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We consider different statistical models for the call arrival process in telephone call centers. We evaluate the

forecasting accuracy of those models by describing results from an empirical study analyzing real-life call

center data. We test forecasting accuracy using different lead times, ranging from weeks to hours in advance,

to mimic real-life challenges faced by call center managers. The models considered are: (i) a benchmark

fixed-effects model which does not exploit any dependence structures in the data; (ii) a mixed-effects model

which takes into account both interday (day-to-day) and intraday (within day) correlations; (iii) two new

bivariate mixed-effects models, for the joint distribution of the arrival counts to two separate queues, which

exploit correlations between different call types. Our study shows the importance of accounting for different

correlation structures in the data.
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1. Introduction

To increase customer satisfaction, service systems compete in improving the quality of service pro-

vided, while maintaining high levels of operational efficiency. As a result, service system managers

often need to weigh contradictory objectives. In the context of call centers, quality of service is

typically measured by customer delay in the system (i.e., the amount of time that callers spend

waiting on hold before being handled by an agent), whereas operational efficiency is measured by

the proportion of time that agents are busy handling calls. The quality of service in a call center is

usually regulated by a service-level agreement (SLA) which need be respected. The SLA specifies

target performance levels, such as the wait-time level or the proportion of abandoning customers.

For background on call centers, see Gans et al. (2003) and Aksin et al. (2007).

In order to achieve the right balance between quality of service and operational efficiency, call

center managers are faced with multiple challenges. First, there is the problem of determining

appropriate staffing levels, weeks or even months in advance, based on long-term forecasts of future

incoming demand which is typically both time-varying and stochastic. In the words of Aksin et
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al. (2007), that is a problem of “resource acquisition”. Second, there is the problem of scheduling

(and re-scheduling) the available pool of agents based on updated forecasts, typically made several

days or weeks in advance. That is a problem of “resource deployment”; see Avramidis et al. (2010).

Finally, there are short-term decisions that need be made, such as routing incoming calls in real

time to available agents, or mobilizing agents on short notice due to unforseen fluctuations in

incoming demand. Those decisions are based on short-term forecasts, updated one day or even a

few hours in advance. As an initial step, pending the analysis of effective scheduling and routing

designs, it is crucial to develop accurate forecasts of future call volumes, and to study ways of

updating those forecasts at different points in time.

1.1. Main Contributions

In this paper, we consider different statistical models for the call arrival process. Specifically, we

consider Gaussian linear mixed-effects models for the square-root transformed call arrival counts.

For background on linear mixed-effects models, see Muller and Stewart (2006). We conduct an

empirical study using real-life call center data, and generate point and confidence interval forecasts

of future arrival counts. We test the accuracy of our forecasts using lead times ranging from weeks

to hours in advance: We do so to mimic real-life challenges faced by call center managers. Our study

shows the importance of accounting for different correlation structures in the data. For example,

our mixed-effects models take into account both interday (day-to-day) and intraday (within-day)

correlations in the time series of arrival counts. This paper was motivated by an industry research

project with a major telecommunications company in Canada; see §3.

The main novelty of this work lies in jointly modeling the arrival counts for different call types

handled at the call center. In particular, we use bivariate linear mixed-effects model for the joint

distribution of arrival counts to two separate queues. We exploit inter-(call)type correlations and

show that bivariate mixed-effects models can lead to more accurate forecasts than univariate mixed-

effects models. Bivariate mixed-effects models are traditionally used in the field of biostatistics,

e.g., when analyzing longitudinal data of two associated markers; see Barry and Bowman (2007),

and Thiébaut et al. (2007). To the best of our knowledge, ours is the first work that proposes using

those models in the context of call center applications.

1.2. Fixed-Effects, Mixed-Effects, and Bivariate Models

We now briefly describe the statistical models considered in this paper; for details, see §4. We

first consider a simple fixed-effects (FE) model with day-of-week and period-of-day covariates, and

independent residuals. This model also includes cross terms to capture the interaction between the
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day-of-week and period-of-day effects. The FE model is equivalent to a historical average approach

since it essentially uses past averages as forecasts of future call volumes; it was used as a benchmark

model in both Weinberg et al. (2007) and Shen and Huang (2008b). The FE model serves as a

useful reference point because it does not incorporate any dependence structures in the data. Since

there is strong evidence for correlations in the time series of arrival counts (e.g., see §3.2), we

anticipate that forecasts based on the FE model will not be very accurate. In §6 and §7, we show

that the FE model is useful with relatively long forecasting lead times, but not otherwise.

In §4.2, we extend the FE model and consider a mixed-effects (ME) model incorporating both

fixed and random effects. Random effects, which are Gaussian deviates with a specific covariance

structure, are used to model interday correlations. Intraday correlations are modeled by imposing

a specific covariance structure on the residuals of the model. The resulting ME model also includes

the FE model’s fixed effects. Consistent with Aldor-Noiman et al. (2009), we show that the ME

model generally leads to accurate point and interval forecasts of future call volumes; see §6 and §7.

In particular, it is superior to the FE model with relatively short forecasting lead times.

In real-life call centers, there is usually evidence for correlations between the arrival counts of

different call types. Intertype correlations may arise in multi-lingual call centers where certain

service requests are handled in different languages. More generally, intertype correlations may arise

when arrivals to different queues are driven by the same underlying causes, e.g., specific marketing

campaigns or special events. In §5, we extend the ME model to bivariate mixed-effects (BME)

models which exploit intertype correlations. A BME model jointly models arrivals to two separate

queues; it consists of two dependent ME models, each modeling arrivals to one of the two queues.

We propose two ways of modeling correlations across call types. In our first bivariate model,

BME1, we specify a correlation structure between the random effects of the two underlying ME

models; see §5.1. In our second bivariate model, BME2, we specify a correlation structure between

the residuals of the two underlying ME models; see §5.2. The resulting BME models exploit interday,

intraday, and intertype correlations. In §6 and §7, we show that BME models generally yield more

accurate point and interval forecasts than both FE and univariate ME models.

1.3. Organization

The remainder of this paper is organized as follows. In §2, we review some of the relevant literature.

In §3, we describe the data set that motivated this research. In §4, we describe the fixed-effects and

univariate mixed-effects models. In §5, we describe the bivariate models. In §6, we compare the

forecasting accuracy of our different models using the data set described in §3. In §7, we provide

further empirical evidence by considering two additional data sets. In §8, we draw conclusions and

describe managerial insights.
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2. Literature Review

We now review some of the existing literature on forecasting call center arrivals. Much of the earlier

work focuses on applying standard time series methods, such as Autoregressive Integrated Moving

Average (ARIMA) models. For example, Andrews and Cunningham (1995) used the ARIMA/

transfer function methodology to forecast arrivals to L. L. Bean’s call center, and emphasized the

impact of holidays and marketing campaigns on the arrival process. Bianchi et al. (1998) also used

ARIMA models and found that they outperform simple Holt-Winters smoothing.

More recent work includes Weinberg et al. (2007) who used a Bayesian approach to forecast

incoming calls at a United States bank’s call center. They used the same square-root data trans-

formation that we use in this paper, and exploited the resulting normality of data in their model.

