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Abstract. We study quasi-Monte Carlo (QMC) integration of smooth functions defined over5
the multi-dimensional unit cube. Inspired by a recent work of Pan and Owen, we study a new6
construction-free median QMC rule which can exploit the smoothness and the weights of function7
spaces adaptively. For weighted Korobov spaces, we draw a sample of r independent generating8
vectors of rank-1 lattice rules, compute the integral estimate for each, and approximate the true9
integral by the median of these r estimates. For weighted Sobolev spaces, we use the same approach10
but with the rank-1 lattice rules replaced by high-order polynomial lattice rules. A major advantage11
over the existing approaches is that we do not need to construct good generating vectors by a12
computer search algorithm, while our median QMC rule achieves almost the optimal worst-case13
error rate for the respective function space with any smoothness and weights, with a probability that14
converges to 1 exponentially fast as r increases. Numerical experiments illustrate and support our15
theoretical findings.16

Key words. Numerical integration; quasi-Monte Carlo; rank-1 lattice rule; high-order polyno-17
mial lattice rule; weighted function space; median; construction-free18

AMS subject classifications. 65D30, 65D32, 41A55, 46E3519

1. Introduction. We consider numerical integration of functions defined over20

the s-dimensional unit cube [0, 1)s. For an integrable function f : [0, 1)s → R, we21

denote the integral of f by22

Is(f) :=

∫
[0,1)s

f(x) dx.23

The quasi-Monte Carlo (QMC) method approximates Is(f) by the equally-weighted24

average of function evaluations over a deterministicN -element point set PN,s ⊂ [0, 1)s:25

QPN,s
(f) =

1

N

∑
x∈PN,s

f(x).26

The worst-case error for a given normed function space F and point set PN,s is27

ewor(QPN,s
;F) = sup

f∈F ; ∥f∥≤1

∣∣QPN,s
(f)− Is(f)

∣∣28

where ∥f∥ is the norm of f in this space. The key to success of the QMC method29

lies in a proper choice of the point set depending on a target class of functions. One30

wants to construct point sets for which this worst-case error is small and converges31

at the fastest possible rate as a function of N , for the given space F . In randomized32

QMC, the point set PN,s is randomized in a way that QPN,s
(f) becomes an unbiased33
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2 T. GODA AND P. L’ECUYER

estimator of Is(f) and one wishes to minimize its variance [24, 25, 29]. In this paper,34

we focus on deterministic QMC point sets only.35

There are two main families of QMC point sets: digital nets and sequences [10, 35]36

and lattice point sets [35, 42]. We refer the reader to [7, 29, 31] for further introductory37

details. In this paper, we consider rank-1 lattice point sets for Korobov spaces of38

periodic functions, and high-order polynomial lattice point sets [9, 34, 40] (which are39

a special type of digital nets) for Sobolev spaces of non-periodic functions. Each40

point set from these types is defined by an s-dimensional generating vector, with41

integer coordinates in the ordinary lattice case and with polynomial coordinates in42

the polynomial lattice case.43

In both cases, the weighted spaces of functions are defined by selecting a positive44

smoothness parameter α and a positive weight γu for each subset of coordinates45

u ⊆ {1, . . . , s}, with γ∅ = 1. The parameter α determines how smooth the admissible46

functions are required to be. For the Korobov spaces, it tells the minimal rate at47

which the Fourier coefficients of f are required to decay, and when it is an integer it48

corresponds to the minimal number of square-integrable mixed partial derivatives of49

f with respect to each coordinate; see [36, Appendix A]. For the Sobolev spaces, α is a50

positive integer which also imposes integrability conditions on the partial derivatives51

of f . The weights γu act as constant importance factors given to the subsets of52

coordinates [11, 44]. A larger γu means that the projection of f over the subset of53

coordinates in u can have a larger variation in some sense, so that more importance54

should be given to the uniformity of the points over this projection.55

It is known that the best possible QMC point sets cannot provide a better con-56

vergence rate than O(N−α) for the worst-case error for these two function spaces. On57

the other hand, there are effective search algorithms which, for a given α and a given58

selection of weights γu, can construct good rank-1 lattice or polynomial lattice point59

sets for the function spaces determined by these parameters, and for which the worst-60

case error converges as O(N−α+ϵ) for any ϵ > 0 [10, 21]. Software that implement61

such algorithms is also freely available [26, 28, 37]. These algorithms typically use62

a greedy component-by-component (CBC) construction approach proposed originally63

by [19], then re-introduced and popularized by [43]. With the CBC approach, the64

generating vector is determined one coordinate at a time by optimizing a figure of65

merit that depends only on this new coordinate and the previous ones, and where the66

previous coordinates can no longer be changed.67

In general, the number of weights γu to specify is 2s − 1. When s is large,68

specifying all these weights individually becomes impractical, so it is common practice69

to “parameterize” the weights by a smaller number of parameters, usually linear70

instead of exponential in s. The most popular forms of parameterizations are the71

product weights, the order-dependent weights, and their combination. For the product72

weights, one specifies a weight γj > 0 for each coordinate j = 1, . . . , s, and the γu’s73

are defined as γu =
∏

j∈u γj . For the order-dependent weights, γu depends only on74

the cardinality of u: γu = Γ|u|, where Γ1,Γ2, . . . ,Γs are selected positive constants.75

Their combination gives the product and order-dependent (POD) weights, for which76

γu = Γ|u|
∏

j∈u γj [33]. The main reason why the most popular choices of weights77

have this form is that the existing search algorithms are truly efficient for large s only78

when the weights have this specific POD form [11, 23, 26, 28, 33, 38]. Then, by using79

a fast-CBC approach that speeds up the search by exploiting a fast Fourier transform80

[28, 38], one can find a generating vector that gives a worst-case error of O(N−α+ϵ)81

in O(sN logN) operations for ordinary lattices and O(αsN logN) for polynomial82

lattices (with interlacing).83
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CONSTRUCTION-FREE MEDIAN QMC RULES 3

Although this form is convenient, the restriction to POD weights is limiting: for84

a given application, the appropriate weights may be quite far from the POD form. In85

this case, imposing POD implies that the point sets are constructed with the wrong86

weights. Moreover, even without constraints imposed on the form of weights, finding87

or approximating appropriate weights and the appropriate α for a given application is88

generally very difficult [27]. When the points are constructed with the wrong weights,89

the QMC method can be quite ineffective in general. These drawbacks have been90

addressed very partially in recent papers. In [12], the authors introduces a construc-91

tion algorithm that does not require the knowledge of α. It uses a CBC construction92

algorithm with a figure of merit that assumes α = 1, and for each coordinate it also93

constructs the generating vector one binary digit at a time. The method provides a94

convergence rate of O(N−α+ϵ). In [4], the authors study the stability of rank-1 lattice95

rules and polynomial lattice rules to a (limited) misspecification of α and the weights,96

for product and POD weights. They obtain worst-case error bounds for function spa-97

ces determined by parameters α′ and γ′ = {γ′
u} when the rules are constructed using98

parameters α and γ = {γu} instead, under certain conditions on those weights. These99

results are interesting but they do not completely eliminate the need to specify the100

weights.101

The method studied in this paper requires no knowledge at all on α and the102

weights γu. No value needs to be specified for any of these parameters. The algorithm103

is inspired by recent work from Pan and Owen [39], and works as follows. For a104

fixed odd integer r > 0, we draw r generating vectors independently and uniformly105

from the set of all admissible generating vectors. For each of them, we compute the106

corresponding QMC approximation QPN,s
(f), then we take the median M(f) of these107

r approximations as our final estimate of Is(f). Since the method does not require108

the explicit construction of a good point set, we call it a construction-free median109

