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ABSTRACT

For every stochastic simulation model, there is in theory
a way of changing the probability laws that drive the sys-
tem so that the resulting IS estimator has zero variance.
This optimal estimation scheme is generally impractical to
implement, but it can be possible to approximate it in an
effective way. When the model is described by a discrete-
time Markov chain that evolves up to some random stopping
time, the zero-variance change of measure can be written
exactly in terms of a value function that gives the expected
cost-to-go from any state of the chain, so it can be approx-
imated by approximating this value function. We detail
this approach and show how it can be effectively used to
estimate the reliability of a highly-reliable multicomponent
system with Markovian behavior. In our implementation,
we start with a very simple crude approximation, use it in
a first-order IS scheme to obtain a better approximation at
a few selected states, interpolate in between, and use this
interpolation in our final (second-order) IS scheme. In nu-
merical illustrations, our approach outperforms the popular
IS heuristics previously proposed for this class of problems.

INTRODUCTION

Any discrete-event simulation model can be represented as a
discrete-time Markov chain (DTMC), say {Yj, j ≥ 0}, with
very large (usually infinite and high-dimensional) state space
Y . By putting enough information in the state, this chain
can also be defined so that the simulation terminates when
(and only when) the chain reaches a given (fixed) subset of
the state space, say ∆⊂Y . Suppose there is a cost c(y,y′)
whenever the chain goes from state y to state y′ at any given
step, and we want to estimate µ(y0) = E[X |Y0 = y0], where
X is the total cost until termination, and the conditioning
means that the chain starts from a given initial state Y0 = y0.

The standard Monte Carlo method estimates µ(y0) by simu-
lating n independent copies of the DTMC under its original
probability law, and averages the n copies of X (Fishman

1996, Law 2007). A confidence interval on µ(y0) is usually
computed by assuming that this average is approximately
normally distributed (relying on the central-limit theorem)
and estimating its variance by the sample variance of the
n copies of X , divided by n. There are many situations,
however, where the required accuracy calls for a very large
value of n, sometimes so large that the simulation time
becomes excessive. This is particularly true in the con-
text of rare-event simulation, where certain events having
a large influence on the expected cost occur very rarely
(Heidelberger 1995, Juneja and Shahabuddin 2006). If an
important rare event happens only once every billion sim-
ulation on average, for example, then n must be at least
several billion before we start to obtain an estimator with
some meaning.

Variance reduction methods have been designed to solve
or alleviate this type of problem (Fishman 1996). In this
paper, we focus on one of these methods, called importance
sampling (IS), which consists in changing the probability
laws that drive the system, and multiplying the final estimator
by an appropriate correction factor to recover an unbiased
estimator of the original expectation (Glynn and Iglehart
1989, Juneja and Shahabuddin 2006). This correction factor
turns out to be the likelihood ratio (or Radom-Nikodym
derivative) between the old and new probabilities. A major
difficulty in applying this method is to figure out how to
change the probabilities so that the IS estimator has much
smaller variance than the original one.

In theory, there is actually a way of changing the transition
probabilities of the chain so that the new estimator has zero
variance! In a nutshell, it suffices to multiply the transition
probability (or density) from the current state y to any other
state y′ by the ratio of the expected total cost from now
on if we go next to state y′, divided by the (unconditional)
expected total cost from now on. Details will be given in the
next section. Special cases are examined in Booth (1987),
Kollman et al. (1999), Juneja and Shahabuddin (2006), for
example. So if we would know the expected total cost until
absorption as a function of the initial state y, µ(y), we would
be able to define a zero-variance sampling scheme. This



L’Ecuyer and Tuffin

function µ(y) is called the cost-to-go function, or Bellman
function, in dynamic programming. The catch is that in
practice, we do not know this function. If we knew it, there
would be no need for simulation!

But not all hope is lost. By obtaining a rough-cut approxi-
mation of the cost-to-go function µ , and using it in place of
µ to approximate the zero-variance change of measure, we
may get an IS scheme that achieves a significant variance
reduction compared with standard Monte Carlo.