Taylor (2008) compared the forecasting accuracy of alternative time series models, including a ver-

sion of Holt-Winters smoothing which accommodates multiple seasonal patterns. He showed that

simple forecasting techniques, such as taking historical averages, are difficult to beat with long

forecasting lead times. We reach a similar conclusion in this work as well. Shen and Huang (2008a,

b) used a Singular Value Decomposition (SVD) approach to create a prediction model which allows

for interday forecasting and intraday updating of arrival rates. Aldor-Noiman et al. (2009) proposed

an arrival count model which is based on a mixed-effects model including day-of-week, periodic,

and exogenous fixed effects. We use a similar mixed-effects model in this paper.

Other empirical studies have shown several important features of the call arrival process.

Avramidis et al. (2004) proposed several stochastic models including a doubly stochastic Poisson

arrival process with a random arrival rate. Their models reproduce essential characteristics of call

center arrivals, such as: (i) a variance considerably higher than with Poisson arrivals, as observed

by Jongbloed and Koole (2001), and (ii) strong intraday correlations, as in Tanir and Booth (2001).

Then, they tested the goodness-of-fit of their models via an empirical study of real-life data. We

also model intraday correlations in this paper. Additionally, we account for interday correlations.

Interday correlations were shown to be significant in the seminal paper by Brown et al. (2005). One

last feature of the call arrival process, which we also take into account here, is the time variability of

arrival rates. Indeed, there is strong empirical evidence suggesting that arrival rates in call centers

are usually not stationary; e.g., see Gans et al. (2003), Brown et al. (2005) and Aksin et al. (2007).

3. Preliminary Data Analysis

The present data were gathered at the call center of a major telecommunications company in

Canada. They were collected over 329 days (excluding days when the call center is closed, such
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Figure 1 Type A arrivals for two weeks starting August

19, 2010.
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Figure 2 Type B arrivals for two weeks starting August

19, 2010.

as holidays and Sundays) ranging from October 19, 2009 to November 11, 2010. The data consist

of arrival counts for two call types, Type A and Type B, whose incoming calls originate in the

Canadian provinces of Ontario and Quebec, respectively. In §7, we briefly describe two additional

data sets, each consisting of arrival counts for two call types as well.

The call center operates from 8:00 AM to 7:00 PM on weekdays (Monday to Friday), and from

8:00 AM to 6:00 PM on Saturdays. Because the call arrival pattern is very different between

weekdays and Saturdays, we focus solely on weekdays in this paper. We thus remove a total of 47

Saturdays from the data set. There are “special” days in the data, such as days with missing values

or irregular days (i.e., days on which arrival volumes are unusually high or low). In particular, there

is a total of 15 special days (including 9 outlier days) which we remove from the set. This leaves

us with D = 329− 47− 15 = 267 remaining days. Arrival counts for each day are aggregated in

consecutive time periods of length thirty minutes each. There are P = 22 consecutive thirty-minute

periods on a weekday, and a total of D×P = 267× 22 = 5874 observations in our data set.

3.1. Overview

In Figures 1 and 2, we present plots for the time series of Type A and Type B call counts,

respectively, over two weeks ranging from August 19, 2010 to September 1, 2010. In Figures 3 and

4, we plot the average number of arrivals per half-hour period (for each weekday) for Type A and

Type B, respectively. Otherwise, both call types have similar service requests. Figures 3 and 4 show

that Type A has higher average arrival counts than Type B. Moreover, the daily profiles for the

two call types are different. Figure 3 shows that half-hourly averages for Type A do not fluctuate

substantially between the hours of 11:00 AM and 5:00 PM, for each weekday. In contrast, Figure
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Figure 3 Average arrival counts per half-hour period

for Type A.
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Figure 4 Average arrival counts per half-hour period

for Type B.

4 shows that there are two major daily peaks for Type B arrivals. The first peak occurs in the

morning, shortly before 11:00 AM, and the second peak occurs in the early afternoon, around 1:30

PM. (There is also a third “peak”, smaller in magnitude, which occurs shortly before 4:00 PM on

Mondays, Tuesdays, and Wednesdays.) Such intraday arrival patterns are commonly observed in

call centers; e.g., see Gans et al. (2003).

3.2. Correlation Structures

Exploratory analysis of our data shows evidence of: (i) strong positive interday correlations between

the arrival counts over successive days; (ii) strong positive intraday correlations between the arrival

counts over successive half-hour periods of the same day; and (iii) strong positive intertype corre-

lations between the arrival counts of different call types. In Tables 1-3, we present point estimates

of those correlations in our data set. Hypothesis tests show that all correlations are strongly sta-

tistically significant at the 0.95 confidence level (corresponding p-values are uniformly very small).

3.2.1. Interday correlations. In Table 1, we present estimates of correlations between daily

arrival counts over successive weekdays for Type B calls. Table 1 shows that there are substantial

positive correlations between days of the same week. In particular, correlations are strong between

successive weekdays, and are slightly weaker with longer lags; e.g., the correlation between (the
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Weekday Mon Tues. Wed. Thurs. Fri.
Mon. 1.0 0.48 0.35 0.35 0.34

Tues. 1.0 0.68 0.62 0.62

Wed. 1.0 0.72 0.67

Thurs. 1.0 0.80

Fri. 1.0
Table 1 Correlations between Type B arrival counts on successive weekdays.

total call volume on) Tuesday and (the total call volume on) Wednesday is 0.68, whereas the

correlation between Tuesday and Friday is 0.62. Additionally, Table 1 shows that Mondays are less

correlated with the remaining weekdays; e.g., the correlation between Monday and Tuesday is 0.48.

Results for Type A calls are largely similar, and are therefore not reported separately.

3.2.2. Intraday correlations. There are positive intraday correlations in the data set. In

Table 2, we present estimates of intraday correlations for Type A calls on a given day. In particular,

we present correlation estimates for the five consecutive half-hourly periods between 10:00 AM and

12:30 PM on Wednesdays. Table 2 shows that correlations between counts on successive half-hour

periods are uniformly strong and positive. Moreover, correlations are weaker with longer lags.

3.2.3. Intertype correlations. In Table 3, we present estimates of correlations between half-

hourly arrival counts for Type A and Type B calls. We consider the same consecutive half-hour

periods as in Table 2. Table 3 shows that intertype correlations are uniformly strong and positive.

Consistent with intuition, intertype correlations are slightly smaller for longer lags. Intertype corre-

lations are relatively easy to interpret in this data set. Indeed, Type A calls originate in the province

of Ontario, and are handled in English, whereas Type B calls originate in the province of Quebec,

and are mainly handled in French. Otherwise, arrivals to both queues have similar service requests.

Thus, we anticipate that there exist correlations between their respective arrival processes. In §5,

we propose two bivariate mixed-effects models which exploit such intertype correlations.

3.3. Data Transformation

Let Ni,j be the number of arrivals in the jth period of day i, where i= 1,2, . . . ,D and j = 1,2, . . . , P .