QMC rule.110

Our main contribution is to prove that for F representing either a weighted111

Korobov or weighted Sobolev space determined by parameters α and γ, the error112

|M(f) − Is(f)| obeys the following type of probabilistic bound: For any ϵ > 0 and113

0 < ρ < 1, there is a constant c1 = c1(α,γ, ϵ) > 0 (which depends on α, the γu’s and114

ϵ) such that115

P

[
sup

f∈F ; ∥f∥≤1

|M(f)− Is(f)| ≤
c1(α,γ, ϵ)

(ρN)α−ϵ

]
≥ 1− ρ(r+1)/2/4.116

In other words, the worst-case error of the median estimator is bounded by a quantity117

that decreases almost at the best possible rate of O(N−α), with a probability that118

converges to 1 exponentially fast as a function of r. That is, we have a simple method119

that provides essentially the best possible convergence rate with very high probability,120

without requiring any knowledge of α and the weights. The key reason why this is121

possible is that the vast majority of the choices of generating vectors turn out to be122

quite good and give a QMC approximation which is quite close to Is(f). Only a small123

minority give a large error. For the vector giving the median value to be in that small124

minority, there must be at least (r + 1)/2 generating vectors in the sample of size r125

that belong to this small minority, and the probability that this happens decreases126

towards zero exponentially in r.127

The remainder is organized as follows. In Section 2, we recall some basic facts128

on lattice rules for Korobov spaces, and we prove our main result for the median129

estimator in this setting. In Section 3, we do the same for high-order polynomial130
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4 T. GODA AND P. L’ECUYER

lattice rules in Sobolev spaces. In Section 4, we report numerical experiments to131

support our theoretical findings.132

2. Lattice rules for Korobov spaces.133

2.1. Definitions. Lattice point sets are well suited for performing numerical134

integration of smooth periodic functions. A rank-1 lattice point set is defined as135

follows:136

Definition 2.1 (rank-1 lattice point set). Let N ≥ 2 be the number of points137

and z = (z1, . . . , zs) ∈ {1, . . . , N − 1}s. The rank-1 lattice point set defined by N and138

the generating vector z is139

PN,s,z =
{({nz1

N

}
, . . . ,

{nzs
N

})
∈ [0, 1)s | n = 0, 1, . . . , N − 1

}
,140

where {x} := x−⌊x⌋ denotes the fractional part of a real x ≥ 0. The QMC algorithm141

using PN,s,z as a point set is called the rank-1 lattice rule with generating vector z.142

Let f : [0, 1)s → R be periodic with an absolutely convergent Fourier series143

f(x) =
∑
k∈Zs

f̂(k) exp (2πik · x) ,144

where the dot product · denotes the usual inner product of two vectors on the Euclid-145

ean space Rs and f̂(k) denotes the k-th Fourier coefficient of f :146

f̂(k) :=

∫
[0,1)s

f(x) exp (−2πik · x) dx.147

Note that f̂(0) coincides with the integral Is(f). As a class of periodic functions, we148

consider the following weighted Korobov space.149

Definition 2.2 (weighted Korobov space). Let α > 1/2 and γ = {γu}u⊆{1,...,s}150

be a set of positive weights with γ∅ = 1. For a non-empty subset u ⊆ {1, . . . , s} and a151

vector ku ∈ (Z \ {0})|u|, we denote by (ku,0) the vector h ∈ Zs such that hj = kj if152

j ∈ u and hj = 0 otherwise, and define153

rα,γ(ku,0) := γu
∏
j∈u

1

|kj |α
,154

155

and set rα,γ(0) = 1. The weighted Korobov space, denoted by Fkor
s,α,γ , is a reproducing156

kernel Hilbert space with reproducing kernel157

Kkor
s,α,γ(x,y) =

∑
k∈Zs

(rα,γ(k))
2 exp (2πik · (x− y)) ,158

and inner product159

⟨f, g⟩kors,α,γ =
∑
k∈Zs

f̂(k)ĝ(k)

(rα,γ(k))2
.160

We denote the induced norm by ∥f∥kors,α,γ :=
√
⟨f, f⟩kors,α,γ .161
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CONSTRUCTION-FREE MEDIAN QMC RULES 5

One wishes to have a good generating vector z such that the worst-case error of162

the corresponding lattice rule for Fkor
s,α,γ , defined by163

ewor(QPN,s,z
;Fkor

s,α,γ) := sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

|QPN,s,z
(f)− Is(f)|,164

is small. No good explicit construction scheme for such a z is known for s ≥ 3, so that165

we usually resort to a computer search algorithm as mentioned earlier. By restricting166

each zj to be in the set167

UN := {1 ≤ z ≤ N − 1 | gcd(z,N) = 1},168

we ensure that each projection of PN,s,z on a single coordinate contains the N dis-169

tinct values {0, 1/N, . . . , (N − 1)/N} (no superposed points). The CBC construction170

algorithm for a good generating vector z starts with z1 = 1, then for j = 2, . . . , s it171

searches for the best component zj from the set UN while keeping the earlier compo-172

nents z1, . . . , zj−1 unchanged.173

For our median QMC rank-1 lattice rule for weighted Korobov spaces, we select174

an independent random sample z1, . . . ,zr from the set Us
N , and we approximate Is(f)175

by the median176

MN,s,r(f) := median
(
QPN,s,z1

(f), . . . , QPN,s,zr
(f)
)
.177

Note that, for given z1, . . . ,zr, the index ℓ for which zℓ gives the median MN,s,r(f)178

generally depends on f . The worst-case error in this case is the random variable179

(2.1) ewor(MN,s,r;Fkor
s,α,γ) := sup

f∈Fkor
s,α,γ

∥f∥kor
s,α,γ≤1

|MN,s,r(f)− Is(f)|.180

In this random expression, we assume that z1, . . . ,zr are first picked randomly, then181

f is taken as the worst-case function for the median, for these given z1, . . . ,zr.182

2.2. Our main results on lattice rules for Korobov spaces. To prove our183

main result, we need a few more definitions.184

Definition 2.3 (dual lattice). For N ≥ 2 and z ∈ Us
N , the set185

P⊥
N,s,z := {k ∈ Zs | k · z ≡ 0 (mod N)}186

is called the dual lattice of the rank-1 lattice point set PN,s,z.187

The following character property of the rank-1 lattice rule is well-known, see for188

instance [5, Lemmas 4.2 and 4.3].189

Lemma 2.4 (character property). For N ≥ 2, z ∈ Us
N and k ∈ Zs, we have190

1

N

∑
x∈PN,s,z

exp (2πik · x) =

{
1 if k ∈ P⊥

N,s,z,

0 otherwise.
191

As our first main result, we prove a probabilistic upper bound on the worst-case192

error of our median rank-1 lattice rule for weighted Korobov spaces.193
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6 T. GODA AND P. L’ECUYER

Theorem 2.5. Let N ≥ 2 be an integer, r > 0 be an odd integer, and z1, . . . ,zr194

be chosen independently and randomly from the set Us
N (with replacement). Then,195

for any α > 1/2 and γ, the worst-case error of the median rule obeys the following196

bound:197

ewor(MN,s,r;Fkor
s,α,γ) ≤ inf

1/(2α)<λ<1

 1

ηφ(N)

∑
∅̸=u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|

1/(2λ)

198

with a probability of at least199

1−
(

r

(r + 1)/2

)
η(r+1)/2,200

for any 0 < η < 1, where φ and ζ denote the Euler totient function and the Riemann201

zeta function, respectively.202

We note that the result for r = 1, i.e., the case without taking the median, can203

be found, for instance, in [11, Theorem 2], and has been used together with a random204

choice of N in [20] to prove an improved rate of convergence of the randomized error.205

The following inequality on medians is a key ingredient in the proof of the theorem.206

