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Abstract We survey basic ideas and results on randomized quasi-Monte Carlo
(RQMC) methods, discuss their practical aspects, and give numerical illustrations.
RQMC can improve accuracy compared with standard Monte Carlo (MC) when
estimating an integral interpreted as a mathematical expectation. RQMC estimators
are unbiased and their variance converges at a faster rate (under certain conditions)
than MC estimators, as a function of the sample size. Variants of RQMC also work
for the simulation of Markov chains, for function approximation and optimization,
for solving partial differential equations, etc. In this introductory survey, we look
at how RQMC point sets and sequences are constructed, how we measure their
uniformity, why they can work for high-dimensional integrals, and how can they
work when simulating Markov chains over a large number of steps.

1 Introduction

We consider a setting in which Monte Carlo (MC) or quasi-Monte Carlo (QMC) is
used to estimate the expectation µ = E[X ] of a random variable X defined over a
probability space (Ω ,F ,P). We assume that ω ∈Ω can be identified with a sequence
of s independent U (0,1) random variables (uniform over (0,1)) for some integer
s > 0, so we can write X = f (U) and

µ =
∫ 1

0
· · ·
∫ 1

0
f (u1, . . . ,us)du1 · · ·dus =

∫
(0,1)s

f (u)du = E[ f (U)], (1)
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Inria, Rennes, France, lecuyer@iro.umontreal.ca

1



2 L’Ecuyer

for some function f : Ω = (0,1)s → R, where u = (u1, . . . ,us) ∈ (0,1)s, and U ∼
U (0,1)s (uniform over the unit hypercube). We can allow s to be random and
unbounded; then this model is very general [28].

The standard Monte Carlo (MC) method estimates µ by

X̄n =
1
n

n−1

∑
i=0

Xi (2)

where Xi = f (Ui) and U0, . . . ,Un−1 are n independent U (0,1)s random vectors.
In implementations, these Ui are replaced by vectors of “random numbers” that
drive the simulation, but the MC theory developed under the above probabilis-
tic assumptions still works well. We have E[X̄n] = µ and Var[X̄n] = σ2/n where
σ2 :=

∫
(0,1)s f 2(u)du− µ2. If σ2 < ∞ then when n→ ∞ we have X̄n → µ with

probability 1 by the strong law of large numbers and
√

n(X̄n−µ)/Sn ⇒ N (0,1)
(the standard normal distribution) by the usual central limit theorem (CLT), where
S2

n =
1

n−1 ∑
n−1
i=0 (Xi− X̄n)

2. This CLT is invoked routinely to compute a confidence
interval on µ based on a normal approximation. The width of this confidence inter-
val is asymptotically proportional to σ/

√
n, which means that for each additional

decimal digit of accuracy on µ , one must multiply the sample size n by 100.
Quasi-Monte Carlo (QMC) replaces the independent random points Ui by a set

of deterministic points Pn = {u0, . . . ,un−1} that cover [0,1)s more evenly. (Here
we include 0 in the interval because some of these deterministic points often have
coordinates at 0.) It estimates µ by

µ̄n =
1
n

n−1

∑
i=0

f (ui).

Roughly speaking, Pn is called a highly-uniform point set or low-discrepancy point
set if some measure of discrepancy between the empirical distribution of Pn and the
uniform distribution converges to 0 faster than O(n−1/2), which is the typical rate
for independent random points, when n→ ∞. QMC theory defines several types of
discrepancies, usually by defining function spaces (often Hilbert spaces) H in which
by applying the Cauchy-Schwarz inequality, one obtains the worst-case error bound

|µ̄n−µ| ≤ D(Pn)V ( f ) (3)

for all f ∈H , where V ( f ) = ‖ f − µ‖H is the norm of f − µ in H (it measures
the variation of f ), and D(Pn) is the discrepancy measure of Pn associated with this
space [9, 18, 50]. For any fixed f ∈H with V ( f ) 6= 0, this error bound converges at
the same rate as D(Pn). The error itself sometimes converges faster than the bound.
To capture this, Hickernell [21] considers a setting in which (3) is transformed into
an equality by introducing a third multiplicative factor on the right side. This new
factor is the confounding between f and the empirical distribution of the points ui; it
is always in [0,1] and is equal to the left term divided by the right term in (3). The
resulting equality is named a trio identity.
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In a well-known special case, D(Pn) is the star discrepancy D∗(Pn), defined
as follows: for each rectangular box [0,u) with opposite corners at 0 and u, let
∆(u) be the absolute difference between the volume of the box and the fraction
of Pn that fall in that box. Then define D∗(Pn) as the supremum of ∆(u) over all
u ∈ (0,1)s. There are known explicit constructions that can provide a Pn for each
n, for which D∗(Pn) = O(n−1(lnn)s−1). Variants of these constructions provide an
infinite sequence of points for which D∗(Pn) = O(n−1(lnn)s) if Pn comprises the
first n points of the sequence. One important limitation of (3) for this case is that the
corresponding V ( f ), known as the Hardy-Krause variation of f , is infinite as soon as
f has a discontinuity that is not aligned with the axes. Computing D∗(Pn) explicitly
is also difficult: the best known algorithms are polynomial in n but exponential in s;
see [12] for a coverage of various types of discrepancies and their computation.

There are other interesting (Hilbert) spaces of periodic smooth functions for which
the corresponding D(Pn) in (3) converges as O(n−α+ε) for any ε > 0, for some α > 0
that depends on the space and can be arbitrarily large. The main construction methods
for Pn are lattice rules and digital nets. We discuss them later and give examples.

With deterministic QMC, it is hard to estimate the integration error in practice.
Randomized quasi-Monte Carlo (RQMC) randomizes the QMC points in a way that
for the RQMC point set Pn = {U0, . . . ,Un−1} ⊂ (0,1)s (which is now random),

(i) each point Ui has the uniform distribution over (0,1)s;
(ii) Pn as a whole is a low-discrepancy point set.

This turns QMC into a variance-reduction method. The RQMC estimator

µ̂n,rqmc =
1
n

n−1

∑
i=0

f (Ui) (4)

is an unbiased estimator of µ , with variance

Var[µ̂n,rqmc] =
Var[ f (Ui)]

n
+

2
n2 ∑

i< j
Cov[ f (Ui), f (U j)]. (5)

We want to make the last sum as negative as possible, by inducing pairwise negative
covariance. Well-known ways of creating such negative correlation include antithetic
variates (with n = 2), Latin hypercube sampling (LHS), and stratification. The first
two can reduce the variance under some conditions, but do not improve the O(n−1/2)
MC rate. Stratification and other RQMC methods based for example on lattice rules
and digital nets can improve the rate; see Section 2. Some RQMC methods provide a
better convergence rate than the squared worst-case error, because the average over
the randomizations is sometimes better than the worst case [17, 48, 56].

