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We propose a new unbiased stochastic gradient estimator for a family of stochastic models with uniform
random numbers, which are basic building blocks for stochastic simulation, as inputs. By extending the
generalized likelihood ratio (GLR) method, the proposed estimator applies to discontinuous sample per-
formances with structural parameters without requiring that the tails of the density of the input random
variables go down to zero smoothly, an assumption made in previous work that precludes a direct formulation
in terms of uniform random numbers as inputs. By overcoming this limitation, our new estimator greatly
expands the applicability of the GLR method, which we demonstrate for several general classes of input
random variates, including independent inverse transform random variates, random variables generated by
acceptance-rejection methods and Markov chain Monte Carlo, and dependent input random variables gov-
erned by an Archimedean copula. We show how the new derivative estimator works in settings such as
density estimation, distribution sensitivity for quantiles, and sensitivity analysis for Markov chain stopping
time problems, which we illustrate with applications to stochastic activity networks and credit risk deriva-
tives. Numerical experiments substantiate broad applicability and flexibility in dealing with discontinuities
in sample performance.
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1. Introduction Simulation is a powerful technique for optimizing and analyzing complex
stochastic systems ([1]). Uniform random numbers are first generated by computer algorithms, and
then are used as basic building blocks for generating other random variables, which in turn are
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fed into a performance function to simulate the mechanism of a system. In simulation, stochastic
gradient estimation plays a central role in gradient-based optimization and sensitivity analysis. The
finite difference (FD) method is easily implementable, but it must balance a bias-variance tradeoff
and requires extra simulations. Infinitesimal perturbation analysis (IPA) and the likelihood ratio
(LR) method are two well-established unbiased derivative estimation techniques ([20], [30], [17],
[58], [21]). IPA typically leads to lower variance than LR ([37, 6]), and the weak derivative method
reduces the variance of LR at the cost of performing extra simulations ([55], [27]). [37] provides
a general framework unifying IPA and LR, under which the resulting estimator depends on the
choice of what a sample point in a probability space represents, and could in particular be a hybrid
between IPA and LR. See [10] for a recent review.

Traditional applications of stochastic gradient estimation are in discrete event dynamic systems
(DEDS), including queueing systems ([62], [12], [38]), inventory management ([9], [2]), statistical
quality control ([15], [16]), maintenance systems ([25], [26]), and financial engineering and risk
management such as computing financial derivatives ([13], [3], [43], [63], [32], [4], [41]), value-at-
risk (VaR) and conditional VaR (CVaR) ([31], [33], [11], [35], [29]). Recently, stochastic gradient
estimation techniques have attracted attention in machine learning and artificial intelligence; see
[47] for a review paper written by a research team of Google’s DeepMind. [54] show pathwise equiv-
alence between IPA and backpropagation and how the computational complexity for estimating
the gradient is reduced by propagating the errors backwardly along the artificial neural networks
(ANN). An LR-based method is then proposed to train ANNs, which can improve the robustness
in classifying images under both adversarial attacks and natural noise corruptions.

IPA requires continuity in the sample performance, whereas LR does not directly apply for struc-
tural parameters (parameters directly appearing in the sample performance), which significantly
limit their applicability. Smoothed perturbation analysis (SPA) deals with discontinuous sample
performances by using a conditioning technique ([23], [14]), but a good choice of conditioning is
problem-dependent. Push-out LR addresses structural parameters by pushing the parameters out
of the sample performance and into the density ([58]), which can be achieved alternatively with
the IPA-LR in [37], but it requires an explicit transformation. Recently, [53] proposed a generalized
likelihood ratio (GLR) method that is capable of dealing with a large scope of discontinuous sample
performances with structural parameters in a unified framework. The method extends the appli-
cation domain of IPA and LR and does not require conditioning and transformation techniques
tailored to specific problem structures.

The GLR method has the virtue of handling many applications in a uniform manner, and it has
been used to deal with discontinuities in financial options, statistical quality control, maintenance
systems, and inventory systems ([52], [53]). Distribution sensitivities, which mean the derivatives of
the distribution function with respect to both the arguments and the parameters in the underlying
stochastic model, lie at the center of many applications such as quantile sensitivity estimation,
confidence interval construction for the quantile and quantile sensitivities, and statistical inference
([50], [40]). [51] derive GLR estimators for any order of distribution sensitivities and apply them
to maximum likelihood estimation for complex stochastic models without requiring analytical like-
lihoods. [22] apply the GLR method to estimate sensitivity of a distortion risk measure, which is
a Lebesgue-Stieltjes integral of quantile sensitivities and includes Var and CVaR as special cases.

Although the existing GLR method has broad applicability, it requires that the density of the
input distribution is known and that both tails of the density go down to zero smoothly and fast
enough, which may not be satisfied in some applications, depending on what is interpreted as the
input random variables. This smoothness requirement could sometimes be circumvented through
a change of variables ([53]), however, such a transformation may lead to a GLR estimator with
undesirable statistical properties, e.g., infinite variance; see the illustrative example on a stochastic
activity network (SAN) in Appendix B. In this work, we relax this smoothness requirement and
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establish the unbiasedness of GLR gradient estimators for stochastic models whose inputs are uni-
form random numbers, which are the basic building blocks in generating other random variables.
Unlike in [53] where the surface integration part for the GLR estimator is zero, the surface integra-
tion part for the GLR estimator with uniform random numbers as inputs (GLR-U) in the present
work is not necessarily zero but can be estimated by simulation. If the surface integration part is
zero, we are able to relax certain integrability conditions given in [53] that are difficult to verify in
practice.

We provide specific forms of the GLR-U estimators for several types of stochastic models and
apply the GLR-U method to various problem settings, including distribution sensitivities and credit
risk financial derivatives. The GLR-U estimator with independent parameterized input random
variables generated from the inverse transform of uniform random numbers reduces to the classic
LR estimator, which indicates that GLR is a generalization of LR from a different perspective
than that of [53]. In a special case of [53], where independent input random variables are non-
parameterized and the tails of their distribution go smoothly to zero fast enough, the GLR-U
estimator with input random variables generated from the inverse transform of uniform random
numbers coincides with the GLR estimator in [53]. Our GLR-U method can be applied to sensi-
tivity analysis involving Markov chain Monte Carlo (MCMC) methods, often used for sampling
from a complex probability distribution ([57]). The literature on sensitivity analysis for MCMC is
sparse. An exception is [34], which provides an IPA estimator for a Gibbs-type MCMC method
which requires to sample from conditional distributions of a joint distribution. Their method can-
not handle more general Metropolis–Hastings algorithms which typically need to accept or reject
samples, so that discontinuities and uniform random numbers naturally appear. We also show how
GLR-U can provide sensitivity estimators for models defined in terms of random vectors with given
marginal distributions and whose dependence structures are specified by Archimedean copulas
([49]). The Gaussian copula has been widely used due to its simplicity ([42]), and sensitivity anal-
ysis for portfolio credit risk derivatives with joint defaults governed by a Gaussian copula has been
studied in [5] using LR and SPA. However, the Gaussian copula was widely criticized after the 2008
financial crisis, because it underestimates the probability of joint defaults. Archimedean copulas
([49]), not covered in [5], are relatively easy to simulate and can better capture the asymmetric
tail dependence structure of the joint default data ([8]).

GLR-U can be used to estimate the distribution sensitivity functions, including the density
and the quantile function together with confidence intervals, using a single batch of uniform ran-
dom numbers. We formulate a stopping time problem with uniform random numbers as inputs
in a Markov chain, and estimate its sensitivity by the GLR-U method. The acceptance-rejection
method, a classic approach to sample from a general distribution ([7]), and control charts, an
important technique in statistical quality control ([15]), fall into the framework of the stopping
time problem. We provide numerical illustrations with various examples. Conditional Monte Carlo
(CMC) methods can reduce the variance and smooth the performance function in simulation by
conditioning on certain event or random variables and then integrating out the remaining random-
ness ([1]). We will show in the numerical experiments that CMC can be applied to GLR-U for
reducing the variance. Another effective variance reduction technique is randomized quasi-Monte
Carlo (RQMC), which replaces the vectors of uniform random numbers that drive independent
simulation runs by dependent vectors of uniform random numbers that cover the space more evenly
([44]). When estimating an expectation, RQMC can provide an unbiased estimator whose variance
converges at a faster rate than with Monte Carlo when the estimator inside the expectation is
sufficiently smooth as a function of the underlying uniform random numbers. The GLR-U method
developed in this work is compatible with RQMC, and we show in the numerical experiments that
the variance of the GLR-U estimator can be reduced significantly by appropriately combining with
CMC and RQMC.
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The rest of the paper is organized as follows. Section 2 sets the framework. The GLR estimator is
presented in Section 3 with the specific forms of the estimators for four types of models. Applications
are given in Section 4. Numerical experiments can be found in Section 5. The last section concludes.
The technical proofs and additional numerical results can be found in the appendices.

2. Problem Formulation Consider a stochastic model of the following form:

ϕ(g(U ;θ)), (1)

where ϕ : Rn → R is a measurable function (not necessarily continuous), g(·;θ) = (g1(·;θ), . . . ,
gn(·;θ)) is a vector of functions gi : (0,1)n→R with certain smoothness properties to be made more
precise shortly, and U = (U1, . . . ,Un) is a vector of i.i.d. U(0,1) random variables (i.e., uniform over
(0,1)). For simplicity, we take θ as a scalar. When θ is a vector, each component of the gradient
can be estimated separately using the method developed in this work. We consider the problem of
estimating the following derivative:

∂E[ϕ(g(U ;θ))]

∂θ
. (2)

A straightforward pathwise derivative estimator, i.e., IPA, obtained by directly interchanging
derivative and expectation, may not apply because discontinuities in the sample performance of
the stochastic model could be introduced by ϕ(·). In [53], the stochastic model considered for the
derivative estimation problem is ϕ(g(X;θ)), where the density of X = (X1, . . . ,Xn) is assumed to be
known and both tails go down to zero smoothly and fast enough. This assumption is not satisfied by
discontinuous densities, such as the uniform and exponential distributions, and we want to address
this limitation. It is tempting to transform stochastic model (1) into ϕ(g(F1(Y1), . . . ,Fn(Yn);θ)),
where Yi has continuous cumulative distribution function (cdf) Fi(·), i= 1, . . . , n, with tails going
smoothly to zero, so that the problem can be put into the same form as the original stochastic
model in [53]. However, because of the cdfs of Yi’s appearing in the sample performance, we show in
Appendix A that this simple transformation does not work as expected. Before deriving a GLR-U
derivative estimator, we first introduce four important examples for generating random variables
to illustrate potential applications of the stochastic model (1).

Example 1. Independent Parameterized Inputs Generated via the Inverse Transform
Method Suppose X = (X1, . . . ,Xn) is a vector of independent random variables, where each Xi

has cdf Fi(·;θ), i= 1, . . . , n, and is generated by (standard) inversion:

Xi = F−1
i (Ui;θ), i= 1, . . . , n,

with i.i.d. Ui ∼ U(0,1). A stochastic model with i.i.d. U(0,1) random numbers as input can be
written as ϕ(g(U ;θ)) =ϕ(F−1

1 (U1;θ), . . . ,F−1
n (Un;θ)), where g(u;θ) = (F−1

1 (u1;θ), . . . ,F−1
n (un;θ)).

Example 2. Independent Non-parameterized Inputs Generated via the Inverse Trans-
form Method Suppose X = (X1, . . . ,Xn) is a vector of non-parameterized independent ran-
dom variables, and is generated by inversion. A stochastic model with i.i.d. U(0,1) ran-
dom numbers as input is given by ϕ(g(U ;θ)) = ϕ(h(F−1

1 (U1), . . . ,F−1
n (Un);θ)), where h(x;θ) :=

(h1(x;θ), . . . , hn(x;θ)) and gi(u;θ) := hi(F
−1
1 (u1), . . . ,F−1

n (un);θ), i= 1, . . . , n.

Example 3. Markov Chain Monte Carlo MCMC methods are often used for sampling from
a complex probability distribution. By constructing a Markov chain with a targeted equilibrium
distribution, we can sample from a proposal distribution by recording states when the constructed
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chain is mixed (“close” enough to the equilibrium distribution). In general, ϕn(X) is a function of
n states X = (X1, . . . ,Xn) of a Markov chain defined by the following stochastic recurrence:

X1 = g1(U1;θ1), Xi = κ(Xi−1, gi(Ui;θi)), i= 2, . . . , n, (3)

where gi(·) can depend on Xi−1. Here Ui can be a vector in general. For any parameter θi, the
stochastic model ϕn(X) falls into the framework of stochastic model ϕ(g(U ;θ)). GLR-U for sen-
sitivity analysis of MCMC is based on transition function representation (3), which is similar to
IPA for sensitivity analysis of MCMC. Classic LR for sensitivity analysis of MCMC is based on
the transition probability representation of the Markov chain. LR usually leads to large variance
compared with IPA ([6]), and the variance issue of LR would exacerbate in MCMC because the
LR terms accumulate large variance as n grows large ([34])

The Metropolis–Hastings algorithm is the primary tool for simulating the Markov chain in
MCMC ([57]). It works as follows. At step i, conditional on the current state Xi−1, it generates
a proposed new state Yi from a density pθ(· |Xi−1), and the proposed new state is accepted with
probability

ωθ(Xi−1, Yi) = min

{
1,

πθ(Yi)pθ(Xi−1|Yi)
πθ(Xi−1)pθ(Yi|Xi−1)

}
,

where πθ(·) is the targeted equilibrium distribution. Then the transition function of the constructed
Markov chain can be written as

Xi =Xi−11{gi(Ui;θ)> 0}+Yi1{gi(Ui;θ)≤ 0} ,

where gi(ui;θ) = ui−ωθ(Xi−1, Yi). Discontinuities are introduced by the indicator function in the
transition function, so IPA does not apply. The discontinuity issue cannot be directly handled by
the method in [53], because the inputs are uniform random numbers Ui, i= 1, . . . , n. Transformation
to meet the smoothness requirement of the input density in [53] would complicate function gi(·),
which is a linear function in our example, and this in turn may lead to high computational burden
and undesirable statistical properties for the final estimators. In Appendix B, a classic LR estimator
is derived for the Metropolis–Hastings algorithm based on a transition probability representation
of the constructed Markov chain, but it leads to a much larger variance than GLR-U in an example
of Section 5.3 with a moderately large n.

