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Christian Lécot∗,a, Pierre L’Ecuyerb, Rami El Haddadc, Ali Tarhinid

aUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chambéry,
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lecuyer@iro.umontreal.ca (Pierre L’Ecuyer), rami.haddad@usj.edu.lb (Rami El
Haddad), ahtarhini@yahoo.fr (Ali Tarhini)

Preprint submitted to August 30, 2018



1. Introduction

Coagulation-fragmentation models have applications in many domains of
science and technology: aerosol dynamics, polymerization, and combustion
processes, for example [1]. M. von Smoluchowski modelled the coagulation
of particles in a medium where only binary collisions occur: the numbers of
particles of different sizes obey an infinite system of ordinary differential equa-
tions [16]. H. Müller rewrote the equations in terms of an integro-differential
equation for the time evolution of the particle size density function [13]. S.
K. Friedlander considered the result of binary collisions occuring simultane-
ously with splitting of single particles in two new particles [5]. This gives the
coagulation-fragmentation equation for the density c(x, t) of particles of size
(or mass) x at times t (see [3]):

∂c

∂t
(x, t) =

1

2

∫ x

0

K(x− y, y)c(x− y, t)c(y, t)dy

−
∫ +∞

0

K(x, y)c(x, t)c(y, t)dy +

∫ +∞

0

F (x, y)c(x+ y, t)dy

−1

2

∫ x

0

F (x− y, y)c(x, t)dy, x > 0, t > 0, (1)

with the initial condition c(x, 0) = c0(x) (x > 0), which is a given non-
negative function. The coagulation kernel K(x, y) describes the rate of for-
mation of a particle of size x + y by coagulation of two particles of size x
and y; the fragmentation kernel F (x, y) is describing the rate of formation of
particles of size x and y by fragmentation of a particle of size x+y. Both ker-
nels are assumed to be non-negative and symmetric. For an integer m ≥ 0,
the moment of order m is defined by: Mm(t) :=

∫ +∞
0

xmc(x, t)dx. The to-
tal number of particles, M0(t) may decrease by coagulation or increase by
fragmentation, while the total mass of particles, M1(t) remains constant if
there is neither gelation (formation of particles of infinite size by coagulation:
see [1]) nor shattering (formation of zero-size particles by fragmentation: see
[12]). We denote M1 := M1(0).

Existence, uniqueness, boundedness, and positiveness of the solutions of
coagulation-fragmentation equation have been considered in [3]. Exact so-
lutions are only known for pure coagulation (F = 0) or pure fragmentation
(K = 0) equation and for specific kernels and initial data, so efforts are be-
ing pursued to obtain accurate numerical solutions. We focus on stochastic
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(or quasi-stochastic) strategies. Several Monte Carlo (MC) methods have
been developed concurrently. In [4] the density is approximated using a
particle system with a variable particle number. In contrast to this direct
simulation scheme, where the particles represent the number density, a mass
flow scheme was introduced in [2]: the particles represent the mass density
so that the number of particles is kept constant throughout the simulation.
The article [6] presents a mass flow scheme for the coagulation-fragmentation
equation. In [17] time-driven MC are opposed to event-driven MC. In time-
driven simulations a time step is chosen, and all events are implemented
within that step; in event-driven MC, first an event is selected to occur, and
time is advanced by an appropriate increment. It is found that event-driven
methods generally provide better accuracy; but time-driven algorithms are
more suitable in cases where the equation is to be solved within a larger
process simulator that performs explicit integration in time; see [7] for recent
numerical experiments.