Note that because of the nonzero covariances, we cannot use the sample vari-
ance of the f (Ui) to estimate Var[µ̂n,rqmc] as for MC. To estimate the variance, we
can simulate m independent realizations X1, . . . ,Xm of µ̂n,rqmc, then estimate µ and
Var[µ̂n,rqmc] by their sample mean X̄m and sample variance S2

m. This can be used to
estimate the integration error. It may seem natural to compute a confidence interval
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by assuming that X̄m is approximately normally distributed, but one should be careful:
The CLT holds in general for m→ ∞, but for fixed m and n→ ∞ it holds only for
a few RQMC methods [38, 45]. When applying RQMC to estimate µ , for a given
total computing budget mn, we prefer n as large as possible to benefit from the faster
convergence rate in n, and then m is small (e.g., 10 or 20) and X̄m may be far from
normally distributed. We give an example in Section 4.1.

In the remainder of this tutorial, we focus on RQMC to estimate an integral on the
unit cube, and we assume that the goal is to reduce the variance. For simplicity, we
assume that s and n are fixed. There are constructions (not discussed here) in which
the point sets can be expanded dynamically in dimension by adding new coordinates
and in size by adding new points without changing the existing points. There are
settings in which the criterion to minimize is not the variance. It can be the worst-case
error or the average error for some class of functions, for example. This may give
rise to various kinds of Hilbert (or Banach) spaces and discrepancies that we do not
examine here. We look at just a few RQMC settings to give illustrations. Another
interesting fact for practitioners is that the faster convergence rates of RQMC are
proved under conditions on f that are often not satisfied in applications, but despite
this, RQMC often reduces the variance by significant factors in those applications,
so it is worth giving it a try and comparing RQMC vs MC empirical variances.

RQMC methods are best-known for estimating an integral, but they can effectively
apply much more widely, for example to estimate the derivative of an expectation, or
a function of several expectations, or a quantile, or a density, or the optimizer of a
parameterized expectation or function, etc. This tutorial does not (and cannot) cover
every aspect of RQMC. It gives more emphasis to what the author knows best. For
more on QMC and RQMC, see for example [9, 33, 34, 28, 41, 50, 55, 58]. Tutorials
on more advanced QMC topics can be found elsewhere in this book.

2 RQMC point set constructions

2.1 Stratification

A first approach to obtain a negative sum of covariances in (5) is to stratify the
unit hypercube [16]. We partition axis j in k j ≥ 1 equal parts, for j = 1, . . . ,s. This
determines n = k1 · · ·ks rectangular boxes of volume 1/n. Then we draw n random
points, one per box, independently and uniformly in each box. Fig. 1 (left) gives an
illustration with s = 2, k1 = 12, k2 = 8, and n = 12×8 = 96.

The stratified estimator in the general case is

Xs,n =
1
n

n−1

∑
j=0

f (U j).

The crude MC variance with n points can be decomposed as
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0 1

1

ui,2

ui,1
0 1

1

ui,2

ui,1

Fig. 1 An illustration of stratified sampling (left) and a midpoint rule (right) over (0,1)2.

Var[X̄n] = Var[Xs,n]+
1
n

n−1

∑
j=0

(µ j−µ)2

where µ j is the mean over box j. The more the µ j’s differ, the more the variance
is reduced. Stratification provides an unbiased estimator and never increases the
variance. One can estimate the variance by replicating the scheme m ≥ 2 times,
computing the empirical variance in each box, and averaging. If f ′ is continuous and
bounded, and all k j are equal to k (so n= ks), then by using a Taylor expansion in each
box one can show [16] that Var[Xs,n] = O(n−1−2/s). This may provide a significant
improvement when s is small, but for large s, the rate is not much better than for
MC, and the method quickly becomes impractical because n increases exponentially
with k. Nevertheless, it is sometimes effective to apply stratification to just a few
important (selected) coordinates.

It is interesting to note that for f ′ continuous and bounded, a (deterministic)
multivariate midpoint rule which takes one point at the center of each box, as shown
in the right panel of Fig. 1 for k1 = k2 = 8, gives the same rate as stratification for
the worst-case square integration error. For the midpoint rule, each one-dimensional
projection of Pn has only d distinct points, each two-dimensional projection has only
d2 distinct points, etc. This means that for integrating functions that depend (mostly)
on just a few of the s coordinates, many of the n points are identical with respect to
those important coordinates, so the scheme becomes inefficient.

2.2 Lattice rules

An integration lattice is a vector space of the form
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Ls =

{
v =

s

∑
j=1

z jv j such that each z j ∈ Z

}
,

where v1, . . . ,vs ∈ Rs are linearly independent over R and where Ls contains Zs, the
vectors of integers. A lattice rule is a QMC method that takes Pn = {u0, . . . ,un−1}=
Ls∩ [0,1)s. It has rank 1 if we can write ui = iv1 mod 1 for i = 0, . . . ,n−1, where
nv1 = a = (a1, . . . ,as) ∈ {0,1, . . . ,n−1}s. These are the most widely used rules in
practice. We have a Korobov rule if a = (1,a,a2 mod n, . . . ,as−1 mod n) for some
integer a such that 1≤ a < n.

Fig. 2 shows the points of a two-dimensional Korobov lattice rule with n = 101
and a = (1,12) on the left and a = (1,51) on the right. In both cases the points have
a lattice structure. They are very evenly spread over the unit square for a = (1,12),
but for a = (1,51) all the points of Pn lie on two parallel straight lines! Thus, the
joint choice of n and a must be done carefully.

0 1

1

ui,2

ui,1

v1

0 1

1

ui,2

ui,1

v1

Fig. 2 An integration lattice with s = 2, n = 101, with v1 = (1,12)/n on the left and v1 = (1,51)/n
on the right. In both cases, we can take v2 = (0,1).

A lattice rule can be turned into an RQMC method simply by shifting the lattice
randomly, modulo 1, with respect to each coordinate [7, 33]. One generates a single
point U uniformly in (0,1)s, and adds it to each point of Pn modulo 1, coordinate-
wise. This satisfies the two RQMC conditions. Fig. 3 gives an example in which
U = (0.40,0.08), for the lattice rule of Fig. 2.

A good randomly-shifted lattice rule provides an unbiased estimator with points
that seem to cover the unit cube more evenly than independent points, but does it
make the variance converge faster with n than MC? The answer is yes, under some
conditions on the integrand f . Suppose f has Fourier expansion

f (u) = ∑
h∈Zs

f̂ (h)e2π
√
−1htu.