As in Whitt (1999) and Avramidis et al. (2004), we model the arrival process as a doubly stochastic

Poisson process with a random arrival rate Λi,j. In particular, conditional on Λi,j = λi,j where

λi,j > 0 is a deterministic value, we assume that Ni,j follows a Poisson distribution with arrival rate

λi,j. As in Jongbloed and Koole (2001), our data possesses overdispersion relative to the Poisson



Ibrahim and L’Ecuyer: Forecasting Call Center Arrivals
8 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

Half-hour periods (10, 10:30) (10:30, 11) (11, 11:30) (11:30, 12) (12, 12:30)
(10, 10:30) 1.0 0.87 0.80 0.73 0.66

(10:30, 11) 1.0 0.82 0.74 0.71

(11, 11:30) 1.0 0.83 0.80

(11:30, 12) 1.0 0.81

(12, 12:30) 1.0
Table 2 Correlations between Type A arrivals in consecutive half-hour periods on Wednesday morning.

XXXXXXXXXXXType B
Type A

(10, 10:30) (10:30, 11) (11, 11:30) (11:30, 12) (12, 12:30)

(10, 10:30) 0.75 0.72 0.67 0.60 0.59

(10:30, 11) 0.76 0.73 0.72 0.64 0.62

(11, 11:30) 0.66 0.65 0.67 0.67 0.63

(11:30, 12) 0.60 0.56 0.63 0.63 0.63

(12, 12:30) 0.58 0.54 0.58 0.65 0.62
Table 3 Correlations between Type A and Type B arrivals in consecutive half-hour periods on Wednesday.

distribution, e.g., the variance of the arrival counts is roughly equal to ten times the mean. To

stabilize the variance, we use the “root-unroot” method which is commonly used in the literature;

e.g, see Brown et al. (2005). In particular, letting yi,j =
√
Ni,j + 1/4, it was shown in Brown et

al. (2001) that for large values of λi,j, yi,j is approximately normally distributed, conditional on

λi,j, with a mean value of
√
λi,j and a variance equal to 1/4. Since there are hundreds of calls per

period on average in a given weekday, it is reasonable to assume that our square-root transformed

counts are roughly normally distributed with the above mean and variance. In §4.2, we exploit

normality to fit Gaussian linear mixed-effects models to the transformed data. (We assume that√
λi,j is a linear function of random and fixed effects.) In Figures 5 and 6, we consider Type B

calls and present Q-Q plots for the residuals of the ME and BME1 models, respectively. (We also

include in the plots corresponding envelopes at the 95% confidence level.) We use a forecasting

lead time of half a day, and make predictions from August 19, 2010 to November 11, 2010. Figure

6 shows that the normal distribution is a slightly better fit (at both the upper and lower tails) for

BME1 residuals than for ME residuals.
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Figure 5 Q-Q plot for Type B residuals of the ME

model with a forecasting lead time of half a

day.
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Figure 6 Q-Q plot for Type B residuals of the BME1

model with a forecasting lead time of half a

day.

4. Fixed-Effects and Mixed-Effects Models

In this section, we describe the fixed-effects and mixed-effects models for the call arrival process.

In §6 and §7, we compare our alternative models based on forecasting performance.

4.1. Fixed-Effects (FE) Model with Independent Residuals

The preliminary data analysis of §3 showed that the five weekdays have different expected daily

total call volumes. Moreover, the expected number of calls per period for each weekday varies

depending on the period; see Figures 3 and 4. We capture those two properties in our first model

which is a simple linear additive model incorporating both day-of-week and period-of-day covari-

ates. This model also includes cross terms to capture the interaction between the day-of-week

and period-of-day effects. The additional cross terms allow for a different intraday profile for each

weekday. We consider the FE model because similar models are often used for forecasting future

demand in real-life call centers. As pointed out in §1.2, the FE model is equivalent to a historical

average approach since it essentially uses past averages as forecasts of future call volumes. It is a

useful reference point because it does not incorporate any correlation structures in the data.

Let di be the day-of-week of day i, where i= 1,2, . . . ,D. That is, di ∈ {1,2,3,4,5} where di = 1

denotes a Monday, di = 2 denotes a Tuesday, . . . , and di = 5 denotes a Friday. Let j denote the
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half-hour period index in day i, where j = 1,2, . . . , P . We model yi,j, the square-root transformed

call volume in period j of day i, as:

yi,j =
5∑

k=1

αkI
k
di

+
22∑
l=1

βlI
l
j +

5∑
k=1

22∑
l=1

θk,lI
k
di
I lj +µi,j , (1)

where Ikdi and I lj are the indicators for day di and period j, respectively. That is, Ikdi (I lj) equals 1

if di = k (j = l), and 0 otherwise. The products IkdiI
l
j are indicators for the cross terms between the

day-of-week and period-of-day effects. The coefficients αk, βl, and θk,l are real-valued constants that

need be estimated from data, and µi,j are independent and identically distributed (i.i.d.) normal

random variables with mean 0. The normality assumption enables us to obtain prediction intervals

for future observations; see §6 and §7. Equation (1) simplifies to

yi,j = αdi +βj + θdi,j +µi,j . (2)

We estimate model parameters using the method of least squares. Least squares estimates are

equivalent to maximum likelihood estimates with normal i.i.d. residuals, as in (2).

4.2. Gaussian Linear Mixed-Effects (ME) Model

As discussed in §3.2, there is evidence of strong correlations in the data at both the interday and

intraday levels. In this subsection, we extend the FE model of §4.1 and consider an ME model

incorporating both fixed and random effects. We consider the same fixed effects as in (1). Random

effects, which are Gaussian deviates with a pre-specified covariance structure, are used to model the

interday correlations. Intraday correlations are modeled by imposing a specific covariance structure

on the residuals of the model. We fit the ME model to data by computing maximum likelihood

estimates of model parameters. Mixed-effects models have been previously considered for call center

arrivals, e.g., the ME model described here has been proposed in Aldor-Noiman et al. (2009).

4.2.1. Random effects. Let γi denote the daily volume deviation from the fixed weekday

effect on day i, where i = 1,2, . . . ,D. Then, γi is the random effect on day i. Let G denote the

D×D covariance matrix for the sequence of random effects. The random effects, γi, are identically

normally distributed with expected value E[γ] = 0 and variance Var[γ] = σ2
G. (We omit the subscript

from a random variable when the specific index is not important.) We assume that random effects

follow an autoregressive structure of order 1, AR(1). That is,

γi = ρGγi−1 +ψi , (3)
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where ψi are i.i.d. normally distributed random variables with E[ψ] = 0 and Var[ψ] = σ2
G(1− ρ2G).

Consequently, G has an AR(1) covariance structure. That is, the covariance between γi and γj is

given by

cov(γi, γj) = gi,j = σ2
Gρ
|i−j|
G for 1≤ i, j ≤D , (4)

where ρG is the autocorrelation parameter.

Considering an AR(1) covariance structure for G is both useful and computationally effective,

because it requires the estimation of only two parameters, σG and ρG. We preserve the true numer-

ical distance between days by fitting the power transformation covariance structure to G, using

the actual duration between days; e.g., the lag between Monday and Tuesday of the same week is

equal to 1, whereas the lag between Friday and the following Monday is equal to 3.