In this paper, we first explain in detail (in the next section)
how to define the zero-variance sampling scheme for a
DTMC. Then, in the following section, we select a specific
class of problems in which the goal is to estimate the
reliability of a highly-reliable multicomponent system with
Markovian behavior, and show how to approximate the
zero-variance change of measure for that class of problems.
The models we consider are known in the literature under
the name of highly-reliable Markovian systems (HRMS)
(Shahabuddin 1994b, Cancela et al. 2002, Nakayama and
Shahabuddin 2004). According to our numerical examples
in the last section, the new method is much more effective
than the IS heuristics previously proposed for this class of
problems and are applicable to large problem instances.

MARKOV CHAIN MODEL AND ZERO-VARIANCE
SAMPLING

We consider a discrete-time Markov chain (DTMC) {Yj, j≥
0} with general state space Y , transition kernel P, and
nonnegative one-step cost function c : Y 2 → [0,∞). When
the chain is in state Yj−1 = y ∈ Y , the next state Yj obeys
a probability law defined by P[Yj ∈ B |Yj−1 = y) = P(B | y)
for all (measurable) B⊆Y , and a transition cost c(y,Yj) is
incurred. The state space contains a set of absorbing states
∆⊂Y from which the transition cost is zero: P({y} | y) = 1
and c(y,y) = 0 for all y ∈ ∆. Let τ = inf{ j : Yj ∈ ∆}, the
number of steps until absorption,

X =
τ

∑
j=1

c(Yj−1,Yj),

the total cost until absorption, and

µ(y) = E[X | Y0 = y],

the expected total cost when starting in state y. We assume
that E[τ |Y0 = y] < ∞ and µ(y) < ∞ for all y ∈Y . We also
assume implicitly that the required measurability conditions
hold so that all the expressions introduced here and later
are well defined.

The function µ : Y → [0,∞) satisfies the recurrence

µ(y) = E[c(y,Y1)+ µ(Y1) | Y0 = y] (1)

=
∫

Y
[c(y,y1)+ µ(y1)]dP(y1 | y) (2)

for all y ∈ Y .

We consider changing the transition kernel P for another
kernel Q such that Q(B | y) > 0 whenever

∫
B[c(y,y1) +

µ(y1)]dP(y1 | y) > 0. The estimator X is then replaced by

Xis =
τ

∑
j=1

c(Yj−1,Yj)
j

∏
i=1

L(Yi−1,Yi), (3)

where L(Yi−1,Yi) = (dP/dQ)(Yi | Yi−1) and dP/dQ is the
Radon-Nikodym derivative of P with respect to Q (Glynn
and Whitt 1989, Heidelberger 1995, Bucklew 2004, Juneja
and Shahabuddin 2006). Let EQ,y and VarQ,y denote the
expectation and variance operators under the measure (tran-
sition kernel) Q, from initial state Y0 = y. We have

EQ,y[Xis] = µ(y),

i.e., Xis is an unbiased estimator of µ(y) under the new
kernel Q. The variance of Xis under Q, for Y0 = y, is

V (y) def= VarQ,y[Xis]
= VarQ,y[EQ,y[Xis | Y1]]+EQ,y[VarQ,y[Xis | Y1]]
= VarQ,y[(c(y,Y1)+ µ(Y1))L(y,Y1)]

+EQ,y[L2(y,Y1)V (Y1)]

= EQ,y[(c(y,Y1)+ µ(Y1))2L2(y,Y1)]−µ
2(y)

+EQ,y[L2(y,Y1)V (Y1)]

= EQ,y[((c(y,Y1)+ µ(Y1))2 +V (Y1))L2(y,Y1)]

−µ
2(y).

Suppose now that we choose the measure Q in a way that
for each y such that µ(y) > 0,

dQ(y1 | y) = dP(y1 | y)(c(y,y1)+ µ(y1))/µ(y). (4)

By integrating with respect to y1, we easily see that Q(· | y)
thus defined is a probability measure (it integrates to 1).
If µ(y) = 0, we simply take Q(· | y) = P(· | y). With this
choice of Q, whenever dQ(y1 | y) > 0, we have

L(y,y1) =
{

µ(y)/(c(y,y1)+ µ(y1)) if µ(y) > 0,
1 if µ(y) = 0.

(5)
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For state pairs (y,y1) for which dQ(y1 | y) = 0, L(y,y1) may
be undefined, but this does not matter because L(y,y1) will
then never occur in the estimator. If (5) holds, then

EQ,y[(c(y,Y1)+ µ(Y1))2L2(y,Y1)] = µ
2(y)

and we have the simplification:

V (y)
= EQ,y[((c(y,Y1)+ µ(Y1))2 +V (Y1))L2(y,Y1)]−µ

2(y)

= EQ,y[V (Y1)L2(y,Y1)].