For a randomly shifted lattice, the exact variance is always (see [33]):
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0 1

1

ui,2

ui,1

U

0 1

1

ui,2

ui,1

Fig. 3 Random shift modulo 1 for the lattice of Fig. 2 (left), with U = (0.40,0.08).

Var[µ̂n,rqmc] = ∑
0 6=h∈L∗s

| f̂ (h)|2, (6)

where L∗s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls} ⊆ Zs is the dual lattice. Thus, from
the viewpoint of variance reduction, an optimal lattice for any given f is one that
minimizes (6). But finding it for a given f is generally too hard and unrealistic.

Let α > 0 be an even integer. If f has square-integrable mixed partial derivatives
up to order α/2 > 0, and the periodic continuation of its derivatives up to order
α/2− 1 is continuous across the boundaries of the unit cube modulo 1, then it is
known that | f̂ (h)|2 =O((max(1,h1) · · ·max(1,hs))

−α). It is also known that for any
ε > 0, there is always a vector v1 = v1(n) such that

Pα := ∑
06=h∈L∗s

(max(1,h1) · · ·max(1,hs))
−α = O(n−α+ε). (7)

This Pα has been proposed long ago as a figure of merit, often with α = 2 [58]. It is
the variance for a worst-case f having | f̂ (h)|2 = (max(1, |h1|) · · ·max(1, |hs|))−α . A
larger α means a smoother f and a faster convergence rate. This Pα is defined by
an infinite sum, which cannot be computed exactly in general. However, when α is
an even integer, the worst-case f is

f ∗(u) = ∑
u⊆{1,...,s}

∏
j∈u

(2π)α/2

(α/2)!
Bα/2(u j)

where Bα/2 is the Bernoulli polynomial of degree α/2 (e.g., B1(u) = u−1/2), and
Pα can be written as a finite sum that is easy to compute and can be used as a
criterion to search for good lattices; see (9) in Section 3, where we give a more
general version.
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Thus, under the above conditions on the periodic continuation of f , for all ε > 0
there is a sequence of integration lattices indexed by n for which the variance
converges as O(n−α+ε). What if f does not satisfy these conditions? One can often
change f to a continuous and/or smoother function that integrates to the same µ over
[0,1)s, usually via a change of variable. For example, suppose f is continuous in
[0,1), but discontinuous at the boundary, i.e., f (. . . ,u j = 0, . . .) 6= f (· · · ,u j = 1, . . .).
To simplify the exposition, suppose f is a function of a single real variable u (the
other ones are fixed). Consider the change of variable v = ϕ(u) = 2u if u≤ 1/2 and
1−2u if u > 1/2. It is known as the baker transformation [20]: it stretches the points
by a factor of 2, from [0,1) to [0,2), and folds back the segment [1,2) to [1,0). Its
impact on the RQMC estimator (4) is exactly equivalent to compressing the graph
of f horizontally by a factor of 1/2, and then making a mirror copy on the interval
[1/2,1). The transformed f is a continuous function. Fig. 4 gives an illustration. In
practice, it is more convenient to apply the baker transformation to the randomized
points Ui instead of changing f . Higher-order transformations can also make the
derivatives (up any given order) continuous and improve the asymptotic rate even
further, but they often increases the variance for “practical” values of n by increasing
V ( f ), so are not necessarily better in the end.

0 1
1/2

0 1
1/2

Fig. 4 Applying the baker transformation to the points Ui is equivalent to transforming f as shown.

Note that the worst-case function for the bounds we discussed is not necessarily
representative of what happens in applications. Also, the hidden factor in the O may
increase quickly with s, so the rate result in (7) is not very useful for large s. To get
a bound that is uniform in s, the Fourier coefficients must decrease faster with the
dimension and “size” of vectors h; that is, f must be “smoother” in high-dimensional
projections [10, 59, 60]. This is typically what happens in applications for which
RQMC is effective. The criterion (9) will take that into account.

2.3 Digital nets

Niederreiter [50] defines a digital net in base b as follows. Choose the base b, usually
a prime number or a power of a prime, and an integer k > 0. For i = 0, . . . ,bk−1 and
j = 1, . . . ,s, put
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i = ai,0 +ai,1b+ · · ·+ai,k−1bk−1 = ai,k−1 · · ·ai,1ai,0,ui, j,1
...

ui, j,w

 = C j

 ai,0
...

ai,k−1

 mod b,

ui, j =
w

∑
`=1

ui, j,`b−`, ui = (ui,1, . . . ,ui,s),

where the generating matrices C j are w× k with elements in Zb. This gives n = bk

points. In practice, w and k are finite, but there is no limit. The definition in [50]
is actually more general: One can define bijections between Zb and some ring R,
and perform the multiplication in R. Assuming that each C j has full rank, each one-
dimensional projection truncated to its first k digits is Zn/n = {0,1/n, . . . ,(n−1)/n}.
That is, each C j defines a permutation of Zn/n.

If each C j is defined with an infinite number of columns, then we have an infinite
sequence of points, called a digital sequence in base b. One can always take the first
n = bk points of a digital sequence to define a digital net, for any k.

Measuring uniformity. A standard way of measuring the uniformity of a digital
net in base b with n = bk points is as follows [34, 50]. Suppose we divide axis j in
bq j equal parts for some integer q j ≥ 0, for each j. This determines a partition of
[0,1)s into 2q1+···+qs rectangles of equal sizes. If each rectangle contains exactly the
same number of points from Pn, we say that Pn is (q1, . . . ,qs)-equidistributed in base
b. This occurs if and only if the matrix formed by the first q1 rows of C1, the first
q2 rows of C2, . . . , the first qs rows of Cs, is of full rank (mod b). The (q1, . . . ,qs)-
equidistribution can be verified by constructing this matrix and checking its rank. We
say that Pn is a (t,k,s)-net in base b if and only if it is (q1, . . . ,qs)-equidistributed
whenever q1+ · · ·+qs = k−t. This is possible for t = 0 only if b≥ s−1. The t-value
of a digital net is the smallest t for which it is a (t,k,s)-net.