The aim of the present work is to extend to the coagulation-fragmentation
equation the time-driven constant-number method introduced in [8, 9] for
pure coagulation. The method uses quasi-random numbers (low-discrepancy
point sets) in place of pseudo-random numbers. The basic notations and
concepts of quasi-Monte Carlo (QMC) methods are given in [15]. We denote
I := [0, 1). For a dimension s, the Lebesgue measure is denoted λs. For
U = {u0, . . . ,uN−1} ⊂ Is and for a Borel set B ⊂ Is the local discrepancy is

DN(B,U) :=
1

N

∑
0≤k<N

1B(uk)− λs(B),

where 1B denotes the indicator function of B. The discrepancy of U is
DN(U) := supJ |DN(J, U)|, where the supremum is taken over all subintervals
J ⊂ Is. The star discrepancy of U is D?

N(U) := supJ? |DN(J?, U)|, where
J? runs through all subintervals of Is with a vertex at the origin. QMC
methods are versions of MC methods, where the pseudo-random samples are
replaced with low-discrepancy point sets. Powerful methods of constructing
low-discrepancy point sets are based on the theory of (t,m, s)-nets and (t, s)-
sequences. For an integer b ≥ 2, an elementary interval in base b is an interval
of the form

∏s
i=1[aib

−di , (ai + 1)b−di), with integers di ≥ 0 and 0 ≤ ai < bdi .
If 0 ≤ t ≤ m are integers, a (t,m, s)-net in base b is a point set U of N = bm

points in Is such that DN(J, U) = 0 for every elementary interval J in base
b with measure bt−m. If b ≥ 2 and t ≥ 0 are integers, a sequence u0,u1, . . . of
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points in Is is a (t, s)-sequence in base b if, for all integers n ≥ 0 and m > t,
the points up with nbm ≤ p < (n+ 1)bm form a (t,m, s)-net in base b.

For many MC schemes, it is possible to develop corresponding QMC al-
gorithms by replacing the pseudo-random numbers with quasi-random num-
bers. In [8, 9], it was shown that it is convenient to take special measures in
order to benefit from the great uniformity of quasi-random points: as time
advances, the simulation particles are renumbered according to size at every
time step.

The present paper is restricted to the presentation and analysis of a QMC
(deterministic) scheme, which is able to produce an approximation of the
density c(x, t) for any (x, t): this may be of interest in some cases (we think
of inverse problems). The remainder of the paper is organized as follows.
In Section 2, the QMC algorithm is presented. We establish in Section 3
a convergence result for the discrepancy of the numerical particles relative
to the exact mass distribution. Results of computational experiments are
shown in section 4.

2. The quasi-Monte Carlo scheme

The case of pure coagulation was analyzed in our previous paper [8]. If
F is not identically null, we assume that, for every x > 0, the function
y ∈ (0, x) 7→ F (x − y, y) is not identically null. We multiply Eq. (1) by
x/M1. If we write x = x − y + y in the first integral, it can be split up
into two integrals, which are equated by a change of variable; we apply the
same transformation to the last integral. By introducing the mass density
function f(x, t) := xc(x, t)/M1 (which is a probability density function), we
obtain the mass-flow equation: for x > 0, t > 0,

∂f

∂t
(x, t) =

∫ x

0

K̃(x− y, y)f(x− y, t)f(y, t)dy

−
∫ +∞

0

K̃(x, y)f(x, t)f(y, t)dy

+

∫ +∞

0

F̃ (x+ y, x)f(x+ y, t)dy −
∫ x

0

F̃ (x, y)f(x, t)dy, (2)

where K̃ and F̃ are the modified coagulation and fragmentation kernels re-
spectively defined by: K̃(x, y) := M1K(x, y)/y (for x, y > 0), and F̃ (x, y) :=
yF (x − y, y)/x (for x > y > 0). We denote f0(x) := xc0(x)/M1 the initial

