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ABSTRACT

The generalized likelihood ratio (GLR) method is a recently introduced gradient estimation method
for handling discontinuities for a wide scope of sample performances. We put the GLR methods from
previous work into a single framework, simplify regularity conditions for justifying unbiasedness of
GLR, and relax some of those conditions that are difficult to verify in practice. Moreover, we combine
GLR with conditional Monte Carlo methods and randomized quasi-Monte Carlo methods to reduce
the variance. Numerical experiments show that the variance reduction could be significant in various
applications.

1. Introduction
Simulation is widely used for analyzing and optimizing

complex stochastic systems [1]. Specifically, we first gen-
erate simple input random variables X = (X1,… , Xn), and
then simulate a complex output random variable Y by eval-
uating the performance function #(⋅) at the input random
variables, i.e., Y = #(X), which is also known as the sam-
ple performance. Depending on the application, #(⋅) could
take complicated functional forms. In stochastic activity net-
works used in project management, the performance func-
tion is nonlinear, because we are interested in the duration
of the critical path, i.e., the activity path taking the longest
duration; in a queueing system, the performance function
can be estimated using a recursive equation when we are
interested in waiting times of customers following certain
dynamic mechanism; in financial options, the performance
may be discontinuous due to thresholds determiningwhether
the option is in the money or not.

Stochastic gradient estimation has been an important topic
studied in simulation for decades [7], because it can be used
for sensitivity analysis and optimization in complex stochas-
tic models. Specifically, suppose the input random variables
X(�) and performance function #(⋅; �) are parameterized by
�, and we aim to estimate the derivative of the expectation
of the output random variable, i.e, )E[Y (�)]∕)�. When �
is multi-dimensional, the gradient is a vector of derivatives
with respect to parameters in each dimension. By the def-
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inition of derivative, )E[Y (�)]∕)� = lim�→0 E[Y (� + �) −
Y (�)]∕�, and the finite difference (FD) estimator, (Y (�+�)−
Y (�))∕�, is straightforward and always implementable, and
it treats the simulation model as a black-box. However, FD
requires simulating one more sample path for each dimen-
sion of the parameter, and it suffers from a bias-variance
tradeoff, i.e., the balance between choosing large � to reduce
the variance and using small values of � to make the bias
low. These undesirable properties are especially apparent
when the dimension of the parameters is high.

In contrast, single-run stochastic gradient estimation tech-
niques may provide unbiased estimates for the gradient with
respect to all parameters simultaneously in the process of
estimating the sample performance. Infinitesimal perturba-
tion analysis (IPA) and the likelihood ratio (LR) method are
two classic single-run unbiased stochastic gradient estima-
tion techniques [24], [17], [45]. A measured-value differen-
tiation can be viewed as a technique to reduce the variance
of LR at a cost of extra simulations [14]. IPA is a pathwise
derivative estimate obtained from

)E[Y (�)]
)�

= E
[

)Y (�)
)�

]

=E

[
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)�

|

|

|
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|x=X

)Xi
)�

]

.

The interchange of derivative and expectation is usually jus-
tified by the dominated convergence theorem, which typi-
cally requires continuity and almost sure differentiability of
the sample performance Y (�) = #(X; �)with respect to �. A
detailed theoretical discussion on IPA can be found in [10].
The LR estimator on the other hand can be obtained from

)E[Y (�)]
)�

= )
)� ∫ #(x)fX(x; �)dx

=∫ #(x)
)fX(x; �)

)�
dx = E

[

#(X)
) log fX(X; �)

)�

]

,
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where fX(⋅; �) is the joint density of the input random vari-
ables. To justify unbiasedness of the estimator, LR does
not require continuity for the sample performance, but it can
only estimate derivatives with respect to a distributional pa-
rameter, i.e., a parameter in the distribution of input random
variables, but not a structural parameter, i.e., a parameter
directly appearing in function #(⋅; �). Detailed theoretical
discussion on LR can be found in [25]. A common belief in
the simulation literature is that IPA usually has smaller vari-
ance than LR when they both apply. This may not be true
in general (see, e.g., [4] for a counterexample), but has been
substantiated in [4] under a sufficient condition. A hybrid of
IPA and LR (IPA-LR) in [24] can be obtained by

)E[Y (�)]
)�

= )
)� ∫ #(x; �)fX(x; �)dx

=E
[

)#(x; �)
)�

|

|

|

|x=X
+ #(X; �)

) log fX(X; �)
)�

]

.

A structural parameter is allowed for IPA-LR, but it requires
differentibility of function #(⋅; �) with respect to the struc-
tural parameter.

The single-run unbiased stochastic gradient estimation
techniques are considered in traditional backgrounds includ-
ing discrete event systems [2], and riskmanagement in finan-
cial engineering [11], [18], [20], [36], [48], [3], [19], [22],
[16], [12]. Recently, this topic has attracted attention in ar-
tificial intelligence and machine learning [38], [44], where
the dimension of the parameter is typically extremely high,
so that the single-run and unbiasedness properties are partic-
ularly helpful in gradient-based optimization. Backpropaga-
tion (BP), the most popular gradient estimation technique for
training artificial neural networks (ANN), is shown in [44]
to be pathwise equivalent to IPA, and backward propagation
of errors can reduce computational complexity. In addition,
[44] shows that an LR-based method can significantly im-
prove the robustness of ANN.

In simulation, discontinuities often appear in the sample
performance with respect to the structural parameter, so that
IPA and LR fail to be unbiased. For example, the derivative
of the distribution function )F (z)∕)z = )E[1{Y ≤ z}]∕)z
has a discontinuous sample performance with respect to z,
and the derivative and expectation cannot be interchanged.
Smoothed perturbation analysis (SPA) and push-out LR can
be used to address the discontinuity issue [9], [45], but SPA
has to choose what to be conditioned on and push-out LR re-
quires an explicit transformation to push the parameter into
the density of input distribution, which are problem depen-
dent. Peng et al. [43] propose a generalized LR (GLR)
method to systematically treat sensitivity analysis for a large
class of sample performances with discontinuities. The ma-
jor steps in the derivation of GLR comprise function smooth-
ing, integration by parts, and taking limits. In contrast to
SPA and push-out LR, the GLR estimator has an analytical
form without the need for conditioning and transformation.
The work of [43] is inspired by several streams of work that
address the discontinuity issue without resorting to condi-
tioning and transformation [36], [48], [19], but those meth-

ods mainly focus on financial applications and rely on the
specific structure of problem to address the discontinuity is-
sue. In [43], the unbiasedness of GLR is justified by a set
of conditions, including that the tails of the input distribu-
tion go smoothly to zero fast enough, which excludes ex-
ponentially distributed random variables and uniform ran-
dom numbers, for example. This smoothness requirement
is relaxed in [41], where the inputs of the stochastic model
are uniform random numbers, which are the basic building
blocks for generating other random variables. GLR is shown
to generalize both LR and push-out LR.

In this work, we put the GLR methods in [43] and [41]
under a common framework. Then, by adopting a similar
technique developed in [41], we simplify the assumptions
required for justifying the unbiasedness of GLR in [43] and
further relax some of the conditions that are difficulty to ver-
ify in practice. Although theGLRmethod has broad applica-
bility, previous work indicates that it may inherit some of the
undesirable variance properties of the LR method. We ad-
dress this issue by combining GLR with conditional Monte
Carlo (CMC) methods and randomized quasi-Monte Carlo
(RQMC) methods.

CMC methods can reduce the variance and smooth the
performance function in simulation by conditioning on cer-
tain events or random variables and then integrating out the
remaining randomness [1]. For an estimatorH(Z), we have

E[H(Z)] = E[Ĥ(Ẑ)], (1)

where Ĥ(Ẑ) ∶= E[H(Z)|Ẑ] with Ẑ being a part of in-
put random variables in Z. The variance reduction for the
conditional estimator Ĥ(Ẑ) can be seen from the following
variance decomposition formula:

Var(H(Z)) = Var(E[H(Z)|Ẑ]) + E[Var(H(Z)|Ẑ)]

≥ Var(Ĥ(Ẑ)).

Typically, Ĥ(Ẑ) is smoother thanH(Z), due to the integra-
tion taken in the conditional expectation. SPA uses CMC to
smooth the sample performance, after which IPA is applied
to differentiate the conditional expectation. GLR does not
need smoothing to obtain an unbiased derivative estimator,
but CMC can be applied afterward to reduce the variance for
GLR. The relation between applications of CMC in SPA and
GLR is illustrated in Figure 1.

RQMC methods replace the vectors of uniform random
numbers that drive independent simulation runs by depen-
dent vectors of uniform random numbers that cover the space
more evenly. When estimating an expectation, they can pro-
vide an unbiased estimator with a variance that converges to
zero at a faster rate than with Monte Carlo [35], [5]. Such
a faster rate can be proved when the estimator inside the ex-
pectation is sufficiently smooth as a function of the under-
lying uniform random numbers. When the estimator is not
smooth (e.g., discontinuous), the convergence rate may not
be improved, but RQMC could still reduce the variance by
a constant factor. We show, through numerical experiments,
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Figure 1: Applications of CMC to obtain SPA and conditional GLR.

that the variance of the GLR estimator can be significantly
reduced by appropriately combining GLR with CMC and
RQMC. A similar type of combination of CMC and RQMC
for reducing the variance of quantile estimation can be found
in [39]. A preliminary version of this study focusing on vari-
ance reduction for quantile sensitivity estimation appears in
[42], where GLR has been combined with CMC and RQMC
for estimating distribution sensitivities.