0 1

1

ui,2

ui,1 0 1

1

ui,2

ui,1

Fig. 5 The Hammersley point set (or Sobol net with appended first coordinate) for s = 2 and n = 64
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Fig. 5 gives an example of a (0,6,2)-net in base 2. The equidistribution can be
observed on the left with q1 = q2 = 3 and on the right with q1 = 4 and q2 = 2.
This point set is obtained by taking C2 as the identity matrix and C1 as the reverse
identity (with 1’s on the descending diagonal). The points are enumerated by their
first coordinate and the second coordinate follows the van der Corput sequence in
base 2. Many of the points sit exactly on the left or bottom boundary of their rectangle
in Fig. 5, because only the first six bits of each coordinate can be nonzero. For any
integer k > 0, this construction (with these C1 and C2) is a (0,k,2)-net in base 2; it
is the two-dimensional Hammersley point set.

An infinite sequence {u0,u1, . . .} in [0,1)s is a (t,s)-sequence in base b if for all
k > 0 and ν ≥ 0, Q(k,ν) = {ui : i = νbk, . . . ,(ν +1)bk−1}, is a (t,k,s)-net in base
b. This is possible for t = 0 only if b≥ s.

A key property that connects digital nets with the star discrepancy and QMC error
bounds is that for fixed s, if Pn is a (t,k,s)-net in base b for k = 1,2,3, . . . and t is
bounded, then D∗(Pn) =O(n−1(logn)s−1), and for any f having finite Hardy-Krause
variation V ( f ), the error bound (3) with these point sets converges at this same rate.

Specific constructions. The most popular (and oldest) specific instance of digital
sequence was proposed by Sobol’ [61], in base b = 2. Each binary matrix C j is upper
triangular with ones on the main diagonal. The bits above the diagonal in any given
column form the binary expansion of an integer called a direction number. The first
few direction numbers are selected and the following columns are determined by
a bitwise linear recurrence across the columns. The choice of the initial direction
numbers is important for the quality of the points. For original values proposed by
Sobol’, in particular, the uniformity of several low-dimensional projections are very
poor. Better direction numbers are proposed in [26, 42], for example. Fig. 6 shows
the first 64 points of the Sobol sequence in base 2, for which C1 is the identity matrix.
These points form a (0,6,2)-net in base 2, just like the Hammersley points of Fig. 5.

0 1

1

ui,2

ui,1 0 1

1

ui,2

ui,1

Fig. 6 The first n = 64 Sobol points in s = 2 dimensions
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Faure [14] proposed digital sequences in base b for any prime b by taking C j
as the ( j−1)th power of the Pascal matrix, modulo b. He proved that the resulting
sequence is a (0,s)-sequence in base b for any s ≤ b. The latter condition is a
practical limitation, because it imposes the choice of a large base when s is large.
Also, the arithmetic modulo a prime b > 2 is less convenient and generally slower on
computers than arithmetic modulo 2. Other sequences and nets for arbitrary prime
power bases and nets in base 2 with better t-values than those of Sobol’ are also
available (see, e.g., [9, 51]), but they rarely outperform Sobol’ points in applications.

For all these sequences, if we fix n = bk, we can take the first coordinate of point i
as i/n, which corresponds to taking C1 as the reflected identity matrix, and then take
C j+1 as the old C j, for j ≥ 1. It turns out that by doing this with a (t,s)-sequence,
we can obtain a (t,k,s+ 1)-net for any k. That is, we gain one coordinate in the
net. By doing this with the Sobol’ sequence with s = 1, we obtain the Hammersley
net illustrated in Fig. 5. Other types of digital net constructions can be found in
[9, 43, 52] and the references given there.

Randomization. If we apply a random shift modulo 1 to a digital net, the
equidistribution properties are not preserved in general. However, a random dig-
ital shift in base b preserves them and also satisfies the two criteria that define
RQMC. It works as follows. As for the ordinary random shift, we generate a single
U = (U1, . . . ,Us) ∼ U [0,1)s where U j = ∑

w
`=1 U j,` b−`. For coordinate j of point

i, before the shift we have ui, j = ∑
w
`=1 ui, j,`b−`. The digital shift replaces each

ui, j by Ũi, j = ∑
w
`=1[(ui, j,`+U j,`) mod b]b−`. It is not difficult to show that if Pn

is (q1, . . . ,qs)-equidistributed in base b before the shift, it retains this property after
the shift. Moreover, if w = ∞, each randomized point Ũi has the uniform distribution
over (0,1)s. As a result, if f has finite Hardy-Krause variation and we use (t,k,s)-
nets with fixed s and bounded t for RQMC with a random digital shift, the estimator
µ̂n,rqmc is unbiased and by squaring the worst-case error we immediately find that
its variance converges as O(n−2(logn)2(s−1)). (Better rates are obtained for certain
classes of smooth functions and certain types of randomizations; see below.)

In base b = 2, the digital shift consists in applying a bitwise XOR between U and
each ui. To illustrate how the equidistribution is preserved, take for example k1 = 3
and k2 = 5. For the given U, the bits marked as “C” in the result have been flipped
and those still marked with ∗ are unchanged:

ui = (0.***, 0.*****)2

U = (0.101, 0.01011)2

ui⊕U = (0.C*C, 0.*C*CC)2

If the eight considered bits for ui take each of the 28 possible configurations exactly
the same number of times when i = 0, . . . ,n− 1, then this also holds for ui⊕U.
More generally, for a digital net in base 2 with n = 2k points in s dimensions,
this preservation holds for any U and any non-negative integers k1, . . . ,ks such that
k1 + · · ·+ ks ≤ k. Fig. 7 shows a digital shift in base 2 with

U = (0.10100101100..., 0.01011001100...)2
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applied to the Hammersley points (Sobol’ net with one extra coordinate) of Fig. 5.
For this given U, for each point ui we flip the first, third, sixth, ..., bits of the first
coordinate, and we flip the second, fourth, fifth, ..., bits of the second coordinate.
The figure shows what happens when we flip the first bit of the first coordinate (top
right); it permutes the left half with the right half. If the second bit in U was a 1 (here
it is not), we would also permute the first (shaded) quarter with the second and the
third (shaded) with the fourth. Since the third bit in U is 1, we flip the third bit of
the first coordinate of each ui, The lower left plot shows the points after this flip,
which has permuted each lightly colored vertical stripe with the yellow one on its
right. After doing all the permutations specified by U for the first coordinate, we do
the same with the second coordinate. The points after the full digital shift are shown
in the lower right. Equidistribution is preserved because for each relevant partition in
dyadic rectangular boxes, the digital shift only permutes those boxes (by pairs).