Applying induction, we obtain

V (y) = EQ,y

[
V (Yτ)

τ

∏
j=1

L(Yi−1,Yi)

]
= 0

because V (Yτ) = 0. We conclude that a change of measure
that satisfies (5) gives a zero-variance estimator of µ(y) for
any y ∈ Y .

As a special case, suppose that the state space Y is fi-
nite, so that the DTMC has discrete transition probabili-
ties p(y1 | y) = P[Y1 = y1 | Y0 = y], which we replace by
new probabilities q(y1 | y) = Q[Y1 = y1 | Y0 = y], such that
q(y1 | y) > 0 whenever [c(y,y1)+ µ(y1)]p(y1 | y) > 0. In
this case, we have L(y,y1) = p(y1 | y)/q(y1 | y). To satisfy
(5), it suffices to choose the probabilities

q(y1 | y) = p(y1 | y)(c(y,y1)+ µ(y1))/µ(y) (6)

if µ(y) > 0 and q(y1 | y) = p(y1 | y) otherwise.

Since µ is generally unknown, the idea is to approximate it
by some function v that can easily be computed during the
simulation. This function can also be modified or “learned”
along the way, from the results of the simulation runs. For
each run, we use the function v that we have so far (which is
our best estimate of µ), and plug it in (6) or (4) in place of
µ to define the change of probabilities for the IS estimator.
That is, in the case of a finite-state Markov chain, we use

q(y1 | y) = p(y1 | y)(c(y,y1)+ v(y1))/v(y) (7)

if v(y) > 0 and q(y1 | y) = p(y1 | y) otherwise.

One class of methods to approximate µ collect information
from the simulation to “learn” about µ(y) for each state
y ∈ Y . Ahamed et al. (2006) do this using a stochastic
approximation approach to update the individual entries
µ(x). Booth (1982; 1987) has also been using this type of
approach to learn µ for both splitting and IS; this is imple-
mented in the Los Alamos simulation software. However,

this type of approach has limitations: for real-life problems
for which Monte Carlo methods are used, the state space
is usually much too large to think of storing an approxi-
mation of µ(y) for each state y. For this reason, we will
not consider it any further in this paper. What we propose
instead is to construct a leaner approximation of µ , that
can be computed quickly at any state y, and which requires
much less storage than directly estimating µ(y) for each
state y.

A MODEL OF HIGHLY RELIABLE MARKOVIAN
SYSTEM

We consider an HRMS model as in Shahabuddin (1994b;a),
Nakayama and Shahabuddin (2004), among others. The sys-
tem has c types of components, with ni identical components
of type i, for i = 1, . . . ,c. Each component is either in a
failed state or an operational state. The state of the system
is represented by a vector y = (y(1), . . . ,y(c)), where y(i) is
the number of failed components of type i. Thus, we have
a finite state space Y of cardinality (n1 + 1) · · ·(nc + 1).
This system is assumed to evolve as a continuous-time
Markov chain (CTMC), with jump rate λ (y,y′) from state
y to state y′. We suppose that Y is partitioned in two
subsets U and F , where U is a decreasing set (i.e., if
y ∈U and y≥ y′ ∈S , then y′ ∈U ) that contains the state
0 = (0, . . . ,0) in which all the components are operational.

The CTMC has an embedded DTMC with transition proba-
bilities p(y,y′). We assume that state 0 can be reached from
any state y ∈U . Define µ(y) = P[τF < τ0 |Y0 = y], where
τF = inf{ j≥ 0 : Yj ∈F} and τ0 = inf{ j > 0 : Yj = 0}. Our
goal is to estimate µ(0). Note that µ(y) = 1 when y ∈F .
Estimating µ(0) is required in the estimation of several
performance measures, such as the mean time to failure,
via a regenerative approach (Shahabuddin 1994a).