The rest of the paper is organized as follows. Section 2
introduces the GLRmethod. Variance reduction for GLR by
CMC and RQMC is discussed in Section 3. Section 4 exem-
plifies the applications of the method to a stochastic activity
network, a single-server queue, and a barrier option, with
numerical experiments on them presented in Section 5. The
last section offers conclusions.

2. Generalized Likelihood Ratio Method
We consider the sensitivity analysis problem of estimat-

ing

)
)�

E['(g(X; �))], (2)

where ' ∶ ℝn → ℝ is a measurable function not necessar-
ily continuous, g(x; �) = (g1(x; �),… , gn(x; �))T is a vec-
tor of functions with sufficient smoothness for x ∈ ℝn, and
X = (X1,… , Xn) is a vector of input random variables with
a joint density fX(x; �) supported on Ω ⊆ ℝn. From [43],
the dimension of g is required to be smaller or equal to the
dimension of x in deriving a GLR estimator. For simplicity
of theoretical discussion, we require them to be the same.
In application, X does not have to include all the input ran-
dom numbers given to a simulation model. Instead, X can
be only a subset of input random variables in simulation and
we can condition on the remaining input random variables
outside of X when deriving the GLR estimators. This leaves
us freedom to select input random variables inX for deriving
GLR estimators as long as the conditions to ensure unbiased-
ness introduced later can be satisfied, and some choices of
X could lead to simpler forms and more desirable variance
properties for GLR.

The Jacobian of g(⋅; �) is

Jg(x; �) ∶=

⎛

⎜
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)x2

⋯ )gn(x;�)
)xn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

In this work, we require the function g(.; �) to be one-to-one
(invertible) so that the Jacobian will be invertible. That is, g
must represent a valid multivariate change of variable. How-
ever, we only need the existence of the inversion or change
of variable for g rather than the explicit form. This require-
ment can be relaxed to the extent that g and its the Jacobian
are only invertible locally [43]. Let ei be the i-th unit vector.
We define

d(x; �) ∶= −trace
(

J−1g (x; �))�Jg(x; �)
)

+
n
∑

i=1
eTi J

−1
g (x; �)

(

)xiJg(x; �)
)

J−1g (x; �))�g(x; �)

−
(

J−1g (x; �))�g(x; �)
)T
∇x log fX(x; �),

where )yℎ(y) is the matrix obtained by differentiating ℎwith
respect to y element-wise. From [43], when the tails of fX(⋅; �)
go smoothly to zero fast enough, then, under certain regular-
ity conditions, it can be shown that an unbiased GLR estima-
tor for (2) is given by

G(X; �) ∶= '(g(X; �))w(X; �),

w(x; �) ∶=
) log fX(x; �)

)�
+ d(x; �).

(3)

Peng et al. [41] consider the case when X is a vector
of uniform random numbers U = (U1,… , Un) such that
Ω = (0, 1)n and ) log fX(x; �)∕)� = 0. Then under cer-
tain regularity conditions, we have the following unbiased
GLR estimator for (2):

G̃(U ; �) ∶= '(g(U ; �))d(U ; �)

+
n
∑

i=1

[

'(g(U i; �))ri(U i; �) − '(g(U i; �))ri(U i; �)
] (4)
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where

U i ∶= (U1,… , 1−
⏟⏟⏟
ith element

,… , Un),

U i ∶= (U1,… , 0+
⏟⏟⏟
ith element

,… , Un),

and

ri(x; �) ∶=
(

J−1g (x; �) )�g(x; �)
)T

ei, i = 1,… , n.

In a special case when the input random variables are
independent and non-parameterized with the tails of the dis-
tribution going smoothly to zero fast enough, from [41], the
GLR estimator in [43] and the GLR estimator in [41] coin-
cide even though the input random variables or sample point
(in probability space) are interpreted differently in two GLR
methods. This is in contrast to the unified IPA and LR frame-
work in [24], where two different interpretations of the input
random variables or sample point lead to two distinctive es-
timators, i.e, the IPA and LR estimators.

Example 1. We use a simple density estimation problem to
illustrate how to apply the two versions of the GLR method:
We want to estimate

)E[1{X + U ≤ z}]
)z

,

where X is a standard normal random variable, and U is a
uniform random variable U (0, 1) that is independent of X.
Although there are two input random variablesX andU , we
select one and condition on the other to apply GLR. In this
example, '(⋅) = 1{⋅ ≤ 0}. This gives n = 1 in the preceding
development. If we select X, then g(x; z, u) = x + u − z,
)g(x; z, u)∕)x = 1, )g(x; z, u)∕)z = −1, ∇x log fX(x) =
−x, and the other derivatives in (3) are zeros, so the GLR
estimator can be given by G(X; z, U ) = −1{X +U ≤ z}X.
If we selectU , then g(u; z, x) = x+u−z, )g(u; z, x)∕)u = 1,
)g(u; z, x)∕)z = −1, and other derivatives in (4) are zeros,
so the GLR estimator can be given by G̃(U ; z,X) = 1{X ≤
z} − 1{X + 1 ≤ z} = 1{z − 1 < X ≤ z}, which co-
incides with an SPA estimator derived in [34] for the same
problem. This example falls under the umbrella of distri-
bution sensitivity estimation studied in both [40] and [41],
which estimates the derivatives of the distribution function
F (z; �) = E[1{g(X; �) ≤ z}] with respect to both � and z,
with g(⋅; �) being a function with sufficient smoothness.

As a particular stochastic activity network (SAN) exam-
ple, the output could be the maximum of the durations of
activities on different paths. We then consider the following
distribution function:

E
[

1
{

max
i=1,…,n

gi(X; �) ≤ z
}]

= E

[ n
∏

i=1
1
{

gi(X; �) − z ≤ 0
}

]

,

and the distribution sensitivities can be estimated by theGLR
method using general frameworks (3) and (4) with

'(y) =
n
∏

i=1
1{yi ≤ 0}.

For the SAN example, gi would be the duration of activities
on the i-th path, which will be analyzed in Section 4.

Example 2. For 0 ≤ � ≤ 1, the �-quantile (also known as
value-at-risk) of a random variable g(U ; �) with cdf F (⋅; �)
is defined as

q�(�) ∶= argmin{z ∶ F (z; �) ≥ �}.

WhenF (⋅; �) is continuous, q�(�) = F−1(�; �). LetU (j), j =
1,… , m, be i.i.d. realizations of U ∼ U (0, 1)d , and F̂m(⋅) be
the empirical distribution of g(U (j); �), j = 1,… , m. The
empirical �-quantile F̂−1m (�) is the inverse of the empirical
distribution evaluated at �. This empirical quantile satisfies
the following central limit theorem (47):

√

m
(

F̂−1m (�) − q�(�)
) d
→ 

(

0,
�(1 − �)
f (q�(�); �)

)

, (5)

as m→ ∞. We can estimate the asymptotic variance by

m�(1 − �)
∑m
j=1G(j)(z, �)|z=F̂−1m (�)

,

where G(j)(z, �) is a GLR estimator for estimating the den-
sity using the same realizations of uniform random variables
U (j) as in quantile estimator F̂−1m (�). From [8], we can
also apply distribution sensitivity estimators to estimate the
quantile sensitivity

dq�(�)
d�

= −
)F (z; �)
)�

|

|

|z=q�(�)

/

f (q�(�); �),

where the numerator and denominator can be estimated by
GLR.

We then simplify the regularity conditions in [43] and
relax some of them that are difficult to verify in practice by
adapting a similar technique as developed in [41]. In par-
ticular, we introduce the following conditions to justify the
unbiasedness of the GLR estimation in the form (3).

(A.1) The function g(⋅; �) is invertible and the density fX(x; �)
is supported on ℝn; g(x; �) is twice continuously dif-
ferentiable and fX(x; �) is continuously differentiable
with respect to (x, �) ∈ ℝn ×Θ, where Θ is a compact
neighborhood of parameter �.

(A.2) The following limiting condition holds:

lim
xi→±∞∫ℝn

sup
�∈Θ

|

|

|

ri(x; �)fX(x; �)
|

|

|

∏

j≠i
dxj = 0, i = 1,… , n.

(A.3) The following integrability condition holds:

∫ℝn
sup
�∈Θ

|

|

|

'(g(x; �))w(x; �)fX(x; �)
|

|

|

dx <∞.
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Remark 1. Condition (A.1) requires that the function g and
density fX be sufficiently smooth. Condition (A.2) requires
that the tails of fX(⋅; �) go to zero fast enough. In the proof
of the theorem below, a smoothed function of ' is shown
to exist and used as an intermediate quantity without the
need to know its explicit form. In contrast to the conditions
in [43] for establishing unbiasedness of the GLR estimator,
conditions (A.1)-(A.3) avoid a certain integrability condi-
tion imposed on the intermediate smoothed function of ' in
the proof, which could be difficult to verify in practice except
for the case when the smoothed function can be constructed
explicitly.