0 1

1

ui,2

ui,1 0 1

1

ui,2

ui,1

0 1

1

ui,2

ui,1 0 1

1

ui,2

ui,1

Fig. 7 A random digital shift with U = (0.10100101100..., 0.01011001100...)2 applied to a Sobol
net with 64 points. The original points are in upper left. Flipping the first bit of the first coordinate
permutes the left half with the right one, giving the upper right plot. Then flipping the third bit of
the first coordinate gives the lower left plot. The lower right shows the points after the full digital
shift of the two coordinates. One can follow the movement of the green and blue boxes during the
permutations. In the end, those two square boxes are permuted.
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Randomized Quasi-Monte Carlo 13

A more powerful but more costly randomization for digital nets is the nested
uniform scramble (NUS) of Owen [53, 54]. The difference with the digital shift (in
base 2) is as follows. For any given coordinate, with probability 1/2 we flip the first
bit of all points, just as before, then for the left half, we flip the second bit of all points
with probability 1/2, and we do the same for the right half, but independently. That is,
in the top right of Fig. 7, we would permute the first shaded area (first quarter) with
the light area on its right (second quarter) with probability 1/2, and independently
we would permute the second shaded area (third quarter) with the pink area on its
right (fourth quarter). Then we do this recursively, and we repeat for each coordinate.
For instance, in the lower left Fig. 7, we would use four independent random bits,
one for each pair of successive (light, yellow) columns. Doing permutations like this
for 31 bits or more would be very time-consuming, but in fact one can do it for the
first k bits only, and then generate the other bits randomly and independently across
points and coordinates. From a statistical viewpoint this is equivalent to NUS and
less time-consuming [48]. NUS also works in general base b: for each digit of each
coordinate, we generate a random permutation of b elements to permute the points
according to this digit. Owen proved that under sufficient smoothness condition on f ,
for digital nets in base b with fixed s and bounded t, with this scrambling the variance
converges as O(n−3(logn)s−1), which is better than for the random digital shift.

There are other types of permutations which are less costly than NUS and may
help reduce the variance further compared with just a random digital shift. One
popular example is the (left) linear matrix scramble [48, 64, 56]: left-multiply each
matrix C j by a random w×w matrix M j, non-singular and lower triangular, mod b.
With this scrambling just by itself, each point does not have the uniform distribution
(e.g., the point 0 is unchanged), but one can apply a random digital shift in base
b after the matrix scramble to obtain an RQMC scheme. There are other types of
linear matrix scrambles, such as the stripe scramble, ibinomial scramble, etc.; see
[23, 48, 49, 56]. The proved convergence rate of the variance with these scrambles is
generally the same as with a random digital shift alone.

3 Anova decomposition

Filling the unit hypercube very evenly requires an excessive number of points in
large dimension. For example, in s = 100 dimensions, it takes n = 2100 points to
have one in each quadrant; this is unrealistic. The reason why RQMC might still
work for large s is because f can often be well approximated by a sum of low-
dimensional functions, and RQMC with a well-chosen point set can integrate these
low-dimensional functions with small error. A standard way of formalizing this is as
follows [44, 62].

An ANOVA decomposition of f (u) = f (u1, . . . ,us) can be written as

f (u) = ∑
u⊆{1,...,s}

fu(u) = µ +
s

∑
i=1

f{i}(ui)+
s

∑
i, j=1

f{i, j}(ui,u j)+ · · · (8)
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14 L’Ecuyer

where
fu(u) =

∫
[0,1)|ū|

f (u)duū− ∑
v⊂u

fv(uv),

and the Monte Carlo variance decomposes accordingly as

σ
2 = ∑

u⊆{1,...,s}
σ

2
u, where σ

2
u = Var[ fu(U)].

Getting a rough estimate of the variance σ2
u captured by each subset u of coordinates

suffices to define relevant uniformity criteria that give more weight to the more
important projections. The σ2

u can be estimated by MC or RQMC; see [47, 57].
One example of this is the following weighted version of Pα , with projection-

dependent weights γu, in which u(h) = u(h1, . . . ,hs) = { j : h j 6= 0}:

Pγ,α = ∑
06=h∈L∗s

γu(h)(max(1, |h1|) · · ·max(1, |hs|))−α .

If α/2 is a positive integer, for a lattice rule with ui = (ui,1, . . . ,ui,s), we have

Pγ,α = ∑
/0 6=u⊆{1,...,s}

1
n

n−1

∑
i=0

γu

[
−(−4π2)α/2

(α)!

]|u|
∏
j∈u

Bα(ui, j), (9)

and the corresponding variation (squared) is

V 2
γ ( f ) = ∑

/0 6=u⊆{1,...,s}

1
γu(4π2)α|u|/2

∫
[0,1]|u|

∣∣∣∣∣∂ α|u|/2

∂uα/2 fu(u)

∣∣∣∣∣
2

du,

for f : [0,1)s→ R smooth enough. Then,

Var[µ̂n,rqmc] = ∑
u⊆{1,...,s}

Var[µ̂n,rqmc( fu)]≤V 2
γ ( f )Pγ,α . (10)

This Pγ,α with properly chosen α and weights γu is a good practical choice of figure
of merit for lattice rules [10, 19]. The weights γu are usually chosen to have a specific
form with just a few parameters, such as order-dependent or product weights [35, 60].
The Lattice Builder software [36] permits one to search for good lattices for arbitrary
n, s, and weights, using various figures of merit, under various constraints.

4 Examples

The numerical results reported in this paper were obtained using the Java library
SSJ [29], which offers tools for RQMC and stochastic simulation in general. In the
examples, all random variates are generated by inversion.
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4.1 A stochastic activity network

0source 1
Y0

2
Y1

Y2

3
Y3

4

Y7

5

Y9

Y4

Y5

6
Y6

7

Y11

Y8

8 sink

Y12

Y10

Fig. 8 A stochastic activity network

This example is from [2, 33]. We consider the stochastic activity network in Fig. 8,
in which Yj is the length of arc j, for j = 0, . . . ,12. The Yj are assumed independent
with cdf’s Fj given in [2, Section 4.1] and [35], and we generate them by inversion:
Yj = F−1

j (U j) where U j ∼U(0,1). Let T be the (random) length of the longest path
from node 0 to node 8. We compare RQMC and MC for two estimation problems:
(a) estimating P[T > x] for some constant x and (b) estimating E[T ].

