
Importance Sampling and Rare Event
Simulation

Pierre L’Ecuyer, Michel Mandjes, and Bruno Tuffin

June 7, 2008



2



Chapter 1

Importance Sampling and Rare
Event Simulation

1.1 Introduction

As described in the introductory chapter, crude (also called standard, or
naive) Monte Carlo simulation is inefficient for simulating rare events. Re-
call that crude Monte Carlo consists in considering a sample of n independent
copies of the random variable or process at hand, and estimating the prob-
ability of a rare event by the proportion of times the rare event occurred
over that sample. The resulting estimator can be considered useless when
the occurrence probability γ is very small, unless n is much larger than 1/γ.
Indeed, if for instance γ = 10−9, a frequent target in rare event applications,
this would require on average a sample of size n = 109 to observe just a single
occurrence of the event, and much more if we expect a reliable estimation of
the mean and variance to obtain a confidence interval.

Importance Sampling (IS) has come up in the literature as a powerful
tool to reduce the variance of an estimator, which, in the case of rare-event
estimation, also means increasing the occurrence of the rare event. The
generic idea of IS is to change the probability laws of the system under study
to sample more frequently the events that are more “important” for the
simulation. Of course, using a new distribution results in a biased estimator
if no correction is applied. Therefore the simulation output needs to be
translated in terms of the original measure; this is done by multiplication with
a so-called likelihood ratio. IS has received substantial theoretical attention,
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see [13, 12, 27], among many others, and in the rare event context, [15] or
the more up-to-date tutorial [16].

IS is one of the most widely used variance reduction technique in general,
and for rare event estimation in particular. Typical and specific applica-
tions will be more extensively described in the second part of the book. The
goal of this chapter is to give an overview of the technical framework and
the main underlying ideas. It is organized as follows. Section 1.2 reviews
the very basic notions of importance sampling. It describes what the ideal
(zero-variance) estimator looks like, and why it is, except in situations where
simulation is not needed, infeasible to implement it exactly. That section
also provides illustrative examples and outlines some properties leading to a
good IS estimator, the main message being that the zero-variance estimator
has to be approximated as closely as possible. In Section 1.3 the focus is
on application of IS in the context of a Markov chain model. Since every
discrete-event simulation model can be seen as a Markov chain (albeit over a
high-dimensional state space), this setting is very general. We show how to
define a zero-variance change of probabilities in that context. It is noted that,
in general, the zero-variance change of probabilities must depend on the state
of the chain. We compare this type of change of probabilities with a more
restricted class of IS called state-independent, in which the probabilities are
changed independently of the current state of the chain. This type of state-
independent IS originates mainly from asymptotic approximations based on
large deviations theory [3, 15, 26], and has been developed in applications
areas such as queueing and finance [10, 15, 16, 20]. However, in many situa-
tions, any good IS scheme must be state-dependent [3] (as state-independent
IS leads to estimators with large, or even infinite, variance). Note that in
computational physics (the application area from which it originates) and
in reliability, IS has traditionally been state-dependent [5, 14, 16]. Finally,
Section 1.4 describes various methods used to approximate the zero-variance
(that is, optimal) change of measure. Some just use intuitive approxima-
tions, whereas others are based on the asymptotic behavior of the system
when the events of interest become more and more rare (this includes meth-
ods based on large deviations theory, and other techniques as well). Another
option is to use adaptive techniques that learn (and use) approximations of
the zero-variance change of measure, or optimal parameter values within a
class of parameterized IS strategies: the results of completed runs can be
used as inputs of strategies for the next runs, but those IS strategies can also
be updated at each step of a given run [16, 23].
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The accuracy assessment of the resulting confidence interval, and the
robustness properties of the estimator with respect to rarity, is the focus of
the next chapter. To avoid overlap, we limit our discussion of these aspects
to a minimum here.

1.2 Static problems

We want to compute the expected value of a random variable X = h(Y ),
E[h(Y )], where Y is assumed to be a random variable with density f (with
respect to the Lebesgue measure) in the d-dimensional real space Rd. (In
our examples, we will have d = 1.) Then, the crude Monte Carlo method
estimates

E[h(Y )] =

∫
h(y)f(y)dy by

1

n

n∑
i=1

h(Yi),

where Y1, . . . , Yn are i.i.d. copies of Y , and the integral is over Rd.
IS, on the other hand, samples Y from another density f̃ rather than f .

Of course, the same estimator 1
n

∑n
i=1 h(Yi) then becomes biased in general,

but we can recover an unbiased estimator by weighing the simulation output,
as follows. Assuming that f̃(y) > 0 whenever h(y)f(y) 6= 0,

E[h(X)] =

∫
h(y)f(y)dy =

∫
h(y)

f(y)

f̃(y)
f̃(y)dy

=

∫
h(y)L(y)f̃(y)dy = Ẽ[h(Y )L(Y )],

where L(y) = f(y)/f̃(y) is the likelihood ratio of the density f(·) with respect
to the density f̃(·), and Ẽ[ · ] is the expectation under density f̃ . An unbiased
estimator of E[h(Y )] is then

1

n

n∑
i=1

h(Yi)L(Yi), (1.1)

where Y1, . . . , Yn are i.i.d. random variables sampled from f̃ .
The case where Y has a discrete distribution can be handled analogously;

it suffices to replace the densities by probability functions and the integrals
by sums. That is, if P[Y = yk] = pk for k ∈ N, then IS would sample n copies
of Y , say Y1, . . . , Yn, using probabilities p̃k instead of pk, for k ∈ N, where
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p̃k > 0 whenever pkh(yk) 6= 0. An unbiased IS estimator of E[h(Y )] is again
(1.1), but with L(yk) = pk/p̃k. Indeed,

Ẽ[h(Y )L(Y )] =
∑
k∈N

h(yk)
pk
p̃k
p̃k =

∑
k∈N

h(yk)pk = E[h(Y )].

In full generality, if Y obeys some probability law (or measure) P, and IS
replaces P by another probability measure P̃, we must multiply the original
estimator by the likelihood ratio (or Radon-Nikodým derivative) L = dP/dP̃.