Theorem 1. Under conditions (A.1)-(A.3),

)E['(g(X; �))]
)�

= E['(g(X; �))w(X; �)],

where w(⋅) is defined by (3).

The proof the theorem can be found in the appendix. The
idea is to first smooth '(⋅), which may not be continuous,
then apply integration by parts to move differentiation from
'(⋅) to other smoother terms, and finally take limit to estab-
lish the unbiasedness of the final GLR estimator.

3. Variance Reduction
In this section, we discuss how to apply CMCandRQMC

for reducing the variance of the GLR estimators.

3.1. Conditional Monte Carlo Method
The GLR estimator can be combined with CMC for re-

ducing its variance. This will also be a key transformation to
improve RQMC accuracy. We want to find an appropriate Ẑ
to condition on such that the conditional expectation Ĥ(Ẑ)
in (1) becomes smoother and can be computed efficiently.
To illustrate, we consider a special case of function '(⋅):

'(y) =
n
∏

i=1
1{yi ∈ i}ℎ(y),

where ℎ(⋅) is a smooth function of y = (y1,… , ym), and
i is a set. This special case of '(⋅) covers the examples
of distribution sensitivities discussed later. Then the GLR
estimator (3) can be written as

n
∏

i=1
1{gi(X; �) ∈ i}W (X; �),

where W (x; �) ∶= ℎ(g(x; �))w(x; �), and the GLR estima-
tor (4) can be written as

n
∑

i=1

[ n
∏

j=1
1{gj(U i; �) ∈ i}Ri(U i; �)

−
n
∏

j=1
1{gj(U i; �) ∈ i}Ri(U i; �)

]

+
n
∏

i=1
1{gi(Ui; �) ∈ i}D(U ; �),

where

Ri(u; �) ∶= ri(u; �)ℎ(g(u; �)),
D(u; �) ∶= d(u; �)ℎ(g(u; �)).

Let Z be a vector of generic random variables, which
could either beX orU , andQ(⋅) be a generic function which
could either beW (⋅) or D(⋅). To smooth the sample perfor-
mance, suppose there exists i∗ ∈ {1,… , n} such that for
i = 1,… , n,

1{gi(Z; �) ∈ i} = 1{Zi∗ ∈ i(Z−i∗ ; �)},

where z−j = (z1,… , zj−1, zj+1,… , zn), and i(⋅) is a set
depending on the argument. Here we only integrate out one
random variable, and there are discussions on how to inte-
grate more than one random variable for some applications
in [34], which could lead to smaller variance. We have

E

[ n
∏

i=1
1{gi(Z; �) ∈ i}Q(Z; �)

]

= E
[

1{Zi∗ ∈ ∩
n
i=1i(Z−i∗ )}Q(Z; �)

]

= E
[

∫ 1{zi∗ ∈ i(Z−i∗ ; �)}Q(zi∗ , Z−i∗ )fi∗ (zi∗ )dzi∗

]

= E
[

ℙ
(

Zi∗ ∈ ∩
n
i=1i(Z−i∗ )

|

|

|

|

Z−i∗

)

×E
[

Q(Z; �)
|

|

|

|

Zi∗ ∈ ∩
n
i=1i(Z−i∗ ), Z−i∗

]]

.

If, in addition,Q(Z; �) is independent ofZi∗, i.e.,Q(Z; �) =
Q(Z−i∗; �), then the equation above simplifies to

E
[

ℙ
(

Zi∗ ∈ ∩
n
i=1i(Z−i∗ )

|

|

|

|

Z−i∗

)

Q(Z; �)
]

.

When i is an interval (ai, bi) and gi(⋅) is strictly increasing
with zi∗ , we have

i(z−i∗ ; �) = (g
−1
i (ai; z−i∗ ), g

−1
i (bi; z−i∗ )).

For the GLR estimator −1{X + U ≤ z}X in Example 1
of Section 2 for estimating the density, a conditional GLR
estimator −(z −X)X1{z − 1 < X < z} can be obtained by

E[−1{X + U ≤ z}X] = E[E[−1{U ≤ z −X}X|X]]
= − E[(z −X)X1{z − 1 < X < z}].

3.2. Randomized Quasi-Monte Carlo Method
Quasi-Monte Carlo (QMC) refers to a class of determin-

istic numerical integration methods in which the integrand is
evaluated at a fixed set of m points, and the average is used
as an approximation. One limitation of the method is that it
is very hard to estimate the approximation error in practice.
RQMC takes the QMC points and randomizes them in a way
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that each point has the uniform distribution over (0, 1)n, so
that each randomized point represents a proper realization
of U while the set of m points still covers the unit hyper-
cube (0, 1)n more uniformly than typical independent ran-
dom points (so the points are not independent) [27]. RQMC
performs particularly well in the case when the effective di-
mension is low and the integrant is smooth (see [26], [28],
[35]).

In general, for a given function ℎ, RQMC estimates the
integral � = ∫(0,1)n ℎ(u)du by the average

�̂m ∶=
1
m

m
∑

j=1
ℎ(U (j)),

where U (1),… , U (m) form an RQMC point set. The most
common types of QMC point set constructions are lattice
rules, polynomial lattices rules, and digital nets [5], [26].
For lattice rules, an appropriate randomization is a random
shift modulo 1, which adds a single uniform random point
to all the lattice points, and retains the shifted points that are
in (0, 1)n as the m RQMC points. This randomization pre-
serves the lattice structure, and there are explicit expressions
for Var[�̂m] in terms of the Fourier coefficients of ℎ, and
computable bounds on this variance for certain classes of
smooth functions [28], [30], [31]. When the mixed deriva-
tives of ℎ are sufficiently smooth, the variance can converge
at a faster rate than (m−1), sometimes nearly (m−2) and
even faster in some cases. When ℎ is not smooth (e.g., dis-
continuous), these convergence rate results do not apply, al-
though weaker results do apply [13], and even when the con-
vergence rate is not improved, the variance is often reduced
by a constant factor. For polynomial lattices rules and digi-
tal nets in general, which include Sobol’ points, the random
shift does not preserve the structure and net properties, but
other appropriate randomizations do, including nested uni-
form scrambling, some affine scrambles, and random digi-
tal shifts. Variance bounds and convergence rate results are
available for these, as well [5], [26].

We now discuss how to combine GLR with RQMC. Our
model formulation (4) in terms of a function of independent
U (0, 1) random variables makes it an obvious candidate for
the application of RQMC, which is designed exactly for this
type of formulation. In our setting, we can apply RQMC by
taking ℎ as the GLR derivative estimator G̃( ⋅ ; �) to obtain
the RQMC estimator

Ḡm ∶=
1
m

m
∑

j=1
G̃
(

U (j); �
)

,

in which {U (1),… , U (m)} is an RQMC point set. For for-
mulation (3), suppose X can be generated by Γ(U ), and an
RQMC estimator can be obtained by

Ḡm ∶=
1
m

m
∑

j=1
G
(

Γ(U (j)); �
)

.

For example, whenX1,… , Xn are independent randomvari-
ables with marginal distribution functions F1,… , Fn, then

they can be generated by Xi = F−1i (Ui), i = 1,… , n. Note
that with RQMC, the terms in the sum of Ḡm are not inde-
pendent, so one cannot estimate the variance of Ḡm through
a straightforward application of the sample variance, as in
standardMonte Carlo. To estimate the RQMC variance, one
can make, say l, independent randomizations of the QMC
point set, to obtain l independent replicates of Ḡm, and com-
pute the sample variance of these l replicates [29]. This
could be used to compute a confidence interval on the true
derivative, although one must be careful, because the distri-
bution of Ḡm does not always converge to a normal distribu-
tion when m → ∞ with RQMC [32]. The overall RQMC
estimator in this case will be

Ḡm,l ∶=
1
l

l
∑

l=1
Ḡ(l)m ,

where Ḡ(l)m is thelth independent replicate of Ḡm, andVar[Ḡm,l]
is estimated by

1
(l − 1)l

l
∑

l=1

[

Ḡ(l)m − Ḡm,l
]2 .