4



data. We introduce a weak formulation of Eq. (2), so we define a set of test
functions. If R∗+ := (0,+∞), then a function σ : R∗+ → R+ is said to be
simple if its image is a finite pointset of R+; let S(R∗+) be the set of all mea-
surable simple functions on R∗+. By multiplying Eq. (2) by a simple function
σ ∈ S(R∗+) and by integrating over R∗+, we obtain a first weak formulation
of the mass-flow equation:

d

dt

∫ +∞

0

f(x, t)σ(x)dx =∫ +∞

0

∫ +∞

0

K̃(x, y)f(x, t)f(y, t)(σ(x+ y)− σ(x))dydx

+

∫ +∞

0

∫ x

0

F̃ (x, y)f(x, t)(σ(y)− σ(x))dydx

(in the first integral we use new variables: (x, z), where z := x − y, then
rename z → y; in the third integral we use new variables: (x, z), where z :=
x+ y, then rename (z, x)→ (x, y)). Before doing the numerical integration,
we convert the integral over [0, x] to an integral over [0, 1]. For x ≥ y > 0,
let

F(x, y) :=

∫ y

0

F̃ (x,w)dw, Ḟ(x) := F(x, x), F̂(x, y) :=
F(x, y)

Ḟ(x)
.

For x > 0, let F̂x be the function y ∈ [0, x]→ F̂(x, y) ∈ [0, 1], with F̂x(0) :=

0. We assume that this function is strictly increasing; let F̂−1x be the inverse

function. In the integral over [0, x], we change variable y to u := F̂x(y), and
we obtain another weak formulation of the mass-flow equation:

d

dt

∫ +∞

0

f(x, t)σ(x)dx =∫ +∞

0

∫ +∞

0

K̃(x, y)f(x, t)f(y, t)(σ(x+ y)− σ(x))dydx

+

∫ +∞

0

Ḟ(x)f(x, t)

(∫ 1

0

σ ◦ F̂−1x (u)du− σ(x)

)
dx. (3)

We suppose that K̃ and Ḟ are bounded and we set K̃∞ := supx,y>0 K̃(x, y),

Ḟ∞ := supx>0 Ḟ(x). For b ≥ 2 and m ≥ 1, we put N := bm: this is
the number of numerical particles used for the simulation. We need a low
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discrepancy sequence for the time evolution: U = {u0,u1, . . .} ⊂ I3. For
n ∈ N, we write: Un := {up : nN ≤ p < (n + 1)N}. We make the
following assumptions: U is a (t, 3)-sequence in base b (for some t ≥ 0)
and π3

2(Un) is a (0,m, 2)-net in base b (where π3
2 is the projection defined by

π3
2(x1, x2, x3) := (x1, x2)).

2.1. Initialization

We choose a set X0 = {x00, . . . , x0N−1} ⊂ R∗+ of N particles such that the
initial mass probability f0(x)dx is approximated by the probability distribu-
tion:

f 0(x) :=
1

N

∑
0≤k<N

δ(x− x0k),

where δ(x − ξ) is the Dirac measure at a point ξ ∈ R∗+. This reverts to
generating N samples from the density function f0.

2.2. Time discretization

A fixed time step ∆t is chosen such that ∆t(K̃∞ + Ḟ∞) < 1. We set
tn := n∆t and we denote fn(x) := f(x, tn). We suppose that a set Xn =
{xn0 , . . . , xnN−1} ⊂ R∗+ of N particles has been computed so that

fn(x) :=
1

N

∑
0≤k<N

δ(x− xnk)

approximates (in a sense to be made precise below) the exact mass probability
fn(x)dx. The approximation of the solution at time tn+1 is calculated as
follows.
(i) Renumbering the particles
Particles are relabeled at the beginning of the time step by increasing mass:
xn0 ≤ xn1 ≤ · · · ≤ xnN−1. This sorting guarantees theoretical convergence: see
Section 3 below.
(ii) Coagulation/fragmentation
We define an auxiliary probability measure gn+1 by using an explicit Euler
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scheme in time for Eq. (3):∫ +∞

0

gn+1(x)σ(x) =

1

N

∑
0≤k<N

(
1− ∆t

N

∑
0≤`<N

K̃(xnk , x
n
` )−∆tḞ(xnk)

)
σ(xnk)

+
∆t

N

∑
0≤k<N

(
1

N

∑
0≤`<N

K̃(xnk , x
n
` )σ(xnk + xn` ) + Ḟ(xnk)

∫ 1

0

σ ◦ F̂−1xnk (u)du

)
.