Clearly, the above procedure leaves us with a huge amount of freedom:
any alternative P̃ yields an unbiased estimator (as long as the above-mentioned
regularity conditions are fulfilled). Therefore, the next question is: based on
what principle should we choose the IS measure P̃? The goal is to find a
change of measure for which the IS estimator has small variance, preferably
much smaller than for the original estimator, and is also easy (and not much
more costly) to compute (in that the new probability law should be easy to
generate variates from). We denote these two variances by

σ̃2(h(Y )L(Y )) = Ẽ[(h(Y )L(Y ))2]− (E[h(Y )])2

and
σ2(h(Y )) = E[(h(Y ))2]− (E[h(Y )])2,

respectively. Under the assumptions that the IS estimator has a normal
distribution (which is often a good approximation—but not always), a con-
fidence interval at level 1− α for E[h(Y )] is given by[

1

n

n∑
i=1

h(Yi)L(Yi)− zα/2
σ̃(h(Y )L(Y ))√

n
,

1

n

n∑
i=1

h(Yi)L(Yi) + zα/2
σ̃(h(Y )L(Y ))√

n

]

where zα/2 = Φ−1(1− α/2) and Φ is the standard normal distribution func-
tion. For fixed α and n, the width of the confidence interval is proportional
to the standard deviation (the square root of the variance). So reducing
the variance by a factor K improves the accuracy by reducing the width of
the confidence interval by a factor

√
K. The same effect is achieved if we

multiply n by a factor K, but this requires (roughly) K times more work.
In the rare-event context, one usually simulates until the relative accuracy

of the estimator, defined as the ratio of the confidence-interval half-width and
the quantity γ to be estimated, is below a certain threshold. For this, we
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need σ̃2(h(Y )L(Y ))/n approximately proportional to γ2. Thus, the number
of samples needed is proportional to the variance of the estimator. In the
case where γ is a small probability and h(Y ) is an indicator function, without
IS, σ̃2(h(Y )L(Y )) = σ2(h(Y )) = γ(1 − γ) ≈ γ, so the required n is roughly
inversely proportional to γ and often becomes excessively large when γ is
very small.

The optimal change of measure is to select the new probability law P̃ so
that

L(Y ) =
dP
dP̃

=
E[|h(Y )|]
|h(Y )|

,

which means f̃(y) = f(y)|h(y)|/E[|h(Y )|] in the continuous case, and p̃k =
pk|h(yk)|/E[|h(Y )|] in the discrete case. Indeed, for any alternative IS mea-
sure P′ leading to the likelihood ratio L′ and expectation E′, we have

Ẽ[(h(Y )L(Y ))2] = (E[|h(Y )|])2 = (E′[|h(Y )|L′(Y )])2 ≤ E′[(h(Y )L′(Y ))2].

In the special case where h ≥ 0, the optimal change of measure gives
Ẽ[(h(Y )L(Y ))2] = (E[h(Y )])2, i.e., σ̃2(h(Y )L(Y )) = 0. That is, IS provides
a zero-variance estimator. We call the corresponding change from P to P̃ the
zero-variance change of measure. In many typical rare-event settings, one
indeed has h ≥ 0; for example, this is obviously the case when the focus is on
estimating the probability of a rare event (h is then an indicator function).

All of this is nice in theory, but in practice there is a crucial drawback:
implementing the optimal change of measure requires knowledge of E[|h(Y )|],
the quantity that we wanted to compute; if we knew it, no simulation would
be needed! But the expression for the zero-variance measure provides a hint
on the general form of a “good” IS measure, that is, a change of measure
that leads to substantial variance reduction. As a rough general guideline, it
says that L(y) should be small when |h(y)| is large.

In particular, if there is a constant κ ≤ 1 such that L(y) ≤ κ for all y
such that h(y) 6= 0, then

Ẽ[(h(Y )L(Y ))2] ≤ κẼ[(h(Y ))2L(Y )] = κE[(h(Y )2], (1.2)

so the second moment is guaranteed to be reduced at least by the factor
κ. If h is also an indicator function, say h(y) = 1A(y) for some set A, and
E[h(Y )] = P[A] = γ, then we have

σ̃2(1A(Y )L(Y )) = Ẽ[(1A(Y )L(Y ))2]− γ2 ≤ κ2 − γ2.
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This implies that we always have κ ≥ γ, but, evidently, we want to have κ
as close as possible to γ.

In theoretical analysis of rare-event simulation, it is customary to param-
eterize the model by a rarity parameter ε > 0 so that the important events
occur (in the original model) with a probability that converges to 0 when
ε → 0. In that context, an IS estimator based on a change of measure that
may depend on ε is said to have bounded relative variance (or bounded relative
error) if σ̃2(h(Y )L(Y ))/E2[h(Y )] is bounded uniformly in ε. This important
property means that estimating E[h(Y )] with a given relative accuracy can
be achieved with a bounded number of replications even if ε→ 0.

In the special case where h(y) = 1A(y) and γ = P[A], if we can find a
constant κ′ such that L(y) ≤ κ′γ when y ∈ A, then

σ̃2(1A(Y )L(Y )) ≤ (κ′γ)2 − γ2 = γ2((κ′)2 − 1),

which means that we have bounded relative variance: the relative variance
remains bounded by (κ′)2− 1 no matter how rare then event A is. This type
of property will be studied in more detail in a separate (dedicated) chapter.

Example 1 To illustrate the ideas and the difficulty of finding a good IS
distribution, we first consider a very simple example for which a closed-
form expression is known. Suppose that the failure time of a system follows
an exponential distribution with rate λ and that we want to compute the
probability γ that the system fails before T . We can write h(y) = 1A(y)
where A = [0, T ], and we know that γ = E[1A(Y )] = 1− e−λT . This quantity
is small (i.e., A is a rare event) when λT is close to 0. The zero-variance IS
here consists in sampling Y from the same exponential density, but truncated
to the interval [0, T ]: f̃(y) = λe−λy/(1− e−λT ) for 0 ≤ y ≤ T .

