample (approximately) from a simple
distribution, but conditionally on some event B which is often a rare event (it has a very
small probability). The artificial Markov chain is then defined so its state space is the
set B (the set of states where the rare event occurs) and its equilibrium (or steady-state)
distribution is the desired conditional distribution given B. The key challenge is to
construct a chain that mixes fast enough, i.e., for which the convergence to the steady-
state distribution occurs quickly, from any given starting state. This is not always easy.
Another method to sample approximately conditionally on a rare event B is generalized
splitting (Botev et al., 2016; Botev and L’Ecuyer, 2020; L’Ecuyer et al., 2018). It assumes
that we can define an importance function S : Rd → R such that B = {S(X) ≥ ℓ} for
some constant ℓ. We select an integer splitting factor s ≥ 2 (usually s = 2) and a
sequence of levels −∞ = ℓ0 < ℓ1 < · · · < ℓτ = ℓ, usually estimated by pilot runs, such
that P[S(X) ≥ ℓj | S(X) ≥ ℓj−1] ≈ 1/s for j = 1, . . . , τ . We also define a Markov
chain (as in MCMC) whose stationary distribution is the distribution of X conditional
on {S(X) ≥ ℓj}, for each j. At level 0, we start by sampling a single state X from

7

its original distribution. At each level j, for 0 ≤ j < τ , we have a set of Nj states
X for which S(X) > ℓj. We resample all these states independently conditional on
S(X) > ℓj by running the appropriate Markov chain for s steps, to obtain sNj new
states. We retain the new states for which S(X) > ℓj+1, discard the others, and go
to level j + 1. We collect the states that we get at level j = τ . In one version, this
process is repeated independently until we have collected at least n states at level τ in
total. Botev and L’Ecuyer (2020) prove that the total variation distance between the
empirical distribution of these states and the desired conditional distribution converges
as O(n−3/2).

Stochastic Processes
Various types of ▶stochastic processes can be simulated in a way that becomes obvious
from their definition. ▶Lévy processes form an important class; they are continuous-time
stochastic processes {Y (t), t ≥ 0} with Y (0) = 0 and whose increments over disjoint time
intervals are independent, and for which the increment over a time interval of length t
has a distribution that depends only on t (the mean and standard deviation must be
proportional to t) (Bertoin, 1996; Asmussen and Glynn, 2007; Barndorff-Nielsen et al.,
2013). Special instances include the (univariate or multivariate) ▶Brownian motion, the
stationary ▶Poisson process, the gamma process, and the inverse Gaussian process, for
example, whose increments have the multinormal, Poisson, gamma, and inverse Gaussian
distributions, respectively. A natural way to generate a Lévy process observed at times
0 = t0 < t1 < · · · < tc is to generate the independent increments Y (tj) − Y (tj−1)
successively, for j = 1, . . . , c. This is the random walk method. For the special instances
just mentioned, this is easy to do.

For certain Lévy processes (including those mentioned above), for any t1 < s < t2,
we know how to generate Y (s) from its distribution conditional on {Y (t1) = y1, Y (t2) =
y2} for arbitrary y1, y2. Then a sketch (or skeleton) of the trajectory can be gener-
ated via the following Lévy bridge sampling strategy, where we assume for simplicity
that c is a power of 2. We start by generating Y (tc) from the distribution of the
increment over [0, tc], then we generate Y (tc/2) from its distribution conditional on
(Y (t0), Y (tc)), then we apply the same technique recursively to generate Y (tc/4) con-
ditional on (Y (t0), Y (tc/2)), Y (t3c/4) conditional on (Y (tc/2), Y (tc)), Y (tc/8) conditional
on (Y (t0), Y (tc/4)), and so on. This method is convenient if one wishes to later refine the
approximation of a trajectory. It is also effective for reducing the effective dimension in
the context of quasi-Monte Carlo methods (L’Ecuyer, 2009, 2018).

For the ▶Poisson process, one usually wishes to have the individual jump times,
and not only the numbers of jumps in predetermined time intervals. For a stationary

8

Poisson process, the times between successive jumps are easy to generate, because they
are independent exponential random variables. For a non-stationary Poisson process,
one way is to apply a nonlinear time transformation to turn it into a standard stationary
Poisson process of rate 1, generate the jumps times of the standard process, and apply
the reverse time transformation to recover the jump times of the target non-stationary
Poisson process (L’Ecuyer, 2023b). This idea applies to other continuous-time stochastic
processes as well, as we now explain.

Given a process X = {X(t), t ≥ 0}, and another process T = {T (t), t ≥ 0}
with nondecreasing trajectories, called a subordinator, we can define a new process Y =

{Y (t)
def
= X(T (t)), t ≥ 0}, which is the process X to which we have applied a random

time change. This can be applied to any process X with index t ∈ R. If both X and T
are Lévy processes, then so is Y .

IfX is a stationary Poisson process with rate 1 and we want a nonstationary Poisson

process Y with rate function {λ(t), t ≥ 0}, then we must take T (t) = Λ(t)
def
=

∫ t

0
λ(s)ds.

To simulate Y , we generate the jump times Z1 < Z2 < · · · of the stationary process X
by generating Zj − Zj−1 as independent exponentials with mean 1, and define the jump
times of Y as Tj = Λ−1(Zj) for j ≥ 1.

If X is a one-dimensional ▶Brownian motion, the random time change is equivalent
to replacing the constant volatility parameter σ of the Brownian motion by a stochastic
(time-varying) volatility process {σ(t), t ≥ 0}. Two well-known examples of Lévy pro-
cesses that can act as subordinators are the gamma process and the inverse Gaussian
process, respectively. Their use as subordinators for the Brownian motion yields the
variance gamma and the normal inverse Gaussian processes (Barndorff-Nielsen et al.,
2013). Brownian motions with a random time change are important because they pro-
vide a better fit to various types of financial data (such as the log prices of stocks and
commodities, etc.) than standard Brownian motions.