The measure gn+1 approximates fn+1(x)dx, but it is not a sum of Dirac
measures. We recover this kind of approximation if we use a QMC quadrature
rule. Let Rk,` := [k/N, (k + 1)/N)× [`/N, (`+ 1)/N) ⊂ I2 be an elementary
interval in base b: we denote by 1Rk,`

its indicator function. Let χnk,` be

the indicator function of Ink,` := [0,∆tK̃(xnk , x
n
` )) and let ϕnk be the indicator

function of Jnk := [1−∆tḞ(xnk), 1). To σ ∈ S(R∗+) corresponds the indicator
function:

Γn+1
σ (u) :=

∑
0≤k,`<N

1Rk,`
(u1, u2)

((
1− χnk,`(u3)− ϕnk(u3)

)
σ(xnk)

+χnk,`(u3)σ(xnk + xn` ) + ϕnk(u3)σ ◦ F̂−1xnk

(
1− u3

∆tḞ(xnk)

))
(for u = (u1, u2, u3) ∈ I3), which is such that∫ +∞

0

gn+1(x)σ(x) =

∫
I3

Γn+1
σ (u)du.

We determine fn+1 by performing a QMC quadrature in I3:∫ +∞

0

fn+1(x)σ(x) =
1

N

∑
nN≤p<(n+1)N

Γn+1
σ (up).

The calculation on a time step may be summarized as follows. If u ∈ [0, 1),
let k(u) := bNuc. Then, for every p with nN ≤ p < (n+ 1)N , we have:

xn+1
k(up,1)

=


xnk(up,1) + xnk(up,2) if up,3 < ∆tK̃

(
xnk(up,1), x

n
k(up,2)

)
,

F̂−1xn
k(up,1)

(
1− up,3

∆tḞ(xnk(up,1))

)
if 1−∆tḞ

(
xnk(up,1)

)
≤ up,3,

xnk(up,1) otherwise.
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For every p, the numbers up,1 and up,2 select particles; the particle k(up,1)
has for coagulation partner the particle k(up,2) and the coagulation proba-

bility is pc := ∆tK̃(xnk(up,1), x
n
k(up,2)

); the fragmentation probability of particle

k(up,1) is pf := ∆tḞ(xnk(up,1)). Then up,3 selects an event and in the case of
fragmentation, it determines the size of the new particle. The algorithm is a
slight modification of the method devised for pure coagulation and uses three-
dimensional quasi-random numbers as well. This is interesting, because it is
well known that QMC methods perform better in low dimensional spaces.
Nevertheless, the extension of the convergence analysis is not straightfor-
ward, because fragmentation introduces new linear terms (the coagulation
terms are quadratic in c).

3. Convergence analysis

We prove a convergence result for the QMC scheme previously described.
First, we need to adapt the basic tools of QMC methods to the algorithm.

Let f be a probability density function on R∗+. If z > 0, then σz is
the indicator function of (0, z). We define the local discrepancy of the set
X = {xk : 0 ≤ k < N} ⊂ R∗+ relative to f by:

DN(z,X; f) :=
1

N

∑
0≤k<N

σz(xk)−
∫ +∞

0

σz(x)f(x)dx.

The star discrepancy of X relative to f is: D?
N(X; f) := supz>0 |DN(z,X; f)|.

The error of the scheme at time tn is defined to be D?
N(Xn; fn). The concept

of variation of function in the sense of Hardy and Krause can be extended to
a function φ defined on R∗s+ and is denoted by V (φ). The Koksma inequality
can be generalized as follows.

Proposition 1. Let f be a probability density function over R∗+. If φ has
bounded variation V (φ) on R∗+, then for any X = {xk : 0 ≤ k < N} ⊂ R∗+,∣∣∣∣∣ 1

N

∑
0≤k<N

φ(xk)−
∫ +∞

0

φ(x)f(x)dx

∣∣∣∣∣ ≤ V (φ)D?
N(X; f).