Example 4. Archimedean Copulas Copulas are a general way of representing the dependence
in a multivariate distribution. A copula is any multivariate cdf whose one-dimensional marginals
are all U(0,1). It can be defined by a function C(·;θ) : [0,1]n → [0,1] that satisfies certain con-
ditions required for C to be a consistent cdf; (e.g., it cannot decrease, C(u;θ) = 0 whenever one
coordinate of u is 0, and C(1;θ) = 1); see [49]. For any given copula and arbitrary marginal distri-
butions with continuous cdf’s F1(·),F2(·), ...,Fn(·) with densities fi(·), i= 1, . . . , n, one can define
a multivariate distribution having exactly these marginals with joint cdf FX given by FX(x) =
C(F1(x1),F2(x2), ...,Fn(xn);θ) for all x := (x1, . . . , xn). [61] shows that any multivariate distribu-
tion can be represented in this way. If C(·;θ) is absolutely continuous, the density of the joint
distribution is

fX(x;θ) = c (F1(x1), . . . ,Fn(xn);θ)
n∏
i=1

fi(xi), where

c(v;θ) =
∂nC(v;θ)

∂v1 · · ·∂vn
,

v = (v1, . . . , vn), and the derivative is interpreted as a Radon-Nikodym derivative when C(·;θ) is
not nth-order differentiable.
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To generate X = (X1, . . . ,Xn) from the joint cdf FX(·), generate V = (V1, . . . , Vn) from the copula
and return Xi = F−1

i (Vi) for each i. Generating V from the copula is not always obvious, but
there are classes of copulas for which this can be easily done, one of them being the Archimedean
copulas. This important family of copulas can model strong forms of tail dependence using a single
parameter, which makes them convenient to use. An Archimedean copula Ca is defined by

Ca(v;θ) =ψθ

(
ψ

[−1]
θ (v1) + . . .+ψ

[−1]
θ (vn)

)
,

where the generator function ψθ : [0,∞)→ [0,1] is a strictly decreasing convex function such that
limx→∞ψθ(x) = 0, θ ∈ [0,∞) is a parameter governing the strength of dependence, and ψ

[−1]
θ is a

pseudo-inverse defined by ψ
[−1]
θ (x) = 1{0≤ x≤ ψθ(0)}ψ−1

θ (x), with the convention that ψ−1
θ (0) =

inf{x : ψθ(x) = 0}. Archimedean copulas are absolutely continuous, and their densities have the
form:

ca(v;θ) = 1

{
0≤

n∑
i=1

ψ−1
θ (vi)≤ψ−1

θ (0)

}
∂nψθ(x)

∂xn

∣∣∣∣
x=

∑n
i=1 ψ

−1
θ

(vi)

n∏
i=1

∂ψ−1
θ (vi)

∂vi
,

assuming that the generator function ψθ(·) is smooth ([49]). In general we do not have an analytical
expression for ca(·;θ), and it can be discontinuous in θ. Therefore, there is usually no analytical
form, and discontinuities may exist for the density fX with the copula defined by ca(·;θ), and LR
and GLR in [53] typically do not apply to sensitivity analysis with Archimedean copulas.

[45] propose the following simple algorithm to generate V from an Archimedean copula with
generator function ψθ(·):

(i) Generate a random variable Yθ from the distribution with Laplace transform ψθ(·) (with at
least one uniform random number as input).

(ii) For i= 1, . . . , n, let Vi =ψθ (−(logUi)/Yθ) with i.i.d. Ui ∼U(0,1).
For a given Yθ, this gives a stochastic model with uniform random numbers Ui as inputs:

ϕ(g(U ;θ)) = φ
(
F−1

1 (ψθ (−(logU1)/Yθ)) , . . . ,F
−1
n (ψθ (−(logUn)/Yθ))

)
,

where ϕ(v1, . . . , vn) = φ(F−1
1 (v1), . . . ,F−1

1 (vn)) and g(u;θ) = (ψθ (−(logu1)/Yθ) , . . . ,ψθ (−(logun)/Yθ)).

3. A Generalized Likelihood Ratio Method In this section, we derive the GLR-U esti-
mator for the derivative (2) of the expectation of stochastic model (1). We first provide an overview
for the derivation of the new method. Then the general theory for GLR is derived, and it is applied
to the four examples in the previous section.

3.1. Overview To illustrate the main idea behind the derivation of GLR-U, we first consider
a simple one-dimensional problem in the framework of [53], i.e., ϕ(g(X;θ)), where X is a random
variable with density f(·;θ) supported on Ω, and ϕ : R 7→R, g : Ω×R 7→R are smooth functions.
Assuming the derivative and expectation can be interchanged, we have

∂E[ϕ(g(X;θ))]

∂θ
=

∂

∂θ

∫
Ω

ϕ(g(x;θ))f(x;θ)dx

=

∫
Ω

ϕ(g(x;θ))
∂ log f(x;θ)

∂θ︸ ︷︷ ︸
LR part

f(x;θ)dx+

∫
Ω

∂ϕ(y)

∂y

∣∣∣∣
y=g(x;θ)

∂g(x;θ)

∂θ︸ ︷︷ ︸
IPA part

f(x;θ)dx, (4)

and the second term in the right-hand side of (4) can be further written as∫
Ω

∂ϕ(y)

∂y

∣∣∣∣
y=g(x;θ)

∂g(x;θ)

∂θ
f(x;θ)dx=

∫
Ω

∂ϕ(g(x;θ))

∂x

(
∂g(x;θ)

∂x

)−1
∂g(x;θ)

∂θ
f(x;θ)dx
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=

∫
∂Ω

ϕ(g(x;θ))

(
∂g(x;θ)

∂x

)−1
∂g(x;θ)

∂θ
f(x;θ)v̂ds−

∫
Ω

ϕ(g(x;θ))
∂

∂x

{(
∂g(x;θ)

∂x

)−1
∂g(x;θ)

∂θ
f(x;θ)

}
dx

=

∫
∂Ω

ϕ(g(x;θ))r(x;θ)f(x;θ)v̂ds−
∫

Ω

ϕ(g(x;θ))d(x;θ)f(x;θ)dx, (5)

where ∂Ω is the boundary of Ω, v̂ is the unit normal vector pointing outward, ds is the surface
measure, the second equality holds by applying the Gauss-Green divergence theorem (Chapter 21
in [36]), and

r(x;θ) =

(
∂g(x;θ)

∂x

)−1
∂g(x;θ)

∂θ
, d(x;θ) =

1

f(x;θ)

∂

∂x

{(
∂g(x;θ)

∂x

)−1
∂g(x;θ)

∂θ
f(x;θ)

}
.

The derivation above can be extended straightforwardly to the case when g and x are multi-
dimensional. When ϕ(·) is smooth, (4) is essentially the IPA-LR framework in [37]. The difficulty
lies in that ϕ(·) may be discontinuous, so that the IPA part in second term of (4) could be ill-
defined. For a generic measurable function ϕ(·) not necessarily continuous, it is smoothed first
in the derivation and then the limit is taken to retrieve unbiasedess under certain integrability
conditions. Since the derivatives of ϕ(·) only appear in the intermediate steps but they are not in
the final expression of (5), we only need the existence of a smoothed function for ϕ(·), which can
be established under a mild regularity condition.

The first term of (4) and the second term of (5) can be estimated by simulation, but the first term
of (5) is a surface integration that could be difficult to compute in general. The surface integration
part in [53] is shown to be zero under certain conditions including that the tails of the input
densities are required to go to zero smoothly and fast enough. In this work, we consider uniform
random variables as inputs, so the support is a cube Ω = (0,1)n whose boundary is simple. Thus,
the surface normal vector v̂ is constant and the surface measure ds is amenable for computation
on each face of the cube. Consequently, the surface integration part is included in the estimator
and can be estimated by simulation. In addition, the input density f(x;θ) = 1 for x ∈ (0,1)n and
∂ log f(x;θ)/∂θ = 0. In (4), the first term vanishes and the second term is essentially the IPA
estimator. Due to possible discontinuities in ϕ, this IPA part is retransformed into an LR-type
estimator by integration by parts. In fact this can be seen in Section 3.3: in the most basic case,
the estimator is not standard IPA but standard LR.

3.2. General Theory Denote the Jacobian of g by

Jg(u;θ) :=


∂g1(u;θ)

∂u1

∂g1(u;θ)

∂u2
· · · ∂g1(u;θ)

∂un
∂g2(u;θ)

∂u1

∂g2(u;θ)

∂u2
· · · ∂g2(u;θ)

∂un
...

...
. . .

...
∂gn(u;θ)

∂u1

∂gn(u;θ)

∂u2
· · · ∂gn(u;θ)

∂un

 , and

∂θg(u;θ) :=

(
∂g1(u;θ)

∂θ
, . . . ,

∂gn(u;θ)

∂θ

)T
,

with the superscript T indicating vector transposition. In addition, we define two weight functions
in the GLR estimator:

ri(u;θ) :=

(
J−1
g (u;θ) ∂θg(u;θ)

)T
ei, i= 1, . . . , n, (6)
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d(u;θ) :=
n∑
i=1

eTi J
−1
g (u;θ) (∂uiJg(u;θ))J−1

g (u;θ)∂θg(u;θ)− trace(J−1
g (u;θ) ∂θJg(u;θ)), (7)

where ei is the ith unit column vector and ∂zJg is the matrix obtained by differentiating Jg with
respect to z element-wise. When θ is a vector, we need to compute (6) and (7) for each dimension.
Notice that the computation of the Jacobian matrix Jg(·;θ), its inverse, and its derivatives with
respect to ui, which is the dominant computational burden for computing (6) and (7), needs to
be done only once for all coordinates of θ. Therefore, the computational complexity of the GLR-U
estimator is sublinear with respect to the number of coordinates of θ, so that it can be efficiently
scaled up to multi-dimensional cases. Let x− and x+ be the limits taken from the left-hand side
and right-hand side of x, respectively, and for a function h(·), denote h(x−) := limx→x− h(x) and
h(x+) := limx→x+ h(x). We introduce the following conditions for our analysis. The unbiasedness of
the proposed GLR-U estimator can be established under two different subsets of these conditions.

(A.1) There exist a smooth function ϕε(·)∈C∞ and p > 1 such that

lim
ε→0

sup
θ∈Θ

∫
(0,1)n

|ϕε(g(u;θ))−ϕ(g(u;θ))|p du= 0,

and if n> 1, for a fixed ε > 0 and any ui ∈ (0,1) \ [ε,1− ε], i= 1, . . . , n,

lim
ε→0

sup
θ∈Θ

∫
(0,1)n−1

|ϕε(g(u;θ))−ϕ(g(u;θ))|p du−i = 0,

where u−i := (u1, . . . , ui−1, ui+1, . . . , un), and if n= 1, for any u∈ (0,1) \ [ε,1− ε],

lim
ε→0

sup
θ∈Θ

|ϕε(g(u;θ))−ϕ(g(u;θ))|= 0.

(A.2) The following integrability condition holds:∫
(0,1)n−1

sup
θ∈Θ,ui∈(0,1)

∣∣ϕ(g(u;θ)) ri(u;θ)
∣∣ du−i <∞, i= 1, . . . , n.

(A.3) The Jacobian Jg(u;θ) is invertible almost everywhere (a.e.), and the performance function
g(u;θ) is twice continuously differentiable with respect to (u, θ)∈ (0,1)n×Θ, where Θ is a compact
neighborhood of the parameter θ of interest.

(A.4) The following integrability condition holds:∫
(0,1)n

sup
θ∈Θ

∣∣ϕ(g(u;θ)) d(u;θ)
∣∣ du<∞.

(A.5) Function g(·;θ) is invertible, and

lim
ui→1−

sup
θ∈Θ,u−i∈(0,1)n−1

|ri(u;θ)|= lim
ui→0+

sup
θ∈Θ,u−i∈(0,1)n−1

|ri(u;θ)|= 0, i= 1, . . . , n.

Remark 1. Condition (A.1) can be checked in certain settings when ϕε(·) can be explicitly con-
structed; see Proposition 1. The invertibility of the Jacobian matrix in condition (A.3) justifies
the local invertibility of function g(·;θ), whereas global invertibility of g(·;θ) in condition (A.5) is
stronger, although much weaker than requiring an explicit inverse function for g(·;θ) in deriving
the push-out LR estimator ([58]). In general, it is difficult to find an explicit inverse function for
a nonlinear function g(·;θ), but the existence of the inversion could be guaranteed by the inverse
function theorem.
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Unbiasedness of the new GLR-U estimator developed in this work is established under two sets
of conditions in the following theorem.

Theorem 1. Under conditions (A.1) – (A.4) or (A.3) – (A.5),

∂E[ϕ(g(U ;θ))]

∂θ
=E[G(U ;θ)], where (8)

G(U ;θ) :=
n∑
i=1

[
ϕ(g(U i;θ))ri(U i;θ)−ϕ(g(U i;θ))ri(U i;θ)

]
+ϕ(g(U ;θ))d(U ;θ),

with U i := (U1, . . . , 1−︸︷︷︸
ith element

, . . . ,Un), U i := (U1, . . . , 0+︸︷︷︸
ith element

, . . . ,Un), and ri(·) and d(·) defined by

(6) and (7), respectively.

Remark 2. The proof of the theorem can be found in Appendix A. Even if g(U i;θ) =∞ or
g(U i;θ) =∞, the GLR-U estimator could be well defined; see e.g. Sections 3.3 and 3.4. In the
case where the surface integration part becomes zero, we can prove the result without assuming
(A.1), and we also avoid the integrability condition in [53] on certain intermediate quantities (the
smoothed function), which is difficult to verify in practice. The proof is obtained by first truncating
the support of the input uniform random numbers, i.e., (0,1)n, to a compact set [ε,1−ε]n for ε > 0
and then appropriately expanding it to the whole space, i.e., letting ε→ 0. We caution that the
conditions in theorem may still be difficult to check when ϕ is too complicated to allow an explicit
smoothed function or g comprises complex nonlinear functions.