Acknowledgment
This work has been supported by the Natural Sciences and Engineering Research Council
of Canada Discovery Grant RGPIN-2018-05795 and a Canada Research Chair to the
author.

About the author
See the entry ▶Uniform Random Number Generators.

9

References
Ahrens, J. H. and Kohrt, K. D. (1981). Computer methods for efficient sampling from largely

arbitrary statistical distributions. Computing, 26:19–31.
Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation. Springer-Verlag, New York.
Barndorff-Nielsen, O. E., Mikosch, T., and Resnick, S. I. (2013). Lévy Processes: Theory and

Applications. Birkhäuser.
Bertoin, J. (1996). Lévy Processes. Cambridge University Press, Cambridge.
Blair, J. M., Edwards, C. A., and Johnson, J. H. (1976). Rational Chebyshev approximations

for the inverse of the error function. Mathematics of Computation, 30:827–830.
Blum, P., Dias, A., and Embrechts, P. (2002). The ART of dependence modelling: the latest

advances in correlation analysis. In Lane, M., editor, Alternative Risk Strategies, pages
339–356. Risk Books, London.

Botev, Z. I. and L’Ecuyer, P. (2020). Sampling conditionally on a rare event via generalized
splitting. INFORMS Journal on Computing, 32(4):986–995.

Botev, Z. I., L’Ecuyer, P., and Tuffin, B. (2016). Static network reliability estimation un-
der the Marshall-Olkin copula. ACM Transactions on Modeling and Computer Simulation,
26(2):Article 14, 28 pages.

Brent, R. P. (1973). Algorithms for Minimization without Derivatives. Prentice-Hall, Engle-
wood Cliffs, NJ.

Chen, H. C. and Asau, Y. (1974). On generating random variates from an empirical distribution.
AIEE Transactions, 6:163–166.

Derflinger, G., Hörmann, W., and Leydold, J. (2010). Random variate generation by numerical
inversion when only the density is known. ACM Transactions on Modeling and Computer
Simulation, 20(4):Article 18.

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York,
NY.

Devroye, L. (2006). Nonuniform random variate generation. In Henderson, S. G. and Nelson,
B. L., editors, Simulation, Handbooks in Operations Research and Management Science,
pages 83–121. Elsevier, Amsterdam, The Netherlands. Chapter 4.

Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer-Verlag, New
York.

Hofert, M. (2008). Sampling Archimedean copulas. Computational Statistics and Data Analy-
sis, 52(12):5163–5174.

Hörmann, W. and Derflinger, G. (2002). Fast generation of order statistics. ACM Transactions
on Modeling and Computer Simulation, 12(2):83–93.

Hörmann, W. and Leydold, J. (2003). Continuous random variate generation by fast numerical
inversion. ACM Transactions on Modeling and Computer Simulation, 13(4):347–362.

Hörmann, W., Leydold, J., and Derflinger, G. (2004). Automatic Nonuniform Random Variate
Generation. Springer-Verlag, Berlin.

10

Kinderman, A. J. and Monahan, J. F. (1977). Computer generation of random variables using
the ratio of uniform deviates. ACM Transactions on Mathematical Software, 3:257–260.

Law, A. M. (2014). Simulation Modeling and Analysis. McGraw-Hill, New York, fifth edition.
L’Ecuyer, P. (2006). Uniform random number generation. In Henderson, S. G. and Nelson,

B. L., editors, Simulation, Handbooks in Operations Research and Management Science,
pages 55–81. Elsevier, Amsterdam, The Netherlands. Chapter 3.

L’Ecuyer, P. (2009). Quasi-Monte Carlo methods with applications in finance. Finance and
Stochastics, 13(3):307–349.

L’Ecuyer, P. (2018). Randomized quasi-Monte Carlo: An introduction for practitioners. In
Glynn, P. W. and Owen, A. B., editors, Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC 2016, pages 29–52, Berlin. Springer.

L’Ecuyer, P. (2023a). SSJ: Stochastic simulation in Java. https://github.com/

umontreal-simul/ssj.
L’Ecuyer, P. (2023b). Stochastic simulation and Monte Carlo methods. Draft Textbook,

https://www-labs.iro.umontreal.ca/~lecuyer/ift6561/book.pdf.
L’Ecuyer, P., Botev, Z. I., and Kroese, D. P. (2018). On a generalized splitting method for

sampling from a conditional distribution. In Proceedings of the 2018 Winter Simulation
Conference, pages 1694–1705. IEEE Press.

L’Ecuyer, P., Nadeau-Chamard, O., Chen, Y.-F., and Lebar, J. (2021). Multiple streams with
recurrence-based, counter-based, and splittable random number generators. In Proceedings
of the 2021 Winter Simulation Conference, pages 1–16. IEEE Press.

Mai, J.-F. and Scherer, M. (2012). Simulating Copulas. Imperial College Press.
Marshall, A. W. and Olkin, I. (1988). Families of multivariate distributions. Journal of the

American Statistical Association, 83(403):834–841.
Nelsen, R. B. (2006). An Introduction to Copulas. Springer Series in Statistics. Springer, New

York, NY, second edition.
von Neumann, J. (1951). Various techniques used in connection with random digits. In House-

holder et al., A. S., editor, The Monte Carlo Method, volume 12, pages 36–38. National
Bureau of Standards, Applied Mathematics Series.

Walker, A. J. (1974). New fast method for generating discrete random numbers with arbitrary
frequency distributions. Electronic Letters, 10:127–128.

11