4.2.2. Model residuals. Let εi,j denote the residual effect on period j of day i, where i =

1,2, ..,D and j = 1,2, . . . , P . That is, εi,j is the normally distributed periodic deviation from the

sum of fixed and random effects. Let R denote the within-day P × P covariance matrix of the

residual effects. We assume that R has an AR(1) covariance structure with variance parameter σ2
R

and autocorrelation parameter ρR. Thus, paralleling (3), we have that

εi,j = ρRεi,j−1 + τi,j , (5)

where τi,j are i.i.d. normally distributed random variables with E[τ ] = 0 and Var[τ ] = σ2
R(1− ρ2R).

We also assume that residual effects are independent across different days.

4.2.3. Mixed model formulation. We assume that γ and ε are independent. In our ME

model, we also include the fixed effects of the FE model in (1). The resulting model for yi,j is

yi,j = αdi +βj + θdi,j + γi + εi,j , (6)

where γi and εi,j satisfy equations (3) and (5), respectively, and αdi , βj, and θdi,j are the fixed

effects of (2). In Table 4, we present maximum likelihood estimates of the covariance parameters

σ2
G, ρG, σ2

R, and ρR, for both Type A and Type B arrivals. We use a learning set consisting of 42

days, as in §6 and §7. Positive interday and intraday correlations are indicated by the values of ρG

and ρR. For details on the estimation of linear mixed models, see Henderson (1975).

4.3. Distributional forecasts

Call center managers need both point and distributional forecasts of future arrival counts. Distri-

butional forecasts are important because they quantify variability around point predictions. That is

essential for effective decision making, particularly in highly utilized call centers. Gans et al. (2012)
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FE ME BME1 BME2
σ2
G,A – 0.33 0.20 0.16
ρG,A – 0.83 0.83 0.81
σ2
G,B – 0.58 0.75 0.60
ρG,B – 0.73 0.81 0.64
σ2
R,A 0.67 0.32 0.64 0.67
ρR,A – 0.15 0.10 0.13
σ2
R,B 0.84 0.34 0.56 0.66
ρR,B – 0.24 0.25 0.13
ρR,AB – – – 0.46
ρG,AB – – 0.25 –

Table 4 Estimates of covariance parameters for Type A and Type B queues with a learning period of 42 days.

described how to obtain distributional forecasts of future arrival rates based on a statistical model

for the realized arrival counts (their model is a multiplicative version of our ME model). They inte-

grated those distributional forecasts in a stochastic programming framework to address issues in

call-center workforce management. Shen and Huang (2008b) also described the importance of using

distributional forecasts for future arrival rates (see §3.2.2 of that paper). Distributional forecasts

are needed, for example, in simulation-based algorithms that optimize the staffing and scheduling

of agents, as in Cezik and L’Ecuyer (2008) and Avramidis et al. (2010). If a distributional forecast

is available for the arrival rate, then we can simulate by first generating the rate, then the arrivals

from a Poisson process with that same rate. Alternatively, if a distributional forecast in available

only for the counts, we can generate the arrival counts in each period (from their joint distribution),

then spread the arrivals of each period uniformly and independently in that period (this is correct

if we assume that the arrival rate is constant in each period), e.g., see Avramidis et al (2004).

Distributional forecasts may consist of confidence interval estimates and densities. In this paper,

we assume that the square-root transformed counts, yi,j, are normally distributed for all i =

1,2, . . . ,D and j = 1,2, . . . , P . Therefore, we rely on conditional multivariate Gaussian theory to

obtain interval forecasts for future counts; see Henderson (1975). The conditioning set for a single

prediction is the corresponding learning set: With additional information about recent arrivals, the

learning set is updated and, consequently, so are the predictions. In §6, we assess the forecasting

accuracy of our models by computing both point and interval predictions for future arrival counts.

5. Bivariate Mixed-Effects Models

In this section, we describe bivariate mixed-effects (BME) models which extend the univariate ME

model of §4.2 by exploiting the dependence structure between arrivals to separate queues.

Correlations between the arrival counts of different call types are commonly observed in practice;

e.g., see Table 3. For example, they may arise in multi-lingual call centers where certain service
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requests are handled in different languages. More generally, they may arise when arrivals to different

queues are driven by the same underlying causes, e.g., specific marketing campaigns or special

events. Thus, it is important to propose and study alternative statistical models which exploit

intertype correlations. Here, we describe two such models, BME1 and BME2. The BME1 and

BME2 models exploit intertype correlations at the daily and half-hourly levels, respectively. In §6

and §7, we study the forecasting accuracy of the BME1 and BME2 models, and show that they

uniformly lead to more accurate point and interval predictions.

5.1. The BME1 Model

Let yAi,j (yBi,j) denote the square-root transformed arrival count for Type A (Type B) in period j

of day i, where i = 1,2, . . . ,D and j = 1,2, . . . , P . As in §4.1 and §4.2, we assume that both yAi,j

and yBi,j are normally distributed random variables. In this subsection and the next, we propose

different ways of modeling correlations between yAi,j and yBi,j.

In our first bivariate model, BME1, we propose modeling intertype correlations at the daily

level. We begin by modeling the marginal distribution of the arrival counts for each call type. In

particular, we assume that yAi,j and yBi,j are each (separately) modeled by a univariate ME model,

as in §4.2. That is, paralleling (6), we assume that,

yAi,j = αA
di

+βA
j + θAdi,j + γA

i + εAi,j , and, (7)

yBi,j = αB
di

+βB
j + θBdi,j + γB

i + εBi,j , (8)

for i = 1,2, . . . ,D and j = 1,2, . . . , P . We assume that the random effects, γA
i , follow an AR(1)

structure with parameters σG,A and ρG,A, as in (3). We assume that the residuals εAi,j follow an

AR(1) structure with parameters σR,A and ρR,A, as in (5). We make the same assumptions for

Type B. That is, we assume that γB
i follow an AR(1) structure with parameters σG,B and ρG,B,

and εBi,j follow an AR(1) structure with parameters σR,B and ρR,B. In (7) and (8), we also use the

same fixed effects, α, β, and θ, as in (2).

In order to model the dependence between yAi,j and yBi,j, we assume that the random effects

γA
i and γB

i are correlated for every i= 1,2, . . . ,D. In particular, we assume that they satisfy the

following set of equations

γA
i = ρG,Aγ

A
i−1 + νAi , and, (9)

γB
i = ρG,Bγ

B
i−1 + νBi , (10)

where νAi are i.i.d. normally distributed random variables with E[νA] = 0 and Var[νA] = σ2
G,A(1−

ρ2G,A), and νBi are i.i.d. normally distributed random variables with E[νB] = 0 and Var[νB] =
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σ2
G,B(1− ρ2G,B). We assume that (νAi , ν

B
i ) follows a bivariate normal distribution, for every i, and

that νAi and νBi are correlated. We denote the correlation between them by cor(νAi , ν
B
i ) = ρG,AB. As

a result, yAi,j and yBi,j are correlated for every i and j, i.e., they are correlated across different days,

and across the periods of the same day. In Table 4, we present point estimates for the covariance

parameters of the BME1 model. We use a learning set consisting of 42 days. The value of ρG,AB

(which is roughly equal to 0.25) indicates that the two call types are positively correlated at the

interday level.