For the �-quantile sensitivity estimation discussed in Ex-
ample 2 of Section 2, the cdf F (⋅; �) of g(U ; �) can be esti-
mated by its empirical RQMC counterpart

m(z) ∶=
1
m

m
∑

j=1
1{g(U (j); �) ≤ z},

where {U (1),… , U (m)} is an RQMC point set, and the quan-
tile q�(�) can be estimated by the pseudo-inverse −1m (�).
With l independent randomizations of the RQMC points, we
can average the l independent randomizations of this empir-
ical RQMC cdf,

m,l(z) ∶=
1
m

m
∑

j=1
1{g

(

U (j,l); �
)

≤ z},

̄m,l(z) ∶=
1
l

l
∑

l=1
m,l(z),

and estimate q�(�) by ̄−1m,l(�), which is a consistent estimator
and satisfies the central limit theorem:

√

l
(

̄−1m,l(�) − q�(�)
) d
→ 

(

0,
Var

(

m,l(q�(�))
)

f 2(q�(�))

)

,

as m→∞. The asymptotic variance can be estimated by
1
l−1

∑l
l=1(m,l(z) − ̄m,l(z))2

(

Ḡm,l(z)
)2

|

|

|

|z=̄−1m,l(�)

where Ḡm,l(z) is a GLR estimator for density using RQMC.
Kaplan et al. [23] point out that using 1

l
∑l
l=1 

−1
m,l(�) in-

stead of ̄−1m,l(�) would not provide a consistent estimator of
q�(�) as l →∞. Similarly, we can also estimate the quantile
sensitivity by GLR using RQMC.
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Figure 2: A SAN with seven activities.

4. Applications
In this section, we discuss the applications of GLR and

CMC to estimating distribution sensitivities for a SAN, single-
server queue, and barrier option. Distribution sensitivities
can also be applied to calibrate parameters and optimize quantile-
based risk measures [40], [21].

4.1. Stochastic Activity Network
We estimate a simple SAN studied in [15], which is de-

picted in Figure 2. Distribution sensitivity estimation by
SPA for a SAN with a different structure can be found in [6]
and [34]. As in [15], the duration of the seventh activity is
assumed to be deterministic. There are four different paths
representing the tasks to reach the final stage of a project,
i.e.,

(1, 4, 6), (2, 5, 6), (1, 3, 5, 6), (7).

The completion time for the entire project is max(Y1 + Y4 +
Y6, Y2 + Y5 + Y6, Y1 + Y3 + Y5 + Y6, Y7), and the sample
performance for the distribution function of completion time
is

Y = 1
{

max(Y1 + Y4 + Y6, Y2 + Y5 + Y6,
Y1 + Y3 + Y5 + Y6, Y7) ≤ z

}

=1
{

Y1 + Y4 + Y6 ≤ z
}

1
{

Y2 + Y5 + Y6 ≤ z
}

× 1
{

Y1 + Y3 + Y5 + Y6 ≤ z
}

1{Y7 ≤ z}.

Unlike [15], where the durations of the first six activities all
follow independent normal distributions, we assume that the
first three activities follow independent exponential distri-
butions: Yi = − 1

�i
log(Ui), i = 1, 2, 3, and the other three

activities follow independent log-normal distributions, Yi =
exp

(

�i + �iXi
)

, i = 4, 5, 6. We note that 1{Y1 + Y4 + Y6 ≤
z}1{Y1+Y3+Y5+Y6 ≤ z} = 1{Y1+max(Y4, Y3+Y5)+Y6 ≤
z} and 1{Y2 + Y5 + Y6 ≤ z}1{Y1 + Y3 + Y5 + Y6, Y7 ≤ z} =
1{Y5 + max(Y2, Y1 + Y3) + Y6 ≤ z}. For z ≤ Y7, the dis-
tribution function F (z) of the completion time Y is equal to
zero, and for z > Y7, the distribution function is

F (z) = E[1
{

Y1 + max(Y4, Y3 + Y5) + Y6 − z ≤ 0
}

× 1
{

Y2 + Y5 + Y6 − z ≤ 0
}

]
= E[1

{

Y4 + Y1 + Y6 − z ≤ 0
}

× 1
{

Y5 + max(Y2, Y1 + Y3) + Y6 − z ≤ 0
}

].

To estimate the density f (z) = )
)zF (z), we can view (U1, U2)

as the input randomvariables in the stochasticmodel'(g(U ; �))
with '(y1, y2) = 1{y1 ≤ 0}1{y2 ≤ 0}, and we have

g1(U1, U2; z) = −
1
�1
logU1 + max(Y4, Y3 + Y5) + Y6 − z,

g2(U1, U2; z) = −
1
�2
logU2 + Y5 + Y6 − z,

)zg(u1, u2; z) = −
(

1, 1
)T .

The Jacobian matrix and its inverse are

Jg(u1, u2; z) = −

( 1
�1u1

0

0 1
�2u2

)

,

J−1g (u; z) = −
(

�1u1 0
0 �2u2

)

,

and

r1(u1, u2; z) = �1u1, r2(u1, u2; z) = �2u2,
d(u1, u2; z) = −�1 − �2.

We emphasize that the input random variables in the stochas-
tic model '(g(U ; �))must be selected carefully in a way that
the Jacobian of g is invertible. Also, in the example, the three
paths aremerged into two by some transformation, so we end
up with a 2 × 2 Jacobian. But we could also have kept the
three paths and selected (U1, U2, U3) as the input, which is
more direct. So there are many valid choices for what we
take as “input” when applying the method. For the SAN, the
authors of [34] select a minimal cut and compute the density
on the completion time conditional on the other links (not
in the cut) as a density estimator. For GLR, we can take the
lengths of the links of the minimal cut as the input random
variables. For z > Y7, the GLR estimator of f (z) is given
by

G(U1, U2; z)
= �11

{

max
(

Y4 + Y6, Y2 + Y5 + Y6, Y3 + Y5 + Y6
)

≤ z
}

+ �21
{

max
(

Y1 + Y4 + Y6, Y5 + Y6, Y1 + Y3 + Y5 + Y6
)

≤ z
}

− (�1 + �2)1
{

Ỹ + Y6 ≤ z
}

,

where Ỹ = max(Y1+Y4, Y2+Y5, Y1+Y3+Y5). Furthermore,
we have

E[G(U1, U2; z)] = E[E[G(U1, U2; z)|Y1,… , Y5]]

=�1E
[

Φ
(

1
�6

(

log[(z − max(Y4, Y2 + Y5, Y3 + Y5))+] − �6
)

)]

+�2E
[

Φ
(

1
�6

(

log[(z − max(Y1 + Y4, Y5, Y1 + Y3 + Y5))+] − �6
)

)]

−(�1 + �2)E
[

Φ
(

1
�6

(

log[(z − Ỹ )+] − �6
)

)]

.

On the other hand, we can also let (X4, X5) be the input
random variables in the stochasticmodel'(g(X; �)), leading
to

g1(X4, X5; z) = exp
(

�4 + �4X4
)

+ Y1 + Y6 − z,
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g2(X4, X5; z) = exp
(

�5 + �5X5
)

+ max(Y2, Y1 + Y3) + Y6 − z,

)zg(x4, x5; z) = −
(

1, 1
)T ,

∇ logf(X4,X5)(x4, x5) = −
(

x4, x5
)T .

The Jacobian matrix and its inverse are

Jg(x4, x5; z) =
(

�4e�4+�4x4 0
0 �5e�5+�5x5

)

,

J−1g (x4, x5; z) =

( 1
�4
e−�4−�4x4 0

0 1
�5
e−�5−�5x5

)

,

and

d(x4, x5; z) = −
(

1 +
x4
�4

)

e−�4−�4x4−
(

1 +
x5
�5

)

e−�5−�5x5 .

Assumptions 2 and 3 in Theorem 1 can be easily checked
in this example and others in this paper. We use this example
for illustration. We have

r1(x4, x5) =
1
�4
e−�4−�4x4 , r2(x4, x5) =

1
�5
e−�5−�5x5 .

Assumption 2 is justified by noticing

lim
x4→±∞

1
�4 ∫ℝ

|

|

|

e−�4−�4x4�(x4)�(x5)
|

|

|

dx5

= lim
x4→±∞

1
�4
e−�4−�4x4�(x4) = 0,

lim
x5→±∞

1
�5 ∫ℝ

|

|

|

e−�5−�5x5�(x4)�(x5)
|

|

|

dx4

= lim
x5→±∞

1
�5
e−�5−�5x5�(x5) = 0,

where�(⋅) is the density of the standard normal random vari-
able. Assumption 3 is justified by noticing

∫ℝn
sup
�∈Θ

|

|

|

'(g(x; �))w(x; �)fX(x; �)
|

|

|

dx

=∫ℝ2
sup
z∈ℝ+

|

|

|

|

− 1
{

Y (x4, x5) ≤ z
}

×
[(

1 +
x4
�4

)

e�4+�4x4 +
(

1 +
x5
�5

)

e�5+�5x5
]

|

|

|

|

× �(x4)�(x5)dx4dx5

≤∫ℝ2

[(

1 +
|x4|
�4

)

e�4+�4x4 +
(

1 +
|x5|
�5

)

e�5+�5x5
]

× �(x4)�(x5)dx4dx5 <∞.

Again, the input randomvariables in the stochasticmodel
'(g(X; �)) must be selected carefully in a way that the Ja-
cobian of g is invertible. For z > Y7, the GLR estimator of
f (z) is given by

G(X4, X5; z)

= −1 {Y ≤ z}
[(

1 +
X4
�4

)

1
Y4
+
(

1 +
X5
�5

)

1
Y5

]

.