This estimation can be especially difficult when µ(0) is
extremely small, which occurs frequently in the case of
highly reliable systems. Then, the transitions that corre-
spond to component failures have very small probabilities,
while those that correspond to repairs are not so small. In
theoretical analysis of such systems, the failure probabilities
are often parameterized by some parameter ε so that these
probabilities converge to 0 when ε → 0 while the repair
probabilities remain bounded, and one is interested in the
asymptotic behavior of the estimator when ε → 0. One
usually seeks estimators with the highly desirable property
of bounded relative error (BRE) as a function of ε , which
means that the variance divided by the square of µ(0)
remains bounded when ε → 0.
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As a rough-cut approximation of the function µ in this
model, we start with the following. For any state y∈U , let
Γ(y) be the set of all paths π = (y = y0 → y1 → ··· → yk)
going from state y to the set F , where y j ∈U \{0} for
j = 1, . . . ,k−1, p(y j−1,y j) > 0 for j = 1, . . . ,k, and yk ∈F .
Each path π ∈ Γ(y) has original probability

p(π) =
k

∏
j=1

p(y j−1,y j)

and we have that µ(y) = ∑π∈Γ(y) p(π). However, the latter
sum is usually too complicated to compute in practice,
because it involves too many paths (there is often an infinite
number of paths, because the paths may contain an unlimited
number of cycles within U ). A very crude estimate is to
replace the sum by the maximum; i.e., approximate µ(y)
by its lower bound

v0(y) = max
π∈Γ(y)

p(π).

Computing this v0(y) amounts to computing the shortest
path from y to F , where the length of the directed link
from y′ to y′′ is − log p(y′,y′′) for any pair of states (y′,y′′),
or equivalently the longest path where the length of a path
is its probability (the product of probabilities of its one-step
transitions). It can be computed cheaply even for compli-
cated structures. When such a shortest path from some state
y is computed, one can store it in a hash table together with
all other shortest paths that are computed simultaneously or
have been computed previously. Whenever we need v0(y)
for some state y, we first check the hash table to see if it
has already been computed.

This v0 would do well in the cases where a single path
dominates the sum, which sometimes occurs when all tran-
sitions toward F have a very small probability. But this
lower bound on µ(y) could still underestimate the true value
by a significant factor. An easy improvement is to take the
sum over the most dominant paths (only a few of them)
instead of just considering the single most dominant one.
These dominant paths can often be selected by exploiting
our knowledge of the structure of the system.

In L’Ecuyer and Tuffin (2006), we had good luck with the
following simple type of correction (this was used there in a
splitting algorithm): estimate µ(0) in preliminary runs with
some initial IS strategy, and compute the exponent α such
that (v0(0))α equals this estimate. Then, replace the estimate
v0(y) by v1(y) = (v0(y))α for all y ∈U . This function v1
matches µ for y ∈ F and matches its estimate at y = 0.
In between, it uses an exponential interpolation, motivated
by the idea that µ(y) typically decreases exponentially
(roughly) when y gets away from F .

This idea could be refined. One possibility is to replace α

by a state-dependent correction exponent α(y). Here we
shall consider the following form for α(y):

α(y) = 1+[α(0)−1]
logv0(y)
logv0(0)

,

where α(0) is the value of α as in the previous paragraph.
The rationale for this form is that the correction exponent
is needed usually because v0(y) accounts for only a few
paths and disregards many other ways of reaching F from
y. Since the set of paths leading to F is generally richer
when we are farther from F , it appears sensible to have a
correction exponent that changes progressively from 1 when
we are very close to F , to α(0) when we are in state 0, and
reflects the “distance” to F for the states in between. We
denote the resulting approximation by v2(y) = (v0(y))α(y).

Among other possibilities, instead of estimating µ(y) only
at y = 0, we can estimate it directly, via IS, over a finite
subset of states E ⊂U , in preliminary runs. For example,
in an HRMS model, E could be the set of states where no
more than one component is failed, or the set of states where
no more than two components are failed (depending on the
structure and size of the model). For each state y ∈ E ,
we define v3(y) as the direct estimate of µ(y) and we
compute α(y) such that (v0(y))α(y) = v3(y). For each state
y ∈ U \E , we may interpolate exponentially as follows:
We can select a state y′ ∈ E such that y′ ≤ y, and define
v3(y) = (v0(y))α(y′) (the selection is arbitrary and could be
problem-dependent). Or we may select all states y′ ∈ E
such that y 6= y′ ≤ y, and define v4(y) as the average of the
corresponding values of (v0(y))α(y′). Yet another possibility
is to estimate a single exponent α for all states y, based on all
available information, e.g., by least-squares regression. As
an extreme case, taking E = U means that we have a direct
estimate of µ(y) for all states y ∈U , and no interpolation
is needed. Then, we are back to an estimator similar to that
of Ahamed et al. (2006), depending on how the estimation
is done (these authors change the measure dynamically at
each step, at the same time as they update their estimates
of µ(y)). Our proposal is a matter of compromise between
this extreme case and just taking v0 (the other extreme).