Although it can be regarded as a special case of Jensen’s inequality on medians proven207

in [32], we give a short direct proof to make the paper more self-contained.208

Lemma 2.6. For any odd integer r and real numbers a1, . . . , ar, it holds that209

|median (a1, . . . , ar)| ≤ median (|a1|, . . . , |ar|) .210

Proof. Let am = median(a1, . . . , ar). If am ≥ 0, then |am| = am ≤ median(|a1|,211

. . . , |ar|). If am < 0, there is at least (r − 1)/2 other aℓ’s for which aℓ ≤ am < 0, so212

|aℓ| ≥ |am| > 0. Then, |median(a1, . . . , ar)| = |am| ≤ median (|a1|, . . . , |ar|).213

We now prove our main result.214

Proof of Theorem 2.5. Since any f ∈ Fkor
s,α,γ has an absolutely convergent Fourier215

series, by applying Lemma 2.4, Lemma 2.6 and the Cauchy–Schwarz inequality, it216

holds for given z1, . . . ,zr that217

ewor(MN,s,r;Fkor
s,α,γ)218

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

N

∑
x∈PN,s,zℓ

f(x)− I(f)

∣∣∣∣∣∣219

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

N

∑
x∈PN,s,zℓ

∑
k∈Zs

f̂(k) exp (2πik · x)− f̂(0)

∣∣∣∣∣∣220

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

∣∣∣∣∣∣∣median
1≤ℓ≤r

∑
k∈P⊥

N,s,zℓ
\{0}

f̂(k)

∣∣∣∣∣∣∣221

≤ sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

median
1≤ℓ≤r

∑
k∈P⊥

N,s,zℓ
\{0}

|f̂(k)|222
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CONSTRUCTION-FREE MEDIAN QMC RULES 7

= sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

median
1≤ℓ≤r

∑
k∈P⊥

N,s,zℓ
\{0}

|f̂(k)|
rα,γ(k)

rα,γ(k)223

≤ sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

median
1≤ℓ≤r

 ∑
k∈P⊥

N,s,zℓ
\{0}

|f̂(k)|2

(rα,γ(k))2


1/2

224

×

 ∑
k∈P⊥

N,s,zℓ
\{0}

(rα,γ(k))
2


1/2

225

≤ sup
f∈Fkor

s,α,γ

∥f∥kor
s,α,γ≤1

 ∑
k∈Zs\{0}

|f̂(k)|2

(rα,γ(k))2

1/2

median
1≤ℓ≤r

Sα,γ(zℓ)226

≤ median
1≤ℓ≤r

Sα,γ(zℓ),(2.2)227
228

in which229

Sα,γ(z) :=

 ∑
k∈P⊥

N,s,z\{0}

(rα,γ(k))
2

1/2

.230

For 1/(2α) < λ ≤ 1, by using the subadditivity231 (∑
i

ai

)λ

≤
∑
i

aλi ,(2.3)232

233

which holds for non-negative reals a1, a2, . . . > 0, see [5, Theorem 2.2], and noting234

that the cardinality of UN is equal to φ(N), we have235

1

(φ(N))s

∑
z∈Us

N

(Sα,γ(z))
2λ

236

=
1

(φ(N))s

∑
z∈Us

N

 ∑
k∈P⊥

N,s,z\{0}

(rα,γ(k))
2

λ

237

≤ 1

(φ(N))s

∑
z∈Us

N

∑
k∈P⊥

N,s,z\{0}

(rα,γ(k))
2λ

238

=
∑

k∈Zs\{0}

(rα,γ(k))
2λ 1

(φ(N))s

∑
z∈Us

N

1

N

∑
x∈PN,s,z

exp(2πik · x)239

=
∑

k∈Zs\{0}

(rα,γ(k))
2λ 1

(φ(N))s

∑
z∈Us

N

1

N

N−1∑
n=0

exp(2πink · z/N)240

=
∑

∅̸=u⊆{1,...,s}

γ2λ
u

∑
ku∈(Z\{0})|u|

1

(φ(N))s

∑
z∈Us

N

1

N

N−1∑
n=0

∏
j∈u

exp(2πinkjzj/N)

|kj |2αλ
241
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=
1

N

N−1∑
n=0

∑
∅̸=u⊆{1,...,s}

γ2λ
u

(φ(N))|u|

∑
zu∈U|u|

N

∑
ku∈(Z\{0})|u|

∏
j∈u

exp(2πinkjzj/N)

|kj |2αλ
242

=
1

N

N−1∑
n=0

∑
∅̸=u⊆{1,...,s}

γ2λ
u (T2αλ(n,N))|u|,243

244

where we write245

T2αλ(n,N) :=
1

φ(N)

∑
z∈UN

∑
k∈Z\{0}

exp(2πinkz/N)

|k|2αλ
.246

Since it follows from [22, Lemmas 2.1 & 2.2] that, for any positive integer d247

1

N

N−1∑
n=0

(T2αλ(n,N))d ≤ (2ζ(2αλ))d

φ(N)
,248

we obtain249

1

(φ(N))s

∑
z∈Us

N

(Sα,γ(z))
2λ ≤

∑
∅̸=u⊆{1,...,s}

γ2λ
u

1

N

N−1∑
n=0

(T2αλ(n,N))|u|250

≤ 1

φ(N)

∑
∅≠u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|.251

252

This gives an upper bound on the average of (Sα,γ(z))
2λ over all of the admissible253

z ∈ Us
N , which holds for any 1/(2α) < λ ≤ 1.254

Then, Markov’s inequality ensures that for any 0 < η < 1, the probability of255

having256

Sα,γ(z) > inf
1/(2α)<λ<1

 1

ηφ(N)

∑
∅≠u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|

1/(2λ)

=: B(α,γ)257

is at most η for a random choice of z ∈ Us
N . For the median estimator MN,s,r to be258

larger than this bound B(α,γ), we must have Sα,γ(zℓ) > B(α,γ) for at least (r+1)/2259

vectors among z1, . . . ,zr. Taking the union bound on possible sets of (r+1)/2 vectors260

with Sα,γ(zℓ) > B(α,γ), the probability that this happens is bounded above by261 (
r

(r + 1)/2

)
η(r+1)/2.262

Combining this with the bound shown in (2.2) completes the proof.263

Remark 2.7. One can easily prove by induction on k that
(
2k−1

k

)
< 4k−1 for k ≥ 2.264

Indeed, this is true for k = 2, and for k ≥ 2, one has265 (
2k + 1

k + 1

)
=

2(2k + 1)

(k + 1)

(
2k − 1

k

)
< 4

(
2k − 1

k

)
< 4k.266

Then, for any odd r ≥ 3, we have267

(2.4)

(
r

(r + 1)/2

)
η(r+1)/2 < (4η)(r+1)/2/4.268

Thus, the probability given in Theorem 2.5 must be larger than 1 − (4η)(r+1)/2/4,269

which converges to 1 exponentially fast as a function of r for 0 < η < 1/4.270
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By taking 1/(2λ) = α − ϵ and ρ = 4η and using the previous remark, we obtain271

the following corollary as a simplified version of Theorem 2.5.272

Corollary 2.8. For any odd r ≥ 3, ϵ > 0, and 0 < ρ < 1, there is a constant273

c1 = c1(α,γ, ϵ) > 0 (which depends on α, the γu’s and ϵ) such that274

P
[
ewor(MN,s,r;Fkor

s,α,γ) ≤
c1(α,γ, ϵ)

(ρN)α−ϵ

]
≥ 1− ρ(r+1)/2/4.275

Proof. For prime N , we have φ(N) = N − 1 and the corollary follows from276

Theorem 2.5 and the bound (2.4) in Remark 2.7. For a general N , we know from [41,277