Figure 3: A single-server queue.

Furthermore, we have

E[G(X4, X5; z)] = E[E[G(X4, X5; z)|Y1,… , Y5]]

= − E
[(

1
Y4
+

X4
�4Y4

+ 1
Y5
+

X5
�5Y5

)

×Φ
(

1
�6

(

log[(z − Ỹ )+] − �6
)

)]

.

We can take the expression inside the expectation as a con-
ditional GLR estimator.

4.2. Single-Server Queue
We consider distribution sensitivity estimation for the

waiting time of the customers in a single-server first-come-
first-served queue depicted in Figure 3. An extension to the
multi-server queue can be found in the appendix. Density es-
timation for this single-server queue by SPA and RQMC can
be found in [34]. When the i-th customer arrives, he/shemay
need to wait if the system time (waiting time plus service
time), for the (i − 1)-th customer is longer than the interar-
rival time between the i-th customer and (i−1)-th customer.
Otherwise, the waiting time of the i-th customer is zero, i.e.,
the waiting time of customers follows the Lindley equation:

Wi = max{0,Wi−1 + Si−1 − Ai}, i ≥ 2,

where Wi and Si are the waiting time and service time of
the i-th customer, and Ai is the interarrival time between the
i-th customer and the (i − 1)-th customer. Suppose Si =
exp

(

�1 + �1Xi
)

and Ai = exp
(

�2 + �2X′
i
)

follow inde-
pendent log-normal distributions, where Xi and X′

i follow
the standard normal distribution for i ≥ 1. We can also rep-
resent the service time as Si = exp

(

�1 + �1Φ−1(Ui)
)

so
that uniform random numbers could be viewed as input ran-
dom variables for deriving the GLR estimator. Let �1 = �.
The density f (z; �) ofWn over (0,∞) can be written as the
derivative of the distribution function F (z; �) ofWn:

)F (z; �)
)z

= )
)z

E[1{Wn ≤ z}]

= )
)z

E[1{Wn−1 + Sn−1 − An ≤ z}].

If we let

g(Xn−1, z) = Wn−1 + exp
(

�1 + �1Xn−1
)

− An − z,

then
)g(xn−1, z)
)xn−1

= �1 exp
(

�1 + �1xn−1
)

,
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)2g(xn−1, z)
)x2n−1

= �21 exp
(

�1 + �1xn−1
)

,

) log fXn−1 (xn−1)
)xn−1

= −xn−1,

and from [40], the GLR estimator for the density is

G1(Xn−1; z) = −1
{

Wn ≤ z
} Xn−1 + �1

Sn−1�1
, z > 0.

To estimate the derivative with respect to �, let

gi(Xi; �) = � + �1Xi, i = 1,… , n − 1.

Then from [43], the GLR estimator for )F (z; �)∕)� is given
by

G2(X; �) =
1
�1

1
{

Wn ≤ z
}

n−1
∑

i=1
Xi, z > 0,

which coincides with the classic LR estimator. The GLR es-
timators in [43] and [41] also coincide for this example, be-
cause the input random variables are independent and non-
parameterized, with the tails of the distribution going smoothly
to zero fast enough (standard normal in this example). From
[40], higher-order distribution sensitivities can also be ob-
tained by the GLR method, e.g.,

)2F (z; �)
)�)z

= E
⎡

⎢

⎢

⎢

⎣

1
{

Wn ≤ z
}

1 −
(

∑n−1
i=1 Xi

)

(Xn−1 + �1)

Sn−1�1

⎤

⎥

⎥

⎥

⎦

.

By noticing that
{

Wn ≤ z
}

=
{

X′
n ≥

1
�2

[

log
[

(Wn−1 + Sn−1 − z)+
]

− �2
]

}

,

we have

E
[

G1(Xn−1; z)
]

= −E

[

E

[

1
{

Wn ≤ z
} Xn−1 + �1

Sn−1�21

|

|

|

|

Wn−1, Xn−1

]]

= −E
[(

1 − Φ
(

1
�2

(

log
[

(Wn−1 + Sn−1 − z)+
]

− �2
)

))

×
Xn−1 + �1
Sn−1�21

]

,

which offers a conditional GLR estimator for the density, and

E
[

G2(X; �)
]

= E

[

E

[

1
�1

1
{

Wn ≤ z
}

n−1
∑

i=1
Xi

|

|

|

|

Wn−1, Xn−1,… , X1

]]

= 1
�1

E
[(

1 − Φ
(

1
�2

(

log
[

(Wn−1 + Sn−1 − z)+
]

− �2
)

))

Figure 4: A European up-and-out barrier call option.

×
n−1
∑

i=1
Xi

]

,

which offers a conditional GLR estimator for the distribution
sensitivity with respect to �. Furthermore,

)2F (z; �)
)z)�

= E
⎡

⎢

⎢

⎢

⎣

E
⎡

⎢

⎢

⎢

⎣

1
{

Wn ≤ z
}

1 −
(

∑n−1
i=1 Xi

)

(Xn−1 + �1)

Sn−1�1

|

|

|

|

Wn−1, Xn−1,… , X1

]]

= E
[(

1 − Φ
(

1
�2

(

log
[

(Wn−1 + Sn−1 − z)+
]

− �2
)

))

×
1 −

(

∑n−1
i=1 Xi

)

(Xn−1 + �1)

Sn−1�1

⎤

⎥

⎥

⎥

⎦

.

The expression inside the expectation offers a conditional
GLR estimator for the second-order distribution sensitivity.

4.3. Barrier Option
We consider the distribution sensitivity estimation for

the payoff of a barrier option. An up-and-out (knockout)
barrier option is worthless if the path of the underlying as-
set exceeds a barrier L. The event when the barrier option
stays “alive” is

{

maxi=1,…,n Sti < L
}

, where St ∈ ℝ is
the underlying asset price at time t. In Figure 4, the price
curve on the top breaches the barrier prior to expiration T ,
so that its payoff is zero. Suppose St = S0 exp{(r−�2∕2)t+
�Bt+

∑N(t)
j=1 Jj} follows a geometric jump-diffusion process,

where S0 is the initial underlying asset price, r is the interest
rate, � is the implied volatility, {N(t)} is a counting process,
and Ji, i ∈ ℤ+, are the jump sizes. Let S0 = �. Assume dis-
crete monitoring, and Δ is the step size of the discrete mon-
itoring points ti = iΔ, i = 1,… , n, T = nΔ. The barrier
option would have a positive payoff if it stays “alive” and at
T the price of the underlying asset is above the strike price
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K . For a European barrier option, the payoff is

e−rnΔ(Sn −K)
n−1
∏

i=1
1{Si ≤ L}1{K < Sn < L},

where

Si = � exp

(

i
(

r − �2

2

)

Δ + �
√

Δ
i

∑

j=1
Xj +

Ni
∑

l=1
Ji,l

)

,

where Xi = (BiΔ − B(i−1)Δ)∕
√

Δ, i = 1,… , n, which are
i.i.d. standard normal random variables, Ni = N(iΔ) −
N(i(Δ − 1)), and Ji,l is the l-th jump in the ith period.

For 0 ≤ z ≤ e−rnΔ(L − K), we can represent the distri-
bution function by

F (z; �) = E

[n−1
∏

i=1
1{gi(X; �) ≤ 0}1{g̃n(X; �, z) ≤ 0}

+
n
∑

i=1

i−1
∏

j=1
1{gj(X; �) ≤ 0}1{gi(X; �) > 0}

]

= 1 − E

[n−1
∏

i=1
1{gi(X; �) ≤ 0}

(

1
{

gn(X; �) ≤ 0
}

−1
{

g̃n(X; �, z) ≤ 0
})]

,

where

gi(X; �) = log � + i
(

r − �2

2

)

Δ + �
√

Δ
i

∑

j=1
Xj

+
i

∑

j=1

Nj
∑

l=1
Jj,l − logL, i = 1,… , n,

g̃n(X; �, z) = gn(X; �) + log
(

L
ernΔz +K

)

.

From [43], the GLR estimators for f (z; �) and )F (z; �)∕)�
are given respectively by

G1(X; z) = −
n−1
∏

i=1
1{gi(X; �) ≤ 0}1

{

g̃n(X; �, z) ≤ 0
}

×
ernΔXn

�
√

Δ(ernΔz +K)
,

and

G2(X; �) = −
n−1
∏

i=1
1{gi(X; �) ≤ 0}

×
(

1
{

gn(X; �) ≤ 0
}

− 1
{

g̃n(X; �, z) ≤ 0
}) X1

��
√

Δ
.

Define

T (l)i = 1

�
√

Δ

⎡

⎢

⎢

⎣

log(L∕�) − i
(

r − �2

2

)

Δ −
i

∑

j=1

Nj
∑

l=1
Jj,l

⎤

⎥

⎥

⎦

−
i

∑

j=1,j≠l
Xj , i = 1,… , n,

T̂ (l)n = 1

�
√

Δ

[

log[(ermΔz +K)∕�] − n
(

r − �2

2

)

Δ

−
n
∑

j=1

Nj
∑

l=1
Jj,l

⎤

⎥

⎥

⎦

−
n
∑

j=1,j≠l
Xj .