We now examine the special case where g(u;θ) = (g1(u1;θ), . . . , gn(un;θ)), which covers Exam-
ples 1, 3, 4 in Section 2. For n independent uniform random numbers, we can take gi(ui;θ) =
F−1
i (ui;θ) for i= 1, . . . , n, while for dependent variables governed by an Archimedean copula, condi-

tional on Yθ = y, we have gi(ui;θ) =ψθ(− logui/y) for i= 1, . . . , n. In this special case, the Jacobian
becomes

Jg(u;θ) =


∂g1(u1;θ)

∂u1
0 · · · 0

0 ∂g2(u2;θ)

∂u2
· · · 0

...
...

. . .
...

0 0 · · · ∂gn(un;θ)

∂un

 .

Then we have

ri(u;θ) =
∂gi(ui;θ)

∂θ

/
∂gi(ui;θ)

∂ui
, i= 1, . . . , n, and d(u;θ) =

n∑
i=1

di(ui;θ),

where di(ui;θ) :=
∂gi(ui;θ)

∂θ

∂2gi(ui;θ)

∂u2
i

/(
∂gi(ui;θ)

∂ui

)2

− ∂
2gi(ui;θ)

∂θ∂ui

/
∂gi(ui;θ)

∂ui
.

Moreover, condition (A.1) in Theorem 1 can be replaced by a set of a simpler assumptions when
the performance function ϕ(x) is a product of n indicators: ϕ(x) =

∏n

i=1 1{xi ≤ 0}, in which case a
smoothed function ϕε(·) can be constructed explicitly. The performance function in the distribution
sensitivities discussed in Section 4.1 is an indicator function. The distribution sensitivities for the
completion time in an SAN in Section 5.2 and the sensitivities involving acceptance-rejection and
a control chart in Section 5.3 have performance functions which are products of n indicators. The
proof of the following proposition can be found in Appendix A.
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Proposition 1. Consider the stochastic model

ϕ(g(U ;θ)) =
n∏
i=1

1{gi(Ui;θ)≤ 0}.

Condition (A.1) holds if for i= 1, . . . , n and a fixed ε > 0 in (9),

inf
θ∈Θ,ui∈[ε,1−ε]

∣∣∣∣∂gi(ui;θ)∂ui

∣∣∣∣> 0 and inf
θ∈Θ,ui∈(0,1)\[ε,1−ε]

∣∣gi(ui;θ)∣∣> 0. (9)

Condition (9) implies no probability mass for gi(Ui;θ). If the functions gi can be decomposed as
products of the form gi(ui;θ) = ξi(θ)ηi(ui) for i= 1, . . . , n, then conditions (A.2), (A.4), (A.5), and
(6) can be simplified. For example, an exponential random variable with mean θ can be generated
by − log(Ui)/θ where Ui ∼U(0,1). When this decomposition holds, we can write

ri(u;θ) =
d log ξi(θ)

dθ

/
d log ηi(ui)

dui
, i= 1, . . . , n, and

d(u;θ) =
n∑
i=1

di(ui;θ), with di(ui;θ) =
d log ξi(θ)

dθ

[
ηi(ui)η

′′
i (ui)

(η′i(ui))
2 − 1

]
.

(A.2’) Boundedness condition on functions of input random numbers:

inf
ui∈(0,1)

∣∣∣∣d log ηi(ui)

dui

∣∣∣∣> 0, i= 1, . . . , n.

(A.4’) Integrability condition on functions of input random numbers:

E

[∣∣ηi(Ui)η′′i (Ui)
∣∣

(η′i(Ui))
2

]
<∞, i= 1, . . . , n.

(A.5’) Boundary condition on functions of input random numbers: functions ηi(ui), i= 1, . . . , n,
are monotone, and

lim
ui→1−

∣∣∣∣d log ηi(ui)

dui

∣∣∣∣= lim
ui→0+

∣∣∣∣d log ηi(ui)

dui

∣∣∣∣=∞, i= 1, . . . , n.

Corollary 1. Suppose that gi(ui;θ) = ξi(θ)ηi(ui), i= 1, . . . , n, and ϕ(·) is bounded and

max
i=1,...,n

sup
θ∈Θ

∣∣∣∣∂ log ξi(θ)

∂θ

∣∣∣∣<∞.
Then conditions (A.2), (A.4), and (A.5) can be replaced by (A.2’), (A.4’) and (A.5’), respectively,
and condition (9) in Proposition 1 also simplifies to

inf
θ∈Θ

∣∣ξi(θ)|> 0, inf
ui∈[ε,1−ε]

∣∣∣∣η′i(ui)∣∣∣∣> 0, inf
ui∈(0,1)\[ε,1−ε]

∣∣ηi(ui)∣∣> 0, i= 1, . . . , n.

Unbiasedness of the GLR-U estimators in many examples of this paper can be justified by verifying
these simplified conditions.
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3.3. The Independent Parameterized Case Let us return to the independent case of
Example 1 and suppose that each Xi is continuous with density fi(·;θ). Our goal is to estimate

∂E[ϕ(F−1
1 (U1;θ), . . . ,F−1

n (Un;θ))]

∂θ
, for which the Jacobian is

Jg(u;θ) =


1

f1(X1(u1;θ);θ)
0 · · · 0

0 1
f2(X2(u2;θ);θ)

· · · 0
...

...
. . .

...
0 0 · · · 1

fn(Xn(un;θ);θ)

 , and

∂θg(u;θ) =

(
∂X1(u1;θ)

∂θ
, . . . ,

∂Xn(un;θ)

∂θ

)T
,

where Xi(ui;θ) := F−1
i (ui;θ) and

∂Xi(ui;θ)

∂θ
:=−∂Fi(xi;θ)

∂θ

/
fi(xi;θ)

∣∣∣∣
xi=Xi(ui;θ)

.

Then the weight functions in the GLR-U estimator are:

ri(u;θ) =−∂Fi(xi;θ)
∂θ

∣∣∣∣
xi=Xi(ui;θ)

and di(ui;θ) =
∂ log fi(xi;θ)

∂θ

∣∣∣∣
xi=Xi(ui;θ)

, so

lim
ui→1−

ri(u;θ) = lim
ui→0+

ri(u;θ) = 0.

Therefore,
∂E[ϕ(F−1

1 (U1;θ), . . . ,F−1
n (Un;θ))]

∂θ
=E

[
ϕ(F−1

1 (U1;θ), . . . ,F−1
n (Un;θ)) d(U ;θ)

]
=E

[
ϕ(X)

n∑
i=1

∂ log fi(Xi;θ)

∂θ

]
.

The expression inside the last expectation coincides with the classic LR derivative estimator in
the case where the LR method is applicable, i.e., when there are no structural parameters in the
sample performance ([20]). From this perspective, the GLR method generalizes the LR method by
allowing the appearance of structural parameters.

3.4. The Independent Non-parameterized Case We then return to the independent case
of Example 2, and consider estimating derivative

∂E
[
ϕ(h(β(U);θ))

]
∂θ

with β(u) = (F−1
1 (u1), . . . ,F−1

n (un)).

The Jacobian can be expressed by Jg(u;θ) = Jh(x;θ)Λ(x)
∣∣
x=β(u)

, where

Jh(x;θ) :=


∂h1(x;θ)

∂x1

∂h1(x;θ)

∂x2
· · · ∂h1(x;θ)

∂xn
∂h2(x;θ)

∂x1

∂h2(x;θ)

∂x2
· · · ∂h2(x;θ)

∂xn
...

...
. . .

...
∂hn(x;θ)

∂x1

∂hn(x;θ)

∂x2
· · · ∂hn(x;θ)

∂xn

 , Λ(x) :=


1

f1(x1)
0 · · · 0

0 1
f2(x2)

· · · 0
...

...
. . .

...
0 0 · · · 1

fn(xn)

 ,
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assuming that the Jacobian Jh(·;θ) of h(·;θ) is invertible almost everywhere, and densities
fi(xi), i = 1, . . . , n, are differentiable and supported on the entire space, i.e, R. Suppose

limxi→±∞
(
J−1
h (x;θ)∂θh(x;θ)

)T
Λ−1(x)ei = 0, which implies the tail of fi(·) goes to zero fast enough,

and then limui→0 ri(u;θ) = limui→1 ri(u;θ) = 0, i= 1, . . . , n. Notice that

∂uiJg(u;θ) = Λi(x)
(
∂xiJh(x;θ)

)
Λ(x)

∣∣
x=β(u)

+Jh(x;θ)∂xiΛ(x)
∣∣
x=β(u)

Jβ(u),

where Λi(x) is a diagonal matrix with 1/fi(xi) in the diagonal. Plugging the expressions of Jg(u;θ)
and ∂uiJg(u;θ) above into (7), we have

d(u;θ) =
n∑
i=1

eTi Λ−1(x)J−1
h (x;θ)Λi(x)(∂xiJh(x;θ))Λ(x)Λ−1(x)J−1

h (x;θ)∂θh(x;θ)

∣∣∣∣
x=β(u)

+
n∑
i=1

eTi Λ−1(x)J−1
h (x;θ)Jh(x;θ)

(
∂xiΛ(x)

)
Jβ(u)Λ−1(x)J−1

h (x;θ)∂θh(x;θ)

∣∣∣∣
x=β(u)

− trace
(
Λ−1(x)J−1

h (x;θ)
(
∂θJh(x;θ)

)
Λ(x)

)∣∣∣∣
x=β(u)

=
n∑
i=1

eTi J
−1
h (x;θ)(∂xiJh(x;θ))J−1

h (x;θ)∂θh(x;θ)

∣∣∣∣
x=β(u)

−
(
J−1
h (x;θ)∂θh(x;θ)

)T
ζ(x)

∣∣∣∣
x=β(u)

− trace
(
J−1
h (x;θ)∂θJh(x;θ)

)∣∣∣∣
x=β(u)

,

where ζ(x) =
(
∂ log f1(x1)

∂x1
, . . . , ∂ log fn(xn)

∂xn

)T
. Furthermore, d̂(X;θ) = d(F1(X1), . . . ,Fn(Xn);θ) coin-

cides with the GLR estimator for stochastic model ϕ(h(X;θ)) in [53].

3.5. Markov Chain Monte Carlo For stochastic model ϕn(X) in Example 3 of Section 2,
under similar conditions in Theorem 1,

∂E [ϕn(X)]

∂θi
=E

[
G(i)
n (U ;θi)

]
,

where G(i)
n (U ;θ) :=ϕn(X+i

1 , . . . ,X+i
n )ri(1

−;θ)−ϕn(X−i1 , . . . ,X−in )ri(0
+;θ) +ϕn(X)di(Ui;θ),

with {X+i
j , j ≥ 1} and {X−ij , j ≥ 1} being Markov chains generated by (3) with Ui being replaced

by 1 and 0, respectively. In particular, for θi = θ, i= 1, . . . , n,

∂E [ϕn(X)]

∂θ
=

n∑
i=1

∂E [ϕn(Z1, . . . ,Zn)]

∂θi

∣∣∣∣
θi=θ

=
n∑
i=1

E[G(i)
n (U ;θ)].

Example 5. The Metropolis–Hastings Algorithm In this special case, di(ui;θ) = 0, and

ri(ui;θ) =−∂ωθ(Xi−1, Yi)

∂θ
.

Markov chain {X+i
j , j ≥ 1} is generated by (3) with the proposed state at step i rejected with

certainty, and {X−ij , j ≥ 1} is a Markov chain generated by (3) with the proposed state at step i
accepted with certainty.



Peng, Fu, Hu, L’Ecuyer and Tuffin: GLR with Uniform Random Numbers
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 13

3.6. Archimedean Copulas We consider estimating

∂

∂θ
E
[
ϕ

(
ψθ
(
− logU1

Yθ

)
, . . . ,ψθ

(
− logUn

Yθ

))]
,

where the expectation is with respect to both Yθ and the independent Ui, i= 1, . . . , n. By condi-
tioning, we can use a mixture of LR and GLR:

∂

∂θ
E
[
ϕ

(
ψθ
(
− logU1

Yθ

)
, . . . ,ψθ

(
− logUn

Yθ

))]
= E

[
ϕ

(
ψθ
(
− logU1

Yθ

)
, . . . ,ψθ

(
− logUn

Yθ

))∂ log fY (y;θ)

∂θ

∣∣∣∣
y=Yθ

]
+E

[
∂E
[
ϕ
(
ψθ
(
− logU1

y

)
, . . . ,ψθ

(
− logUn

y

))]
∂θ

∣∣∣∣
y=Yθ

]
,

(10)

where fY (·;θ) is the density function of Yθ. This equality follows from Theorem 1 of [37]
with ω in that theorem being replaced by y and h(θ,ω) being replaced by h(y, θ) :=
E[ϕ(ψθ(− lnU1/y), . . . ,ψθ(− lnUn/y))], under the assumption that for all y, this last expectation
is continuous in θ and differentiable except perhaps on a countable set. Specifically, (10) can be
rewritten as

∂

∂θ

∫
R
h(y, θ)FY (dy;θ) =

∂

∂θ

∫
R
h(y, θ)L(y, θ, θ0)FY (dy;θ0)

=

∫
R

(
h(y, θ)

∂L(y, θ, θ0)

∂θ
+
∂h(y, θ)

∂θ
L(y, θ, θ0)

)
FY (dy;θ0),

where L(y, θ, θ0) := fY (y;θ)/fY (y;θ0). The first term on the right-hand side of (10) can be dealt
with by the LR method straightforwardly if fY (·;θ) admits an analytical form. [18] show how to
apply the LR method with only the Laplace transform ψθ(·).

We now show how to use GLR-U to handle the second term on the right-hand side of (10)
with Yθ fixed and generated from other uniform random numbers. The Archimedean copula model
falls into the special case where g(u;θ) = (g1(u1;θ), . . . , gn(un;θ)), discussed after Theorem 1. The
Jacobian in this case is

Jg(u;θ, y) =


− 1
u1y

ψ′θ
(
− logu1

y

)
0 · · · 0

0 − 1
u2y

ψ′θ
(
− logu2

Yθ

)
· · · 0

...
...