Theorem 15] that278

1

φ(N)
≤ 1

N

[
eC log logN +

2.50637

log logN

]
279

for any N ≥ 3, where C = 0.57721 . . . is the Euler’s constant. From this, the proba-280

bilistic bound follows.281

Remark 2.9. Under some additional conditions on the weights γ, this bound de-282

pends only polynomially on the dimension s, and can even be independent on the283

dimension s. We refer to [11, Theorem 3] for the case of general weights and [11,284

Theorem 4] for the case of product weights.285

Remark 2.10. As mentioned in Section 1, our median rank-1 lattice rule is moti-286

vated by the observation that most of the possible generating vectors z ∈ Us
N are a287

good choice, but the remaining ones are bad. To show this, let us first point out that288

Sα,γ(z) coincides with the worst-case error of the rank-1 lattice rule with the given289

z, see [7, Theorem 5.12]. As already seen in the proof of Theorem 2.5, a proportion290

of the generating vectors z which satisfy the bound of order N−α+ϵ, i.e.,291

Sα,γ(z) ≤ inf
1/(2α)<λ<1

 1

ηφ(N)

∑
∅̸=u⊆{1,...,s}

γ2λ
u (2ζ(2αλ))|u|

1/(2λ)

,292

is greater than or equal to 1− η, for any 0 < η < 1. On the other hand, the averaging293

argument in the proof of Theorem 2.5 with λ = 1 gives294

1

(φ(N))s

∑
z∈Us

N

(Sα,γ(z))
2 ≤ 1

φ(N)

∑
∅̸=u⊆{1,...,s}

γ2
u(2ζ(2α))

|u|.295

This implies that, for each N , there exists a small, distinct set of “bad” generating296

vectors whose Sα,γ(z) values are quite large so that the average of the squared worst-297

case error over all the possible generating vectors is merely of order N−1. Such bad298

vectors may include those with all components being the same.299

Remark 2.11. Theorem 2.5 (or its corollary) gives a probabilistic error bound on300

the worst-case error (2.1), together with a lower bound on the probability that this301

error bound holds. The exact value of this probability depends on the probability302

distribution of QPN,s,z
(f) when z is drawn uniformly from Us

N , and on the choices303

of r and of the other parameters in the error bound. To get some insight on how304

it behaves, we will simplify the setting slightly and look at a one-side error bound305

for a fixed f : we want to estimate the probability that the median MN,s,r(f) does306

not exceed some arbitrary constant y larger than the mean Is(f). Suppose that this307
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10 T. GODA AND P. L’ECUYER

y is the q-quantile yq of the distribution of QPN,s,z
(f) for some q ∈ (3/4, 1), i.e.,308

q = P[QPN,s,z
(f) ≤ yq]. Then the median MN,s,r(f) is larger than yq if and only if at309

least (r + 1)/2 values are larger than yq, and the probability that this happens is310

p+(r, q) =

r∑
i=(r+1)/2

(
r

i

)
(1− q)iqr−i.(2.5)311

312

Figure 1 plots log10 p+(r, q) as a function of r ∈ {3, 5, . . . , 49} for q = 0.5, q = 0.75 and313

q = 0.9, respectively. We see that p+(r, 0.5) = 0.5 for any r and that p+(r, q) ≈ 10−γr314

where γ ≈ 0.071 for q = 0.75 and γ ≈ 0.231 for q = 0.9. These plots provide some315

insight on the choice of r. In particular, for fixed q > 0.5, doubling r squares the316

probability p+(r, q). Suppose for example that we want p+(r, q) ≤ 10−4, to have a317

reasonable assurance that MN,s,r(f) ≤ yq. The plot shows that the minimal value of318

r for this is about r = 13 for q = 0.9, and about r = 49 for q = 0.75. For a given319

f ∈ Fkor
s,α,γ and fixed N , a larger q means a larger yq, but for a fixed q we can reduce320

yq and bring it close to Is(f) by increasing N . From Theorem 2.5 with r = 1 and321

η = 1 − q < 1/4 (or its corollary with ρ = 4(1 − q) < 1), we have that |yq − Is(f)|322

is O(N−α+ϵ). In summary, for a fixed q > 3/4, we can decrease the error bound323

by increasing N and increase the probability that the bound holds by increasing r.324

We can also increase both q and N in a way yq remains about the same; then the325

same p+(r, q) can be obtained with a reduced r. What we just said is for the upper326

bound MN,s,r(f) ≤ yq, but essentially the same discussion can be made concerning327

the assurance that MN,s,r(f) > y1−q. In applications, the values of yq and y1−q are328

unknown, but our reasoning suggests that a moderate value of r, say no more than329

25, should be sufficient in practice, together with a large N (as large as the computing330

budget allows). The results of our numerical experiments support this.331

0 10 20 30 40 50
number of samples r

-14

-12

-10
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-4

-2

0

lo
g

1
0

P
[m

ed
ia

n
>

q-
q
u
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ti
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q = 0:5
q = 0:75
q = 0:9

Fig. 1. Probability p+(r, q) (on a log10 scale) as a function of r for q = 0.5 (blue), q = 0.75
(red) and q = 0.9 (yellow).

Remark 2.12. It is known that rank-1 lattice rules also work for non-periodic332

functions by applying the tent transformation333

π(x) = 1− |2x− 1|334

component-wise to every point in the set PN,s,z [18, 8, 2, 16]. The same probabilistic335

upper bound, shown in Theorem 2.5, holds for the worst-case error of the median rule336
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built up of the tent-transformed rank-1 lattice rules in the so-called weighted half-337

period cosine spaces with any parameter α and weights γ. As shown in [8, Lemma 1],338

the half-period cosine space coincides with an unanchored Sobolev space with smooth-339

ness 1 when α = 1.340

3. High-order polynomial lattice rules for Sobolev spaces. We now con-341

sider high-order polynomial lattice point sets as defined in [9]. These point sets are342

well suited for performing numerical integration of smooth non-periodic functions.343

In what follows let b be a prime, and Fb be the finite field of order b, which we344

identify with the set {0, 1, . . . , b − 1}. Let N be the set of positive integers and345

N0 := N ∪ {0}. For k ∈ N0 having the b-adic finite expansion k = κ0 + κ1b+ · · · , we346

write k(x) = κ0 + κ1x + · · · ∈ Fb[x]. With these ingredients, we have the following347

definition from [9].348

Definition 3.1 (high-order polynomial lattice point sets). Let m,n ∈ N with349

m ≤ n, p ∈ Fb[x] with deg(p) = n and q = (q1, . . . , qs) ∈ (Fb[x])
s with deg(qj) < n.350

The high-order polynomial lattice point set defined by m,n, p and q consists of N = bm351

points and is given by352

Pm,n,s,p,q =

{(
νn

(
h(x)q1(x)

p(x)

)
, . . . , νn

(
h(x)qs(x)

p(x)

))
∈ [0, 1)s | h = 0, . . . , bm − 1

}
,353

where νn : Fb((x
−1)) → [0, 1) is defined by354

νn

( ∞∑
i=w

ai
xi

)
:=

n∑
i=max(1,w)

ai
bi
.355

The QMC algorithm using Pm,n,s,p,q as a point set is called the high-order polynomial356

lattice rule with modulus p and generating vector q. The order of this rule is defined357

as ⌊n/m⌋.358

Typically, n will be a multiple of m. When n = m, this gives the digital net359

construction introduced in [34] and called polynomial lattice rule in [10]. Note that [25,360

30] introduced the term “polynomial lattice rule” with a slightly different definition,361

in which the coordinates of the points have an infinite periodic expansion and the362

modulus p has degree m. The construction in Definition 3.1 essentially builds a363

polynomial lattice point set with bn points and uses only the first bm points.364