5.2. The BME2 model

For the BME2 model, we also assume that yAi,j and yBi,j are each separately modeled by a univariate

ME model. In particular, we assume that (7) and (8) continue to hold. As in §5.1, we assume that

γA
i and γB

i each follow an AR(1) structure with covariance parameters (σG,A, ρG,A) and (σG,B,

ρG,B), respectively, for i= 1,2, . . . ,D. However, in contrast with the BME1 model, we now assume

that νAi and νBi in (9) and (10) are independent across call types, for every i= 1,2, . . . ,D.

To model intertype correlations, we assume that the residuals of the two underlying ME models,

i.e., εAi,j and εBi,j in (7) and (8), are correlated for each given i and j = 1,2, . . . , P . As in the BME1

model, we let the residuals εAi,j follow an AR(1) structure with parameters σR,A and ρR,A, for

each given i and j = 1,2, . . . , P . Similarly, we let the residuals εBi,j follow an AR(1) structure with

parameters σR,B and ρR,B. To model correlations between εAi,j and εBi,j, we assume that

εAi,j = ρR,Aε
A
i,j−1 +κA

i,j , and, (11)

εBi,j = ρR,Bε
B
i,j−1 +κB

i,j , (12)

for i= 1,2, . . . ,D and j = 1,2, . . . , P . In (11), κA
i,j are i.i.d. normally distributed random variables

with E[κA] = 0 and Var[κA] = σ2
R,A(1− ρ2R,A). Similarly, in (12), κB

i,j are i.i.d. normally distributed

random variables with E[κB] = 0 and Var[κB] = σ2
R,B(1− ρ2R,B). We assume that (κA

i,j, κ
B
i,j) follows

a bivariate normal distribution, for every fixed i and j = 1,2, . . . , P , and that κA
i,j and κB

i,j are

correlated. We denote the correlation between them by cor(κA
i,j, κ

B
i,j) = ρR,AB. We assume that κA

and κB are independent across different days. As a result, yAi,j and yBi,j are correlated within a given

day i, for all j = 1,2, . . . , P . However, they are independent across different days. In Table 4, we

present point estimates for the covariance parameters of the BME2 model. The estimated value of

ρR,AB is roughly equal to 0.46, and indicates that the two call types are positively correlated at

the intraday level.
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5.3. Distributional forecasts

It is relatively easy to generate distributional forecasts for bivariate models. Indeed, the joint

distribution of the arrival counts for both call types, Type A and Type B, is assumed to be

multivariate normal. Therefore, as with the ME model, we can derive distributional forecasts by

relying on conditional multivariate Gaussian theory, where the conditioning set is the learning set

for a given prediction. In the next section, we assess the forecasting accuracy of our models by

computing both point and interval predictions for future arrival counts.

6. Model Comparison

In this section, we compare the statistical models of §4 and §5 based on their forecasting perfor-

mance. We conduct an empirical study using the data set described in §3. In particular, we make

out-of-sample forecasts for alternative forecasting lead times, and quantify the accuracy of the

forecasts generated by the candidate models. In Table 5, we present point and interval predictions

for both Type A and Type B arrivals. The best values are highlighted in bold. In §7, we consider

additional data sets to further substantiate our results.

6.1. Lead Times and Learning Period

We generate out-of-sample forecasts for the forecasting horizon ranging from August 19, 2010 to

November 11, 2010. That is, we make forecasts for a total of 55 days (excluding weekends and

removed outlier days) and generate 55×22 = 1210 predicted values for each call type. We consider

four different forecasting lead times to mimic real-life challenges faced by call center managers; see

§1. In particular, we consider lead times of 2 weeks, 1 week, 1 day, and half a day (which corresponds

to 11 half-hour periods in our context). We let the learning period consist of 42 days, i.e., 6 weeks.

When we generate a forecast for all periods of a given day, we roll the learning period forward so

as to preserve the length of the forecasting lead time. We re-estimate all model parameters after

each forecast. We do the estimation using our own code, written in MATLAB.

6.2. Performance Measures

We quantify the accuracy of a point prediction by computing the mean squared error (MSE) per

half-hour period, defined by:

MSE≡ 1

K

∑
i,j

(Ni,j − N̂i,j)
2 , (13)

where Ni,j is the number of arrivals in the jth period of a given day i, N̂i,j is the predicted value

of Ni,j, and K is the total number of predictions made. Consistent with standard practice, we also

consider the square root of the MSE, the root mean squared error (RMSE), given by

RMSE≡
√

MSE =

√
1

K

∑
i,j

(Ni,j − N̂i,j)2 . (14)
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Predictions for a forecast lead time of 14 days
Type A Type B

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 3059 55.3 13.9 0.47 1292 36.0 13.3 0.50

ME 3301 57.5 14.5 0.86 1290 36.0 13.3 0.92

BME1 3293 57.3 14.3 0.90 1264 35.5 13.4 0.93

BME2 3414 58.4 14.7 0.90 1269 35.6 13.4 0.92

Predictions for a forecast lead time of 7 days
Type A Type B

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 3186 56.4 14.1 0.45 1330 36.5 13.6 0.47

ME 3663 60.5 15.0 0.85 1351 36.8 13.8 0.92

BME1 3506 59.2 14.5 0.93 1287 35.9 13.5 0.95

BME2 3366 58.0 14.5 0.93 1288 35.9 13.5 0.95

Predictions for a forecast lead time of 1 day
Type A Type B

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 3193 56.5 14.1 0.50 1273 35.7 13.4 0.50

ME 2636 51.3 12.6 0.88 1127 33.6 12.5 0.92

BME1 2463 49.6 12.2 0.95 1113 33.3 12.4 0.95

BME2 2440 49.4 12.3 0.94 1126 33.5 12.5 0.94

Predictions for a forecast lead time of 0.5 days
Type A Type B

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 3194 56.5 14.1 0.50 1273 35.7 13.4 0.50

ME 1612 40.2 9.80 0.91 871 29.5 10.6 0.91

BME1 1639 40.5 9.80 0.93 832 28.8 10.4 0.89

BME2 1616 40.2 9.80 0.92 806 28.3 10.2 0.90
Table 5 Accuracy of point and interval predictions for Type A and Type B calls for alternative forecasting lead

times and a learning period of 42 days.
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Predictions for a forecast lead time of 14 days
Type C Type D

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 585 24.2 12.8 0.53 1289 36.0 24.2 0.27

ME 617 24.8 13.1 0.94 1198 34.6 23.2 0.89

BME1 538 23.2 12.6 0.91 1186 34.4 23.2 0.94

BME2 531 23.0 12.5 0.92 1117 33.4 22.5 0.88

Predictions for a forecast lead time of 7 days
Type C Type D

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 546 23.4 12.4 0.52 1132 33.7 22.5 0.37