We introduce the following intermediate terms.
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• The local truncation error :

εnz :=
1

∆t

∫ +∞

0

(fn+1(x)− fn(x))σz(x)dx

−
∫ +∞

0

∫ +∞

0

K̃(x, y)fn(x)fn(y)(σz(x+ y)− σz(x))dydx

−
∫ +∞

0

Ḟ(x)fn(x)

(∫ 1

0

σz ◦ F̂−1x (u)du− σz(x)

)
dx.

• The additional error : enz = enz,K + enz,F , where

enz,K :=

∫ +∞

0

∫ +∞

0

K̃(x, y)fn(x)fn(y)(σz(x+ y)− σz(x))

−
∫ +∞

0

∫ +∞

0

K̃(x, y)fn(x)fn(y)(σz(x+ y)− σz(x))dydx,

enz,F :=

∫ +∞

0

Ḟ(x)fn(x)

(∫ 1

0

σz ◦ F̂−1x (u)du− σz(x)

)
−
∫ +∞

0

Ḟ(x)fn(x)

(∫ 1

0

σz ◦ F̂−1x (u)du− σz(x)

)
dx.

• The QMC integration error :

dnz :=
1

N

∑
nN≤p<(n+1)N

Γn+1
σz (up)−

∫
I3

Γn+1
σz (u)du.

We have the recurrence formula:

DN(z,Xn+1; fn+1) = DN(z,Xn; fn)−∆tεnz + ∆tenz + dnz .

The local truncation error is bounded as follows.

Lemma 1. If for every x > 0, the function t→ f(x, t) is twice continuously

differentiable over (0, T ) and if f, ∂f
∂t
, ∂

2f
∂t2

are integrable over R∗+ × (0, T ),
then, for tn+1 ≤ T ,

|εnz | ≤
∫ +∞

0

∫ tn+1

tn

∣∣∣∣∂2f∂t2 (x, t)

∣∣∣∣ dtdx.
9



The part of the additional error associated to coagulation is bounded in
our previous paper [8].

Lemma 2. If for every y > 0, the function K̃(·, y) : x ∈ (0,+∞) 7→ K̃(x, y)

is of bounded variation V (K̃(·, y)) and supy>0 V (K̃(·, y)) < +∞, and if for

every x > 0, the function K̃(x, ·) : y ∈ (0,+∞) 7→ K̃(x, y) is of bounded

variation V (K̃(x, ·)) and supx>0 V (K̃(x, ·)) < +∞, then

|enz,K | ≤
(

sup
y>0

V (K̃(·, y)) + sup
x>0

V (K̃(x, ·)) + 3K̃∞
)
D?
N(Xn; fn).

We have the following bound for the part of the additional error associated
to fragmentation.

Lemma 3. If for every y > 0, the map F(·, y) : x ∈ [y,+∞) 7→ F(x, y) is
of bounded variation V (F(·, y)) and supy>0 V (F(·, y)) < +∞, then

|enz,F | ≤
(

sup
y>0

V (F(·, y)) + Ḟ∞
)
D?
N(Xn; fn).

Proof. We have

enz,F =

∫ +∞

0

fn(x)

∫ x

0

F̃ (x, y)(σz(y)− σz(x))dy

−
∫ +∞

0

fn(x)

∫ x

0

F̃ (x, y)(σz(y)− σz(x))dy.

If we define a function: ϕ(x) :=
∫ x
0
F̃ (x, y)(σz(y)−σz(x))dy (for x > 0), then

enz,F :=
1

N

∑
0≤k<N

ϕ(xnk)−
∫ +∞

0

ϕ(x)fn(x)dx.

Using the generalized Koksma inequality leads to: |enz,F | ≤ V (ϕ)D?
N(Xn; fn).