. . .
...

0 0 · · · − 1
uny

ψ′θ
(
− logun

y

)
 , and

∂θg(u;θ, y) =

(
∂ψθ(x1)

∂θ

∣∣∣∣
x1=− logu1

y

, . . . ,
∂ψθ(xn)

∂θ

∣∣∣∣
xn=− logun

y

)T
.

The weight functions in the GLR-U estimator are

ri(u;θ, y) =− uiy

ψ′θ(xi)

∂ψθ(xi)

∂θ

∣∣∣∣
xi=−

logui
y

,

di(ui;θ, y) =

(
− 1

ψ′θ(xi)

∂ψ′θ(xi)

∂θ
+

ψ′′θ (xi)

(ψ′θ(xi))
2

∂ψθ(xi)

∂θ
+
∂ψθ(xi)

∂θ

y

ψ′θ(xi)

)∣∣∣∣
xi=−

logui
y

.
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Example 6. The Clayton Copula The generator function for the Clayton copula is

ψθ(x) = (1 +x)−
1
θ , θ ∈ (0,∞).

Then,
∂ψθ(x)

∂θ
=

1

θ2
log(1 +x)(1 +x)−

1
θ ,

∂ψ′θ(x)

∂θ
=

1

θ2
(1 +x)−

1
θ−1

[
1− 1

θ
log(1 +x)

]
, and

ψ
′

θ(x) =−1

θ
(1 +x)−

1
θ−1, ψ

′′

θ (x) =
1

θ

(
1

θ
+ 1

)
(1 +x)−

1
θ−2.

By the inverse Laplace transformation, we find that Yθ ∼ Γ(1/θ,1), the gamma distribution with

density fY (y;θ) = y
1
θ
−1
e−y

Γ(1/θ)
, where Γ(s) :=

∫∞
0
ts−1e−tdt, and the LR term is

∂ log fY (y;θ)

∂θ
=−d log Γ(1/θ)

dθ
− 1

θ2
log y.

The weight functions in the GLR-U estimator are

ri(u;θ, y) =−1

θ
uiy

(
1− logui

y

)
log

(
1− logui

y

)
,

di(ui;θ, y) =
1

θ
[1 + (1− (xi + 1)y) log(1 +xi)]

∣∣∣∣
xi=−

logui
y

.

In addition, we have limui→0+ ri(u;θ, y) = limui→1− ri(u;θ, y) = 0.

GLR-U for Ali-Mikhail-Haq copulas can be found in Appendix A. For both the Clayton and
Ali-Mikhail-Haq copulas, conditions (A.3) and (A.5) in Theorem 1 are satisfied. If ϕ(·) is bounded,
condition (A.4) in Theorem 1 can also be verified straightforwardly for any y= Yθ.

4. Applications We apply the GLR-U method to distribution sensitivity estimation, and
estimate sensitivities for stopping time problems and credit risk derivatives, with specific forms for
the function ϕ(·).

4.1. Distribution Sensitivities For g(·;θ) : (0,1)n→R, we estimate the two following first-
order distribution sensitivities:

∂F (z;θ)

∂θ
=
∂E[1{g(U ;θ)− z ≤ 0}]

∂θ
=E

[
∂E[1{g(Ui,U−i;θ)− z ≤ 0}|U−i]

∂θ

]
,

f(z;θ) =
∂E[1{g(U ;θ)− z ≤ 0}]

∂z
=E

[
∂E[1{g(Ui,U−i;θ)− z ≤ 0}|U−i]

∂z

]
,

where f(·;θ) is the density function of Z(θ) = g(U ;θ) and U−i := (U1, . . . ,Ui−1,Ui+1, . . . ,Un), i =
1, . . . , n. By applying GLR-U, we obtain

E
[
∂E[1{g(Ui,U−i;θ)− z ≤ 0}|U−i]

∂θ

]
=E[G1,i(U ;z, θ)], where

G1,i(U ;z, θ) := 1{g(U i;θ)− z ≤ 0}ri(U i;θ)−1{g(U i;θ)− z ≤ 0}ri(U i;θ) + 1{g(U ;θ)− z ≤ 0}d(U ;θ),

ri(u;θ) =

(
∂g(u;θ)

∂ui

)−1
∂g(u;θ)

∂θ
, and
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d(u;θ) =

(
∂g(u;θ)

∂ui

)−1
[(

∂g(u;θ)

∂ui

)−1
∂g(u;θ)

∂θ

∂2g(u;θ)

∂u2
i

− ∂
2g(u;θ)

∂ui∂θ

]
.

We also obtain E
[
∂E[1{g(Ui,U−i;θ)− z ≤ 0}|U−i]

∂z

]
=E[G2,i(U ;z, θ)], where

G2,i(U ;z, θ) :=1{g(U i;θ)− z ≤ 0}r̃i(U i;θ)−1{g(U i;θ)− z ≤ 0}r̃i(U i;θ)

+ 1{g(U ;θ)− z ≤ 0}d̃(U ;θ), with

r̃i(u;θ) =−
(
∂g(u;θ)

∂ui

)−1

and d̃(u;θ) =−
(
∂g(u;θ)

∂ui

)−2
∂2g(u;θ)

∂u2
i

.

The conditions for justifying unbiasedness of the estimators G1,i and G2,i and an optimal linear
combination Gk,1, . . . ,Gk,n, for k= 1 or 2 can be found in Appendix A.

Example 7. Distribution Sensitivities for Quantiles For 0≤ α≤ 1, the α-VaR (or α-quantile)
of a random variable Z(θ) = g(U ;θ) with cdf F (·;θ) is defined as

qα(θ) := arg min{z : F (z;θ)≥ α}.

When F (·;θ) is continuous, qα(θ) = F−1(α;θ). Let U (j), j = 1, . . . ,m, be i.i.d. realizations of U ∼
U(0,1)d, and F̂m(·) be the empirical distribution of Zj := g(U (j);θ), j = 1, . . . ,m. The empirical
α-quantile F̂−1

m (α), which is the inverse of the empirical distribution evaluated at α, is simply
Z(dαme), where Z(1) < · · ·< Z(m) are the realizations of Z1, . . . ,Zm sorted in increasing order (the
order statistics), and dxe denotes the smallest integer greater than or equal to x. This empirical
quantile satisfies the following central limit theorem ([60]):

√
m
(
F̂−1
m (α)− qα(θ)

)
d→N

(
0,

α(1−α)

f(qα(θ);θ)

)
.

Traditionally, batching and sectioning techniques are used to estimate the asymptotic variance to
construct a confidence interval on the empirical quantile, and these methods lead to subcanon-
ical convergence rates ([48]). With the GLR-U density estimator, however, we can estimate the
asymptotic variance by

mα(1−α)∑m

j=1G2,i(U (j);z, θ)|z=F̂−1
m (α)

,

using the same realizations of the uniform random variables U (j) as in the quantile estima-
tor F̂−1

m (α). It follows from [50] that this asymptotic variance estimator is consistent. Another
application of distribution sensitivity estimation is to estimate quantile sensitivity ∂qα(θ)/∂θ =
−∂F (z;θ)

∂θ

∣∣
z=qα(θ)

/
f(qα(θ);θ) ([11]).

4.2. Stopping Time Problems In this subsection, we consider estimating the derivative of
the expectation of a sample performance that depends on a stopping time N :

∂E [hN(X1, . . . ,XN)]

∂θi
, (11)

where N is the first time the Markov chain {Xi : i∈Z+} defined by (3) hits a set X , i.e.,

N =min{n∈N : Xn ∈X}= min{n∈N : κ(Xn−1, gn(Un;θn))∈X} .
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By decomposing the probability space into disjoint events {N = n}= ∩n−1
j=1 {Xj /∈ X} ∪ {Xn ∈ X},

n∈Z+, the expectation of this sample performance can be rewritten as

E [hN(X1, . . . ,XN)] =
∞∑
n=1

E [ϕn(X1, . . . ,Xn)] , (12)

where ϕn(X1, . . . ,Xn) = hn(X1, . . . ,Xn)
n−1∏
j=1

1{Xj /∈X}1{Xn ∈X}.

The derivative estimation problem of each expectation in the summation on the right-hand side of
(12) has been discussed in Section 3.5, and we have

∂E [hN(X1, . . . ,XN)]

∂θi
=
∞∑
n=i

E
[
G(i)
n (U1, . . . ,Un;θi)

]
.

We can use the randomization technique of [56] to obtain a single-run unbiased estimator of (11),
which is given by

1

q(N ′)
G

(i)

N ′(U1, . . . ,UN ′ ;θi), (13)

where N ′ is a discrete random variable supported on integer set containing {i, i + 1, . . .} with
probability mass function q(·). In particular, for θi = θ, i ∈ Z+, an unbiased estimator is∑N ′

i=1G
(i)

N ′(U1, . . . ,UN ′ ;θ)/q(N
′) with q(·) supported on Z+.

This stopping time problem generalizes those in [19] and [28] by allowing the distribution of the
stopping time N to depend on parameter θ. The classical IPA and LR methods do not cover this
case.

Example 8. Acceptance-Rejection Acceptance-rejection is a classic approach to sample a ran-
dom variable X from a general distribution with density πθ(·) ([7]). Suppose there is a constant cθ
such that πθ(x)≤ pθ(x)/cθ, ∀ x. We first generate random variables {Yi, i ∈ Z+} from a proposal
distribution with density pθ(·), and X is the first Yi such that

Ui ≤ ωθ(Yi), ωθ(Yi) := cθπθ(Yi)/pθ(Yi).

Any sample performance h(X) can be generated by the acceptance-rejection method as

h(X) =
∞∑
n=1

n−1∏
i=1

1{gi(Ui;θ)> 0}1{gn(Un;θ)≤ 0}h(Yn),

where gi(ui;θ) = ui−ωθ(Yi). Here again discontinuities are introduced by the indicator functions,
and uniform random numbers are a natural choice of inputs. Conditional on the filtration generated
by {Yi, i ∈ Z+}, sensitivity analysis for the sample performance generated by the acceptance-
rejection method falls into a special case of sensitivity analysis for the stopping time problem, and
conditions (A.2)-(A.5) and the condition in Proposition 1 are satisfied.

Example 9. Controls Charts Control charts aim to detect (statistically) when a manufacturing
or business process goes out of control. The system is assumed to output samples having different
statistical distributions when in control versus when out of control. The systems goes out of control
at the (unobservable) random time χ with cdf F0(·). The output Zi of the ith sample has cdf
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F1(·) when in control and F2(·) when out of control. For an exponentially weighted moving average
(EWMA) chart, the (observable) test statistic after the ith sample is Yi = αZi + (1 − α)Yi−1.
The stopping time N is the time when the system is declared out of control: N = min{i : Yi /∈
[θ1, θ2]} = min{i : Xi /∈ [0,1]}, where θ1 and θ2 are fixed lower and upper control limits for the
test statistic, and Xi = Yi−θ1

θ2−θ1
. Note that {Xi, i≥ 1} is a Markov chain that follows the recursion

Xi = (1−α)Xi−1 + gi(Ui;θ), where

gi(Ui;θ) =
α

θ2− θ1

[
1{i < χ/∆}F−1

1 (Ui) + 1{i≥ χ/∆}F−1
2 (Ui)− θ1

]
,

and ∆ is the sampling period (the time between any two successive monitoring epochs). Here the
density for distribution Fi, e.g., exponential distribution, may not satisfy the smoothness require-
ment in [53].

Here we consider sensitivity analysis with respect to θ = θ2. This model falls into the spe-
cial case of Corollary 1 where gi(ui;θ) = ξi(θ)ηi(ui), with ξi(θ) = α/(θ − θ1) and ηi(ui) = 1{i <
χ/∆}F−1

1 (ui) + 1{i≥ χ/∆}F−1
2 (ui)− θ1, for i= 1, . . . , n. Then we have

ri(u;θ) =− 1

θ2− θ1

[
1{i < χ/∆}F−1

1 (ui)f1(F−1
1 (ui)) + 1{i≥ χ/∆}F−1

2 (ui)f2(F−1
2 (ui))− θ1

]
, and

d(u;θ) =
1

θ2− θ1

n∑
i=1

[
1{i < χ/∆} F−1

1 (ui)

f1(F−1
1 (ui))

+ 1{i≥ χ/∆} F−1
2 (ui)

f2(F−1
2 (ui))

+ 1

]
.

4.3. Credit Risk Derivatives We consider two important types of credit risk derivatives:
basket default swaps (BDSs) and collateralized debt obligations (CDOs). In a BDS contract, the
buyer pays fixed premia p1, ..., pk to the protection seller at dates 0<T1 < . . . < Tk <T , and if the
ith default time τ(i) occurs before T , i.e., τ(i) < T , these premium payments stop, and the seller
undertakes the loss of the ith default and makes a payment to the buyer. Let Li be the loss of the
ith default. The discounted value of the ith default swap is the difference between the discounted
payments made by the seller and those made by the buyer:

Vbds(τ) = Vvalue(τ)−Vprot(τ),

where Vprot(τ) is the discounted premium payed by the buyer:

Vprot(τ) =

{∑`

j=1 pj exp(−rTj) + p`+1 exp(−rτ(i))
τ(i)−T`
T`+1−T`

, if T` ≤ τ(i) ≤ T`+1,∑k

j=1 pi exp(−rTj), if τ(i) >T,

and Vvalue(X) the discounted payment made by the seller:

Vvalue(X) =L(i) exp(−rτ(i))1{τ(i) <T}.

In a CDO, the losses caused by the defaults of the assets in the portfolio are packaged together
and then tranched. The tranches are ordered so that losses are absorbed sequentially following the
order of the tranches. For example, a tranche of a CDO absorbs the loss above a threshold L− and
below a threshold L+, i.e.,

Vcdo(τ) = (L−L−) ·1{L>L−}− (L−L+) ·1{L>L+}, where

L=
n∑
i=1

Li ·1{τi <T}.