We have

E[E[G1(X; z)|X2,… , Xn]]

= − ernΔ

�
√

Δ(ernΔz +K)

× E
[

E
[

1
{

X1 ≤ min
(

T̂ (1)n , min
i=1,…,n−1

T (1)i

)}

Xn
|

|

|

|

X2,… , Xn

]]

= − ernΔ

�
√

Δ(ernΔz +K)
E
[

Φ
(

min
(

T̂ (1)n , min
i=1,…,n−1

T (1)i

))

Xn

]

,

and

E[E[G2(X; �)|X2,… , Xn]]

= − 1

��
√

Δ
E
[

E
[

1
{

min
(

T̂ (1)n , min
i=1,…,n−1

T (1)i

)

< X1

≤ min
i=1,…,n

T (1)i

}

X1
|

|

|

|

X2,… , Xn

]]

= − 1

��
√

Δ
E

[

∫

minj=1,…,n T
(1)
j

min
(

T̂ (1)n ,mini=1,…,n−1 T
(1)
i

)
x�(x)dx

]

.

To avoid integration in the estimator, we can also condition
on other random variables, which gives a less smooth esti-
mator than that derived above:

E[E[G2(X; �)|X1, X3,… , Xn]]

= − 1

��
√

Δ
E
[

E
[

1
{

X1 ≤ T (1)1

}

× 1
{

min
(

T̂ (2)n , min
i=2,…,n−1

T (2)i

)

< X2 ≤ min
i=2,…,n

T (2)i

}

×X1
|

|

|

|

X1, X3,… , Xn

]]

= − 1

��
√

Δ
E
[

1
{

X1 ≤ T (1)1

}

X1

×
[

Φ
(

min
i=2,…,n−1

T (2)i

)

− Φ
(

min
(

T̂ (2)n , min
i=2,…,n−1

T (2)i

))]]

.

5. Numerical Experiments
We report numerical experiments on the three applica-

tions discussed in the previous section. GLR is compared
with the finite difference method (Y (� + �) − Y (�))∕� using
common random numbers (FDC(�)) to generate Y (�+�) and
Y (�). The GLR method together with CMC is called con-
ditional GLR (CGLR), and CGLR together with RQMC is
denoted as CGLRQ. Both CGLR and CGLRQ are compared
with SPA and SPA when combined with RQMC (SPAQ).
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For RQMC, we use the Sobol sequence scrambled by the al-
gorithm of [37] in Matlab. Derivations of SPA for the den-
sity estimation in three applications are similar to those in
[34] and can be found in the appendix. We set the sample
size as m = 213 for the standard Monte Carlo and RQMC
estimators, and their variances are estimated by l = 100 in-
dependent experiments.

5.1. Stochastic Activity Network
The parameters for the stochastic models described in

Section 4.1 are set as �i = 1, i = 1, 2, 3, �j = 0 and �j = 1,
j = 4, 5, 6. We estimate the density function )F (z)∕)z for
z ∈ (0, 20). Figure 5(a) shows the density curve estimated
by GLR, and Figure 5(b) presents the coverage rate curve of
the 90% confidence intervals based on the asymptotic nor-
mality result given by (5) for �-quantiles with � = 0.1 × i,
i = 1,… , 9, by m = 213 samples and l = 100 independent
experiments.
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Figure 5: Density estimation by GLR and coverage rates of
90% confidence intervals for �-quantiles in the SAN example.

Figure 6(a) shows a variance comparison between the
two GLR estimators in Section 4.1. GLR-1 is derived using
a stochastic model with uniform random numbers as inputs,

and GLR-2 is derived using a stochastic model with normal
random variables as inputs. Since the variance of GLR-1
is much smaller than GLR-2, GLR-1 is used for this exam-
ple in the rest of the experiments, and we simply denote the
method by GLR. Figure 6(b) shows that the variance of GLR
is much smaller than FDC(0.01) and FDC(0.1), and the vari-
ance of FDC increases significantly when the perturbation
size becomes smaller. The reason FDC works poorly is that
the sample performance is discontinuous. If CMC is first
applied to smooth the sample performance, then conditional
FDC can achieve a comparable variance to SPA [33].
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(a) Variance curves of GLR.
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Figure 6: Variances of density estimation by GLR and FDC in
the SAN example.

Figure 7(a) shows a variance comparison between GLR,
CGLR, and CGLRQ.We can see that both CMC and RQMC
substantially reduce the variance of GLR. From Figure 7(b),
RQMC also reduces the variance of SPA, and CGLRQ and
SPAQachieve comparablemagnitudes of variance. The vari-
ances of GLR, CGLR, CGLRQ, SPA, and SPAQ for estimat-
ing )F (z)∕)z at z = 5 are reported in Table 1.

5.2. Single-Server Queue
The parameters for the stochastic models described in

Section 4.2 are set as �i = 0 and �i = 1, i = 4, 5, 6, and
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Figure 7: Variances of density estimation by GLR, CGLR,
CGLRQ, SPA, and SPAQ in the SAN example.

Table 1
Variance comparison of GLR, CGLR, CGLRQ, SPA, and SPAQ
for estimating )F (z)∕)z at z = 5 in the SAN example.

GLR CGLR CGLRQ SPA SPAQ
1.6×10−5 5.4×10−6 2.6×10−6 3.9×10−6 2.4×10−6

n = 10. We estimate distribution sensitivities )F (z; �)∕)z,
)F (z; �)∕)�, and )2F (z; �)∕)z)� for z ∈ (0, 30). Figure
8 presents the three distribution sensitivity curves estimated
by GLR.

From Figure 9(a), FDC(0.01) has a much larger variance
than GLR for estimating the second-order distribution sensi-
tivity )2F (z; �)∕)z)�, and FDC suffers from a bias-variance
tradeoff. In this example, the variances of GLR, CGLR, and
CGLRQ cannot be distinguished statistically. Derivation of
SPA for estimating the second-order distribution sensitivity
is not straightforward due to the discontinuities in the SPA
estimator for the first-order derivative (see the appendix).

FromFigure 10(a), we can see that GLR andCGLR achieve
comparable performance, whereas the variance of CGLRQ
is much smaller than GLR and CGLR. The peak value on the
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Figure 8: Estimation of distribution sensitivities )F (z; �)∕)z,
)F (z; �)∕)�, and )2F (z; �)∕)z)� by GLR in the single-server
queueing example.

Table 2
Variance comparison of GLR, CGLR, CGLRQ, SPA, and SPAQ
for estimating )F (z; �)∕)� at z = 10 in the single-sever queue-
ing example.

GLR CGLR CGLRQ SPA SPAQ
7.6×10−4 1.0×10−3 2.5×10−4 4.5×10−4 4.3×10−4

variance curve of CGLRQ is about 1/6 of that of GLR and
CGLR. Figure 10(b) shows that SPA and SPAQ have compa-
rable variance, and the variance of CGLRQ is smaller than
SPA and SPAQ when z ≤ 15. For estimating )F (z; �)∕)�,
the peak values of variance curves of SPA and SPAQ are
about twice of the peak value of the variance curve of CGLRQ,
and the variances of five estimators in comparison at z = 10
are reported in Table 2. The variance of CGLRQ becomes
larger than SPA and SPAQ when z > 15, because the SPA
and SPAQ estimators go to zero as z → ∞, whereas the
CGLRQ estimator converges to a random variable with a
constant variance as z →∞.

5.3. Barrier Option
The parameters for the stochastic models described in

Section 4.3 are set as T = 10, n = 10, � = 1, r = 0.001,
Δ = 1, K = 100, L = 120, and S0 = 100. The counting
process is assumed to be a Poisson process with intensity
1, and the jump size is assumed to follow a normal distri-
bution with mean 0 and standard deviation 0.01. We esti-
mate distribution sensitivities )F (z; �)∕)z and )F (z; �)∕)�
for z ∈ (0, 30). To estimate )F (z; �)∕)�, we apply the GLR
estimator in Section 4.3 that does not involve integration.
Figure 11 presents the two distribution sensitivity curves es-
timated by GLR.

Figure 12 presents the variance comparison betweenGLR
and FDC for two first-order distribution sensitivities. FDC(0.01)
has a much larger variance than GLR. The variances of GLR
and FDC(0.1) are comparable, but GLR is unbiased and FDC(0.1)
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Figure 9: Variances of estimation for )2F (z; �)∕)z)� by GLR,
CGLR, CGLRQ and FDC in the single-server queueing example.

is biased. The bias estimate of FDC(0.01) and FDC(0.1) can
be found in the appendix.

Figure 13 presents the variance comparison betweenGLR,
CGLR, and CGLRQ for two first-order distribution sensitiv-
ities. The variance of CGLR is slightly smaller than that
of GLR, whereas the variance of CGLRQ is substantially
smaller than those of CGLR and GLR. The peak value on
the variance curve of CGLRQ is about 1/3 of that of GLR
and CGLR.