Since V (ϕ) ≤ supy>0 V (F(·, y)) + Ḟ∞, the result of the lemma follows. �

For bounding the QMC integration error dnz , we use the following result
(see Lemma 3.4 of [14]):

Lemma 4. Let U be a (t,m, s)-net in base b. For every elementary interval
J ′ ⊂ Is−1 and for every us ∈ I, we have: |Dbm(J ′ × (us, 1), U)| ≤ bt−m.
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Lemma 5. If K̃ is of bounded variation in the sense of Hardy and Krause,
and if for every y > 0, the function F(·, y) : x ∈ [y,+∞) 7→ F(x, y) is of
bounded variation V (F(·, y)) and supy>0 V (F(·, y)) < +∞, then

|dnz | ≤ (2 + cK∆t)b−b(m−t)/3c + (1 + cF∆t)b(m−t)/2c,

where

cK := 4V (K̃) + 3K̃∞ and cF := sup
y>0

V (F(·, y)) + sup
x≥y>0

F(x, y). (4)

Proof. The function Γn+1
σz is the indicator function of some subset P n

z of

I3, thus dnz = DN(P n
z , U

n). We have the disjoint union: P n
z = (P n

z,0 \ P̃ n
z,1) ∪

P n
z,2 ∪ P̃ n

z,F , where

P n
z,0 :=

⋃
0≤k,`<N
xnk<z

Rk,` × I, P̃ n
z,1 :=

⋃
0≤k,`<N
xnk<z

Rk,` × (Ink,` ∪ Jnk ),

P n
z,2 :=

⋃
0≤k,`<N
xnk+x

n
` <z

Rk,` × Ink,`,

P̃ n
z,F :=

⋃
0≤k,`<N

Rk,` × Jnk ∩

{
u ∈ I : F̂−1xnk

(
1− u

∆tḞ(xnk)

)
< z

}
.

We also have the disjoint union: P n
z =

(
P n
z,0 \ P n

z,1

)
∪ P n

z,2 ∪ P n
z,F , where

P n
z,1 :=

⋃
0≤k,`<N
xnk<z

Rk,` × Ink,` and P n
z,F :=

⋃
0≤k,`<N
xnk≥z

Rk,` × (1−∆tF(xnk , z), 1).

Consequently, dnz can be split up: dnz = dnz,K +DN(P n
z,F , U

n), where

dnz,K := DN(P n
z,0, U

n)−DN(P n
z,1, U

n) +DN(P n
z,2, U

n).

In [8] we have proved: |dnz,K | ≤ (2 + cK∆t)b−b(m−t)/3c. We now establish a
bound for |DN(P n

z,F , U
n)|. By denoting Ik := [k/N, (k + 1)/N), we have:

P n
z,F =

⋃
0≤k<N
xnk≥z

Ik × I × (1−∆tF(xnk , z), 1).
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We set σcz := 1− σz and we introduce the function:

φnz (u) :=
∑

0≤k<N

1Ik(u)F(xnk , z)σ
c
z(x

n
k), u ∈ I,

where 1Ik is the indicator function of Ik. Then P n
z,F = {u ∈ I3 : u3 >

1 − ∆tφnz (u1)}. Let d1 be an integer such that d1 ≤ m − t: its value is
determined hereafter. For a1 ∈ N with 0 ≤ a1 < bd1 , we define: I ′a1 :=
[a1b

−d1 , (a1 + 1)b−d1) and

P n
z,F :=

⋃
0≤a1<bd1

I ′a1 × I × (1−∆t inf
I′a1

φnz , 1),

P
n

z,F :=
⋃

0≤a1<bd1

I ′a1 × I × (1−∆t sup
I′a1

φnz , 1),

∂P n
z,F :=

⋃
0≤a1<bd1

I ′a1 × I × [1−∆t sup
I′a1

φnz , 1−∆t inf
I′a1

φnz ].