Suppose that the vector of default times (τ1, . . . , τn) have a joint distribution with marginal cdf’s
Fi(·), i= 1, . . . , n, and a dependence structure modeled by an Archimedean copula. Then we can
generate τi’s by generating V = (V1, . . . , Vn) from the copula, and putting τi = F−1

i (Vi), i= 1, . . . , n.
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The sample performances Vvalue(τ), Vprot(τ), and Vcdo(τ) may be discontinuous with respect to
the structural parameter θ in the copula model due to the presence of indicator functions and order
indices. As a result, neither IPA nor LR can be applied directly for this model. On the other hand,
Vvalue(τ), Vprot(τ), and Vcdo(τ) are all of the form ϕ(g(U ;θ)) that fits our framework, due to the
generality of the measurable function ϕ(·). Unlike in [41] where a separate CMC technique needs
to be derived for each type of cash flow, the GLR method in this work can estimate the derivative
of the expectation for all three types of cash flows.

5. Numerical Experiments In this section, we present numerical examples to demonstrate
broad applicability and flexibility of the proposed GLR-U method to estimate sensitivities in vari-
ous situations. The examples include an indicator function applied to a linear combination of two
exponential random variables, SAN, MCMC, and a CDO model. Additional examples including
acceptance-rejection and control charts can be found in Appendix B. The stochastic models in all
examples have uniform random numbers as inputs, so that the GLR method in [53] does not apply.
Therefore, for simplicity, we refer to GLR-U as GLR in this section. All experiments are imple-
mented in Matlab on a laptop with an Intel i7-1065G7 CPU. The code for the numerical experiments
in this paper can be found at https://github.com/pengyijie-pku/Generalized-Likelihood-Ratio.

5.1. Distribution Sensitivities for a Linear Model We estimate distribution sensitivities
where ϕ(·) is an indicator function for a linear combination of two independent exponential random
variables with means 1/λ1 and 1/λ2, i.e.,

ϕ(g(U ;θ)) = 1{g(U ;θ)≤ z} where g(U ;θ) =− θ

λ1

log(U1)− 1

λ2

log(U2).

This sample performance falls into the special case stated in Corollary 1, and the conditions in
Proposition 1 and the integrability condition on the weight function discussed in Section 4.1 can
be checked straightforwardly. The specific forms of the estimators G1,1(·),G1,2(·),G2,1(·),G2,2(·) for
distribution sensitivities can be found in Appendix B.

For our numerical experiments, we take λ1 = 1, λ2 = 1, and θ = 1, and we estimate the density
of g(U ;θ) at z, as a function of z from z = 0.01 to 10 with a step size of 0.01. We perform
106 independent simulation runs with GLR. The curves of the estimated density and estimated
variances as a function of z are given in Figure 1. We also estimate the sensitivity of E[ϕ(g(U ;θ))]
with respect to θ at z, as a function of z from z = 0.01 to 10 with a step size of 0.01. The numerical
observations are similar, and the details can be found in Appendix B.

Figure 1(a) shows the estimated density curve, and Figure 1(b) presents the sample variance
curves of three distribution sensitivity estimators: G2,1(·) (GLR-1), G2,2(·) (GLR-2), and a com-
bined GLR estimator that minimizes the variance of the linear combination of GLR-1 and GLR-2
with weights given by (GLR-Opt) in Appendix A. Due to page limit, the variance comparison
between GLR and the finite difference method with common random numbers (FDC) is relegated
to Appendix B. The peak value of the variance curve of FDC(0.01) is about 200 times larger than
that of GLR-Opt, and the variance of FDC(0.01) is about 10 times of that of FDC(0.1), which
indicates that FDC suffers from a bias-variance tradeoff issue. The computational time of GLR is
about 1.5 times of that of FDC.

In Figure 2(a), the solid line in the center is the estimate for the α-quantiles qα of g(U ;θ),
α= 0.1, . . . ,0.9, using a batch of 104 independent simulation replications, and the upper and lower
dotted lines are calculated respectively by adding and subtracting twice the estimated standard
deviation to the estimated quantile values, which are estimated by GLR using the same batch
of 104 independent simulation replications for estimating the quantiles. Figure 2(b) presents the
coverage rates of the 90%-confidence intervals for quantiles qα, α= 0.1, . . . ,0.9, by 104 independent
macro experiments. The true quantile values can be calculated by inverting a hypoexponential
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(a)Distribution sensitivity curve.
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Figure 1. Density curve estimated by GLR in the example of Section 5.1.
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(a)Confidence intervals for quantiles.
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(b)Coverage rates of confidence intervals.

Figure 2. 90%-confidence intervals estimated by GLR for quantiles and coverage rates in example of Section 5.1.

distribution ([39, Section 4.6]). We can see the coverage rates of the 90%-confidence intervals match
the target value statistically. As the quantile gets closer to the tail of the distribution, the variances
of the quantile estimates and confidence interval estimates are larger because there are many fewer
samples in the tail.

The variance of GLR estimators can be reduced by applying CMC to these sensitivity estimators.
CGLR is the conditional GLR method (GLR-Opt) with uniform random numbers as inputs, the
specific form of which can be found in Appendix B. Then we apply RQMC to CGLR for estimating
the density of g(U ;θ), which basically replaces the input uniform random numbers with a RQMC
point set to estimate the expectation. CGLR-Q is the CGLR method with the Sobol sequence
scrambled by an algorithm of [46] in Matlab. We set 213 for the size of the RQMC point set for
CGLR-Q and the replications of input uniform random numbers for GLR and CGLR, and the
variance of the estimators is estimated by 102 independent simulations. Figure 3(a) shows that the
variance of CGLR is smaller than the variance of GLR over the entire range, and the peak value
in the variance curve of GLR is about 4 times that of the variance curve of CGLR; Figure 3(b)
shows that the variance of CGLR dominates the variance of CGLR-Q over the entire range, and
the peak value in the variance curve of CGLR is around 40 times that of the variance of CGLR-Q.
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Figure 3. Variance comparison between GLR, CGLR, and CGLR-Q estimators with an average of 213 samples for
estimating the density of g(U ;θ) in the example of Section 5.1.

Figure 4. A SAN with six activities.

Similar comparison for estimating the derivative of E[g(U ;θ)] with respect to θ can be found in
Appendix B.

5.2. Distribution Sensitivities for a Stochastic Activity Network We estimate distri-
bution sensitivities for the sample performance of a small SAN depicted in Figure 4. There are five
nodes representing different stages of activity. The nodes are connected by the arcs representing the
activities in each stage. The durations of activities follow independent exponential distributions,
i.e., Xi = − 1

λi
log(Ui), i = 1, . . . ,6. Let θ = λ6. There are three different paths representing the

tasks to reach the final stage of a project, i.e., π1 = (1,4,6), π2 = (2,5,6), π3 = (1,3,5,6), and
the completion time for each path is additive, i.e,

∑
j∈πi

Xj, i= 1,2,3. The completion time for the
entire project is max(X1 +X4 +X6,X2 +X5 +X6,X1 +X3 +X5 +X6), and the sample performance
for the distribution function of completion time is

ϕ(g(U ;θ)) =1{max(X1 +X4 +X6,X2 +X5 +X6,X1 +X3 +X5 +X6)≤ z}
=1{X1 +X4 +X6 ≤ z}1{X2 +X5 +X6 ≤ z}1{X1 +X3 +X5 +X6 ≤ z} ,

where ϕ(v1, v2, v3) =
∏3

i=1 1{vi ≤ 0}, and we have

gi(u;θ) =−
∑
j∈πi

1

λj
loguj − z, i= 1,2,3,

∂zg(u;θ) =−
(

1,1,1

)T
and ∂θg(u;θ) =

logu6

θ2

(
1,1,1

)T
.
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(a)Density curve.
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Figure 5. Density estimation by GLR in the SAN example of Section 5.2.

This sample performance goes beyond the setting in Section 4.1, but it can be put under the
more general stochastic model (1). In the theory of GLR, the dimension of the vector of the input
uniform random numbers is assumed to be the same as that of the argument vector of function
g. For the SAN model, there are six input uniform random numbers, while the dimension of the
argument vector of g is three. Therefore, we can arbitrarily choose three uniform random numbers
to condition on and treat the remaining three as the inputs to the stochastic models for deriving
GLR. We condition on (U4,U5,U6) and treat (U1,U2,U3) as the input uniform random numbers for
deriving GLR. The Jacobian matrix is

Jg(u;θ, z) =−

 1
λ1u1

0 0

0 1
λ2u2

0
1

λ1u1
0 1

λ3u3

 .

The GLR estimator for E[ϕ(g(U ;θ))] with respect to θ can be obtained by multiplying the GLR
estimator for the density by − logU6/θ

2. Here we only report on the performance of the GLR
estimators for the density of g(U ;θ). Additional results for quantiles can be found in Appendix B.
We have

r1(u;θ, z) = λ1u1, r2(u;θ, z) = λ2u2, r3(u;θ, z) = 0, and d(u;θ, z) =−λ1−λ2.

In this case, condition (A.1) in Theorem 1 can be justified by checking conditions in Proposition
1. Conditions (A.2) and (A.3) can also be checked straightforwardly.

In the experiments, we set λi = 1, i= 1, . . . ,6, in the stochastic model, and estimate distribution
sensitivity curves from z = 0.01 to 15 with a step size of 0.01. Figure 5 presents the density and
variance curves estimated by the GLR method using 106 independent simulation replications. The
numerical comparisons among FDC, GLR, CGLR, CGLR-Q can be found in Appendix B.

5.3. Sensitivities for Metropolis–Hastings Algorithm For the Metropolis–Hastings
algorithm, we choose the target distribution to be normal with density πθ(x) = 1√

2π
exp(−(x −

θ)2/2) and the proposal distribution to be normal with density p(y|x) = 1√
2πδ

exp
(
− 1

2δ2
(y−x)2

)
.

We estimate the derivative of the first two moments with respect to θ, which are 1 and 0. Then

ωθ(Xi−1, Yi) = min
{

1, πθ(Yi)

πθ(Xi−1)

}
and

∂ωθ(Xi−1, Yi)

∂θ
= (Yi−Xi−1) exp

(
(Xi−1− θ)2

2
− (Yi− θ)2

2

)
1

{
exp

(
(Xi−1− θ)2

2
− (Yi− θ)2

2

)
< 1

}
.
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GLR FDC(0.01) FDC(0.1)
∂E[Xn]/∂θ≈ 1 0.999 ± 0.001 0.99 ± 0.02 0.988 ± 0.004
∂E[X2

n]/∂θ≈ 0 0.002 ± 0.003 −0.05 ± 0.04 0.097 ± 0.008

Table 1. Sensitivities for Metropolis–Hastings algorithm with respect to parameter θ = 0 in the targeted normal
distribution, based on 106 independent replications (mean ± standard error).

In the experiment, we set θ = 0, d = 1, the initial state X1 = 1, and the number of transitions
n= 100. From the histogram reported in Appendix B, the Markov chain is mixed well after 100
steps. From Table 6, the variances of FDC(0.01) are 400 and 180 times those of GLR, and the true
sensitivity values lie out of the 90% confidence interval of FDC(0.1). The computational time of
GLR is about 30 times that of FDC.

5.4. Sensitivities of Collateralized Debt Obligations We estimate the sensitivity with
respect to the parameter θ that governs the dependence in the copula model for the expectation
of the loss absorbed by the tranche that covers the first 30% of the total losses for 10 assets if
there are defaults, i.e., L− = 0 and L+ = 0.3× (

∑10

i=1Li). We set r= 0.1 and T = 1. The marginal
distributions of the defaults are assumed to be exponential, so τi =− 1

λi
log(Xi), i= 1, . . . ,10. The

parameters λi and loss Li, i= 1, . . . , n, are randomly generated from the uniform distribution over
(0,1) in the experiments.

We compare the GLR estimator with FDC(δ), where δ is the perturbation size. Due to the
simplicity of the weight function of GLR, the computational time of GLR barely increases relative
to that required to run the simulation model itself, so the sensitivity estimate by GLR is almost
a free byproduct that can be obtained simultaneously during the simulation. Table 3 shows the
sensitivity estimates with sample sizes m= 104, m= 105, and m= 106 under the Clayton copula,
for θ = 0.5. The variances of FDC(0.01) are about 10− 50 times those of GLR. For sample size
m = 106, the estimate with FDC(0.1) lies outside of the 90% confidence interval of the GLR
estimate, whereas the estimate with GLR lies in the 90% confidence interval of the FDC(0.01)
estimate with the sample size m= 107, which is −0.179 ± 0.002. This indicates that FDC suffers
from the bias-variance tradeoff, while GLR is accurate under a relatively small sample size. The
computational time of GLR is about 5 times that of FDC. Numerical results for sensitivities of
CDOs under the Ali-Mikhail-Haq copula and sensitivities of BDS under both the Clayton and
Ali-Mikhail-Haq copulas can be found in Appendix B. The observations are similar to those in this
example.

6. Conclusions In this paper, a GLR-U method is proposed for a family of stochastic mod-
els with uniform random numbers as inputs. The framework studied in this work covers a large
range of discontinuities, and it includes many applications such as density estimation and credit
risk financial derivatives. Since uniform random numbers are the basic building blocks for gener-
ating other random variables, our new method significantly relaxes the limitations on the input

m= 104 m= 105 m= 106

GLR −0.187 ± 0.01 −0.185 ± 0.004 −0.181 ± 0.002

FDC(0.1) −0.171 ± 0.007 −0.177 ± 0.003 −0.176 ± 0.002

FDC(0.01) −0.155 ± 0.07 −0.186 ± 0.02 −0.189 ± 0.006

Table 2. Sensitivity estimates of CDO with 10 assets governed by the Clayton copula with θ = 0.5 based on 102

experiments (mean ± standard error).
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random variables in [53] and [51]. The technical conditions for justifying unbiasedness of GLR-U
are relatively easy to satisfy in practice, and we show how to verify them on illustrative examples.
The variance of the GLR-U estimator can be reduced substantially (by a factor of more than 100
in one of our examples) by appropriately combining with CMC and RQMC. How to establish a
general framework to apply CMC and RQMC to GLR for practical problems with different types
of discontinuities in the sample performance is a good topic for future research.
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Appendices

Appendix A. Theoretical Supplements

Proof of Theorem 1 under conditions (A.1)-(A.4)

Proof. We have

∂

∂θ

∫
[δ,1−δ]n

ϕε(g(u;θ)) du=

∫
[δ,1−δ]n

∇xϕε(x)|x=g(u;θ)∂θg(u;θ) du

=

∫
[δ,1−δ]n

∇uϕε(g(u;θ))J−1
g (u;θ)∂θg(u;θ) du,

where

∇ϕε(x) :=

(
∂ϕε(x)

∂x1

, . . . ,
∂ϕε(x)

∂xn

)
.