6. Conclusions
In this paper, we have studied the GLR methods in [43]

and [41] under a single framework, simplified regularity con-
ditions for justifying unbiasedness of GLR in [43] and re-
laxed some of the conditions that are difficult to verify in
practice by adapting a similar technique developed in [41].
Moreover, we have discussed how to combine GLR with
CMC and RQMC to reduce the variance of the resultant es-
timators, and applied them to estimate the distribution sen-
sitivities for a SAN, a single-server queue, and a barrier op-
tion. An application on a multi-server queue can be found in
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Figure 10: Variances of estimation for )F (z; �)∕)� by GLR,
CGLR, CGLRQ, SPA and SPAQ in the single-server queueing
example.

the appendix. Numerical results show that CMC and RQMC
may reduce the variance of GLR substantially, and CGLRQ
sometimes achieves even smaller variance than SPAQ.

Different choices of the input random variables in the
stochastic model could lead to different forms of GLR esti-
mators [43]. In complicated applications, some careful anal-
ysis might be needed to determine good choices of the input
random variables that could lead to easy-to-implement esti-
mators with low variances. Another technique for reducing
the variance is to construct an optimal estimator in the linear
combination family of multiple unbiased GLR estimators.
This idea was explored in [19] and [40], and it can also be
combined with the techniques developed in this work to fur-
ther reduce the variance.

A. Appendix
Proof of Theorem 1

Proof. Proof. As in [43], define a sequence of bounded func-
tions'L(x) = max{min{'(x), L},−L}, and then |'L(x)| ≤
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Figure 11: Estimation of distribution sensitivities )F (z; �)∕)z
and )F (z; �)∕)� by GLR in the barrier option example.

'(x) and limL→∞ 'L(x) = '(x). From Theorem 1 in [43],
there exists a sequence of bounded and smooth functions
'�,L(⋅) such that

lim
�→0

‖'�,L − 'L‖p = 0,

where p > 1, and ‖ℎ‖p ∶=
(

∫ℝn |ℎ(x)|
pdx

)1∕p. Since g(x; �)
is an invertible function vector, its Jacobian is an invertible
matrix. Then we have

)
)� ∫[−M,M]n

'�,L(g(x; �))fX(x; �)dx

=∫[−M,M]n

(

'�,L(g(x; �))
) log f (x; �)

)�
+∇y'�,L(y)|y=g(x;�))�g(x; �)

)

fX(x; �)dx

=∫[−M,M]n

(

'�,L(g(x; �))
) log f (x; �)

)�

+∇x'�,L(g(x; �))J−1g (x; �))�g(x; �)
)

fX(x; �)dx.

The interchange of the differentiation and integration can
be justified by the dominated convergence theory. Under
condition (A.1), fX(x; �) is continuously differentiable and
g(x; �) is twice continuously differentiable inℝn×Θ, so their
function values and derivatives are bounded in a compact
space [−M,M]n × Θ. By the Gauss-Green Theorem,

∫[−M,M]n
∇x'�,L(g(x; �))J−1g (x; �))�g(x; �)

× fX(x; �)dx1⋯ dxn

=
n
∑

i=1
∫[−M,M]n−1

'�,L(g(u; �))
(

J−1g (x; �))�g(x; �)
)T

× eifX(x; �)
∏

j≠i
dxj

|

|

|

|

M

xi=−M

− ∫[−M,M]n
'�,L(g(x; �))
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Figure 12: Variances of estimation for )F (z; �)∕)z and
)F (z; �)∕)� by GLR and FDC in the barrier option example.

× div
(

J−1g (x; �))�g(x; �)fX(x; �)
)

dx1⋯ dxn,

where for ℎ(x) = (ℎ1(x),… , ℎn(x)),

div(ℎ(x)) ∶=
n
∑

i=1

)ℎ(x)
)xi

.

Then

div
(

J−1g (x; �))�g(x; �)fX(x; �)
)

=
n
∑

i=1

)
)xi

eTi J
−1
g (x; �))�g(x; �)fX(x; �)

=

( n
∑

i=1
eTi

(

)xiJ
−1
g (x; �)

)

)�g(x; �)

+trace(J−1g (x; �))�Jg(x; �))
)

fX(x; �)

+
n
∑

i=1

(

J−1g (x; �))�g(x; �)
)T

ei
)fX(x; �)
)xi

.
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Figure 13: Variances of estimation for )F (z; �)∕)z and
)F (z; �)∕)� by GLR, CGLR, and CGLRQ in the barrier option
example.

By differentiating equation J−1g (x; �)Jg(x; �) = I with re-
spect to xi on both sides, we have

0 =)xi
(

J−1g (x; �)Jg(x; �)
)

=)xiJ
−1
g (x; �)Jg(x; �) + J−1g (x; �))xiJg(x; �),

which leads to

)xiJ
−1
g (x; �) = −J−1g (x; �)

(

)xiJg(x; �)
)

J−1g (x; �).

Therefore, we have

d(x; �) = −div
(

J−1g (x; �))�g(x; �)fX(x; �)
)

∕fX(x; �).

With the discussion above,
)
)� ∫[−M,M]n

'�,L(g(x; �))fX(x; �)dx

=
n
∑

i=1
∫[−M,M]n−1

'�,L(g(x; �))ri(x; �)fX(x; �)
∏

j≠i
dxj

|

|

|

|

M

xi=−M

+ ∫[−M,M]n
'�(g(x; �))w(x; �)fX(x; �)dx.

Under condition (A.2),

lim
�→0

lim
M→∞

sup
�∈Θ

|

|

|

|

n
∑

i=1
∫[−M,M]n−1

'�,L(g(x; �))ri(x; �)

× fX(x; �)
∏

j≠i
dxj

|

|

|

|

M

xi=−M

|

|

|

|

= 0.

By change of variables and Hölder’s inequality,

lim
�→0

sup
�∈Θ

|

|

|

|

∫[−M,M]n
('�,L(g(x; �)) − 'L(g(x; �)))

×w(x; �)fX(x; �)dx
|

|

|

|

= lim
�→0

sup
�∈Θ

|

|

|

|

∫M
('�,L(y) − 'L(y))| det(Jg(x; �))|w(x; �)

× fX(x; �)|x=g−1(y;�)dy
|

|

|

|

≤ lim
�→0

‖'�,L − 'L‖p

× sup
�∈Θ

|

|

|

|

∫M
| det(Jg(x; �))w(x; �)fX(x; �)|

q
x=g−1(y;�)

dy
|

|

|

|

1∕q
= 0,

(6)

where

M ∶= {y ∈ ℝn ∶ y = g(x; �), x ∈ [−M,M]n}.

With condition (A.3) and noticing that |'L(y)| ≤ |'(y)|,

lim
M→∞

sup
�∈Θ

|

|

|

|

∫[−M,M]n
'L(g(x; �))w(x; �)fX(x; �)dx

− ∫ℝn
'L(g(x; �))w(x; �)fX(x; �)dx

|

|

|

|

≤ lim
M→∞∫ℝn⧵[−M,M]n

sup
�∈Θ

|

|

|

'(g(x; �))w(x; �)fX(x; �)
|

|

|

dx = 0.

(7)

Then we have

lim
M→∞

lim
�→0

sup
�∈Θ

|

|

|

|

∫[−M,M]n
'�,L(g(x; �))w(x; �)fX(x; �)dx

− ∫ℝn
'L(g(x; �))w(x; �)fX(x; �)dx

|

|

|

|

≤ lim
M→∞

lim
�→0

sup
�∈Θ

|

|

|

|

∫[−M,M]n
'�,L(g(x; �))w(x; �)fX(x; �)dx

− ∫[−M,M]n
'L(g(x; �))w(x; �)fX(x; �)dx

|

|

|

|

+ lim
M→∞

sup
�∈Θ

|

|

|

|

∫[−M,M]n
'L(g(x; �))w(x; �)fX(x; �)dx

− ∫ℝn
'L(g(x; �))w(x; �)fX(x; �)dx

|

|

|

|

= 0,

where the first term goes to zero because of (6) and the sec-
ond term goes to zero because of (7). From [46], d

d� lim�→0 ℎ�(�) =
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lim�→0 ℎ′�(�) holds ifℎ
′
�(�) converges uniformlywith respect

to � ∈ Θ as � → 0. Therefore,

)
)� ∫ℝn

'L(g(x; �))fX(x; �)dx

= lim
M→∞

lim
�→0

)
)� ∫[−M,M]n

'�,L(g(x; �))fX(x; �)dx

= ∫ℝn
'L(g(u; �))w(x; �)fX(x; �)du.

With condition (A.3) and noticing that |'L(y) − '(y)| ≤
|'(y)|,

lim
L→∞

sup
�∈Θ

|

|

|

|

∫ℝn
('L(g(x; �)) − '(g(x; �)))

×w(x; �)fX(x; �)dx
|

|

|

|

= 0.