To estimate E[T ] we simply use T , so s = 13. To estimate P[T > x], we consider
two base MC estimators. The first one is X = I[T > x] (where I[·] is the indicator
function) and the second one uses conditional Monte Carlo (CMC) as follows. We
generate the Yj’s only for the 8 arcs that do not belong to the cut L = {4,5,6,8,9},
and replace I[T > x] by its conditional expectation given those Yj’s,

XCMC = P [T > x | {Yj : j 6∈L }] = 1− ∏
j∈L

P[Yj ≤ x−Pj] (11)

where Pj is the length of the longest path that goes through edge j when we put
Yj = 0. This XCMC is easy to compute, as explained in [33], and is guaranteed to
have smaller variance than the indicator (the first one) under MC. A more important
advantage under RQMC is that CMC makes the estimator continuous as a function
of the U j’s, whereas the first one is discontinuous. It also reduces the dimension s
from 13 to 8. Fig. 9 shows the impact of CMC on the ANOVA decomposition. For
each estimator, the length of the white box is proportional to the variance captured
by one-dimensional projections, the second lightest box is for the two-dimensional
projections, etc. CMC pushes much of the variance to the projections over one and
two dimensions. The variance components σ2

u were estimated using the algorithm of
[63] with RQMC (100 independent shifts of a lattice rule with n = 220−3 points);
see [35, Section 8] for the details. The bounds (3) and (10) are useless here because
the mixed derivatives are not defined everywhere, so the variation is infinite. It will
be interesting to see that RQMC nevertheless improves the variance. This is frequent
in applications.
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0 20 40 60 80 100

x = 64

x = 100

CMC, x = 64

CMC, x = 100

% of total variance for each cardinality of u

Fig. 9 ANOVA Variance captured by each projection order for estimators of P[T > x] for the
stochastic activity network example

In an experiment reported in [35], an integration lattice of rank 1 was constructed
for 50 different prime values of n ranging from 25−1 to 222−3, roughly uniformly
spread in log scale. For each n a generating vector a was found based on the criterion
(9), with weights selected based on estimates of the ANOVA components. The vari-
ance was estimated for each n and a linear regression was fitted for logVar[µ̂n,rqmc]
vs logn to estimate the rate ν for which Var[µ̂n,rqmc] ∝ n−ν in this range of values
of n. For the estimation of P[T > x] with x = 60, for example, we found ν ≈ 1.2 for
the standard estimator (indicator) and ν ≈ 1.5 with CMC. The log-log plot follows
pretty much a straight line. Based on an interpolation from the regression model,
for n≈ 220, RQMC reduces the variance approximately by a factor of 27 with the
standard estimator and 4400 with CMC. This shows that the combined smoothing of
f and dimension reduction provided by CMC has a large impact on the effectiveness
of RQMC. For the estimation of E[T ] (without CMC), we had ν ≈ 1.47. Table 1
reports the results for other RQMC schemes, namely Sobol’ points with a linear
matrix scramble and a random digital shift (LMS+DS), and Sobol’ points with NUS.
We see that the choice of scrambling makes almost no difference in this example.

Table 1 Empirical convergence rate ν and log10 of empirical variance with n≈ 220 (in parentheses)
for the stochastic activity network example

P[T > 60], MC P[T > 60], CMC E[T ], MC
ν log10 Var ν log10 Var ν log10 Var

Independent 1.00 (-6.6) 1.00 (-7.3) 1.04 (-3.5)
Lattice 1.20 (-8.0) 1.51 (-10.9) 1.47 (-6.3)
Sobol+LMS+DS 1.20 (-7.5) 1.68 (-11.2) 1.36 (-6.2)
Sobol+NUS 1.18 (-8.0) 1.65 (-11.2) 1.37 (-6.3)

Fig. 10 shows histograms for m = 10000 replications of the MC estimator with
n = 8191 (left) and for a particular randomly shifted lattice rule with n = 8191 (right,
taken from [38]). The MC histogram resembles a normal distribution, as expected,
but the second one is far from normal. A confidence interval based on a normality
assumption is certainly inappropriate in this case. The limiting distribution of an
RQMC estimator based on a randomly-shifted lattice rule when n→ ∞ is analyzed
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Fig. 10 Histogram of MC and RQMC estimators with n = 8191 for the stochastic activity network
with CMC, for x = 100, based on m = 10000 replications of each estimator. The RQMC estimator
is a randomly shifted lattice rule with n = 8191.

in [38]; the properly scaled limiting distribution is usually a spline, not a normal
distribution. For a digital net with a digital random shift, the CLT does not apply
either (in one dimension it is equivalent to a randomly-shifted lattice), but the CLT
does apply for a digital net with NUS [45].

4.2 A financial option under a variance-gamma process

Alternative sampling schemes. Consider an asset price that evolves according to a
geometric variance-gamma (GVG) process S defined by [3, 4, 46]:

S(t) = S(0)exp [rt +X(G(t;1,v),µ,σ)+ωt] ,

where X is a Brownian process with drift and variance parameters µ and σ , G is a
gamma process with mean and variance parameters 1 and v, X and G are independent,
and ω = ln(1−µv−σ2v/2)/v. The process Y (·) = X(G(·)) is a variance-gamma
process. We want to estimate by simulation the value of an Asian call option, given
by E[e−rT max(S̄−K, 0)], where S̄ = (1/d)∑

d
j=1 S(t j) and t j = jT/d for 0≤ j ≤ d.

The realization of Y (t) (and of S(t)) at the d observation points t j can be gen-
erated in the following three ways (among others), as explained in [3]: Brownian
and gamma sequential sampling (BGSS), Brownian and gamma bridge sampling
(BGBS), and difference of gammas bridge sampling (DGBS). BGSS generates
τ1 = G(t1), then X(τ1), then τ2− τ1 = G(t2)−G(t1), then X(τ2)−X(τ1), etc., in
that order. This requires d gamma variates and d normal variates, so the dimen-
sion is s = 2d. BGBS generates τd = G(td), X(τd), τd/2 = G(td/2), X(τd/2), τd/4 =
G(td/4), X(τd/4), τ3d/4 = G(t3d/4), X(τ3d/4), . . . , in that order, exploiting the fact
that for any given values ta < t < tb and τa < τ < τb, the distribution of G(t) condi-
tional on (G(ta),G(tb)) is beta with known parameters, and the distribution of X(τ)
conditional on (X(τa),X(τb)) is normal with known parameters. BGBS requires one
gamma variate, d−1 beta variates, and d normal variates, so s = 2d. DGBS uses the
fact that {S(t), t ≥ 0} can be written as a difference of two gamma processes, which
can be simulated via a bridge (conditional) approach as for BGBS. This requires two
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gamma variates and 2d−2 beta variates. When d is a power of 2, all the beta variates
are symmetric, and for that case there is a fast inversion algorithm [40]. The idea of
the bridge constructions is to reformulate the integrand f in a way that more of the
variance is captured by the low-dimensional projections on the first few coordinates
of the points (the first few coordinates already determine a sketch of the trajectory),
to make RQMC more effective.