We have P n
z,F ⊂ P n

z,F ⊂ P
n

z,F and P
n

z,F \ P n
z,F ⊂ ∂P n

z,F . Consequently,

DN(P n
z,F , U

n)− λ3(∂P n
z,F ) ≤ DN(P n

z,F , U
n) ≤ DN(P

n

z,F , U
n) + λ3(∂P

n
z,F ).

Since the I ′a1× I are disjoint elementary intervals in base b, an application of

Lemma 4 yields: max
(
|DN(P n

z,F , U
n)|, |DN(P

n

z,F , U
n)|
)
≤ bd1+t−m. Besides,

λ3(∂P
n
z,F ) =

∆t

bd1

∑
0≤a1<bd1

(
sup
I′a1

φnz − inf
I′a1

φnz

)
.

If we introduce the function ψz(x) := F(x, z)σcz(x) (for x > 0), then φnz (u) =
ψz(x

n
k(u)). We define the sets: En

a1
:= [xn

a1bm−d1
, xn

(a1+1)bm−d1−1]. Since the

particles are numbered by increasing size, we get: u ∈ I ′a1 ⇒ xnk(u) ∈ En
a1

.
Consequently we have:

sup
I′a1

φnz − inf
I′a1

φnz ≤ sup
En

a1

ψz − inf
En

a1

ψz.

Since ∑
0≤a1<bd1

(
sup
En

a1

ψz − inf
En

a1

ψz

)
≤ V (ψz) ≤ V (F(·, z)) + sup

x>0
F(x, z),
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we obtain: |DN(P n
z,F , X

n)| ≤ bd1+t−m + cF∆tb−d1 . By choosing d1 = b(m −
t)/2c, we get |DN(P n

z,F , U
n)| ≤ (1 + cF∆t)b−b(m−t)/2c. In conjunction with

the bound for dnz,K , this gives the final result. �

By combining the results of Lemmas 1, 2, 3 and 5, we obtain an upper
bound for the error D?

N(Xn; fn); it resembles the final result of [8] and is
similarly established. Since N = bm, we have 1/bb(m−t)/3c = O(1/N1/3) and
1/bb(m−t)/2c = O(1/N1/2).

Proposition 2. If
(1) for every x > 0, the function t → f(x, t) is twice continuously differen-

tiable over (0, T ) and f, ∂f
∂t
, ∂

2f
∂t2

are integrable over R∗+ × (0, T ),

(2) K̃ is of bounded variation in the sense of Hardy and Krause,
(3) for every y > 0, the function F(·, y) : x ∈ [y,+∞) 7→ F(x, y) is of
bounded variation V (F(·, y)) and supy>0 V (F(·, y)) < +∞, then

D?
N(Xn; fn) ≤ ectnD?

N(X0; f0) + ∆t

∫ +∞

0

∫ tn

0

ec(tn−t)
∣∣∣∣∂2f∂t2 (x, t)

∣∣∣∣ dtdx
+

((
2

∆t
+ cK

)
1

bb(m−t)/3c
+

(
1

∆t
+ cF

)
1

bb(m−t)/2c

)
ectn − 1

c

where tn = n∆t, cK, cF are given by Eq. (4) and

c := sup
x>0

V (K̃(x, .)) + sup
y>0

V (K̃(., y)) + 3K̃∞ + sup
y>0

V (F(·, y)) + Ḟ∞.

This upper bound does not converge as fast as we would like, but is
nevertheless a worst-case deterministic bound. The O(N−1/3) convergence
of the bound is due to QMC integration of indicator functions in 3D; the
O(1/∆t) is due to the summation of integration errors at every time step.
The same result would have been obtained if the same QMC pointset has
been used at every time step (which leads in practice to a method where the
error increases with the number of time steps). A more complicated error
analysis would take into account that an infinite QMC sequence is used, but
in this case, the QMC integration of indicator functions would be in 4D and
leads to O(N−1/4) convergence. The present bound only guarantees that the
error can be arbitrarily small, if ∆t is small enough and N is large enough.
It does not aim to provide an optimal time step for a given N . Numerical
experiments show that the method converges faster than O(N−1/2) and the
error decreases with ∆t.
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4. Numerical results