ME 548 23.4 12.4 0.93 970 31.0 20.4 0.92

BME1 493 22.2 12.1 0.96 980 31.2 20.6 0.93

BME2 514 22.6 12.2 0.93 1025 32.0 21.2 0.95

Predictions for a forecast lead time of 1 day
Type C Type D

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 523 22.9 12.0 0.56 1009 31.8 19.5 0.44

ME 410 20.2 10.6 0.94 592 24.3 14.1 0.94

BME1 387 19.7 10.6 0.96 559 23.6 14.0 0.96

BME2 389 19.7 10.7 0.94 468 21.6 13.5 0.96

Predictions for a forecast lead time of 0.5 days
Type C Type D

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 548 23.4 12.3 0.52 1202 34.6 24.6 0.33

ME 365 19.1 9.9 0.95 471 21.7 13.8 0.95

BME1 336 18.3 9.9 0.96 461 21.5 13.8 0.95

BME2 335 18.3 9.8 0.96 455 21.3 13.7 0.95
Table 6 Accuracy of point and interval predictions for Type C and Type D calls for alternative forecasting lead

times and a learning period of 42 days.
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Predictions for a forecast lead time of 14 days
Type E Type F

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 1781 42.2 16.2 0.40 316 17.8 22.0 0.50

ME 1779 42.2 16.2 0.87 319 17.8 22.2 0.94

BME1 1860 43.1 16.3 0.84 330 18.2 22.9 0.91

BME2 1979 44.4 16.9 0.85 327 18.1 22.7 0.92

Predictions for a forecast lead time of 7 days
Type E Type F

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 2034 45.1 17.6 0.44 316 17.8 22.3 0.52

ME 2056 45.3 17.8 0.86 326 18.0 22.8 0.94

BME1 2008 44.8 17.4 0.86 326 18.0 22.9 0.94

BME2 2048 45.3 17.6 0.84 324 18.0 22.8 0.94

Predictions for a forecast lead time of 1 day
Type E Type F

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 2010 44.8 17.4 0.48 322 17.9 22.8 0.56

ME 1514 38.9 15.0 0.88 319 17.9 22.3 0.94

BME1 1483 38.5 14.8 0.88 321 17.9 22.3 0.94

BME2 1484 38.5 14.8 0.86 318 17.8 22.2 0.94

Predictions for a forecast lead time of 0.5 days
Type E Type F

MSE RMSE MAPE Cover MSE RMSE MAPE Cover
FE 2032 45.6 17.4 0.47 322 17.9 22.7 0.56

ME 1068 32.7 12.0 0.88 318 17.9 22.4 0.94

BME1 1026 32.0 11.7 0.82 312 17.7 21.8 0.93

BME2 1015 31.9 11.6 0.82 318 17.9 22.4 0.95
Table 7 Accuracy of point and interval predictions for Type E and Type F calls for alternative forecasting lead

times and a learning period of 42 days.
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In addition to the MSE and RMSE, we compute, for a relative measure of accuracy, the mean

absolute percentage error (MAPE) defined by:

MAPE≡ 100 · 1

K

∑
i,j

|Ni,j − N̂i,j|
Ni,j

. (15)

To evaluate the distributional forecasts generated by the candidate models, we use performance

measures to describe the prediction intervals for Ni,j; see §4.3 and §5.3. In particular, we define

the average cover (Cover) of a prediction interval for a given model as:

Cover =
1

K

∑
i,j

I(Ni,j ∈ (L̂i,j, Ûi,j)) , (16)

where I(·) denotes the indicator random variable, and L̂i,j and Ûi,j are the lower and upper bounds

of the prediction interval, respectively. In this paper, we compute prediction intervals with a confi-

dence level of 95%. If the chosen model adequately captures the correlation structure in the data,

then we expect that the average cover be close to 95%. The average cover corresponds to the

unconditional coverage of Christoffersen (1998).

6.3. Forecasting Performance

6.3.1. Two-weeks-ahead forecasts.

Predictions for Type A calls. With a forecasting lead time of two weeks, Table 5 shows that the

FE model generates the most accurate point forecasts, among all models considered. Consistent

with Taylor (2008), this shows that a simple historical average can be difficult to beat with relatively

long forecasting lead times. Indeed, Table 5 shows that both MSE(ME) and MSE(BME1) are

roughly 8% larger than MSE(FE). Moreover, MSE(BME2) is roughly 12% larger than MSE(FE).

Table 5 also shows that MAPE(FE) is roughly 0.6% smaller than MAPE(ME), and roughly 0.4%

smaller than MAPE(BME1). However, the predictive power of bivariate models becomes evident

when comparing the prediction intervals generated by the alternative models. Indeed, the average

cover for both BME1 and BME2 is close to 0.90, whereas Cover(ME) is roughly equal to 0.86 and

Cover(FE) lags behind at 0.47. Indeed, the FE model considerably underestimates uncertainty by

not capturing any correlation structure between the arrival counts.

Predictions for Type B calls. With a forecasting lead time of two weeks, Table 5 shows that all

models perform nearly the same from the MSE and MAPE perspectives. Indeed, MSE(BME1) is

the smallest among all models considered, and MSE(FE)/MSE(BME1) is roughly equal to 1.02.

Additionally, Table 5 shows that the MAPE’s for all models are roughly the same. With Type B

arrivals, the average cover of prediction intervals for the ME and BME models is approximately

equal to 0.93, whereas the cover for the FE model is much lower, and is roughly equal to 0.5.



Ibrahim and L’Ecuyer: Forecasting Call Center Arrivals
20 Manufacturing & Service Operations Management 00(0), pp. 000–000, c© 0000 INFORMS

6.3.2. One-week-ahead forecasts.

Predictions for Type A calls. With a forecasting lead time of one week, Table 5 shows that the

FE model continues to generate the most accurate point forecasts. Indeed, MSE(ME)/MSE(FE) is

roughly equal to 1.15, whereas MSE(BME1)/MSE(FE) is roughly equal to 1.10. Both the BME1

and BME2 models generate more accurate point forecasts than the ME model. For example, the

difference between MAPE(ME) and MAPE(BME1) is roughly equal to 0.5%. Moreover, the cover

of prediction intervals for the BME models is larger than for the ME model; e.g., Cover(BME1)

≈ 0.92 and Cover(BME2) ≈ 0.93, whereas Cover(ME) ≈ 0.85.

Predictions for Type B calls. Table 5 shows that the BME1 model yields the most accurate point

predictions. For example, MSE(ME) is roughly 5% larger than MSE(BME1), and MAPE(ME)

is roughly 0.3% larger than MAPE(BME1). Moreover, the cover of prediction intervals for the

BME models is slightly larger than for the ME model. The FE model continues to yield accurate

point forecasts, e.g., MSE(FE)/MSE(BME1) ≈ 1.03. Consistent with previous results, the cover of

prediction intervals generated by the FE model is poor. Indeed, Cover(FE) ≈ 0.47.