But suppose that we insist on sampling from an exponential density with
a different rate λ̃ instead of truncating the distribution. The second moment
of that IS estimator will be

Ẽ[(1A(Y )L(Y ))2] =

∫ T

0

(
λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy =
λ2

λ̃(2λ− λ̃)
(1− e−(2λ−λ̃)T ).

Figure 1.1 displays the variance ratio σ̃2(1A(Y )L(Y ))/σ2(1A(Y )) as a func-
tion of λ̃, for T = 1 and λ = 0.1. The variance is minimized with λ̃ ≈ 1.63,
i.e., with a 16-fold increase of the failure rate, and its minimal value is about
5.3% of the value with λ̃ = λ. If we increase λ̃ too much, then the variance
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increases again. With λ̃ > 6.01 (approximately), it becomes larger than with
λ̃ = λ. This is due to the fact that for very large values of λ̃, the likelihood
ratio takes huge values when Y is smaller than T but close to T .

λ̃
λ = 0.1 1 2 3 4 5 6 7

variance ratio

0

0.5

1

1.5

2

Figure 1.1: Variance ratio (IS vs non-IS) as a function of λ̃ for Example 1
with λ = 0.1 and A = [0, 1].

Suppose now that A = [T,∞) instead, i.e., γ = P[Y ≥ T ]. The zero-
variance density is the exponential with rate λ, truncated to [T,∞). If we
use an exponential with rate λ̃ instead, the second moment of the IS estimator
is finite if and only if 0 < λ̃ < 2λ, and is

Ẽ[(1A(Y )L(Y ))2] =

∫ ∞
T

(
λe−λy

λ̃e−λ̃y

)2

λ̃e−λ̃ydy =
λ2

λ̃(2λ− λ̃)
e−(2λ−λ̃)T .

In this case, the variance is minimized for λ̃ = λ+ 1/T − (λ2 + 1/T 2)1/2 < λ.
When λ̃ > 2λ, the variance is infinite because the squared likelihood ratio
grows exponentially with y at a faster rate than the exponential rate of
decrease of the density. Figure 1.2 shows the variance ratio (IS vs non-IS) as
a function of λ̃, for T = 3 and λ = 1. We see that the minimal variance is
attained with λ̃ ≈ λ/4.

Another interesting situation is if A = [0, T1] ∪ [T2,∞) where 0 < T1 <
T2 <∞. The zero-variance density is again the exponential truncated to A,
which is now split in two pieces. If we just change λ to λ̃, then the variance
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λ̃
0 0.25 0.5 0.75 λ = 1 1.25

variance ratio

0

0.5

1

1.5

2

2.5

Figure 1.2: Variance ratio as a function of λ̃ for Example 1 with λ = 1 and
A = [3,∞).

associated with the first [second] piece increases if λ̃ < λ [λ̃ > λ]. So one
of the two variance components increases, regardless of how we choose λ̃.
One way of handling this difficulty is to use a mixture of exponentials: take
λ̃1 < λ with probability p1 and λ̃2 > λ with probability p2 = 1− p1. We now
have three parameters to optimize: λ̃1, λ̃2, and p1.

Example 2 For a second illustrative example, let X be binomially dis-
tributed with parameters (n, p), and suppose we wish to estimate γ = P[X ≥
na] for some constant a > 0, where na is assumed to be an integer. Again,
the zero-variance IS samples from this binomial distribution truncated to
[na,∞). But if we restrict ourselves to the class of non-truncated binomial
changes of measure, say with parameters (n, p̃), following the same line of
reasoning as in the previous example, we want to find the p̃ that minimizes
the second moment

n∑
i=na

(
n

i

)(
p2

p̃

)i(
(1− p)2

1− p̃

)n−i
.

Figure 1.3 shows the variance ratio as a function of p̃, for a = 3/4, p = 1/4,
and n = 20. It shows that the best choice of p̃ lies around a. If a > p
is fixed and n → ∞, then large deviations theory tells us that γ decreases
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exponentially with n and that the optimal p̃ (asymptotically) is p̃ = a. The
intuitive interpretation is that when a > p, conditional on the event {X/n ≥
a}, most of the density of X/n is concentrated very close to a when n is
large. By selecting p̃ = a, IS mimics this conditional density. We also see
from the plot that the variance ratio is a very flat function of p̃ in a large
neighborhood of a; the ratio is approximately 1.2 × 10−5 from 0.72 to 0.78,
and is still 5.0 × 10−5 at 0.58 and 0.88. On the other hand, the IS variance
blows up quickly when p̃ approaches 1 or goes below p.

q
0 p = 0.25 0.5 0.75 1

variance ratio

0

0.25

0.5

0.75

1

Figure 1.3: Variance ratio of IS vs non-IS estimators, as a function of p̃, for
Example 2 with n = 20, p = 1/4, and A = [15,∞).

1.3 Markov chains

Having dealt in the previous section with the case of a general random vari-
able, we focus here on the specific case where this random variable is a func-
tion of the sample path of a Markov chain. We introduce IS in this context,
both for discrete-time and continuous-time chains, as well as the form of the
corresponding zero-variance change of measure. Approximation algorithms
for this change of measure are discussed in the next section.
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1.3.1 Discrete-time Markov chains

Consider now a discrete-time Markov chain (DTMC), say {Yj, j ≥ 0}, with
discrete state space Y (possibly infinite and high-dimensional). The chain
evolves up to a stopping time τ defined as the first time the chain hits a
given set of states, ∆ ⊂ Y ; that is, τ = inf{j ≥ 0 : Yj ∈ ∆}. We assume that
E[τ ] <∞. The chain has a transition probability matrix whose elements are
P (y, z) = P[Yj = z | Yj−1 = y] for all y, z ∈ Y , and the initial probabilities
are π0(y) = P[Y0 = y] for all y ∈ Y . We consider the random variable
X = h(Y0, . . . , Yτ ), where h is a given function of the trajectory of the chain,
with values in [0,∞). Let γ(y) = Ey[X] denote the expected value of X
when Y0 = y, and define γ = E[X] =

∑
y∈Y π0(y)γ(y), the expected value of

X for the initial distribution π0.
Our discussion could be generalized to broader classes of state spaces.