Instead of the weighted Korobov space Fkor
s,α,γ , we consider the following Sobolev-365

type Banach space as our target space for high-order polynomial lattice rules.366

Definition 3.2 (weighted Sobolev space). Let α ∈ N, α ≥ 2, 1 ≤ q ≤ ∞ and367

let γ = {γu}u⊆{1,...,s} be a set of positive weights with γ∅ = 1. The weighted Sobolev368

space, denoted by F sob
s,α,γ,q, is a Banach space consisting of non-periodic (in the sense369

of not necessarily periodic) smooth functions with the norm370

∥f∥sobs,α,γ,q :=371

sup
u⊆{1,...,s}

γ−1
u

∑
v⊆u

∑
τu\v∈{1,...,α}|u\v|

∫
[0,1)|v|

∣∣∣∣∣
∫
[0,1)s−|v|

f (τu\v,αv,0)(x) dx−v

∣∣∣∣∣
q

dxv


1/q

,372

where (τu\v,αv,0) denotes the vector h ∈ Ns
0 such that hj = τj if j ∈ u \ v, hj = α373

if j ∈ v, and hj = 0 otherwise, and f (τu\v,αv,0)(x) denotes the mixed derivative of374

order (τu\v,αv,0) of f . Moreover, we write xv = (xj)j∈v and x−v = (xj)j∈{1,...,s}\v.375
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12 T. GODA AND P. L’ECUYER

This Sobolev space was introduced by [6] in the context of partial differential376

equations with random coefficients. (The original function space in [6] contains the377

additional parameter r ∈ [1,∞], and the definition of the norm has been corrected in378

https://arxiv.org/abs/1309.4624. In this paper we choose r = ∞, which makes the379

norm smallest over r ∈ [1,∞].) The parameter α determines the differentiability of380

the non-periodic functions. As for the rank-1 lattice rules for the weighted Korobov381

spaces, it is desirable to have good modulus p and generating vector q such that the382

worst-case error of the corresponding high-order polynomial lattice rule for F sob
s,α,γ is383

small. Originally in [6], interlaced polynomial lattice rules [13, 15] were used instead384

of high-order polynomial lattice rules, and it was shown that the worst-case error385

bound of order N−α+ϵ with arbitrarily small ϵ > 0 can be achieved by the CBC386

algorithm applied to interlaced polynomial lattice rules. The major advantage of387

interlaced polynomial lattice rules over high-order polynomial lattice rules lies in the388

construction cost for the CBC algorithm: for the product weights, constructing an389

interlaced rule requires O(αsN logN) operations with O(N) memory [13], whereas390

constructing a high-order rule require O(sNα logN) operations with O(Nα) memory391

[1].392

However, interlaced polynomial lattice rules are not necessarily a better choice393

than high-order polynomial lattice rules. To construct an interlaced polynomial lat-394

tice rule, which relies on the digit interlacing method due to Dick [3], we must select395

an integer interlacing factor d, the construction cost increases linearly with d, and396

the resulting rule cannot exploit the smoothness of functions beyond d. This means397

that if α > d, the worst-case error bound is only of order N−d+ϵ. High-order poly-398

nomial lattice rules do not explicitly require such a factor. We only need to specify399

the maximum precision n of the points. This n can be set as large as possible, for in-400

stance, with b = 2, we can take n = 53 for the double-precision floating-point format.401

This way, high-order polynomial lattice rules can be possibly made adaptive to the402

smoothness α of functions, addressing the drawback of interlaced polynomial lattice403

rules. Since we do not apply CBC in this paper, we prefer high-order rules over the404

interlaced ones.405

In what follows, we assume that the polynomial p is irreducible and we write406

Gn := {q ∈ Fb[x] | q ̸= 0 and deg(q) < n}.407

Analogously to the rank-1 lattice case in Section 2, we consider the following median408

high-order polynomial lattice rule for weighted Sobolev spaces. For an odd integer r,409

we draw q1, . . . , qr randomly and independently from the set Gs
n, and we approximate410

Is(f) by411

Mm,n,s,p,r(f) := median
(
QPm,n,s,p,q1

(f), . . . , QPm,n,s,p,qr
(f)
)
.412

The worst-case error is the random variable413

ewor(Mm,n,s,p,r;F sob
s,α,γ,q) := sup

f∈Fsob
s,α,γ,q

∥f∥sob
s,α,γ,q≤1

|Mm,n,s,p,r(f)− Is(f)|.414

3.1. Main results for polynomial lattice point sets in Sobolev spaces.415

We first need a few definitions and lemmas.416

Definition 3.3 (dual polynomial lattice). Let m,n ∈ N with m ≤ n, p ∈ Fb[x]417

with deg(p) = n and q ∈ Gs
n. For k ∈ N0 with the b-adic finite expansion k =418
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κ0 + κ1b+ · · · , we define419

trn(k) =

n−1∑
i=0

κix
i ∈ Gn ∪ {0}.420

This operator is applied component-wise to a vector. Then the set421

P⊥
m,n,s,p,q = {k ∈ Ns

0 | trn(k) · q ≡ a (mod p) with deg(a) < n−m} ,422

is called the dual net of the high-order polynomial lattice point set Pm,n,s,p,q.423

Definition 3.4 (Walsh functions). Let us write ωb := exp(2πi/b). For k ∈ N0,424

we denote the b-adic expansion of k by k = κ0 + κ1b+ · · · . The k-th Walsh function425

walk : [0, 1) → C is defined by426

walk(x) := ωκ0ξ1+κ1ξ2+···
b ,427

where the b-adic expansion of x ∈ [0, 1) is denoted by x = ξ1/b+ ξ2/b
2 + · · · , which is428

understood to be unique in the sense that infinitely many of the ξi are different from429

b− 1.430

For s ≥ 2 and k = (k1, . . . , ks) ∈ Ns
0, the s-dimensional k-th Walsh function431

walk : [0, 1)
s → C is defined by432

walk(x) :=

s∏
j=1

walkj (xj).433

It is well-known that the system of Walsh functions is a complete orthogonal system in434

L2([0, 1)
s), see [10, Appendix A]. The following character property of the high-order435

polynomial lattice point set is analogous to what is stated in Lemma 2.4.436

Lemma 3.5 (character property). For m,n ∈ N with m ≤ n, p ∈ Fb[x] with437

deg(p) = n and q ∈ Gs
n, we have438

1

bm

∑
x∈Pm,n,s,p,q

walk(x) =

{
1 if k ∈ P⊥

m,n,s,p,q,

0 otherwise.
439

For any f ∈ F sob
s,α,γ,q, we have the following absolutely convergent Walsh series440

f(x) =
∑
k∈Ns

0

f̃(k)walk(x),441

where f̃(k) denotes the k-th Walsh coefficient of f :442

f̃(k) :=

∫
[0,1)s

f(x)walk(x) dx.443

Note that f̃(0) coincides with the integral Is(f). The following result on the decay of444

Walsh coefficients for f ∈ F sob
s,α,γ,q was shown in [6, Theorem 3.5].445

Lemma 3.6 (decay of Walsh coefficients). Let α ∈ N, α ≥ 2, 1 ≤ q ≤ ∞ and446

γ = {γu}u⊆{1,...,s} be a set of positive weights with γ∅ = 1. For any f ∈ F sob
s,α,γ,q, a447

non-empty subset u ⊆ {1, . . . , s} and ku ∈ N|u|, it holds that448

|f̃(ku,0)| ≤ ∥f∥sobs,α,γ,qγuC
|u|
α b−µα(ku),449
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14 T. GODA AND P. L’ECUYER

where450

Cα :=

(
1 +

1

b
+

1

b(b+ 1)

)α−2(
3 +

2

b
+

2b+ 1

b− 1

)
max

(
2

(2 sin π
b )