6.3.3. One-day-ahead forecasts.

Predictions for Type A calls. With a forecasting lead time of one day, Table 5 shows that BME

models yield more accurate point and interval forecasts than both the ME and FE models. For

example, MSE(ME) is roughly 8% larger than MSE(BME2), and MAPE(ME) is roughly 0.4%

larger than MAPE(BME1). Additionally, Cover(BME1) and Cover(BME2) are both roughly equal

to 0.95, whereas Cover(ME) is roughly equal to 0.88. The FE model yields considerably less accurate

point and interval forecasts than the BME and ME models; e.g., MSE(FE)/MSE(BME2) ≈ 1.31.

Predictions for Type B calls. The ME, BME1, and BME2 models perform roughly the same

in this case. Indeed, MSE(BME1) is only slightly smaller than MSE(ME), and MAPE(ME) is

roughly equal to MAPE(BME1). The average cover of prediction intervals for the BME1 model

(approximately equal to 0.95) is slightly larger than for the ME model (approximately equal to

0.92).

6.3.4. Within-day forecasts.

Predictions for Type A calls. Table 5 shows that the ME and BME models perform roughly the

same in this case. Indeed, MSE(ME) is only marginally smaller than MSE(BME2). Moreover, the

BME and ME models yield prediction intervals with a good cover; e.g., Cover(ME) ≈ 0.91 and

Cover(BME1) ≈ 0.93. The FE model performs considerably worse than the ME and BME models,

in terms of both point and interval predictions. For example, MSE(FE)/MSE(BME1) is roughly
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FE ME BME1 BME2
σ2
G,A – 0.42 0.38 0.24
ρG,A – 0.71 0.62 0.78
σ2
G,B – 0.65 0.59 0.56
ρG,B – 0.66 0.57 0.64
σ2
R,A 1.22 0.79 0.48 0.45
ρR,A – 0.60 0.14 0.16
σ2
R,B 1.31 0.70 0.50 0.53
ρR,B – 0.56 0.31 0.21
ρR,AB – – – 0.15
ρG,AB – – 0.74 –

Table 8 Estimates of covariance parameters for Type C and Type D queues with a learning period of 42 days.

equal to 2. For within-day updates, we also consider a simple adjustment (not shown in Table 5) of

the FE model’s forecasts. In particular, we implement the historical proportions method described

in Mehrotra et al. (2010) and used in Shen and Huang (2008b). For a given updating time point,

m, we compute the ratio between the square-root transformed count up to m and the forecasted

count up to m, and use this ratio to update forecasts for the remaining half-hour periods after m.

We found that this adjustment leads to slightly better predictions than the FE model, but that the

difference in performance is not great. Thus, we do not include separate results for the adjusted

forecasts here.

Predictions for Type B calls. With a forecasting lead time of half a day, the BME2 model yields

more accurate point and interval forecasts than the ME model. For example, MSE(ME) is roughly

8% larger than MSE(BME2) and MAPE(ME) is roughly 0.4% larger than MAPE(BME2). The

BME1 model performs slightly worse than the BME2 model, but better than the ME model.

Finally, the cover of prediction intervals for the BME and ME models are all roughly equal to 0.9.

The results of this section show that the BME models usually lead to more accurate point and

interval forecasts than both the ME and FE models. In §7, we consider two additional data sets

and provide further empirical evidence supporting our main conclusions.

7. Additional Data Sets

In this section, we consider two additional data sets, taken from the same call center as in §3, and

study the forecasting accuracy of our candidate models using each set. Preliminary data analysis

of the additional sets is largely consistent with our previous analysis in §3. Therefore, we omit a

detailed description here. In §7.1 and §7.2, we present estimates for the forecasting performance

of the FE, ME, and BME models. For our predictions, we continue to use a learning period of 42

days, and forecasting lead times of 2 weeks, 1 week, 1 day, and half a day.
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7.1. First Additional Data Set: Call Types C and D

The data from the first set were collected over 305 days (excluding weekends) ranging from June

1, 2010 to July 25, 2011. The data consist of arrival counts for two call types, Type C and Type D,

whose incoming calls originate in the Canadian provinces of Ontario and Quebec, respectively. The

two types correspond, otherwise, to similar service requests. We remove 8 outlier days from data.

Thus, we are left with a total of D= 305− 8 = 297 remaining days. For the BME models in Table

6, we jointly model Type C and Type D arrivals. Table 6 shows that we get consistent results for

both call types. Thus, we only discuss results for Type C calls here. In Table 8, we present point

estimates for the covariance parameters of all models with a learning period of 42 days.

7.1.1. Two-weeks-ahead forecasts. Table 6 shows that, with a forecasting lead time of two

weeks, the BME2 model generates the most accurate point predictions. The BME1 model performs

roughly the same as BME2. For example, MSE(ME) is roughly 16% larger than MSE(BME2), and

is roughly 15% larger than MSE(BME1). Both MAPE(BME2) and MAPE(BME1) are roughly

0.6% smaller than MAPE(ME). The FE model yields more accurate point predictions than the ME

model. Indeed, MSE(FE) is roughly 11% larger than MSE(BME2). The ME and BME models all

yield similar prediction intervals of future counts. Indeed, Cover(BME2) is roughly equal to 0.92,

whereas Cover(ME) is roughly equal to 0.94. Consistent with §6, the FE model yields prediction

intervals which have a relatively small cover. Indeed, Cover(FE) ≈ 0.53.

7.1.2. One-week-ahead forecasts. Table 6 shows that, with a forecasting lead time of one

week, the BME1 model yields the most accurate point forecasts. Indeed, MSE(ME) is roughly

11% larger than MSE(BME1). The BME2 model continues to outperform the ME model as well:

MSE(ME) is roughly 6% larger than MSE(BME2). The FE model yields similar point predictions

as the ME model. The BME2 model yields prediction intervals with the best cover: Cover(BME2)

≈ 0.96.

7.1.3. One-day-ahead forecasts. In this case, the BME1 and BME2 models perform nearly

the same, and continue to yield more accurate point and interval forecasts than the ME model. For

example, MSE(ME) is about 6% larger than MSE(BME2). The FE model performs considerably

worse; e.g., MSE(FE) is 35% larger than MSE(BME2). Prediction intervals for the ME and BME

models all have good covers, and are each close to 0.95.

7.1.4. Within-day forecasts. As before, the BME1 and BME2 models perform nearly the

same, both outperforming the ME model. (The FE model is no longer competitive in this case.)

Indeed, MSE(ME) is roughly 10% larger than both MSE(BME1) and MSE(BME2). The covers of

prediction intervals for the ME and BME models are roughly the same; e.g., Cover(ME) ≈ 0.96.
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FE ME BME1 BME2
σ2
G,A – 0.51 0.36 0.29
ρG,A – 0.67 0.44 0.87
σ2
G,B – 0.17 0.10 0.09
ρG,B – 0.80 0.82 0.89
σ2
R,A 0.92 0.37 0.45 0.46
ρR,A – 0.39 0.45 0.35
σ2
R,B 0.55 0.24 0.60 0.57
ρR,B – 0.41 0.34 0.30
ρR,AB – – – 0.1
ρG,AB – – 0.53 –

Table 9 Estimates of covariance parameters for Type E and Type F queues with a learning period of 42 days.