For a continuous state space Y , the transition probabilities would have to be
replaced by a probability transition kernel and the sums by integrals, and we
would need some technical measurability assumptions. Any discrete-event
simulation model for which we want to estimate the expectation of some
random variable X = h(Y0, . . . , Yτ ) as above can fit into this framework. For
simplicity, we stick to a discrete state space.

The basic idea of IS here is to replace the probabilities of sample paths
(y0, . . . , yn),

P[(Y0, . . . , Yτ ) = (y0, . . . , yn)] = π0(y0)
n∏
j=1

P (yj−1, yj),

where n = min{j ≥ 0 : yj ∈ ∆}, by new probabilities P̃[(Y0, . . . , Yτ ) =
(y0, . . . , yn)] such that Ẽ[τ ] <∞ and P̃[·] > 0 whenever P[·]h(·) > 0. This is
extremely general.

To be more practical, we might want to restrict ourselves to changes of
measure under which {Yj, j ≥ 0} remains a DTMC with the same state
space Y . That is, we replace the transition probabilities P (y, z) by new
transition probabilities P̃ (y, z) and the initial probabilities π0(y) by π̃0(y).
The new probabilities must be chosen so that any sample path having a
positive contribution to γ must still have a positive probability, and Ẽ[τ ] <
∞. The likelihood ratio becomes

L(Y0, . . . , Yτ ) =
π0(Y0)

π̃0(Y0)

τ∏
j=1

P (Yj−1, Yj)

P̃ (Yj−1, Yj)
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and we have
γ = Ẽ[XL(Y0, . . . , Yτ )].

A question that comes to mind: Is there a zero-variance change of measure
in this setting? What is it?

To answer this question, following [5, 18, 19, 21], we restrict ourselves to
the case where the cost function X is additive:

X =
τ∑
j=1

c(Yj−1, Yj) (1.3)

for some function c : Y×Y → [0,∞). Note that in this case, we can multiply
the term c(Yj−1, Yj) by the likelihood ratio only up to step j. This gives the
estimator

X̃ =
τ∑
i=1

c(Yi−1, Yi)
i∏

j=1

P (Yj−1, Yj)

P̃ (Yj−1, Yj)
.

We now show that in this setting, if we take P̃ (y, z) proportional to

P (y, z)[c(y, z) + γ(z)]

for each y ∈ Y , then we have zero variance. (Without the additivity as-
sumption (1.3), to get zero variance, the probabilities for the next state must
depend in general of the entire history of the chain.) Suppose that

P̃ (y, z) =
P (y, z)(c(y, z) + γ(z))∑

w∈Y P (y, w)(c(y, w) + γ(w))
=
P (y, z)(c(y, z) + γ(z))

γ(y)
, (1.4)

where the denominator acts as a normalization constant (the probabilities
add up to 1 from the first equality; the second equility results from condi-
tionning with respect to a one-step transition). Then,

X̃ =
τ∑
i=1

c(Yi−1, Yi)
i∏

j=1

P (Yj−1, Yj)

P̃ (Yj−1, Yj)

=
τ∑
i=1

c(Yi−1, Yi)
i∏

j=1

P (Yj−1, Yj)γ(Yj−1)

P (Yj−1, Yj)(c(Yj−1, Yj) + γ(Yj))

=
τ∑
i=1

c(Yi−1, Yi)
i∏

j=1

γ(Yj−1)

c(Yj−1, Yj) + γ(Yj)

= γ(Y0)
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by induction on the value taken by τ , using the fact that γ(Yτ ) = 0. In other
words, the estimator is a constant, so it has zero variance.

Another way to show this property is by looking at the variance and using
the classical decomposition

σ̃2[X|Y0] = σ̃2[Ẽ[X|Y0, Y1]|Y0] + Ẽ[σ̃2[X|Y0, Y1]|Y0]. (1.5)

Define v(y) = σ̃2[X̃|Y0 = y]. Then

v(Y0) = σ̃2[Ẽ[X̃ | Y1]|Y0] + Ẽ[σ̃2[X̃ | Y1]|Y0]

= σ̃2[(c(Y0, Y1) + γ(Y1))L(Y0, Y1)|Y0] + Ẽ[L2(Y0, Y1)v(Y1)|Y0]

= Ẽ[(c(Y0, Y1) + γ(Y1))2L2(Y0, Y1)|Y0]− γ2(Y0) + Ẽ[L2(Y0, Y1)v(Y1)|Y0]

= Ẽ[((c(Y0, Y1) + γ(Y1))2 + v(Y1))L2(Y0, Y1)|Y0]− γ2(Y0).

From the change of measure, we have

Ẽ[(c(Y0, Y1) + γ(Y1))2L2(Y0, Y1)|Y0] = γ2(Y0),

leading to

v(Y0) = Ẽ[((c(Y0, Y1) + γ(Y1))2 + v(Y1))L2(Y0, Y1)|Y0]− γ2(Y0)

= Ẽ[v(Y1)L2(Y0, Y1)|Y0].

Applying induction, we again obtain

v(Y0) = Ẽ

[
v(Yτ )

τ∏
j=1

L(Yi−1, Yi)

]
= 0

because v(Yτ ) = 0.
The change of measure (1.4) is actually the unique Markov chain imple-

mentation of the zero-variance change of measure. To see that, suppose we
are in state Yj = y 6∈ ∆. Since

v(y) ≥ σ̃2[Ẽ[X̃ | Y1]|Y0 = y] = σ̃2[(c(y, Y1)+γ(Y1))P (y, Y1)/P̃ (y, Y1) | Y0 = y],

zero-variance implies that (c(y, Y1) + γ(Y1))P (y, Y1)/P̃ (y, Y1) = Ky for some
constant Ky that does not depend on Y1. But since the probabilities P̃ (y, Y1)
must sum to 1 for any fixed y, the constant Ky must take the value γ(y) as
in (1.4). The same argument can be repeated at each step of the Markov
chain.
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It is important to emphasize that in (1.4), the probabilities are changed
in a way that depends in general on the current state of the chain.