α
, max
1≤τ<α

1

(2 sin π
b )

τ

)
451

and µα(ku) :=
∑

j∈u µα(kj), with452

µα(k) =

min(α,c)∑
i=1

ai453

for k ∈ N whose b-adic expansion is given by k = κ1b
a1−1 + κ2b

a2−1 + · · · + κcb
ac−1454

such that c ≥ 1, κ1, . . . , κc ∈ {1, . . . , b− 1} and a1 > · · · > ac.455

As the second main result of this paper, we show a probabilistic upper bound456

on the worst-case error of our median high-order polynomial lattice rule for weighted457

Sobolev spaces.458

Theorem 3.7. Let m,n ∈ N with m ≤ n, p ∈ Fb[x] be irreducible with deg(p) =459

n, r be odd and q1, . . . , qr be chosen independently and randomly from the set Gs
n.460

Then, for any integer α ≥ 2 and γ, the worst-case error is bounded above by461

ewor(Mm,n,s,p,r;F sob
s,α,γ,q) ≤ inf

1/α<λ<1

 2

η(bmin(m,λn) − 1)

∑
∅≠u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ

1/λ

462

with a probability of at least463

1−
(

r

(r + 1)/2

)
η(r+1)/2,464

for any 0 < η < 1, where we write465

Aα,λ =

α−1∑
τ=1

τ∏
i=1

b− 1

bλi − 1
+

bλα − 1

bλα − b

α∏
i=1

b− 1

bλi − 1
.(3.1)466

467

Proof. Throughout this proof, we write468

r̃α,γ(ku,0) = γuC
|u|
α b−µα(ku),469

for a non-empty subset u ⊆ {1, . . . , s} and ku ∈ N|u|. Since any f ∈ F sob
s,α,γ,q has470

an absolutely convergent Walsh series, by applying Lemma 3.5, Lemma 2.6, Hölder’s471

inequality and Lemma 3.6 in this order, it holds that472

ewor(Mm,n,s,p,r;F sob
s,α,γ,q)473

= sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

bm

∑
x∈Pm,n,s,p,qℓ

f(x)− I(f)

∣∣∣∣∣∣474

= sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

∣∣∣∣∣∣median
1≤ℓ≤r

1

bm

∑
x∈Pm,n,s,p,qℓ

∑
k∈Ns

0

f̃(k)walk(x)− f̃(0)

∣∣∣∣∣∣475
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= sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

∣∣∣∣∣∣median
1≤ℓ≤r

∑
k∈P⊥

m,n,s,p,qℓ
\{0}

f̃(k)

∣∣∣∣∣∣476

≤ sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

median
1≤ℓ≤r

∑
k∈P⊥

m,n,s,p,qℓ
\{0}

|f̃(k)|
r̃α,γ(k)

r̃α,γ(k)477

≤ sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

median
1≤ℓ≤r

(
sup

k∈P⊥
m,n,s,p,qℓ

\{0}

|f̃(k)|
r̃α,γ(k)

) ∑
k∈P⊥

m,n,s,p,qℓ
\{0}

r̃α,γ(k)

478

≤ sup
f∈Fsob

s,α,γ,q

∥f∥sob
s,α,γ,q≤1

(
sup

k∈Ns
0\{0}

|f̃(k)|
r̃α,γ(k)

)
median
1≤ℓ≤r

S̃α,γ,p(qℓ)479

≤ median
1≤ℓ≤r

S̃α,γ,p(qℓ),(3.2)480
481

where482

S̃α,γ,p(q) =
∑

k∈P⊥
m,n,s,p,q\{0}

r̃α,γ(k).483

For 1/(α) < λ ≤ 1, by using the subadditivity (2.3), we have484

1

|Gn|s
∑
q∈Gs

n

(S̃α,γ,p(q))
λ =

1

(bn − 1)s

∑
q∈Gs

n

 ∑
k∈P⊥

m,n,s,p,qℓ
\{0}

r̃α,γ(k)

λ

485

≤ 1

(bn − 1)s

∑
q∈Gs

n

∑
k∈P⊥

m,n,s,p,qℓ
\{0}

(r̃α,γ(k))
λ

486

=
∑

k∈Ns
0\{0}

(r̃α,γ(k))
λ 1

(bn − 1)s

∑
q∈Gs

n

trn(k)·q≡a (mod p)
deg(a)<n−m

1.487

488

If p | trn(k), the condition trn(k) · q ≡ a (mod p) trivially holds with a = 0 for all489

q ∈ Gs
n. Otherwise if p ∤ trn(k), i.e., if there exists a non-empty subset u ⊆ {1, . . . , s}490

such that p ∤ trn(kj) for all j ∈ u and p | trn(kj) for j ̸∈ u, the condition trn(k) ·q ≡ a491

(mod p) is equivalent to trn(ku) · qu ≡ a (mod p), which itself is equivalent to492

trn(kj)qj ≡ a− trn(ku\{j}) · qu\{j} (mod p),493

for any j ∈ u. As we have p ∤ trn(kj) and we assume that p is irreducible, there494

exists at most one qj ∈ Gn which satisfies the above equality for each a ∈ Fb[x] with495

deg(a) < n−m and qu\{j} ∈ G
|u|−1
n . Therefore, the number of q ∈ Gs

n which satisfy496

p ∤ trn(k) and trn(k) · q ≡ a (mod p) with deg(a) < n − m is bounded above by497

the product of the number of possible choices for a ∈ Fb[x], which is bn−m, and the498

number of possible choices for q{1,...,s}\{j}, which is (bn − 1)s−1. Thus it follows that499

1

|Gn|s
∑
q∈Gs

n

(S̃α,γ,p(q))
λ

500
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≤
∑

k∈Ns
0\{0}

p|trn(k)

(r̃α,γ(k))
λ +

∑
k∈Ns

0\{0}
p∤trn(k)

(r̃α,γ(k))
λ b

n−m(bn − 1)s−1

(bn − 1)s
501

≤
∑

k∈Ns
0\{0}

(r̃α,γ(b
nk))λ +

1

bm − 1

∑
k∈Ns

0\{0}

(r̃α,γ(k))
λ

502

=
∑

∅̸=u⊆{1,...,s}

∑
ku∈N|u|

(r̃α,γ(b
nku,0))

λ +
1

bm − 1

∑
∅≠u⊆{1,...,s}

∑
ku∈N|u|

(r̃α,γ(ku,0))
λ

503

=
∑

∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α

(∑
k∈N

b−λµα(bnk)

)|u|

504

+
1

bm − 1

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α

(∑
k∈N

b−λµα(k)

)|u|

505

≤
∑

∅̸=u⊆{1,...,s}

γλ
u

C
λ|u|
α A

|u|
α,λ

bλn|u|
+

1

bm − 1

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ506

≤ 2

bmin(m,λn) − 1

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ,507

508

where we have used the results of [14, Lemma 7] on the sums of b−λµα(k) and b−λµα(bnk)509

in the third inequality, which involve Aα,λ given in (3.1). This gives a bound on the510

average of (S̃α,γ,p(q))
λ which holds for any 1/α < λ ≤ 1.511

Then, Markov’s inequality ensures that, for any 0 < η < 1, the event512

S̃α,γ,p(q) > inf
1/α<λ<1

 2

η(bmin(m,λn) − 1)

∑
∅̸=u⊆{1,...,s}

γλ
uC

λ|u|
α A

|u|
α,λ

1/λ

=: B̃(α,γ)513

happens with a probability of at most η under a random choice of q ∈ Gs
n. For514

the median estimator Mm,n,s,p,r to be larger than this bound B̃(α,γ), we must have515