All these possibilities would deserve further analysis and
empirical comparison in realistic examples. In the next
section, we compare some of them with the best known IS
heuristics, on a parameterized example.

Various heuristics have actually been proposed to select the
IS change of measure for the type of HRMS setting consid-
ered here (Shahabuddin 1994b, Nakayama 1996, Cancela
et al. 2002, Tuffin 2004). These methods do not directly
attempt to approximate the zero-variance IS. Their aim is
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to increase the probabilities of the transition failures, so
that we hit F before 0 more frequently. The best known
are probably simple failure biasing (SFB) and balanced
failure biasing (BFB), developed by Shahabuddin (1994b).
For each state y ∈ U \ {0}, SFB and BFB increase the
probability that the next transition is a failure to a fixed
constant 0 < ρ < 1. Within the subset of failure transitions,
the individual probabilities are taken proportional to the
original ones for SFB and uniform over all transitions for
BFB. Within the set of repair transitions, they are taken
proportional to the original ones for both schemes. Under
certain conditions on the system, BFB has been proved to
yield an IS estimator with the BRE property. The standard
MC estimator does not enjoy this property.

Alexopoulos and Shultes (2001) have proposed a variation
called SBLR, in which the change of measure is made in
a way that over any cycle in the sequence of states visited
during the simulation, the cumulated likelihood ratio remains
bounded when the failure probabilities converge to zero.
Some improvements are also proposed that use structural
information by identifying events on shortest paths to failure,
and pushing more toward those events. We do not consider
these versions here.

NUMERICAL EXAMPLE

Consider a system with c = 3 component types, with
n1 = n2 = n3. Any failed component has an exponentially
distributed repair time with rate 1, and an exponentially
distributed time to failure with rate λi for components of
type i, where λ1 = ε , λ2 = 1.5ε , and λ3 = 2ε2, for some
parameter ε . The system is down whenever fewer than two
components of anyone type are operational. The system
starts in state 0 in which all components are operational,
and we want to estimate the probability µ(0) that it reaches
the set F of failure states before returning to state 0. We
will experiment with different values of the two parameters
(ni,ε), given in the first two columns of Table 1.

For this example, we define v0(y) as follows. For each
component type i, we consider the path that goes from y
to F whose only transitions are failures of components of
type i. There are three such paths for each state y ∈ U ,
and their probabilities p(π) are very easy to compute. We
simply define v0(y) as the sum of their probabilities.

The methods we try and compare are BFB, SBLR, and our
proposed IS method based on zero-variance approximation,
using the function v0 just described, and its modifications
v1 and v2 defined earlier. We will denote these methods by
IS(v0), IS(v1), IS(v2), respectively. For each parameter set,
Table 1 gives our best estimate of µ(0), obtained from a

very large number of simulation runs with our IS strategies
(these numbers are accurate at least for the digits given
in the table), the rough-cut approximation v0(0) of µ(0),
and the estimate obtained from n = 220 (approximately one
million) independent simulation runs, by each of the five
methods. Table 2 shows the empirical variances computed
from those n runs, for each method. The table also contains
the squared mean, so that one can quickly get an idea of
the relative variance (the squared relative error, i.e., the
variance divided by the square mean).

In those tables, the entries in parentheses (and in red) are
empirical means and variances that clearly underestimate
their exact counterparts by a large factor. The red entries
for the empirical means are actually even lower (by a large
factor) than the crude lower bound v0(0). When we have
serious underestimation for the mean, then we have it for the
variance as well. The usual explanation is that certain types
of paths that have an important relative contribution to the
mean are given a too small probability by the IS heuristic,
and never occur in the sample, so their contribution is totally
missed by the estimator. This reduces both the empirical
mean and empirical variance (but not the true variance).
If one of these paths would occur, it would potentially
have a huge contribution, due to a large likelihood ratio.
Interestingly, the entry in brackets (in green) underestimates
the exact mean by a significant factor. All these problematic
entries are for the BFB and SBLR heuristics, and things
generally worsen when µ(0) gets smaller and ni gets larger.
These heuristics were designed to cope with with very low
failure rates for the components (very small ε), but are not
doing very when the paths to F have a large number of
transitions (i.e., when ni is large, in our example).