Again, knowing the zero-variance IS measure requires the knowledge of
γ(y) for all y; that is, of the values we are trying to estimate. In practice, we
can try to approximate the zero-variance IS by replacing γ by an accurate
proxy, and using this approximation in (1.4) [1, 4, 5, 18]. Some methods re-
strict themselves to a parametric class of IS distributions and try to optimize
the parameters, instead of trying to approximate the zero-variance IS. We
will return to this in Section 1.4.

Example 3 Consider a Markov chain with state-space {0, 1, . . . , B}, for
which P (y, y + 1) = py and P (y, y − 1) = 1 − py, for y = 1, . . . , B − 1,
and P (0, 1) = P (B,B − 1) = 1. Note that a birth-and-death process
with bounded state space has an embedded DTMC of this form. We take
∆ = {0, B}, and we define γ(y) = P[Yτ = B | Y0 = y]. This function γ
satisfies the recurrence equations

γ(y) = pyγ(y + 1) + (1− py)γ(y − 1)

for y = 1, . . . , B − 1, with the boundary conditions γ(0) = 0 and γ(B) = 1.
This gives rise to a linear system of equations that is easy to solve. In the case
where py = p < 1 for y = 1, . . . , B − 1, this is known as the gambler’s ruin
problem, and γ(y) is given by the explicit formula γ(y) = (1−ρ−y)/(1−ρ−B)
if ρ = p/(1− p) 6= 1/2, and γ(y) = y/B if ρ = 1/2.

But for the sake of illustration, suppose we want to estimate γ(1) by
simulation with IS. The zero-variance change of measure in this case replaces
each py, for 1 ≤ y < B, by

p̃y =
pyγ(y + 1)

γ(y)
=

pyγ(y + 1)

pyγ(y + 1) + (1− py)γ(y − 1)
.

Since γ(0) = 0, this gives p̃1 = 1, which means that this change of measure
cuts the link that returns to 0, so it brings us to B with probability 1. For the
special case where py = p for y = 1, . . . , B − 1, by plugging the formula for
γ(y) into the expression for p̃y, we find that the zero-variance probabilities
are

p̃y =
1− ρ−y−1

1− ρ−y
p.
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Note that all the terms 1− ρ−B have canceled out, so the new probabilities
p̃y do not depend on B. On the other hand, they depend on y even though
the original probabilities p did not depend on y.

One application that fits this framework is an M/M/1 queue with arrival
rate λ and service rate µ > λ. Let ρ = λ/µ and p = λ/(λ + µ). Then
γ(y) represents the probability that the number of customers in the system
reaches level B before the system empties, given that there are y customers
in the system.

1.3.2 Continuous-time Markov chains

We now examine how the previous framework applies to continuous-time
Markov chains (CTMC). Following [13], let Y = {Y (t), t ≥ 0} be a CTMC
evolving in Y up to some stopping time T = inf{t ≥ 0 : Y (t) ∈ ∆}, where
∆ ⊂ Y . The initial distribution is π0 and the jump rate from y to z, for
z 6= y, is ay,z. Let ay =

∑
z 6=y ay,z be the departure rate from y. The goal

is to estimate E[X], where X = h(Y ) is a function of the entire sample
path of the CTMC up to its stopping time T . A sample path for this chain
is determined uniquely by the sequence (Y0, V0, Y1, V1, . . . , Yτ , Vτ ) where Yj is
the jth visited state of the chain, Vj the time spent in that state, and τ is the
index of the jump that corresponds to the stopping time (the first jump that
hits ∆). Therefore h(Y ) can be re-expressed as h∗(Y0, V0, Y1, V1, . . . , Yn, Vn),
and a sample path (y0, v0, y1, v1, . . . , yn, vn) has density (or likelihood)

p(y0, v0, . . . , yn, vn) =
n−1∏
j=0

ayj ,yj+1

ayj

n∏
j=0

ayj exp[−ayjvj]

=
n−1∏
j=0

ayj ,yj+1
exp[−

n∑
j=0

ayjvj],

each term ayj ,yj+1
/ayj being the probability of moving from yj to yj+1 and

ayj exp[−ayjvj] the density for leaving yj after a sojourn time vj. Then we
have

E[X] =
∑

y0,...,yn

∫ ∞
0

· · ·
∫ ∞

0

h∗(y0, v0, . . . , yn, vn)p(y0, v0, . . . , yn, vn)dv0 · · · dvn.
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Suppose that the cost function has the form

X = h(Y ) =
τ∑
j=1

c′(Yj−1, Vj−1, Yj)

where c′ : Y × [0,∞)× Y → [0,∞). In this case, a standard technique that
always reduces the variance, and often reduces the computations as well, is
to replace the estimator X by

Xcmc = E[X | Y0, . . . , Yτ ] =
τ∑
j=1

c(Yj−1, Yj),

where c(Yj−1, Yj) = E[c′(Yj−1, Vj−1, Yj) | Yj−1, Yj] [9]. In other words, we
would never generate the sojourn times. We are now back in our previous
DTMC setting and the zero-variance transition probabilities are given again
by (1.4).