The efficiency of the QMC scheme is tested empirically. To do this,
approximate solutions are computed in a case where analytical solutions for
the moments are available. A quantity of interest when simulating liquid-
liquid extraction problems is the Sauter mean diameter of drops, which is
calculated with the second and third moments. The QMC solutions are also
compared with those given by the MC scheme adapted from the algorithm
described in [2]. We consider the case where coagulation and fragmentation
occur simultaneously with the following kernels: K(x, y) = 1 and F (x, y) =
2/(x+ y), which is considered in [6]. Then Eq. (1) becomes:

∂c

∂t
(x, t) =

1

2

∫ x

0

c(x− y, t)c(y, t)dy − c(x, t)
∫ +∞

0

c(y, t)dy

+2

∫ +∞

x

1

y
c(y, t)dy − c(x, t), x > 0, t > 0. (5)

We restrict ourselves to monodisperse initial condition: c(x, 0) = δ(x − 1).
By multiplying Eq. (5) by xm and using integration over (0,+∞), we get
differential equations for the moments Mm(t), which can be solved to obtain:

M2(t) = 3− 2e−t/3 and M3(t) = 18− 36e−t/3 + 19e−t/2.

We compute the solution up to time T = 1.0 with N particles (N varying
from 27 to 220) and P time steps (P varying from 20 × 100 to 24 × 100).
All QMC computations use a (1, 3)-sequence in base 2 constructed by H.
Niederreiter [15]. The moment Mm(tn) at time tn can be approximated,
using the MC or QMC scheme, by:

Mm,N,P,n :=
1

N

∑
0≤k<N

(xnk)m−1. (6)

First we compute the absolute error in the moment estimation at time αT ,
for α = 1/100, 1/10 and 1:

Eα
m,N,P := |Mm(αT )−Mm,N,P,αP |.

Figure 1 represents the log-log plots (base 2) of these absolute errors, for
different values of N and P . In all cases, the QMC simulations give better re-
sults (for the same discretization parameters) than those given by the Monte

14



Figure 1: Error in the second (left) and third (right) moment estimation at time 1/100
(top) 1/10 (middle) and 1 (bottom), as a function of N (number of particles varying from
27 to 220), for P (number of time steps) between 100 and 1 600. Log-log plots of the MC
(dashed line) versus QMC (solid lines) results.
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Carlo scheme. The error seems stable on the time interval [1/100, 1/10], so
that it makes sense to compare the methods on the whole time interval [0, 1]:
the mean absolute error in the moment estimation is calculated as follows:

Em,N,P :=
1

100

100∑
h=1

|Mm(hT/100)−Mm,N,P,hP/100|.

Figure 2 shows the log-log plots (base 2) of the mean absolute error in the
estimation of the moments of order 2 and 3, for different values of N and P .
In both cases, the QMC simulations show faster convergence than the Monte
Carlo scheme.

5. Conclusion

In this paper, we have presented and analyzed a new algorithm for the ap-
proximation of the continuous coagulation-fragmentation equation. A sample
of N numerical particles is used to simulate the behavior of the system as
a whole. Time is discretized into P time steps and the mass density is ap-
proximated by a sum of N Dirac measures. Three-dimensional quasi-random
points are used to change the particles masses according to the dynamics of
the equation.

A deterministic error bound is established. The accuracy of the algo-
rithm is assessed through comparison with exact values, in a test case where
analytical results are available. The numerical approximations given by the
QMC scheme converge to the exact results when P and N are large enough.
The errors given by the QMC simulation are always smaller than the errors
given by the MC method using the same P and N .

As announced, we have restricted the study to a deterministic scheme.
Randomized QMC would be an interesting alternative (see [10, 11]), but
requires a different analysis: this will be the subject of a forthcoming paper.
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