With our proposed approach, using v0 as an approximation
already gives much better results than BFB and SBLR, in
the sense that we at least get the right order of magnitude for
all parameter values. The adjustment v1 does not provide
much improvement over v0 in this example, whereas v2
does provide a significant improvement. This seems to
confirm the idea that the exponential correction should take
into account the distance to failure. This appears to be
especially true when ni is small, in which case we need
much less corrections for the states that are very close to
failure than for the initial state (compare the results of v2
with the other ones when ni = 3).

With any of the three variants (v0, v1, and v2), we are able
to estimate very small probabilities (smaller than 10−55

in our example) quite accurately with a reasonably small
number of simulation runs. For example, for ni = 12 and
ε = 0.001, if we take the average over n simulation runs with
v2, the relative error is

√
9.4×10−56/(3.9× 10−28√n) ≈

0.786/
√

n, so we only need n = (78.6/x)2 to get x% relative
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Table 1: Parameter sets and estimates of µ(0) with each method.

ni ε µ(0) v0(0) BFB SBLR IS(v0) IS(v1) IS(v2)

3 0.001 2.6×10−3 1.3×10−3 2.7×10−3 2.6×10−3 2.6×10−3 2.6×10−3 2.6×10−3

6 0.01 1.8×10−7 3.4×10−8 1.9×10−7 [9.9×10−7] 1.8×10−7 1.8×10−7 1.8×10−7

6 0.001 1.7×10−11 3.4×10−12 1.8×10−11 (1.8×10−16) 1.7×10−11 1.7×10−11 1.7×10−11

12 0.1 6.0×10−8 3.2×10−9 4.8×10−8 1.3×10−8 6.0×10−8 6.2×10−8 6.7×10−8

12 0.001 3.9×10−28 3.5×10−29 (1.8×10−40) (2.9×10−45) 3.9×10−28 3.9×10−28 3.9×10−28

Table 2: Empirical variances based on n = 220 independent runs.

ni ε (µ(0))2 α BFB SBLR IS(v0) IS(v1) IS(v2)

3 0.001 6.8×10−6 0.906 1.8×10−2 8.0×10−3 6.5×10−4 2.7×10−3 9.3×10−9

6 0.01 0.903 6.3×10−11 (4.5×10−16) 2.0×10−14 1.2×10−14 7.7×10−15

6 0.001 0.939 8.8×10−19 (2.0×10−26) 1.2×10−23 1.1×10−23 7.6×10−24

12 0.1 0.851 8.1×10−10 1.7×10−10 1.6×10−10 2.9×10−10 1.5×10−11

12 0.001 0.963 (3.2×10−74) (3.5×10−84) 1.4×10−55 9.3×10−56 9.4×10−56

error. For example, n = 61 suffice to obtain 10% relative
error. For ni = 12 and ε = 0.1, on the other hand, the relative
error with v2 is

√
1.5×10−11/(6.0×10−8√n)≈ 645/

√
n,

so we need n≈ (64500/x)2 to get x% relative error.

Another observation is that α (used for v1) increases, and
apparently converges to 1, when ε → 0 for fixed ni, or when
ni increases while ε is fixed. The intuitive explanation is
that for this example, the dominant (most probable) paths
leading to F are the direct ones, that involve failures of
components of only one type, and these paths are all included
in the computation of v1.

CONCLUSION

Zero-variance simulation is an utopian ideal that can be
achieved only in very simple situations where the quantities
of interest can be computed exactly without doing any
simulation. However, it can be approximated to a reasonable
extent in several interesting situations, and can provide very
large variance reduction factors in a practical way. Our
numerical examples in this paper illustrate this: our proposed
approach yields a low-variance estimator in a setting where
all other previously proposed algorithms break their teeth.
The method relies on a reasonable approximation of the
function µ and this would generally depend on the model.
Further studies with specific classes of models in different

application areas are needed and should confirm the huge
under-explored potential of this approach.
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