The interchange of the differentiation and integration can be justified by uniform integrability:∫
[δ,1−δ]n

sup
θ∈Θ

|∇xϕε(x)|x=g(u;θ)∂θg(u;θ)| du<∞.

Since g(u;θ) is twice continuously differentiable in (0,1)n ×Θ by condition (A.3), the elements
in ∂θg(u;θ), Jg(u;θ), and J−1(u;θ) are bounded in a compact space [δ,1 − δ]n × Θ, and so are
∇xϕε(x)|x=g(u;θ), ri(u;θ) and d(u;θ). By the Gauss-Green Theorem,∫

[δ,1−δ]n
∇uϕε(g(u;θ))J−1

g (u;θ)∂θg(u;θ) du1 · · ·dun

=
n∑
i=1

∫
[δ,1−δ]n−1

ϕε(g(u;θ))
(
J−1
g (u;θ)∂θg(u;θ)

)T
ei
∏
j 6=i

duj

∣∣∣∣1−δ
ui=δ

−
∫

[δ,1−δ]n
ϕε(g(u;θ))div

(
J−1
g (u;θ)∂θg(u;θ)

)
du1 · · ·dun,

where for n= 1, the integration in the first term on the right-hand side of the equation is absent,
and this term becomes

ϕε(g(1− δ;θ))r1(1− δ;θ)−ϕε(g(δ;θ))r1(δ;θ), (14)
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and for h(u) = (h1(u), . . . , hn(u)),

div(h(u)) :=
n∑
i=1

∂h(u)

∂ui
.

Then

div
(
J−1
g (u;θ)∂θg(u;θ)

)
=

n∑
i=1

∂

∂ui
eTi J

−1
g (u;θ)∂θg(u;θ)

=
n∑
i=1

eTi ∂uiJ
−1
g (u;θ)∂θg(u;θ) + trace(J−1

g (u;θ)∂θJg(u;θ)).

By differentiating equation J−1
g (u;θ)Jg(u;θ) = I with respect to ui on both sides, we have

0 =∂ui
(
J−1
g (u;θ)Jg(u;θ)

)
=
(
∂uiJ

−1
g (u;θ)

)
Jg(u;θ) +J−1

g (u;θ)∂uiJg(u;θ),

which leads to

∂uiJ
−1
g (u;θ) =−J−1

g (u;θ) (∂uiJg(u;θ))J−1
g (u;θ).

Therefore, we have

d(u;θ) =−div
(
J−1
g (u;θ)∂θg(u;θ)

)
.

With the discussion above,

∂

∂θ

∫
[δ,1−δ]n

ϕε(g(u;θ)) du

=
n∑
i=1

∫
[δ,1−δ]n−1

ϕε(g(u;θ))ri(u;θ)
∏
j 6=i

duj

∣∣∣∣1−δ
ui=δ

+

∫
[δ,1−δ]n

ϕε(g(u;θ))d(u;θ) du.
(15)

With condition (A.1),

lim
ε→0

sup
θ∈Θ

∣∣∣∣ ∫
[δ,1−δ]n

(ϕε(g(u;θ))−ϕ(g(u;θ)))d(u;θ) du

∣∣∣∣
≤ sup
θ∈Θ

(∫
[δ,1−δ]n

|ϕε(g(u;θ))−ϕ(g(u;θ))|pdu
)1/p(∫

[δ,1−δ]n
|d(u;θ)|qdu

)1/q

≤C lim
ε→0

(∫
[δ,1−δ]n

|ϕε(g(u;θ))−ϕ(g(u;θ))|pdu
)1/p

= 0,

where the first inequality holds by applying Hölder’s inequality for 1/p+1/q= 1, and C is a positive
constant. Similarly, we can show the uniform convergence of the first term on the right-hand side
of (15) for n> 1, and

lim
ε→0

∣∣∣∣ ∫
[δ,1−δ]n

ϕε(g(u;θ)) du−
∫

[δ,1−δ]n
ϕ(g(u;θ)) du

∣∣∣∣= 0.

For n= 1, the first term of the right side of (15) becomes (14), and condition (A.1) implies that

lim
ε→0

sup
θ∈Θ

|(ϕε(g(1− δ;θ))−ϕ(g(1− δ;θ)))r1(1− δ;θ)− (ϕε(g(δ;θ))−ϕ(g(δ;θ)))r1(δ;θ)|= 0.



Peng, Fu, Hu, L’Ecuyer and Tuffin: GLR with Uniform Random Numbers
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 25

From [59], d
dθ

limε→0 hε(θ) = limε→0 h
′
ε(θ) holds if h′ε(θ) converges uniformly with respect to θ ∈Θ

as ε→ 0. Therefore,

∂

∂θ

∫
[δ,1−δ]n

ϕ(g(u;θ)) du=
∂

∂θ
lim
ε→0

∫
[δ,1−δ]n

ϕε(g(u;θ)) du= lim
ε→0

∂

∂θ

∫
[δ,1−δ]n

ϕε(g(u;θ)) du

= lim
ε→0

n∑
i=1

∫
[δ,1−δ]n−1

ϕε(g(u;θ)) ri(u;θ)
∏
j 6=i

duj

∣∣∣∣1−δ
ui=δ

+ lim
ε→0

∫
[δ,1−δ]n

ϕε(g(u;θ)) d(u;θ) du

=
n∑
i=1

∫
[δ,1−δ]n−1

ϕ(g(u;θ)) ri(u;θ)
∏
j 6=i

duj

∣∣∣∣1−δ
ui=δ

+

∫
[δ,1−δ]n

ϕ(g(u;θ)) d(u;θ) du, (16)

where the interchange of limit with differentiation and integration can be justified by uniform

convergence for the first and second terms in (15) established above.

With condition (A.4),

lim
δ→0

sup
θ∈Θ

∣∣∣∣ ∫
[δ,1−δ]n

ϕ(g(u;θ)) d(u;θ) du−
∫

(0,1)n
ϕ(g(u;θ)) d(u;θ) du

∣∣∣∣
≤ lim

δ→0

∫
(0,1)n\[δ,1−δ]n

sup
θ∈Θ

∣∣ϕ(g(u;θ)) d(u;θ)
∣∣ du= 0,

(17)

and uniform convergence can established similarly for the first term in (16) under condition (A.2).

Therefore,

∂

∂θ

∫
(0,1)n

ϕ(g(u;θ)) du= lim
δ→0

∂

∂θ

∫
[δ,1−δ]n

ϕ(g(u;θ)) du

=
n∑
i=1

∫
(0,1)n−1

[
lim

ui→1−
ϕ(g(u;θ)) ri(u;θ)− lim

ui→0+
ϕ(g(u;θ)) ri(u;θ)

] ∏
j 6=i

duj

+

∫
(0,1)n

ϕ(g(u;θ)) d(u;θ) du,

which completes the proof. �

Proof of Theorem 1 under conditions (A.3)-(A.5)

Proof. As in [53], define a sequence of bounded functions ϕL(x) = max{min{ϕ(x),L},−L}, and

then |ϕL(x)| ≤ϕ(x) and limL→∞ϕL(x) =ϕ(x). From Theorem 1 in [53], there exists a sequence of

bounded and smooth functions ϕε,L(·) such that

lim
L→∞

‖ϕε,L−ϕL‖p = 0,

where p > 1, and ‖h‖p :=
(∫

Rn |h(x)|pdx
)1/p

. Except for replacing ϕε(·) with ϕε,L(·), the procedures

before (15) are the same as in the proof for Theorem 1 under conditions (A.1)-(A.4). Under

condition (A.5),

lim
ε→0

lim
δ→0

sup
θ∈Θ

∣∣∣∣ n∑
i=1

∫
[δ,1−δ]n−1

ϕε,L(g(u;θ))ri(u;θ)
∏
j 6=i

duj

∣∣∣∣1−δ
ui=δ

∣∣∣∣= 0.
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With condition (A.3), g(u;θ) and det(Jg(u;θ)) are bounded in [δ,1−δ]n×Θ, By change of variables
and Hölder’s inequality,

lim
ε→0

sup
θ∈Θ

∣∣∣∣ ∫
[δ,1−δ]n

(ϕε,L(g(u;θ))−ϕL(g(u;θ)))d(u;θ) du

∣∣∣∣
= lim
ε→0

sup
θ∈Θ

∣∣∣∣ ∫
Sδ

(ϕε,L(x)−ϕL(x))|det(Jg(u;θ))| d(u;θ)|u=g−1(x;θ) dx

∣∣∣∣
≤ lim
ε→0
‖ϕε,L−ϕL‖p sup

θ∈Θ

∣∣∣∣ ∫
Sδ
|det(Jg(u;θ)) d(u;θ)|q

u=g−1(x;θ)
dx

∣∣∣∣1/q = 0,

(18)

where

Sδ := {x∈Rn : x= g(u;θ), u∈ [δ,1− δ]n}.

With condition (A.4), we have

lim
δ→0

lim
ε→0

sup
θ∈Θ

∣∣∣∣ ∫
[δ,1−δ]n

ϕε,L(g(u;θ))d(u;θ) du−
∫

(0,1)n
ϕL(g(u;θ))d(u;θ) du

∣∣∣∣
≤ lim
δ→0

lim
ε→0

sup
θ∈Θ

∣∣∣∣ ∫
[δ,1−δ]n

ϕε,L(g(u;θ))d(u;θ) du−
∫

[δ,1−δ]n
ϕL(g(u;θ))d(u;θ) du

∣∣∣∣
+ lim
δ→0

sup
θ∈Θ

∣∣∣∣ ∫
[δ,1−δ]n

ϕL(g(u;θ))d(u;θ) du−
∫

(0,1)n
ϕL(g(u;θ))d(u;θ) du

∣∣∣∣= 0,

where the first term goes to zero because of (18) and the second term goes to zero by a similar
argument as in (17). Therefore,

∂

∂θ

∫
(0,1)n

ϕL(g(u;θ)) du

= lim
δ→0

lim
ε→0

∂

∂θ

∫
[δ,1−δ]n

ϕL(g(u;θ)) du=

∫
(0,1)n

ϕL(g(u;θ)) d(u;θ) du.

With condition (A.4) and noticing that |ϕL(x)−ϕ(x)| ≤ϕ(x),

lim
L→∞

sup
θ∈Θ

∣∣∣∣ ∫
(0,1)n

(ϕL(g(u;θ))−ϕ(g(u;θ))) d(u;θ) du

∣∣∣∣= 0.

By this uniform convergence and a similar argument as in the first part of the proof for (16) above,

∂

∂θ

∫
(0,1)n

ϕ(g(u;θ)) du=
∂

∂θ

∫
(0,1)n

lim
L→∞

ϕL(g(u;θ)) du

= lim
L→∞

∂

∂θ

∫
(0,1)n

ϕL(g(u;θ)) du= lim
L→∞

∫
(0,1)n

ϕL(g(u;θ)) d(u;θ) du=

∫
(0,1)n

ϕ(g(u;θ)) d(u;θ) du,

which proves the theorem. �

Proof of Proposition 1

Proof. Define

χ̃ε(x) :=


1 x<−ε,

1− (x+ ε)

2ε
− ε≤ x≤ ε,

0 x> ε,
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and

χε(x) :=
1

ε

∫
R
ϕ̃ε(x− y)φ(y/ε)dz,

where φ(·) is the density of the standard normal distribution. By construction, χε(·) is smooth.
From the condition of the proposition, gi(ui;θ) is strictly monotone with respect to ui on [δ,1− δ].
Without loss of generality, we assume gi(ui;θ) is strictly increasing with respect to ui on [δ,1− δ].
For any p > 1, then we have∫ 1

0

∣∣χε(gi(ui;θ))−1{gi(ui;θ)≤ 0}
∣∣p dui

≤1

ε

∫ 1

0

(∫
R

1{min(y− ε,0)≤ gi(ui;θ)≤max(y+ ε,0)}φ(y/ε)dy

)p
dui

≤1

ε

∫ 1

0

∫
R

(
1{min(y− ε,0)≤ gi(ui;θ)≤max(y+ ε,0)}

)p
φ(y/ε)dy dui

≤1

ε

∫
R\[−

√
ε,
√
ε]

φ(y/ε)dy+

∫ 1

0

1{−ε≤ gi(ui;θ)≤ ε+
√
ε} dui

=
1

ε

∫
R\[−

√
ε,
√
ε]

φ(y/ε)dy+ g−1
i (ε+

√
ε;θ)− g−1

i (−ε;θ),

where the second inequality holds by applying Jensen’s inequality. We have

g−1
i (ε+

√
ε;θ)− g−1

i (−ε;θ) = (2ε+
√
ε)

(
∂gi(ui;θ)

∂ui

)−1 ∣∣∣∣
ui=g

−1
i (ξε;θ)

,

where ξε ∈ (−ε, ε+
√
ε). Since infθ∈Θ,ui∈(0,1)\[δ,1−δ] |gi(ui;θ)|> 0, g−1(ξε;θ)∈ [δ,1−δ] for a sufficiently

small ε. Therefore,

lim
ε→0

sup
θ∈Θ

∫ 1

0

∣∣ϕε(g(u;θ)− z)−1{g(u;θ)≤ z}
∣∣p dui

≤ lim
ε→0

sup
θ∈Θ

(2ε+
√
ε)

∣∣∣∣∂gi(ui;θ)∂ui

∣∣∣∣−1

ui=g
−1(ξε;θ)

≤ lim
ε→0

(2ε+
√
ε)

(
inf

θ∈Θ,ui∈[δ,1−δ]

∣∣∣∣∂gi(ui;θ)∂ui

∣∣∣∣)−1

= 0.