Consider now the case of a fixed time horizon T , which therefore no longer
has the form T = inf{t ≥ 0 : Y (t) ∈ ∆}. We then have two options, either we
again reformulate the process as a DTMC, or keep a CTMC formulation. In
the first case, we can redefine the state as (Yj, Rj) at step j, where Rj is the
remaining clock time (until we reach time T ), as in [6]. Then the zero-variance
scheme is the same as for the DTMC setting if we replace the state Yj there
by (Yj, Rj), and if we redefine ∆. We then have a non-denumerable state
space, so the sums must be replaced by combinations of sums and integrals.
In this context of a finite time horizon, effective IS schemes will typically
use non-exponential (often far from exponential) sojourn time distributions.
This means that we will no longer have a CTMC under IS. Assume now that
we want to stick with a CTMC formulation, and that we restrict ourselves to
choosing a Markovian IS measure with new initial distribution π̃0 and new
generator Ã such that π̃0(y) > 0 (respectively ãy,z > 0) whenever π0(y) > 0
(respectively ay,z > 0). Let τ be the index j of the first jump to a state
Yj = Y (tj) at time tj such that tj ≥ T . Then, similarly to the discrete-
time case, it can be shown that, provided τ is a stopping time with finite
expectation under (π̃0, Ã),

E[X] = Ẽ[XLτ ],

with Lτ the likelihood ratio given by

Lτ =
π0(Y0)

π̃0(Y0)

τ−1∏
j=0

aYj ,Yj+1

ãYj ,Yj+1

exp

[
τ∑
j=0

(ãYj − aYj)Vj

]
.
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In the above formula, we can also replace the likelihood aYτ−1,Yτ exp[−aYτ−1Vτ−1]
of the last occurrence time Vτ by the probability that this event occurs after
the remaining time T−

∑τ−1
j=0 Vj, which is exp[−aYτ−1(T−

∑τ−1
j=0 Vj)], the same

being done for the IS measure: instead of considering the exact occurrence
time after time T , we consider its expected value given that it happens after
T . This reduces the variance of the estimator, because it replaces it by its
conditional expectation.

1.3.3 State-independent versus state-dependent changes
of measure

In the context of simulating a Markov chain, we often distinguish two types
of IS strategies:

• State-independent IS, where the change of measure does not depend
on the current state of the Markov chain;

• State-dependent IS where at each step of the Markov chain, a new IS
change of measure is used that takes into account the current state of
the Markov chain. In case where the state of the chain must contain
the current simulation time (e.g., if the simulation stops at a fixed clock
time in the model), then the change of measure will generally depend
on the current time.

Example 4 In Example 3, even though the birth-and-death process had
original transition probabilities p and 1 − p that did not depend on the
current state y, the zero-variance probabilities p̃y did depend on y (although
not on B). These probabilities satisfy the equations

p̃y(1− p̃y−1) = p(1− p)

for y ≥ 2, with boundary condition p̃1 = 1. For p < 1/2, we have 1 − p <
p̃y < p̃y−1 < 1 for all y > 2, and p̃y → 1 − p when y → ∞. That is, the
optimal change of measure is very close to simply permuting p and 1 − p,
i.e., taking p̃ = 1− p > 1/2. For the M/M/1 queue, this means exchanging
the arrival rate and the service rate, which gives an unstable queue (i.e., the
event under consideration is not rare anymore). This simple permutation is
an example of a state-independent change of measure: It does not depend on
the current state y.
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With p̃ = 1 − p, the likelihood ratio associated with any sample path
that reaches level B before returning to 0 is ρB−1, so, when estimating γ(1),
the second moment is reduced at least by that factor, as shown by Inequal-
ity (1.2). This reduction can be quite substantial. Moreover, the probability
γ̃(1) of reaching B under the new measure must satisfy γ̃(1)ρB−1 = γ(1),
which implies that

γ̃(1) = γ(1)ρ1−B =
1− ρ

1− ρB
.

Then the relative variance is

γ̃(1)ρ2B−2

γ2(1)
− 1 =

(1− ρ)(ρ2B − 2ρB + 1)

(ρ− 1)2
− 1 =

1− ρB

1− ρ
− 1 ≈ ρ

1− ρ

when B is large. We have the remarkable result that the number of runs
needed to achieve a predefined precision remains bounded in B, i.e., we have
bounded relative error as B → ∞, even with a state-independent change of
measure.

Example 5 Suppose now that our birth-and-death process evolves over the
set of non-negative integers and let γ(y) be the probability that the process
ever reaches 0 if it starts at y > 0. This γ(y) can be seen as the ruin
probability if we start with y Euros in hand and win [lose] one Euro with
probability p [1− p] at each step. For p ≤ 1/2, γ(y) = 1, so we assume that
p > 1/2. In this case, we have that γ(1) = (1− p) + pγ(2) = (1− p) + γ2(1).
For j ≥ 2, γ(j + 1) = γ(1)γ(j) because the probability of reaching 0 from
j + 1 is the probability of eventually reaching j from j + 1, which equals
γ(1), multiplied by the probability of reaching 0 from j. From this, we find
that γ(1) = (1 − p)/p. Still from γ(j + 1) = γ(1)γ(j), we find easily that
the zero-variance probabilities are p̃j = 1− p for all j ≥ 1. In this case, the
zero-variance change of measure is state-independent.

Example 6 We come back to Example 2, where we wish to estimate γ =
P[X ≥ na], for X binomially distributed with parameters (n, p), and for
some constant a > p. If we view X as a sum of n independent Bernoulli
random variables and define Yj and the partial sum of the first j variables,
then X = Yn and we have a Markov chain {Yj, j ≥ 0}. We observed in
Example 2 that when we restricted ourselves to a state-independent change
of measure that replaced p by p̃ for this Markov chain, the variance was
approximately minimized by taking p̃ = a. In fact, this choice turns out to
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be optimal asymptotically when n → ∞ [25]. But even this optimal choice
fails to provide a bounded relative error. That is, a state-independent change
of p cannot provide a bounded relative error in this case. The only way of
getting a bounded relative error is via state-dependent IS. However, when p is
replaced by p̃ = a, the relative error increases only very slowly when n→∞:
the second moment decreases exponentially at the same exponential rate as
the square of the first moment. When this property holds, the estimator is
said to have logarithmic efficiency. In this example, it holds for no other
value of p̃. All these results have been proved in a more general setting by
Sadowsky [25].

1.4 Algorithms

A general conclusion from the previous section is that to accurately approxi-
mate the zero variance IS estimator, a key ingredient is a good approximation
of the function γ(·). In fact, there are several ways of finding a good IS strat-
egy. Most of the good methods can be classified in two large families: those
that try to directly approximate the zero-variance change of measure via an
approximation of the function γ(·), and those that restrict a priori the change
of measure to a parametric class, and then try to optimize the parameters.
In both cases, the choice can be made either via simple heuristics, or via
a known asymptotic approximation for γ(y), or by adaptive methods that
learn (statistically) either the function γ(·) or the vector or parameters that
minimizes the variance. In the remainder of this section, we briefly discuss
these various approaches.

