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Gerber and Chopin combine SMC with RQMC to accelerate convergence. They
apply RQMC as in the array-RQMC method discussed below, for which convergence rate
theory remains thin despite impressive empirical performance. Their proof of o(N−1/2)
convergence rate is a remarkable contribution.

Array-RQMC simulates an array of N dependent realizations of a Markov chain,
using RQMC so the distribution of the N states has low discrepancy Dt with respect to
its theoretical distribution, at any step t. If xt = Γt(xt−1,ut), where xt−1 ∼ U([0, 1)`)
and ut ∼ U([0, 1)d), array-RQMC approximates the (` + d)-dimensional integral E[Dt],
using N RQMC points. It matches each state to a point whose first ` coordinates are
near that point, and uses the next d coordinates for ut.

The matching step is crucial. If ` = 1, just sort the states and points by their
(increasing) first coordinate. If ` > 1, one can map the states xt ∈ [0, 1)` → [0, 1), then
proceed as for ` = 1. Gerber and Chopin do exactly this, using a Hilbert curve mapping.
But the map [0, 1)` → [0, 1) is not essential. E.g., if ` = 2, one can sort the states

and the points in N−1/2 groups of size N−1/2 by their first coordinate, then sort each
group by the second coordinate. This extends to ` > 2. With this multivariate sort,
L’Ecuyer et al. (2009) observed an O(N−2) variance when pricing an Asian option with
array-RQMC. I wonder what rate the Hilbert curve map can achieve for this example.

When X ⊆ R` instead of [0, 1)`, Gerber and Chopin map xt → [0, 1)` using a logistic
transformation. The choice of transformation and its parameters may have a significant
impact on the overall convergence. For the multivariate sort, no transformation is needed,
it works directly in R`. The Hilbert sort could also be adapted to work directly in R`.

The SMC part uses importance sampling and particle resampling, a form of splitting
(Kahn and Harris, 1949; L’Ecuyer et al., 2007) with fixed effort (N remains constant).
Combinations of array-RQMC with several variants of splitting and with importance
sampling were examined and tested by L’Ecuyer et al. (2007). Fixed-effort better fits
array-RQMC than splitting variants that produce a random N at each step, and strati-
fication improves the multinomial resampling process.

Array-RQMC was previously developed to estimate the expectation of a function
of the state, not in the context of filtering for parameter estimation and for estimating
posterior densities. But the same ideas apply. L’Ecuyer et al. (2008) proved an O(n−3/2)
convergence rate for the variance for ` = 1 and special types of RQMC points. Faster
rates have been observed empirically in examples. Proving those rates in a general setting
(under appropriate conditions) is challenging and deserves further research effort.



2 Pierre L’Ecuyer

References

Kahn, H. and Harris, T. E. (1949) Estimation of particle transmission by random sam-
pling. In Monte Carlo Method, vol. 12 of Applied Mathematics Series, 27–30. National
Bureau of Standards.

L’Ecuyer, P., Demers, V. and Tuffin, B. (2007) Rare-events, splitting, and quasi-Monte
Carlo. ACM Transactions on Modeling and Computer Simulation, 17, Article 9.