By this uniform convergence,

)
)� ∫ℝn

'(g(x; �))fX(x; �)dx

= )
)� ∫ℝn

lim
L→∞

'L(g(x; �))fX(x; �)dx

= lim
L→∞

)
)� ∫ℝn

'L(g(x; �))fX(x; �)dx

= lim
L→∞∫ℝn

'L(g(x; �))w(x; �)fX(x; �)dx

=∫ℝn
'(g(x; �))w(x; �)fX(x; �)dx,

which proves the theorem.

SPA for SAN

There are many possible choices of conditioning random
variables to derive SPA for density estimation, and we only
use one possible choice. Certain conditions are needed to
ensure unbiasedness for SPA. More general discussions of
SPA for density estimation can be found in [34]. The SPA
estimator can be obtained by

)
)z

E[1{Y ≤ z}] = )
)z

E[E[1{Y ≤ z}|Y1,… , Y5]]

= )
)z

E
[

Φ
(

1
�6

(

log[(z − Ỹ )+] − �6
)

)]

= E
[

1{z ≥ Ỹ }
�6(z − Ỹ )+

�
(

1
�6

(

log[(z − Ỹ )+] − �6
)

)]

.

SPA for Single-Sever Queue

The SPA estimator for the density is

)F (z; �)
)z

= )
)z

E[E[1{Wn ≤ z}|Wn−1, Xn−1,… , X1]]

=
)E

[(

1 − Φ
(

1
�2

(

log
[

(Wn−1 + Sn−1 − z)+
]

− �2
)

))]

)z

= 1
�2

E
[1{Wn−1 + Sn−1 ≥ z}
(Wn−1 + Sn−1 − z)+

×�
(

1
�2

(

log
[

(Wn−1 + Sn−1 − z)+
]

− �2
)

)]

,

and the SPA estimator for )F (z; �)∕)� is

)F (z; �)
)�

=
)E

[(

1 − Φ
(

1
�2

(

log
[

(Wn−1 + Sn−1 − z)+ − �2
)

))]

)�

= − 1
�2

E
[

1{Wn−1 + Sn−1 ≥ z}

× �
(

1
�2

(

log
[

(Wn−1 + Sn−1 − z)+
]

− �2
)

)

×
)Wn−1
)� + )Sn−1

)�
Wn−1 + Sn−1 − z

]

,

where

)Wi
)�

= 1{Wi−1 + Si−1 ≥ Ai}
(

)Wi−1
)�

+
)Si−1
)�

)

, i ≥ 2,

)Si
)�

= Si, i ≥ 1.

SPA for Barrier Option

To derive the SPA estimators for f (z; �) and )F (z; �)∕)�,

F (z; �) = 1 − E

[

E

[n−1
∏

i=1
1{gi(X; �) ≤ 0}

×
(

1
{

gn(X; �) ≤ 0
}

− 1
{

g̃n(X; �, z) ≤ 0
})

|X2,… , Xn
]]

= 1 − E
[

Φ
(

min
i=1,…,n

T (1)i

)

− Φ
(

min
(

T̂ (1)n , min
i=1,…,n−1

T (1)i

))]

,

and then we have

)F (z; �)
)z

= ernΔ

�
√

Δ(ernΔz +K)
E
[

�
(

min
(

T̂ (1)n , min
i=1,…,n−1

T (1)i

))

×1
{

T̂ (1)n < min
i=1,…,n−1

T (1)i

}]

,

)F (z; �)
)�

= 1

��
√

Δ
E
[

�
(

min
i=1,…,n

T (1)i

)

−�
(

min
(

T̂ (1)n , min
i=1,…,n−1

T (1)i

))]

.

Figure 14 presents the variance comparison betweenCGLRQ,
SPA, and SPAQ for estimating )F (z; �)∕)� in the barrier op-
tion example. We can see that SPA and SPAQ have a smaller
variance than CGLRQ.

Figure 15 presents the bias of FDC(0.01) and FDC(0.1)
for )F (z; �)∕)z and )F (z; �)∕)� in the barrier option ex-
ample. The true distribution sensitivities are estimated by
SPAQ with the sample size as m = 213 and l = 104 indepen-
dent experiments. The bias of FDC is also estimated with
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Figure 14: Variances of estimation for )F (z; �)∕)� by CGLRQ,
SPA and SPAQ in the barrier option example.

the sample size as m = 213 and l = 104 independent exper-
iments. From Figure 15, we can see that FDC(0.01) has a
smaller bias than FDC(0.1).

Multi-Server Queue

We consider distribution sensitivity estimation for the
waiting time of the customers in a multi-server first-come-
first-served (G/G/k) queue. Unlike the G/G/1 queue where
the waiting time of the customers obeys a simple Lindley
equation, the formula for the waiting time of the customers
in a G/G/k queue is more complicated.

Let cj , j = 1,… , k, be the index of the last customer
that is served by the j-th server just before the n-th customer
enters service. Then the waiting time of the n-th customer
can be represented by

Wn =
(

min
j=1,…,k

(

ATcj +Wcj + Scj
)

− ATn

)+
,

where ATi ∶=
∑i
l=1 Al is the arrival time of the i-th cus-

tomer, i = 1,… , n. Suppose the service times of all servers
follow i.i.d. log-normal distributions and the interarrival times
of all customers follow i.i.d. log-normal distributions, and
then similar as in Section 4.2, Si = exp

(

�1 + �1Xi
)

and
Ai = exp

(

�2 + �2X′
i
)

, i = 1,… , n, and let �1 = �. By
a similar derivation in Section 4.2, a GLR estimator for the
derivative of the distribution function F (z; �) ofWn with re-
spect to z can be given by

1{Wn ≤ z}
�2 +X′

n
�2An

,

a GLR estimator for )F (z; �)∕)� can be given by

1{Wn ≤ z}
∑n−1
i=1 Xi

�1
,
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(a) Bias curves of FDC for )F (z; �)∕)z.
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Figure 15: Bias of estimation for )F (z; �)∕)z and )F (z; �)∕)�
by FDC(0.01) and FDC(0.1) in the barrier option example.

and a GLR estimator for )2F (z; �)∕)z)� can be given by

1{Wn ≤ z}

(
∑n−1
i=1 Xi

)

(�2 +X′
n)

�1�2An
.

By conditioning on Xi and X′
i , i = 1,… , n − 1, and inte-

grating with respect to the randomness ofX′
n, the CGLR es-

timators for )F (z; �)∕)z, )F (z; �)∕)�, and )2F (z; �)∕)z)�
are

1
√

2��2
exp

(�22
2
− �2 −

1
2
(

 + �2
)2
)

,

(1 − Φ())
∑n−1
i=1 Xi

�1
,

∑n−1
i=1 Xi

√

2��1�2
exp

(�22
2
− �2 −

1
2
(

 + �2
)2
)

,

respectively, where

 ∶=
log

(

Z+) − �2
�2

,
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Table 3
Variance comparison of GLR, CGLR, CGLRQ, SPA, and SPAQ
for estimating )F (z; �)∕)z at z = 30 in the multi-server queue-
ing example.

GLR CGLR CGLRQ SPA SPAQ
2.1 × 10−3 2.2×10−10 2 × 10−10 1.0×10−10 2.2×10−10

Z ∶= min
j=1,…,k

(

ATlj +Wlj + Slj
)

− ATn−1 − z.

Notice that the extra computation for calculating the GLR
estimators is very small relative to the computational effort
for simulating the waiting time.

An SPA estimator for )F (z; �)∕)z can be given by

�()
1
{

Z ≥ 0
}

�2Z
.

AnSPA estimator for )F (z; �)∕)� requires calculating a path-
wise derivative of Wn with respect to �, which is computa-
tionally expensive, and the derivation of an SPA estimator
for )2F (z; �)∕)z)� is not straightforward.

In numerical experiments, we set the sample size as m =
213 for the standardMonte Carlo and RQMC estimators, and
their variances are estimated by l = 100 independent exper-
iments. Let �1 = �2 = 0, �1 = �2 = 1, n = 20, and
k = 2. Figure 16 plots curves of three distribution sensi-
tivities )F (z; �)∕)z, )F (z; �)∕)�, and )2F (z; �)∕)z)�, z ∈
(0, 30), estimated by GLR.
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Figure 16: Estimation of distribution sensitivities )F (z; �)∕)z,
)F (z; �)∕)�, and )2F (z; �)∕)z)� by GLR in the multi-server
queueing example.

In Figure 17(a), the variance reduction by CGLR and
CGLRQ relative to GLR is substantial. From Table 3, we
can see that the variance of GLR could be about 107 times
that of CGLR and CGLRQ. Similar results can be observed
in Figure 19. In Figure 17(b), the variance of CGLRQ is
comparable to those of SPA and SPAQ.
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(a) Variance curves of GLR, CGLR, and CGLRQ.
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(b) Variance curves of CGLRQ, SPA, and SPAQ.

Figure 17: Variances of estimation for )F (z; �)∕)z by GLR,
CGLR, CGLRQ, SPA and SPAQ in the multi-server queueing
example.

In Figure 18, the variance of CGLR is slightly smaller
than that of GLR, and the variance reduction by CGLRQ
relative to GLR and CGLR is also substantial.
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