In the scientific literature, IS has often been applied in a very heuristic
way, without making any explicit attempt to approximate the zero-variance
change of measure. One heuristic idea is simply to change the probabilities
so that the system is pushed in the direction of the rare event, by looking
at what could increase its occurrence. However, Example 1 shows very well
how pushing too much can have the opposite effect; in fact, it can easily
lead to an infinite variance. Changes of measure that may appear promising
a priori can eventually lead to a variance increase. In situations where the
rare event can be reached in more than one direction, pushing in one of
those directions may easily inflate the variance by reducing the probability
or density of paths that lead to the rare event via other directions. The last
part of Example 1 illustrates a simplified case of this. Other illustrations can
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be found in [17, 2, 3, 11], for example. Generally speaking, good heuristics
should be based on reasonable understanding of the shape of γ(·) and/or
the way the likelihood ratio will behave under IS. We give examples of these
types of heuristics in the next subsection.

1.4.1 Heuristic approaches

Here, the idea is to use an heuristic approximation of γ(·) in the change of
measure (1.4).

Example 7 We return to Example 3, with py = p. Our aim is to estimate
γ(1). Instead of looking at the case where B is large, we rather focus on the
case where p is small, p→ 0 for fixed B. This could be seen as a (simplified)
dependability model where each transition from y to y+ 1 represents a com-
ponent failure, each transition from y to y − 1 corresponds to a repair, and
B is the minimal number of failed components for the whole system to be
in a state of failure. If p � 1, each failure transition (except the first one)
is rare and we have γ(1) � 1 as well. Instead of just blindly increasing the
failure probabilities, we can try to mimic the zero-variance probabilities (1.4)
by replacing γ(·) in this expression by an approximation, with c(y, z) = 0,
γ(0) = 0 and γ(B) = 1. Which approximation γ̂(y) could we use instead
of γ(y)? Based on the asymptotic estimate γ(y) = pB−y + o(pB−y), taking
γ̂(y) = pB−y for all y ∈ {1, . . . , B − 1}, with γ̂(0) = 0 and γ̂(B) = 1, looks
like a good option. This gives

P̃ (y, y + 1) =
pB−y

pB−y + (1− p)pB−y+1
=

1

1 + (1− p)p

for y = 2, . . . , B − 2. Repairs then become rare while failures are no longer
rare.

We can extend the previous example to a multidimensional state space,
which may correspond to the situation where there are different types of
components, and a certain subset of the combinations on the numbers of
failed components of each type corresponds to the failure state of the system.
Several IS heuristics have been proposed for this type of setting [16] and
some of them are examined in Chapter ?????? of this book. One heuristic
suggested in [21] approximates γ(y) by considering the probability of the
most likely path to failure. In numerical examples, it provides a drastic
variance reduction with respect to previously known IS heuristics.
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1.4.2 Learning the Function γ(·)
Various techniques that try to approximate the function γ(·), often by adap-
tive learning, and plug the approximation (1.4), have been developed in the
literature [16]. Old proposals of this type can be found in the computational
physics literature, for example; see the references in [5]. We outline examples
of such techniques taken from recent publications.

One simple type of approach, called adaptive Monte Carlo in [18, 8],
proceeds iteratively as follows. At step i, it replaces the exact (unknown)
value γ(x) in (1.4) by a guess γ(i)(x), and it uses the probabilities

P̃ (i)(y, z) =
P (y, z)(c(y, z) + γ(i)(z))∑

w∈Y P (y, w)(c(y, w) + γ(i)(w))
(1.6)

in ni independent simulation replications, to obtain a new estimation γ(i+1)(y)
of γ(y), from which a new transition matrix P̃ (i+1) is defined. These iterations
could go on until we feel that the probabilities have converged to reasonably
good estimates.

A second type of approach is to try to approximate the function γ(·)
by stochastic approximation. The adaptive stochastic approximation (ASA)
method proposed in [1] for the simulation of discrete-time finite-state Markov
chains falls in that category. One starts with a given distribution for the
initial state y0 of the chain, an initial transition matrix P̃ (0) (it can be the
original transition matrix of the chain), and an initial guess γ(0)(·) of the
value function γ(·). The method simulates a single sample path as follows.
At each step n, given the current state yn of the chain, if yn 6∈ ∆, we use the
current transition matrix P̃ (n) to generate the next state yn+1, we update the
estimate of γ(yn) by

γ(n+1)(yn) = (1− an(yn))γ(n)(yn)

+an(yn)

[
c(yn, yn+1) + γ(n)(yn+1)

P (yn, yn+1)

P̃ (n)(yn, yn+1)

]
,

where {an(y), n ≥ 0}, is a sequence of step sizes such that
∑∞

n=1 an(y) =∞
and

∑∞
n=1 a

2
n(y) <∞ for each state y, and we update the probability of the

current transition by

P̃ (n+1)(yn, yn+1) = max

(
P (yn, yn+1)

[
c(yn, yn+1) + γ(n+1)(yn+1)

]
γ(n+1)(yn)

, δ

)
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where δ > 0 is a constant whose role is to ensure that the likelihood ratio
remains bounded (to rule out the possibility that it takes huge values). For
the other states, we take γ(n+1)(y) = γ(n)(y) and P̃ (n+1)(y, z) = P (n)(y, z).
We then normalize via

P (n+1)(yn, y) =
P̃ (n+1)(yn, y)∑
z∈Y P̃

(n+1)(yn, z)

for all y ∈ Y . When yn ∈ ∆, i.e., if the stopping time is reached at step n,
yn+1 is generated again from the initial distribution, the transition matrix
and the estimate of γ(·) are kept unchanged, and the simulation is resumed.
In [1], batching techniques are used to obtain a confidence interval.