7.2. Second Additional Data Set: Call Types E and F

As in §7.1, the data were also collected over 305 days (excluding weekends) ranging from June 1,

2010 to July 25, 2011. The data consist of arrival counts for two call types, Type E and Type F.

Both call types originate in the Quebec province, but they correspond to different service requests.

Call center managers at the company have informed us that, based on their experience, arrivals to

those two call types are dependent in practice. In this subsection, we investigate whether exploiting

this dependence leads to more accurate forecasts. We remove 9 outlier days from the data set. Thus,

we are left with a total of D= 305− 9 = 296 remaining days. For the BME1 and BME2 models in

Table 7, we jointly model Type E and Type F arrivals. In Table 9, we present corresponding point

estimates for the covariance parameters of all models with a learning period of 42 days.

Type F calls have a significantly smaller volume than Type E calls; e.g., there are roughly

three times more Type E than Type F calls. As a result, the normal approximation of §3.3 is no

longer reasonable. With Type F calls, all forecasting methods considered generate similar point

and interval predictions. In particular, Table 7 shows that the MSE (and MAPE) for the FE, BME,

and ME models are all roughly equal in this case, irrespective of forecasting lead times. We do not

explore this issue further here, and leave investigating forecasting methods with small call volumes

to future research; see §8. Next, we discuss results for Type E calls.

7.2.1. Two-weeks-ahead forecasts. Table 7 shows that the FE model yields the most accu-

rate point forecasts among all models considered. The ME model performs nearly the same as the

FE model. Indeed, MSE(ME) is roughly equal to MSE(FE). The BME2 model yields the least

accurate forecasts in this case, with MSE(BME2) roughly 10% larger than MSE(FE). Table 7 also

shows that MAPE(ME) and MAPE(BME1) are roughly the same. The BME2 model falls behind,

and MAPE(BME2) is roughly 0.7% larger than MAPE(FE). Consistent with prior results, the

cover of prediction intervals generated by the FE model is poor (roughly equal to 0.4). The covers
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of prediction intervals generated by the BME models (both roughly equal to 0.85) are slightly

smaller than the cover of prediction intervals generated by the ME model (roughly equal to 0.87).

7.2.2. One-week-ahead forecasts. Table 7 shows that the most accurate model, under the

MSE and MAPE criteria, is the BME1 model. For example, MSE(ME) is roughly 3% larger than

MSE(BME1), and MAPE(ME) is nearly 0.4% larger than MAPE(BME1). The BME2 model per-

forms roughly the same as the ME model. Additionally, the average covers of prediction intervals

generated by the ME and BME models are all roughly the same (approximately 0.86).

7.2.3. One-day-ahead forecasts. Table 7 shows that the BME1 and BME2 models perform

roughly the same in this case. The BME2 model yields the most accurate point predictions, but

MSE(BME2) is only 2% smaller than MSE(ME). Additionally, MAPE(ME) is about 0.2% larger

than MAPE(BME1). The covers of prediction intervals generated by the ME and BME models are

similar. The FE model performs very poorly: MSE(FE)/MSE(BME1) is roughly equal to 1.36.

7.2.4. Within-day forecast. Consistent with previous results, the BME1 model yields the

most accurate point predictions. Indeed, MSE(ME) is roughly 5% larger than MSE(BME1). More-

over, MAPE(ME) is roughly 0.4% larger than MAPE(BME1). The BME1 model is only slightly

less accurate than the BME2 model: MSE(BME2)/MSE(BME1) is roughly equal to 1.01. The cover

of prediction intervals generated by the ME model is better than for prediction intervals generated

by the BME models. For example, Cover(ME) ≈ 0.88, whereas Cover(BME1) ≈ 0.82.

8. Conclusions
8.1. Overview

We considered alternative statistical models for the arrival counts to a call center. We evaluated

the forecasting accuracy of those models based on three real-life data sets taken from the call center

of a major telecommunications company in Canada. We used forecasting lead times ranging from

weeks to hours in advance to mimic challenges faced by call center managers.

We investigated the importance of accounting for different correlation structures in the data

when forecasting future arrival counts. Exploiting interday and intraday correlation structures was

shown to be useful in Aldor-Noiman et al. (2009). Here, we proposed bivariate models exploiting

interday, intraday, and intertype correlations, and we fit those models to data consisting of three

different pairs of call types. We showed that jointly modeling arrivals to alternative call types is

useful, and needs to be studied further. In particular, both point and distributional forecasts for

bivariate models are generally more accurate than for other models considered. With the particular

data at hand, the difference in performance between the ME and BME models is, admittedly,
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not as great as the difference between the FE and BME models. Nevertheless, Tables 5-7 showed

that bivariate models are generally a better fit to data than univariate models; e.g., corresponding

prediction intervals consistently have a better cover. Thus, our paper showed that bivariate models

are of interest and need be investigated further. In particular, our paper motivates a more in-depth

study to unveil conditions (e.g., using simulation or other data sets) under which bivariate methods

improve both point and distributional forecasts significantly.

8.2. Managerial Insights

8.2.1. Call volumes. In this paper, we used a square-root transformation of the data (§3.3).

The transformed counts are roughly normally distributed when the number of arrivals is sufficiently

large; see Brown et al. (2005). Throughout, we exploited normality to fit Gaussian mixed-effects

models to the transformed data. Figures 5 and 6 showed that a normal approximation is reasonable

with many incoming calls, e.g., thousands of calls per day. When the number of arrivals is relatively

small, using a normal approximation is no longer reasonable. Table 7 showed that the FE, ME,

and BME models perform roughly the same with Type F calls: all forecasts are not very accurate,

irrespective of forecasting lead time. In a small real-life call center, traditional forecasting methods,

such as Holt-Winters smoothing or seasonal ARIMA modeling, may be better alternatives than

using mixed-effects models. To model the joint distribution of arrival counts in successive time

periods, we could consider copulas with discrete marginal distributions, as in Channouf et al.

(2012). However, we do not explore this issue further here, and leave it as a potential direction

for future research. Arguably, there may be less interest in forecasting arrivals to queues with very

small call volumes. Indeed, such queues are typically easier to manage in practice.

8.2.2. Forecasting lead times. Consistent with Taylor (2008), Tables 5-7 showed that a

simple historical average can be difficult to beat with a relatively long forecasting lead time. Intu-

itively, modeling correlation structures in the data is not necessary for long-term forecasts. Thus,

it is sufficient for real-life call center managers to base their long-term managerial decisions on his-

torical averages, e.g., fixed-effects models. The FE model is appealing because it has the advantage

of computational efficiency: It requires fewer parameter estimations than both the ME and BME

models. With short forecasting lead times, Tables 5-7 showed the importance of accounting for

correlation structures in the data. For example, Table 5 showed that, with a forecasting lead time of

one day, the FE model leads to considerably less accurate forecasts than both mixed and bivariate

models. Thus, our study shows that real-life call center managers would benefit from updating their

long-term forecasts a few days or hours in advance. In doing so, they exploit interday, intraday,

and intertype dependencies in their data.
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