From infθ∈Θ,ui∈(0,1)\[δ,1−δ] |gi(ui;θ)|> 0, for ui ∈ (0,1) \ [δ,1− δ],

lim
ε→0

sup
θ∈Θ

∣∣χε(gi(ui;θ))−1{gi(ui;θ)≤ 0}
∣∣= lim

ε→0
1{|gi(ui;θ)| ≤ ε}= 0.

In addition,∫ 1

0

· · ·
∫ 1

0

∣∣ n∏
j=1

χε(gj(uj;θ))−
n∏
j=1

1{gj(uj;θ)≤ 0}
∣∣p du1 · · ·dun

=

∫
(0,1)n

∣∣∣∣ n∑
i=1

(
i∏

j=1

χε(gj(uj;θ))
n∏

j=i+1

1{gj(uj;θ)≤ 0}−
i−1∏
j=1

χε(gj(uj;θ))
n∏
j=i

1{gj(uj;θ)≤ 0}

)∣∣∣∣pdu
≤np−1

n∑
i=1

∫
(0,1)n

∣∣∣∣ i∏
j=1

χε(gj(uj;θ))
n∏

j=i+1

1{gj(uj;θ)≤ 0}−
i−1∏
j=1

χε(gj(uj;θ))
n∏
j=i

1{gj(uj;θ)≤ 0}
∣∣∣∣du

≤np−1

n∑
i=1

∫
(0,1)

∣∣∣∣χε(gi(ui;θ))−1{gi(ui;θ)≤ 0}
∣∣∣∣dui,
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where the first inequality holds by applying Jensen’s inequality. Then the rest of the proof is
straightforward. �

Problem of Transformation.

Under the simple framework of Section 3.1, we illustrate the problem of transformation discussed
at the beginning of Section 2. If we transform ϕ(g(U ;θ)) into ϕ(g(F (X);θ)), where F is the cdf of
X, then the right hand side of (5) becomes∫

∂Ω

ϕ(g(F (x);θ))r(x;θ)f(x)v̂ds−
∫

Ω

ϕ(g(F (x);θ))d(x;θ)f(x)dx, where,

r(x;θ) =

(
∂g(u;θ)

∂u

∣∣∣∣
u=F (x)

f(x)

)−1

∂g(F (x);θ)

∂θ
=

1

f(x)

(
∂g(u;θ)

∂u

∣∣∣∣
u=F (x)

)−1

∂g(F (x);θ)

∂θ
,

d(x;θ) =
1

f(x)

∂

∂x


(
∂g(u;θ)

∂u

∣∣∣∣
u=F (x)

f(x)

)−1

∂g(x;θ)

∂θ
f(x)

=
1

f(x)

∂

∂x


(
∂g(u;θ)

∂u

∣∣∣∣
u=F (x)

)−1

∂g(x;θ)

∂θ

 .

Therefore, the right hand side of (5) can be rewritten as∫
∂Ω

ϕ(g(F (x);θ))

(
∂g(u;θ)

∂u

∣∣∣∣
u=F (x)

)−1

∂g(F (x);θ)

∂θ
v̂ds

−
∫

Ω

ϕ(g(F (x);θ))
∂

∂x


(
∂g(u;θ)

∂u

∣∣∣∣
u=F (x)

)−1

∂g(x;θ)

∂θ

dx

The surface integral typically would not be zero because the density f whose tails might go to zero
has been canceled by the extra 1/f(x) term due to the transformation. For example, let ϕ(z) = z,
g(u;θ) = θu,u∈ (0,1), X follows the standard normal distribution. Then notice that∫

∂Ω

ϕ(g(F (x);θ))

(
∂g(u;θ)

∂u

∣∣∣∣
u=F (x)

)−1

∂g(F (x);θ)

∂θ
v̂ds= F 2(x)

∣∣∣∣∞
x=−∞

= 1.

Therefore, this approach would not transform the problem into the framework of [53], and the
same difficulty addressed in this work exists.

GLR-U for the Ali-Mikhail-Haq Copula.

The generator function for this copula is

ψθ(x) =
1− θ
ex− θ

, θ ∈ [0,1).

Then, we have

∂ψθ(x)

∂θ
=− 1

ex− θ
+

1− θ
(ex− θ)2

,
∂ψ′θ(x)

∂θ
=

ex

(ex− θ)2
− 2ex(1− θ)

(ex− θ)3
,

and

ψ
′

θ(x) =−e
x(1− θ)

(ex− θ)2
, ψ

′′

θ (x) =
2e2x(1− θ)
(ex− θ)3

− e
x(1− θ)

(ex− θ)2
.
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Yθ has a geometric distribution with parameter θ, with probability mass function

(1− θ)θy−1 for y= 1,2, . . . ,

so the LR term is

∂ log fY (y;θ)

∂θ
=− 1

1− θ
+
y− 1

θ
.

The weight functions in the GLR-U estimator are

ri(u;θ, y) =−uiy

1−u
1
y

i

1− θ

 ,

and

di(ui;θ, y) =
1−u

1
y

i

1− θ

y− u− 1
y

i + θ

u
− 1
y

i − θ

− 2

u
− 1
y

i − θ
+

1

1− θ
.

We have

lim
ui→0+

ri(u;θ, y) = lim
ui→1−

ri(u;θ, y) = 0.

GLR-U for Distribution Sensitivities.

To establish the unbiasedness of G1,i(U ;z, θ) and G2,i(U ;z, θ) conditional on U−i, condition
(A.1) in Theorem 1 in the main body of the paper can be justified by checking the conditions in
Proposition 1 in the main body of the paper. Given this conditional unbiasedness, the unconditional
unbiasedness of G1,i(U ;z, θ) and G2,i(U ;z, θ) will follow from

E
[
sup
θ∈Θ

|E[G1,i(U ;z, θ)|U−i]
]
<∞ and E

[
sup
z∈Z
|E[G2,i(U ;z, θ)|U−i]|

]
<∞,

where Z is a neighborhood of z. Since the indicator function is bounded, the conditions of Proposi-
tion 1 in the main body of the paper follow from the integrability condition on the weight functions:
for i= 1, . . . , n,

E
[
sup
θ∈Θ

|ri(U i;θ)]

]
<∞, E

[
sup
θ∈Θ

|ri(U i;θ)]

]
<∞, E

[
sup
θ∈Θ

|d(U ;θ)]

]
<∞, and

E
[
|r̃i(U i;θ)]

]
<∞, E [|r̃i(U i;θ)]]<∞, E

[
|d̃(U ;θ)]

]
<∞.

The GLR-U estimator for estimating the distribution sensitivities is not unique. We can consider
the above GLR-U estimator for each i and construct the following linear combination of these n
GLR-U estimators with real-valued weights wi, as in Hammersley and Handscomb [24, p.19]:

n∑
i=1

wiGr,i(U ;z, θ) subject to
n∑
i=1

wi = 1, r= 1,2.
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An optimal GLR-U estimator, which minimizes the variance, can be obtained by solving

arg min
(w1,...,wn)

Var

(
n∑
i=1

wiGr,i(U ;z, θ)

)
subject to

n∑
i=1

wi = 1.

This leads to the optimal weights

w∗i =
eTi Σ−1e

eTΣ−1e
, i= 1, . . . , n, (GLR-Opt)

where e = (1, . . . ,1)T , ei is a d-dimensional unit vector in ith direction, and Σ = (Σi′i)n×n is the
covariance matrix of (Gr,1(U ;z, θ), . . . ,Gr,n(U ;z, θ)). In practice, w∗i ’s must be estimated, and such
estimators will be correlated with the Gr,i. This linear combination idea is equivalent to a control
variate formulation.

Appendix B. Supplements of Section 5

Distribution Sensitivities for a Linear Model

For the components in the GLR estimator, we have

∂g(u;θ)

∂u1

=− θ

λ1u1

,
∂g(u;θ)

∂u2

=− 1

λ2u2

,
∂g(u;θ)

∂θ
=− 1

λ1

logu1, and

∂2g(u;θ)

∂u2
1

=
θ

λ1u2
1

,
∂2g(u;θ)

∂u2
2

=
1

λ2u2
2

,
∂2g(u;θ)

∂θ∂u1

=− 1

λ1u1

,
∂2g(u;θ)

∂θ∂u2

= 0.

Then the GLR estimators for distribution sensitivities in Section 5.1 are

G1,1(U ;z, θ) =−1

θ
1{g(U ;θ)≤ z} (logU1 + 1) ,

G1,2(U ;z, θ) =
λ2

λ1

[
1

{
− θ

λ1

logU1 ≤ z
}

logU1−1{g(U ;θ)≤ z} logU1

]
,

G2,1(U ;z, θ) =
λ1

θ

[
1

{
− 1

λ2

logU2 ≤ z
}
−1{g(U ;θ)≤ z}

]
,

G2,2(U ;z, θ) = λ2

[
1

{
− θ

λ1

logU1 ≤ z
}
−1{g(U ;θ)≤ z}

]
.

For the numerical experiments in Section 5.1 of the main body of the paper, we estimate the
sensitivity of E[ϕ(g(U ;θ))] with respect to θ at z, as a function of z from z = 0.01 to 10 with
a step size of 0.01. We perform 106 independent simulation runs with GLR. Figure 6(a) shows
the curves of the distribution sensitivities with respect to θ, and Figure 6(b) presents the sample
variance curves of three distribution sensitivity estimators: G1,1(·) (GLR-1), G1,2(·) (GLR-2), and
a combined GLR estimator minimizing variance in a family of linear combinations of GLR-1 and
GLR-2 given by (GLR-Opt).

Figure 7 presents the variance curves for two distribution sensitivities estimated by FDC using
a batch of 106 independent simulation replications. FDC(δ) denotes the FDC with perturbation
size δ. Comparing Figure 7 with Figure 1(b) in the main body of the paper and Figure 6(b), we
can see the variance of FDC is much larger than those of the GLR estimators, and the variance
of FDC(0.01) is about 10 times of that of FDC(0.1), which indicates that FDC suffers from a
bias-variance tradeoff issue.

We now illustrate how the variance of GLR estimators can be reduced by applying CMC to these
sensitivity estimators for the example in Section 5.1. For G1,1(U ;z, θ) and G2,1(U ;z, θ), we condition
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(a)Distribution sensitivity curve.
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Figure 6. Distribution sensitivities with respect to θ estimated by GLR in the example of Section 5.1 in the main
body of the paper.
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(a)Variance curves for distribution sensitivity with respect
to θ.
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Figure 7. Variance curves for distribution sensitivities estimated by FDC in the example of Section 5.1 of the main
body the paper.

on U1 and integrate over U2 for calculating the conditional expectations, and for G1,2(U ;z, θ) and
G2,2(U ;z, θ), we condition on U2 and integrate over U1 for calculating the conditional expectations.
The resulting conditional GLR estimators are given by

Ĝ1,1(U1;z, θ) =−1

θ
(logU1 + 1)

[
1− exp

[
−λ2

(
z+

θ logU1

λ1

)
1

{
z+

θ logU1

λ1

≥ 0

}]]
,

Ĝ1,2(U2;z, θ) = λ2

(
1 +

λ1z

θ

)
exp

(
−λ1z

θ

)
−λ1

[
1 +

(λ2z+ logU2)

θ
1

{
z+

θ logU2

λ2

≥ 0

}][
1− exp

[
−λ1

(
z+

θ logU2

λ2

)
1

{
z+

θ logU2

λ2

≥ 0

}]]
,

and

Ĝ2,1(U1;z, θ) =
λ1

θ

[
exp

[
−λ2

(
z+

θ logU1

λ1

)
1

{
z+

θ logU1

λ1

≥ 0

}]
− exp (−λ2z)

]
,
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Figure 8. Variance comparison between GLR, CGLR, and CGLR-Q estimators with an average of 213 samples for
estimating distribution sensitivity with respect to θ in the example of Section 5.1 of the main body of the paper.

Ĝ2,2(U2;z, θ) = λ2

[
exp

[
−λ1

θ

(
z+

logU2

λ2

)
1

{
z+

logU2

λ2

≥ 0

}]
− exp

(
−λ1z

θ

)]
.

The CGLR estimators become smoother than the original GLR estimators. Similarly, we can have
an optimal CGLR estimators using (GLR-Opt).

To compare the variances of GLR, CGLR, and CGLR-Q for estimating the derivative E[g(U ;θ)]
with respect to θ, we report the results of an experiment designed in the same way as in the main
body of the paper. Similar observations can be found in the experimental results.

We can also directly apply RQMC to GLR estimators for estimating the two distribution sen-
sitivities. GLR-Q is the GLR method with the Sobol sequence scrambled by an algorithm of [46]
in Matlab. From Figure 9, we can see that although the variance of GLR-Q becomes smaller than
that of GLR, the performance enhancement of GLR-Q relative to GLR is not as dramatic as that
of CGLR-Q relative to CGLR. This observation corroborates that RQMC typically requires certain
smoothness to achieve desirable variance reduction.

Distribution Sensitivities for a Stochastic Activity Network

An alternative GLR estimator different from that in the main body of the paper can be derived
by conditioning on (U1,U5,U6) and treating (U4,U2,U3) as the input uniform random numbers for
deriving GLR. The Jacobian matrix is

Jg(u;θ, z) =−

 1
λ4u4

0 0

0 1
λ2u2

0

0 0 1
λ3u3

 .

Then we have

r1(u;θ, z) = λ4u4, r2(u;θ, z) = λ2u2, r3(u;θ, z) = λ3u3,

and

d(u;θ, z) =−λ2−λ3−λ4.

This alternative estimator leads to a comparable performance to the one in Section 4.2.
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(a)Variance curves for distribution sensitivity with respect
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Figure 9. Variance curves for distribution sensitivities estimated by GLR and GLR-Q estimators with an average
of 213 samples in the example of Section 5.1 of the main body of the paper.
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Figure 10. 90%-confidence intervals estimated by GLR for quantiles and coverage rates in example of Section 5.2
of the main body of the paper.