Experiments reported in [1] show that these methods can be quite effec-
tive when the state space has small cardinality. However, since they require
storing the approximation γ(n)(y) for each state y, their direct implementa-
tion quickly becomes impractical as the number of states increases (e.g., for
continuous state spaces, or for multidimensional state spaces such as those
of Example 7).

In the case of large state spaces, one must rely on interpolation or approx-
imation instead of trying to estimate γ(y) directly at each state y. One way of
doing this is by selecting a set of k predefined basis functions γ1(y), . . . , γk(y),
and search for a good approximation of γ(·) within the class of linear combi-
nations of the form γ̂(y) =

∑k
j=1 αjγj(y), where the weights (α1, . . . , αk) can

be learned or estimated in various ways, for instance by stochastic approxi-
mation. It therefore consists in a parametric approach, where the parameter
is the vector of weights.

1.4.3 Optimizing within a parametric class

Most practical and effective IS strategies in the case of large state spaces
restrict themselves to a parametric class of IS measures, either explicitly
or implicitly, and try to estimate the parameter vector that minimizes the
variance. More specifically, we consider a family of measures {P̃θ, θ ∈ Θ},
which may represent a family of densities f̃θ, or a family of probability vectors
p̃θ for a discrete distribution, or the probability measure associated with the
transition matrix P̃θ or the transition kernel of a Markov chain. Then, we
look for a θ that minimizes the variance of the IS estimator under P̃θ, or
some other measure of distance to the zero-variance measure, over the set Θ.
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Of course, a key issue is a clever selection of this parametric class, so that it
includes good IS strategies within the class. The value of θ can be selected
either via a separate prior analysis, for example based on asymptotically valid
approximations, or can be learned adaptively. We briefly discuss these two
possibilities in what follows.

Non-adaptive parameter selection

Examples 2 and 6 illustrate the popular idea of fixing θ based on an asymp-
totic analysis. The parametric family there is the class of binomial distribu-
tions with parameters (n, p̃). We have θ = p̃. Large deviations theory shows
that twisting the binomial parameter p to p̃ = a is asymptotically optimal
[25]. This choice works quite well in practice for this type of example. On the
other hand, we also saw that it cannot provide a bounded relative variance.
Several additional examples illustrating the use of large deviations theory to
select a good change of measure can be found in [3, 15, 16], for example.

Adaptive learning of the best parameters

The value of θ that minimize the variance can be learned adaptively in various
ways. For example, the ASA method described earlier can be adapted to
optimize θ by stochastic approximation. Another type of approach is based
on sample average approximation: write the variance or the second moment
as a mathematical expectation that depends on θ, replace the expectation
by a sample average function of θ obtained by simulation, and optimize this
sample function with respect to θ. These simulations are performed under
an IS measure P̃ that may differ from P and does not have to belong to the
selected family. The optimizer θ̂∗ is used in a second stage to estimate the
quantity of interest using IS.

A more general way of formulating this optimization problem is to re-
place the variance by some other measure of distance between P̃θ and the
optimal (zero-variance) change of measure P̃∗, which is known to satisfy
dP̃∗ = (|X|/E[|X|])dP when we want to estimate γ = E[X]. Again, there are
many ways of measuring this distance and some are more convenient than
others.

Rubinstein [24] proposed and motivated the use of the Kullback-Leibler
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(or cross-entropy) “distance”, defined by

D(P̃∗, P̃θ) = Ẽ∗
[

log
dP̃∗

dP̃θ

]

(this is not a true distance, because it is not symmetric and does not satisfy
the triangle inequality, but this causes no problem), and called the resulting
technique the cross-entropy (CE) method [7, 23, 24].

Easy manipulations lead to

D(P̃∗, P̃θ) = E
[
|X|

E[|X|]
log

(
|X|

E[|X|]
dP
)]
− 1

E[|X|]
E
[
|X| log dP̃θ

]
.

Since only the last expectation depends on θ, minimizing the above expression
is equivalent to solving

max
θ∈Θ

E
[
|X| log dP̃θ

]
= max

θ∈Θ
Ẽ
[
dP
dP̃
|X| log dP̃θ

]
. (1.7)

The CE method basically solves the optimization problem on the right side of
(1.7) by sample-average approximation, replacing the expectation Ẽ in (1.7)
by a sample average over simulations performed under P̃.

How should we select P̃? In the case of rare events, it is often difficult to
find a priori a distribution P̃ under which the optimizer of the sample average
approximation does not have too much variance and is sufficiently reliable.
For this reason the CE method is usually applied in an iterative manner,
starting with a model under which the rare events are not so rare, and in-
creasing the rarity at each step. We start with some θ0 ∈ Θ and a random
variable X0 whose expectation is easier to estimate than X, and having the
same shape. At step i ≥ 0, ni independent simulations are performed using
IS with parameter θi, to approximate the solution of (1.7) with P̃ replaced by
P̃θi and X replaced by Xi, where Xi becomes closer to X as i increases, and
eventually becomes identical when i = i0, for some finite i0. In Example 3,
for instance, we could have Xi = 1Yτ=Bi with Bi = a + ib for some fixed
positive integers a and b such that B = a + i0b for some i0. The solution of
the corresponding sample average problem is

θi+1 = arg max
θ∈Θ

1

ni

ni∑
j=1

|Xi(ωi,j)| log(dP̃θ(ωi,j))
dP
dP̃θi

(ωi,j), (1.8)
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where ωi,j represents the jth sample at step i. This θi+1 is used for IS at the
next step.

By a quick glance at (1.8), we find that the specific choice of the Kullback-
Leibler distance is convenient for the case where P̃θ is from an exponential
family, because the log and the exponential cancel, simplifying the solution
to (1.8) considerably.

In some specific contexts, the parametric family can be a very rich set of
IS measures. For example, in the case of a DTMC over a finite state space,
one can define the parametric family as the set of all transition probability
matrices over that state space [22]. In this case, CE serves as a technique to
approximate the zero-variance change of measure, but at the higher cost of
storing an entire transition matrix instead of just the vector γ(·).
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