S̃α,γ(qℓ) > B̃(α,γ) for at least (r + 1)/2 vectors among q1, . . . , qr. The probability516

that this happens is bounded above by517 (
r

(r + 1)/2

)
η(r+1)/2.518

Combining this with the bound shown in (3.2) completes the proof.519

As pointed out in [6, Section 3.1], α ≥ 2 is required to ensure the convergence of520

the infinite sum521 ∑
k∈P⊥

m,n,s,p,q\{0}

b−µα(k),522

for any irreducible p and q ∈ Gs
n. Thus, the case α = 1 is not covered by our result.523

Using Remark 2.7, we obtain the following corollary:524

Corollary 3.8. Let α ≥ 2, γ be a set of weights, and n ≥ αm = α logb N . Then525

for any odd r ≥ 3, ϵ > 0 and 0 < ρ < 1, there is a constant c1 = c1(α,γ, ϵ) > 0 (which526

depends on α, the γu’s and ϵ) such that527

P
[
ewor(Mm,n,s,p,r;F sob

s,α,γ) ≤
c1(α,γ, ϵ)

(ρN)α−ϵ

]
≥ 1− ρ(r+1)/2/4.528
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Proof. Take 1/λ = α − ϵ. Under the assumption on n, we have n ≥ αm > m/λ529

and then (bmin(m,λn))−1/λ = b−min(m/λ,n) = N−1/λ = N−α+ϵ. Then the result follows530

from Theorem 3.7 and the bound (2.4) in Remark 2.7.531

Thus, provided that we take n large enough, we get a convergence rate of almost532

O(N−α) (with high probability) for any α ≥ 2. In other words, our median high-533

order polynomial lattice rule exploits the smoothness of functions adaptively. Note534

that Remark 2.11 also applies here.535

4. Numerical experiments. We conclude this paper with numerical experi-536

ments both for rank-1 lattice rules and high-order polynomial lattice rules. The goal537

is to illustrate how the worst-case error for the median rule truly behaves on some538

concrete examples. In particular, we want to illustrate the fact that most of the539

possible generating vectors are a good choice, while a small minority are bad.540

4.1. Lattice rules for periodic functions.541

Example 4.1. For our first example, we consider a weighted Korobov space with542

integer smoothness parameter α ≥ 1 and product weights γu =
∏

j∈u γj . The worst-543

case error of the rank-1 lattice rule with generating vector z for that space has the544

explicit form545

Sα,γ(z) =

−1 +
1

N

∑
x∈PN,s,z

s∏
j=1

[
1 + γ2

j

(−1)α+1(2π)2α

(2α)!
B2α(xj)

]1/2

,546

where B2α denotes the Bernoulli polynomial of degree 2α; see [27] and [7, Section 5].547

In this artificial simple case, we know the exact optimal weights that must be taken in548

a CBC search for z, so we can compare the median estimator with the best possible549

case of a CBC search.550

We take two primes N = 251 and N = 2039, both for s = 50 dimensions, with551

α = 2 and γj = 1/j3. For each of those N , we drew 105 generating vectors z552

randomly and uniformly from {1, . . . , N − 1}s, and computed Sα,γ(z) for each. The553

left panels of Figure 2 show a histogram of the 105 realizations of log2 Sα,γ(z) for each554

of these two cases. Each histogram provides a good estimate of the true distribution555

of log2 Sα,γ(z), which is a discrete distribution because z is drawn from a finite set.556

Interestingly, the distributions are very asymmetric and are far from smooth on the557

right side: some rectangles are very high while others are zero in the same area. The558

largest observed values are −2.4353 for N = 251 and −2.4967 for N = 2039. We can559

estimate from this data the q-quantiles yq of the distribution of Sα,γ(z), similar to560

those of the distribution ofQPN,s,z
(f) in Remark 2.11. For q = 0.75, the corresponding561

empirical q-quantiles are −8.3907 for N = 251 and −12.0306 for N = 2039, while,562

for q = 0.9, they are −7.0975 for N = 251 and −10.3101 for N = 2039. These563

quantiles are much less than the worst observed values. These empirical results agree564

with the fact that only a very small proportion of the vectors z are bad. Suppose we565

draw r random realizations of z and want the median of the r corresponding values566

of Sα,γ(z) to be larger than y = 10−3 ≈ 2−10 with a probability smaller than 10−4.567

For N = 2039 this y equals yq for q ≈ 0.9, and Figure 1 shows that we can achieve568

approximately the target probability of 10−4 with r = 13. For a larger N , the required569

r is even smaller. Note that for N = 251, yp = 2−10 corresponds to some q < 0.5, for570

which the target probability of 10−4 cannot be achieved even for a very large r, as571

shown in Figure 1.572
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Fig. 2. Histograms of the log2 of the worst-case error Sα,γ(z) with α = 2 and γj = 1/j3

for rank-1 lattice rules with randomly chosen generating vectors with N = 251 (upper panels) and
N = 2039 (lower panels). The left panels are for a single choice (r = 1), while for the right panels
we take the median of the worst-case error for rank-1 lattice rules with r = 11 randomly chosen
generating vectors.

For the remainder of our experiments reported in this paper, we took r = 11.573

The right panels of Figure 2 show histograms of 105 independent realizations of574

log2[median(Sα,γ(z1), . . . ,Sα,γ(zr))] for randomly chosen z1, . . . ,zr with r = 11,575

corresponding to the cases N = 251 and N = 2039. We see that the distributions576

have much less variance and are more symmetric than for a single random z, con-577

firming the fact that taking the median successfully filters (adaptively) the bad vector578

generators. Recall that the standard deviation of the empirical median as a function579

of r generally decreases as O(r−1/2). That is, increasing r decreases the noise rather580

slowly. For the following examples, we made additional experiments with r = 31581

to see if it would make the error plots less noisy, and we did not see much visible582

difference.583

Example 4.2. For our second example, we perform a numerical integration of584

the smooth, periodic function585

fper
β,ω(x) =

s∏
j=1

[1 + ωj (gβ(xj)− 1)] ,586

with parameters β and ωj , where the univariate function gβ : [0, 1] → R is defined by587

gβ(x) = (2β + 1)

(
2β

β

)
xβ(1− x)β .588
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Note that Is(f
per
β,ω) = 1. The function gβ has been used for periodization of non-589

periodic functions, and our test function fper
β,ω belongs to the Korobov space with590

α = β when β is a positive integer, see [7, Section 5.10]. In what follows, we take591

s = 50 and consider the four cases that correspond to β = 2 or β = 5, and ωj = 1/jβ+1592

or ωj = 1/(s − j + 1)β+1. We compare our median lattice rule with r = 11, a593

QMC rule using non-randomized Sobol’ points provided by MATLAB, and the rank-594

1 lattice rule with generating vector constructed by the fast CBC algorithm with595

Sα,γ(z) as a criterion, with α = 2 and the product weights γj = 1/j3. These weights596

are not optimal, but they are a good heuristic choice when ωj = 1/jβ+1. When597

ωj = 1/(s − j + 1)β+1, on the other hand, the weights decrease in the opposite598

direction as they should: they are very large for the unimportant coordinates and599

small for the important ones. We do this to show how badly the CBC construction600

method can work when we have the wrong weights, whereas the median estimator601

does not need any knowledge about the weights to perform well. We choose N to be602

a power of 2 for Sobol’ points and to be a prime close to a power of 2 for lattice point603

sets.604

The results for the four cases are shown in the corresponding panels of Figure 3.605