The setting of the problem is the same as that in Section 5.2 of the main body of the paper.
Similar to Figure 2 in the example in Section 5.1 of the main body of the paper, Figure 10
presents confidence intervals using a batch of 104 independent simulation replications and the
coverage rates of the 0.9-confidence intervals by 104 independent macro experiments for quantiles
qα, α= 0.1, . . . ,0.9. Again the coverage ratios of the 0.9-confidence intervals match the target value
statistically.

Figure 11 shows that the peak value of the variance curve of FDC(0.01) is over 100 times larger
than that of GLR, and variances of FDC(0.01) are about 10 times of those of FDC(0.1) throughout
the curve. The computational times of GLR is about 1.5 times that of FDC.

The GLR estimator for the example in Section 5.2 of the main body of the paper has the following
analytical form:

G(U ;θ) = λ11{max(X4 +X6,X2 +X5 +X6,X3 +X5 +X6)≤ z}
+λ21{max(X1 +X4 +X6,X5 +X6,X3 +X5 +X6)≤ z}
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Figure 11. Variance curves for density estimates by FDC in the example of Section 5.2 of the main body of the
paper.

− (λ1 +λ2)1{max(X1 +X4 +X6,X2 +X5 +X6,X1 +X3 +X5 +X6)≤ z} .

By conditioning on Û = (U1, . . . ,U5) and integrating over U6, we have a conditional GLR estimator:

Ĝ(Û ;θ) = λ1 [1− exp [−λ6(z−max(X4,X2 +X5,X3 +X5))]]
+λ2 [1− exp [−λ6(z−max(X1 +X4,X5,X1 +X3 +X5))]]
− (λ1 +λ2) [1− exp [−λ6(z−max(X1 +X4,X2 +X5,X1 +X3 +X5))]] .

For comparing the performance of GLR, CGLR, and CGLR-Q for the example in Section 5.2
of the main body of the paper, we set the number of samples in the estimators as 213 and the
number of samples for estimating variances as 100. From Figure 12, we can see that the variance
of CGLR-Q dominates the variance of CGLR which dominates that of GLR over the entire range.
The peak value in the variance curve of GLR is about 3 times that of the variance curve of CGLR,
and the peak value in the variance curve of CGLR-Q is about 2/3 that of the variance curve of
CGLR. In this example, the variance reduction of CGLR and CGLR-Q is not as dramatic as that
in the example in Section 5.1 because the problem in this example has a larger number of input
random numbers.

In the online appendix of [53], there is a discussion on how to transform a distribution not
supported on the entire space to a distribution supported on the entire space by a change of
variables. In this example, we show that this technique may not lead to a GLR estimator with
desirable statistical properties. We consider a change of variables Yi = logXi, i= 1, . . . ,6, and then
the density of input random variable Yi becomes λie

−λieyey, y ∈ (−∞,∞), which has a tail going
down smoothly to zero. The sample performance can be written as

1{g1(Y1, Y2, Y3;Y4, Y5, Y6, z)≤ 0}1{g2(Y1, Y2, Y3;Y4, Y5, Y6, z)≤ 0}1{g3(Y1, Y2, Y3;Y4, Y5, Y6, z)≤ 0} ,

where g1(y1, y2, y3;y4, y5, y6, z) = ey1 + ey4 + ey6 − z,
g2(y1, y2, y3;y4, y5, y6, z) = ey2 + ey5 + ey6 − z,
g3(y1, y2, y3;y4, y5, y6, z) = ey1 + ey3 + ey5 + ey6 − z.

The Jacobian matrix of function g= (g1, g2, g3) with respect to arguments (y1, y2, y3) and its matrix
inversion are

Jg =

 ey1 0 0
0 ey2 0
ey1 0 ey3

 , Jg =

 e−y1 0 0
0 e−y2 0

−e−y3 0 e−y3

 .
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Figure 12. Variance comparison between GLR CGLR, and CGLR-Q estimators with an average of 213 samples in
the example of Section 5.2 in the main body of the paper.

Furthermore, we have

∂y1Jg =

 ey1 0 0
0 0 0
ey1 0 0

 , ∂y2Jg =

 0 0 0
0 ey2 0
0 0 0

 , ∂y2Jg =

 0 0 0
0 0 0
0 0 ey3

 ,

∂zg=−(1,1,1)T and∇ log fY (y) = (−λ1e
y1 +1,−λ2e

y2 +1,−λ3e
y3 +1)T . For estimating the density,

the weight function in the GLR estimator in [53] has the form

3∑
i=1

(
J−1
g ∂yiJgJ

−1
g ei

)T
∂zg− (∂zg)TJ−1

g ∇ log fY =−
3∑
i=1

λi +λ1e
Y1−Y3 =−

3∑
i=1

λi +λ1X1/X3.

The term X1/X3 in the weight function given above could lead to a GLR estimator with infinite
variance, which can be observed in Figure 13 presenting the variance of the GLR estimator as a
function of z based on 106 independent experiments.

Sensitivities for Metropolis–Hastings Algorithm

Figure 14 presents the histogram of the state of Markov chain at 100th step in the Metropo-
lis–Hastings algorithm based on 10000 independent experiments in the example of Section 5.3 of
the main body of the paper. We can see that the distribution of the state of Markov chain is close
to the equilibrium distribution, which is a standard normal distribution.

For the Metropolis–Hastings algorithm, the transition probability distribution of the constructed
Markov chain is

wθ(xi−1, xi)pθ(xi−1|xi)dxi + (1−wθ(xi−1, xi))1{xi = xi−1}.

The LR estimator for ∂E[ϕn(X)]/∂θ is

ϕn(X)
n∑
i=1

[(
∂ logwθ(Xi−1, Yi)

∂θ
+
∂ log pθ(Xi−1|Yi)

∂θ

)
1
{
Ui ≤wθ(Xi−1, Yi)

}
− ∂ logwθ(Xi−1, Yi)

∂θ
1
{
Ui >wθ(Xi−1, Yi)

}]
.
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Figure 13. Variance curves for density estimates by GLR in [53] after a change of variables in the example of Section
5.2 of the main body of the paper based on 106 independent experiments.
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Figure 14. Histogram of the state of Markov Chain at 100th step in the Metropolis–Hastings Algorithm based on
10000 independent experiments in the example of Section 5.3 of the main body of the paper.

The setting of the experiment is set the same as that in Section 5.3. For estimating ∂E[Xn]/∂θ, the
standard deviation of the LR estimator is about 115, and for estimating ∂E[X2

n]/∂θ, the standard
deviation of the LR estimator is about 162. The standard deviations of the LR estimators are
about 100 and 40 times larger than those of the GLR-U estimators and are even much larger than
those of FDC(0.01).

Sensitivities for Acceptance-Rejection Method

For the acceptance-rejection method, the target distribution is a beta distribution with density:

πθ(x) =
[x(1−x)]θ−1∫∞

0
[x(1−x)]θ−1dx

, x∈ (0,1),

and let cθ = supx∈(0,1) πθ(x) = (1/4)θ−1
∫∞

0
[x(1−x)]θ−1dx. The uniform distribution on (0,1) is cho-

sen as the proposal distribution. Then we have wθ(Yi) = [4Yi(1− Yi)]θ−1 and ∂wθ(Yi)

∂θ
= log[4Yi(1−
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GLR FD(0.01) FD(0.1)
∂E[X]/∂θ= 0 0.0001 ± 0.00007 0.001 ± 0.003 −0.0003 ± 0.0003

∂E[X2]/∂θ=−0.02 −0.02 ± 0.00004 −0.016 ± 0.003 −0.0189 ± 0.0003

Table 3. Sensitivities for Acceptance-Rejection method with respect to parameter θ= 2 in the targeted beta distri-
bution, based on 108 independent replications (mean ± standard error).

Yi)]wθ(Yi). In the experiment, we set θ= 2 and the randomization distribution in (13) of the main
body of the paper for GLR is a geometric distribution with parameter 0.4. For the stopping time
problem, FDC is not easy to implement, so we implement the finite difference (FD) method with
independent random numbers. From Table 7, the variances of FD(0.01) are about 1800 and 5600
times those of GLR, and the true sensitivity value of ∂E[X2]/∂θ lies out of the 90% confidence
interval of FD(0.1). The computational time of GLR is about 5 times that of FD.

Sensitivities of Control Charts

Suppose we pay a cost of c per unit of time when the system is out of control and this is not yet
detected, and a one-time cost C to fix the system when it is declared out of control. This model is
a regenerative process, which regenerates each time we fix the system. The expected cost over one
regenerative cycle is cE[(N − dχ/∆e)+] +C, and therefore the average cost per unit of time over
an infinite horizon is cE[(N −dχ/∆e)+] +C

E[N ]
. (19)

The goal might be to select the control limits θ1 and θ2 to minimize this average cost. Widening the
gap θ2−θ1 would reduce the frequency of intervention, so we would pay the fixed cost C less often,
but then the penalty c would be paid over longer periods of time on average. The optimal control
limits achieve an optimal balance between these two types of costs. The sample performance of
the expectation in the numerator of (19) is different from those treated by SPA in [15] and [16],
the development of which depends on the specific structure of the problem. The GLR method in
our work provides unbiased derivative estimators for the expectations in both the numerator and
denominator of (19).

We estimate sensitivities of the expectations in the numerator and denominator of (19) for control
charts with respect to upper control limit θ = θ2 discussed in Section 4.2. When the system is in
control, the output sample is assumed to follow a uniform distribution on [−1,1] and we define
Zi = 2Ui−1. When the system is out of control, the output sample is assumed to follow a uniform
distribution on [0,2] and we define Zi = 2Ui. Then the transition function of the Markov chain is

Xi = (1−α)Xi−1 +
α

θ2− θ1

[1{i < χ/∆}(2Ui− 1) + 1{i≥ χ/∆}2Ui− θ1] ,

and the weight functions in the GLR estimator are

ri(u;θ) =− 1

θ2− θ1

[
1{i < χ/∆}

(
ui−

1

2

)
+ 1{i≥ χ/∆}ui−

θ1

2

]
,

d(u;θ) =
n

θ2− θ1

.

In the experiment, we set α= 1/2, θ1 =−1, θ2 = 1, ∆ = 1, X0 = 0, and assume χ= 1 + 3 logU .
The randomized horizon N ′ in (13) of the main body of the paper follows a geometric distribution
with parameter 0.1. In the random horizon problem, it is not easy to synchronize the two sample
paths for the FD method, because perturbing parameter θ affects the stopping time N , so it would
require substantially more computational overhead to generate the sample paths using common
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GLR FD(0.01) FD(0.1)
∂E[N ]/∂θ 8.6 ± 0.2 8.6 ± 0.4 10.5 ± 0.04

∂E[(N −dχ/∆e)+]/∂θ 8.8 ± 0.07 8.6 ± 0.4 10.5 ± 0.04

Table 4. Derivatives of control charts with respect to upper control limit θ= 1, based on 106 independent replications
(mean ± standard error).

m= 104 m= 105 m= 106

GLR −0.188 ± 0.007 −0.189 ± 0.004 −0.191 ± 0.002

FDC(0.1) −0.194 ± 0.006 −0.195 ± 0.02 −0.195 ± 0.002

FDC(0.01) −0.110 ± 0.05 −0.202 ± 0.01 −0.192 ± 0.005

Table 5. Sensitivity estimates of CDO with 10 assets governed by the Ali-Mikhail-Haq copula with θ= 0.5 based on
102 experiments (mean ± standard error).

n= 104 n= 105 n= 106

GLR 0.034 ± 0.003 0.035 ± 0.001 0.035 ± 0.0007

FDC(0.1) 0.033 ± 0.004 0.031 ± 0.001 0.031 ± 0.0007

FDC(0.01) −0.002 ± 0.03 0.021 ± 0.009 0.031 ± 0.004

Table 6. Sensitivity estimates of BDS with 10 assets governed by the Clayton copula with θ = 0.5 based on 102

experiments (mean ± standard error).

random numbers to implement FDC. In general, decreasing the perturbation size δ would reduce
the bias of FD(δ) but increase the variance. In Table 4, we can see that the sensitivity results
estimated by GLR match those estimated by FD(0.01), while the variances of FD(0.01) are 4− 30
times those of GLR, whereas the sensitivity results estimated by FD(0.1) are significantly biased.
The computational time of GLR is about 5 times that of FD.

Sensitivities of Credit Risk Derivatives

For CDOs, Table 5 shows the sensitivity estimates for sample sizes m= 104, m= 105, and m= 106

under the Ali-Mikhail-Haq copula, with θ = 0.5. The numerical observations are similar to those
in Section 5.4 of the main body of the paper. Again for sample size m = 106, the estimate with
FDC(0.1) falls outside of the 90% confidence interval of the GLR estimate, whereas the estimate
with GLR lies in the 90% confidence interval of the FDC(0.01) estimate with sample size m= 107,
which is −0.193 ± 0.002.

For BDS, we estimate the sensitivities of the expectation of the discounted payment to the
fifth default of 10 assets made by the seller Vvalue(τ) = L(5) exp(−rτ(5))1{τ(5) < T}. The marginal
distributions of the defaults and the parameters are set in the same way as those in Section 5.1 in
the main body of the paper. Tables 6 and 7 show the respective Clayton copula and Ali-Mikhail-
Haq copula sensitivity estimates with θ = 0.5 for sample sizes m = 104, m = 105, and m = 106.
We also implement FDC(0.01) with sample size m = 107, which leads to 0.034 ± 0.001 for the
Clayton copula and 0.051 ± 0.002 for the Ali-Mikhail-Haq copula. The results are similar to those
for estimating CDO sensitivities.
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n= 104 n= 105 n= 106

GLR 0.051 ± 0.002 0.050 ± 0.001 0.051 ± 0.0009

FDC(0.1) 0.048 ± 0.003 0.052 ± 0.001 0.051 ± 0.001

FDC(0.01) 0.074 ± 0.03 0.039 ± 0.01 0.049 ± 0.003

Table 7. Sensitivity estimates of BDS with 10 assets governed by the Ali-Mikhail-Haq copula with θ= 0.5 based on
102 experiments (mean ± standard error).
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