For a numerical illustration, we take the following parameters from [4]: θ =
−0.1436, σ = 0.12136, v = 0.3, r = 0.1, T = 1, K = 101, and S(0) = 100. The
exact value and the MC variance are µ ≈ 5.725 and σ2 ≈ 29.89. Table 2 compares
the variance rates ν for RQMC (estimated from experiments with n = 29, . . . ,221)
and MC (for which ν = 1 and the variance is the same for all sampling schemes).
RQMC improves ν and reduces the variance in all three cases, BGBS gives the best
rate empirically, and for n = 220 it reduces the variance by a factor of about 1000.

Table 2 Empirical convergence rate ν and log10 of empirical variance for n = 220 (in parentheses)
for the option pricing example under a GVG process

BGSS BGBS DGBS
ν log10 Var ν log10 Var ν log10 Var

Independent 1.00 (-4.5) 1.00 (-4.5) 1.00 (-4.5)
Sobol+LMS+DS 1.26 (-6.5) 1.42 (-7.6) 1.34 (-7.6)

For comparison, we ran a similar experiment with the GVG process replaced by a
geometric Brownian motion (GBM) process, for which

S(t) = S(0)exp
[
(r−σ

2/2)t +X(t,0,σ)
]
,

with the same parameter values (v and θ are not used). We tried three sampling
methods: sequential sampling (SS), Brownian bridge sampling (BBS), and Brownian
sampling with principal component analysis (PCA). SS and BBS work as in the GVG
case. For PCA, to generate the multivariate normal vector (X(t1), . . . ,X(td)), we do
a principal component decomposition of its covariance matrix, say Σ = AAt, and
return X = AZ where Z is a vector of d independent standard normals. With this
decomposition, the first few coordinates of Z (i.e., the first few coordinates of the
RQMC points) capture a large fraction of the variance, even larger than with BBS.
The results are in Table 3. SS does not improve the variance rate very much, BSS
does better, and PCA much better. For PCA, ν ≈ 1.9 and the variance is reduced by
a factor of over two millions for n = 220. Similar improvements were obtained in
[35] with lattice rules constructed by Lattice Builder [36].

Option pricing examples with multiple correlated assets, in up to 250 dimensions,
and in which PCA is very effective, can be found in [24, 27, 28]. For more on chang-
ing the sampling method of a Brownian motion to reduce the effective dimension
and make RQMC more effective, see, e.g., [5, 25].

Control variates. There are various ways of reducing the RQMC variance by
making the integrand smoother. Using control variates (CVs) is one of them. For
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Table 3 Empirical convergence rate ν and log10 of empirical variance (in parentheses) for the
option pricing example under a GBM process

BSS BBS BPCA
ν log10 Var ν log10 Var ν log10 Var

No CV Independent 1.00 (-4.5) 1.00 (-4.5) 1.00 (-4.5)
Sobol+LMS+DS 1.19 (-7.2) 1.42 (-8.8) 1.90 (-11.0)

With CV Independent 1.00 (-7.8) 1.00 (-7.8) 1.00 (-7.8)
Sobol+LMS+DS 1.21 (-9.5) 1.17 (-10.1) 1.37 (-11.1)

the Asian option under the GBM process, for instance, if we replace the arithmetic
average S̄ by a geometric average S̃ = (∏d

j=1 S(t j))
1/d , there is a closed-form formula

for the expected payoff, so this payoff can be used as a CV with either MC or RQMC
[22, 33]. This is very effective in this example, especially when T and the volatility
σ are not too large. Table 3 show some results for when we add this CV.

Importance sampling. Financial options for which the payoff is zero most of the
time and takes a large or significant value only once in a while are not rare. Many
options are indeed like insurance contracts, in which a nonzero claim is a rare event
(it has a small probability). The contract value is then an integral whose integrand
(the payoff function) has a peak in a small region and is zero elsewhere. MC performs
poorly in this situation, because an excessively large sample size n might be required
to obtain a sufficiently large number of occurrences of the rare event, and RQMC
does not solve this problem. One appropriate tool then is importance sampling (IS),
which can be seen as a change of variable that, when done properly, flattens out the
integrand to reduce its variation. It can help both MC and RQMC.

We illustrate this with an ordinary European call option under the GVG model.
We have d = 1 and S̄ = S(t1) in the payoff. We also take t1 = 1 and K = 180, so a
positive payoff is a rare event. We simulate the VG process via DGBS. To apply
IS, we will increase the mean of G+ and reduce the mean of G− so G+(1)−G−(1)
takes larger values. A standard IS strategy for this is exponential twisting (see [1]):
we multiply the density g+(x) of G+(1) by eθx and the density g−(y) of G−(1)
by e−θy, for some constant θ ≥ 0, and the re-normalize those densities. They are
still gamma, but with different means. Then the (unbiased) IS estimator is the
payoff multiplied by the likelihood ratio L of the old density product g+(y)g−(y)
divided by the new one. Since the payoff is nonzero only when S(1)≥ K, i.e., when
r+ω +G+(1)−G−(1) = ln[S(1)/S(0)]> ln(K/S(0)), we (heuristically) choose θ

so that E[G+(1)−G−(1)] = ln(K/S(0))− r−ω under IS. We write the expectation
as a (monotone) function of θ and find the root θ ∗ of the equation numerically. For
K = 180, we find θ ∗ = 25.56 and ρ ≈ 0.26. We can do even better, as follows. First
generate G−(1) under IS with θ ∗, and then generate G+(1) from its original gamma
distribution but conditional on G+(1) > G−(1)+ ln(K/S(0))− r−ω (a truncated
gamma). This way the payoff is positive with probability 1 and the resulting IS
estimator has an even smaller variation. We call the previous one IS-twist, this
one IS-twist-cond, and the original estimator no-IS. We can use RQMC with any
of these three estimators. We try a Sobol’ net with one extra coordinate (i.e., the
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Hammersley point set) with n= 216 randomized by LMS+DS, the same point set with
NUS, and also a randomly shifted lattice rule with a baker’s transformation, in two
dimensions, with the same n. With this we find that the option price is 1.601×10−4

(the given digits here are significant). Table 4 reports the empirical variances for all
the estimators discussed above, with both MC and RQMC. For RQMC, the variance
of µ̂rqmc,n is multiplied by n to obtain the variance per run (for a fair comparison with
MC). We see that without IS, RQMC does not reduce the variance by much, and the
standard deviation is more than 300 times the mean in all cases. The combination of
IS and RQMC has a synergistic effect: IS first makes the function flatter, then RQMC
can shine. The difference between the three RQMC methods here is not significant.