Both our median lattice rule and the rank-1 lattice rule constructed by the CBC606

algorithm can exploit the periodicity of the integrand and achieve a higher-order607

rate of convergence than O(1/N). With a good choice of the weights in the CBC608

algorithm, the resulting rank-1 lattice rule performs better than our median lattice609

rule, as shown in the left panels. However, as the right panels clearly depict, if610

the relative importance of each of individual variables is not correctly specified, the611

performance of the rank-1 lattice rule with the CBC algorithm can deteriorate and612

even become inferior to the QMC rule using the Sobol’ points when N is not large. In613

contrast, our median lattice rule performs quite stably regardless of smoothness and614

weights.615

To show that our median lattice rule performs well for functions of non-product616

forms, let us consider the additional test functions given by617

fper,cyc
β (x) =

1

5

5∑
ℓ=1

s/5∏
j=1

gβ(xj+s(ℓ−1)/5) and fper,mod
β (x) =

1

5

5∑
ℓ=1

s/5∏
j=1

gβ(xℓ+5(j−1)),618

respectively, with β = 5 and s = 20. We have that Is(f
per,cyc
β ) = Is(f

per,mod
β ) = 1 and619

these two integrands belong to the Korobov space with α = β. The results for the two620

integrands are shown in the corresponding panels of Figure 4. For large N , both our621

median lattice rule and the rank-1 lattice rule constructed by the CBC algorithm are622

superior to the QMC rule using the Sobol’ points. Although the difference between623

fper,cyc
β and fper,mod

β lies only in the ordering of variables, the convergence behavior624

of the rank-1 lattice rule constructed by the CBC algorithm is not consistent for these625

functions and a strange zig-zag pattern shows up for fper,mod
β . On the contrary, our626

median lattice rule is not subject to the difference between the ordering of variables627

and performs almost equivalently.628

4.2. High-order polynomial lattice rules for non-periodic functions.629

Our next examples concern high-order polynomial lattice rules. Here we fix the pre-630

cision to n = 52 and always use the primitive polynomial p(x) = x52 + x3 + 1, found631

in [17], as the modulus of the polynomial lattice point sets.632
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Fig. 3. Comparison of the integration error by our median lattice rule (yellow), QMC rule
using Sobol’ points (blue), and rank-1 lattice rule with the fast CBC algorithm (orange). The results
are shown for the test function fper

β,ω with the choices β = 2 and ωj = 1/j3 (upper left), β = 2 and

ωj = 1/(s−j+1)3 (upper right), β = 5 and ωj = 1/j6 (lower left), and β = 5 and ωj = 1/(s−j+1)6

(lower right).

Example 4.3. We first consider the two following one-dimensional test functions:633

fnonper
1 (x) = x3(1/4 + log x) and fnonper

2 (x) = xex/4.634

We can see that the third derivative of fnonper
1 is in Lq([0, 1)) for any 1 ≤ q < ∞,635

whereas the fourth derivative is not in L1([0, 1)), implying that fnonper
1 ∈ F sob

1,3,γ,q but636

fnonper
1 ̸∈ F sob

1,4,γ,1. Thus fnonper
1 has a finite smoothness. On the other hand, fnonper

2637

is obviously infinitely differentiable, so that fnonper
2 ∈ F sob

1,α,γ,q for any α ≥ 2 and638

1 ≤ q ≤ ∞. Note that I1(f
nonper
1 ) = 0 and I1(f

nonper
2 ) = 16 − 12e1/4. We compare639

our median high-order polynomial lattice rule with r = 11 and QMC rules using order640

2 and order 3 Sobol’ points constructed by the interlacing procedure of [3], with the641

direction numbers provided in MATLAB. To construct a Sobol’ point set of order642

d by interlacing, we first construct a ds-dimensional Sobol point set with 2m points643

(with s = 1 in this case) and then apply the digit interlacing procedure defined in [3]644

to obtain the digits of the s-dimensional points. This procedure extracts the first m645

digits of the ds-dimensional points and reorders them in a special way to obtain the646

first dm digits of the s-dimensional points.647

The results for the two one-dimensional functions are shown in Figure 5, respec-648

tively. As we can see from the result for fnonper
1 , the QMC rule using order 2 Sobol’649

points cannot fully exploit the smoothness of the function and the error decays at the650
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Fig. 4. Comparison of the integration error by our median lattice rule (yellow), QMC rule
using Sobol’ points (blue), and rank-1 lattice rule with the fast CBC algorithm (orange). The results

are shown for the test functions fper,cyc
β (left) and fper,mod

β (right) with the choices β = 5 and
s = 20.
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Fig. 5. Comparison of the one-dimensional integration error by our median high-order poly-
nomial lattice rule (yellow), QMC rules using order 2 Sobol’ points (blue) and order 3 Sobol’ points
(orange). The results are shown for the test functions fnonper

1 (left) and fnonper
2 (right), respectively.

rate of N−2. On the other hand, the QMC rule using order 3 Sobol’ points and our651

median high-order polynomial lattice rule can exploit the smoothness and achieves652

the convergence rate of N−3. For the infinitely differentiable function fnonper
2 , the653

plot suggests that our median high-order polynomial lattice rule may converge even654

faster than N−3. These numerical results show the major advantage of our proposed655

rule in terms of adaptivity in smoothness.656

Example 4.4. Finally, we consider the two multivariate non-periodic test func-657

tions658

fnonper
3,ω (x) = exp

−
s∑

j=1

ωjxj

 and fnonper
3,ω,flip(x) = exp

−
s∑

j=1

ωjxs−j+1

 ,659

with s = 10 and ωj = 1/(4j4). It is obvious that both fnonper
3,ω and fnonper

3,ω,flip are infinitely660

differentiable and belong to F sob
s,α,γ,q with arbitrary α ≥ 2 and 1 ≤ q ≤ ∞. Note that661

fnonper
3,ω,flip is defined by reordering the variables of fnonper

3,ω so that xj is replaced by662
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Fig. 6. Comparison of the multi-dimensional integration error by our median high-order poly-
nomial lattice rule (yellow), QMC rules using order 2 Sobol’ points (blue) and order 3 Sobol’ points
(orange). The results are shown for the test functions fnonper

3,ω (left) and fnonper
3,ω,flip (right) with the

choice ωj = 1/(4j4).

xs−j+1, and that we have663

Is(f
nonper
3,ω ) = Is(f

nonper
3,ω,flip) =

s∏
j=1

1− exp(−ωj)

ωj
.664

The variables are ordered by decreasing order of importance in the first function, and665

by increasing order in the second one. As our median high-order polynomial lattice666

rule, based on random choices of generating vectors, does not care about the ordering667

of variables, it should perform the same for fnonper
3,ω and fnonper

3,ω,flip.668

The results are shown in Figure 6. Here again, we compare our median high-669

order polynomial lattice rule with r = 11 and QMC rules using order 2 and order 3670

interlaced Sobol’ points. For the function fnonper
3,ω , our median high-order polynomial671

lattice rule can exploit the smoothness better than the QMC rule using order 2 Sobol’672

points. The QMC rule using order 3 Sobol’ points exploits the smoothness of the673

integrand best and the error decays at the rate of N−3 and outperforms our median674

high-order polynomial lattice rule approximately by a constant factor for small N ,675

but this rate breaks down at around log2 N = 13 and our median rule catches up at676

log2 N = 16.677

For fnonper
3,ω,flip, the situation changes. Our median high-order polynomial lattice678

rule is now comparable to the QMC rule using order 3 Sobol’ points when N is small,679

and performs better for larger N . The error decays approximately at the rate of680

N−2.5, which the QMC rule using order 2 Sobol’ points cannot attain. The slowdown681

of the convergence for the QMC rule using order 3 Sobol’ points might be due to682

the misspecification of important variables. Although xs, xs−1, . . . are the order of683

the relatively important variables for fnonper
3,ω,flip, we use the later coordinates of order 3684

Sobol’ points, whose lower-dimensional projections are not well-distributed compared685

to the earlier coordinates. In this sense, the median high-order polynomial lattice rule686

is more robust and adaptive to the integrand at hand.687
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