Table 4 Empirical variances per run for the European call option under a GVG process, with and
without IS, with MC and RQMC

MC Sobol+LMS+DS Sobol+NUS Lattice+S+B
no-IS 1.8×10−3 6.3×10−4 6.0×10−4 7.8×10−4

IS-twist 1.0×10−7 1.9×10−11 1.3×10−11 1.1×10−11

IS-twist-cond 2.8×10−8 7.1×10−13 7.4×10−13 7.4×10−13

5 RQMC for Markov chains

When simulating a Markov chain over a large number of steps, if we use RQMC in
a standard way, the dimension s will be large and RQMC is then likely to become
ineffective. If each step requires d uniform random numbers and we simulate τ steps,
then we have s = τd. The Array-RQMC method, which we now summarize, has been
designed for this situation [31, 32, 37].

Consider a Markov chain with state space X ⊆ R`, which evolves as

X0 = x0, X j = ϕ j(X j−1,U j), j ≥ 1,

where the U j are i.i.d. uniform over (0,1)d . Want to estimate

µ = E[Y ] where Y =
τ

∑
j=1

g j(X j).

Ordinary MC or RQMC would produce n realizations of Y and take the average.
Each realization requires s = τd uniforms.

The idea of Array-RQMC is to simulate an array (or population) of n chains
in parallel, in a way that at any given step j, there is small discrepancy between
the empirical distribution of the n states Sn, j = {X0, j, . . . ,Xn−1, j} and the theoretical
distribution of X j. At each step, an RQMC point set is used to advance all the chains
by one step.
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To provide insight about the method, it is useful to assume for simplification that
X j ∼U(0,1)` for all j. This can be achieved conceptually by a change of variable,
and is not necessary for implementing the method. We estimate

µ j = E[g j(X j)] = E[g j(ϕ j(X j−1,U))] =
∫
[0,1)`+d

g j(ϕ j(x,u))dxdu

by

µ̂arqmc, j,n =
1
n

n−1

∑
i=0

g j(Xi, j) =
1
n

n−1

∑
i=0

g j(ϕ j(Xi, j−1,Ui, j)).

This is (roughly) RQMC with the point set Qn = {(Xi, j−1,Ui, j), 0≤ i < n}. We want
Qn to have low discrepancy (LD) over [0,1)`+d .

However, we do not choose the Xi, j−1’s in Qn: they come from the simulation.
We can select a low discrepancy point set Q̃n = {(w0,U0, j), . . . ,(wn−1,Un−1, j)}, in
which the wi ∈ [0,1)` are fixed and each Ui, j ∼U(0,1)d . Then a key operation is to
permute the states Xi, j−1 so that Xπ j(i), j−1 is “close” to wi for each i (low discrepancy
between the two sets), and compute Xi, j = ϕ j(Xπ j(i), j−1,Ui, j) for each i. In particular,
if `= 1, we can take wi = (i+0.5)/n and just sort the states in increasing order. For
` > 1, there are various ways to define the matching (multivariate sorts). At the end,
we return the average Ȳn = µ̂arqmc,n = ∑

τ
j=1 µ̂arqmc, j,n as an estimator of µ .

The array-RQMC estimator satisfies [32]: (i) Ȳn is an unbiased estimator of µ , and
(ii) the empirical variance of m independent realizations of Ȳn is an unbiased estimator
of Var[Ȳn]. Known convergence rate results for special cases are summarized in
[36]. For example, it is proved in [32] that for ` = 1 and if the RQMC points
form a stratified sample, the variance converges as O(n−3/2). In higher dimensions,
it is show in [13] under some conditions that the worst-case error converges as
O(n−1/(`+1)). In a sequential QMC setting (with particle filters) in which a digital
net with NUS is used for RQMC and a Hilbert curve sort for mapping the states to
the points, Gerber and Chopin [15] show that the variance is o(n−1). Applications in
finance and computer graphics can be found in [31, 66]. There are combinations with
splitting techniques (multilevel and without levels), with importance sampling, and
with weight windows (related to particle filters) [8, 30], combination with “coupling
from the past” for exact sampling [39], and combination with approximate dynamic
programming and for optimal stopping problems [11].

Examples in which the observed convergence rate for the empirical variance is
O(n−2), or even O(n−3) in some cases, and does not depend on τ , can be found in
[31, 37]. For example, when pricing an Asian call option under a geometric Brownian
motion, we observe O(n−2) convergence for the variance regardless of the number τ

of observation times that determine the payoff [31], both with lattice rules and Sobol’
points, while with stratification the observed rate is more like O(n−3/2). For this
example, the state is in d = 2 dimensions and the RQMC points are in 3 dimensions.

A different way of using QMC to simulate Markov chains is studied in [6, 65]. The
main idea is to use an approximation of a completely uniformly distributed (CUD)
sequence, implemented by taking successive overlapping vectors of output values
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produced by a small linear random number generator as a source of “randomness” to
simulate the chain (one vector per step).
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48. Matousěk, J.: On the L2-discrepancy for anchored boxes. J. of Complexity 14, 527–556 (1998)
49. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer-Verlag, Berlin (1999)
50. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods, SIAM CBMS-

NSF Reg. Conf. Series in Applied Mathematics, vol. 63. SIAM (1992)
51. Niederreiter, H., Xing, C.: Nets, (t,s)-sequences, and algebraic geometry. In: P. Hellekalek,

G. Larcher (eds.) Random and Quasi-Random Point Sets, Lecture Notes in Statistics, vol. 138,
pp. 267–302. Springer, New York, NY (1998)

52. Nuyens, D.: The construction of good lattice rules and polynomial lattice rules. In: P. Kritzer,
H. Niederreiter, F. Pillichshammer, A. Winterhof (eds.) Uniform Distribution and Quasi-Monte
Carlo Methods: Discrepancy, Integration and Applications, pp. 223–255. De Gruyter (2014)

53. Owen, A.B.: Monte Carlo variance of scrambled equidistribution quadrature. SIAM Journal on
Numerical Analysis 34(5), 1884–1910 (1997)

54. Owen, A.B.: Scrambled net variance for integrals of smooth functions. Annals of Statistics
25(4), 1541–1562 (1997)

55. Owen, A.B.: Latin supercube sampling for very high-dimensional simulations. ACM Transac-
tions on Modeling and Computer Simulation 8(1), 71–102 (1998)

56. Owen, A.B.: Variance with alternative scramblings of digital nets. ACM Transactions on
Modeling and Computer Simulation 13(4), 363–378 (2003)

57. Owen, A.B.: Better estimation of small sobol sensitivity indices. ACM Transactions on
Modeling and Computer Simulation 23(2), Article 11 (2013)

58. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press, Oxford (1994)
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