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We study statistical tests of uniformity based on the L,-distances between the m nearest pairs of points, for n points generated
uniformly over the k-dimensional unit hypercube or unit torus. The number of distinct pairs at distance no more than ¢, for ¢ = 0, is
a stochastic process whose initial part, after an appropriate transformation and as n — o, is asymptotically a Poisson process with
unit rate. Convergence to this asymptotic is slow in the hypercube as soon as k exceeds 2 or 3, due to edge effects, but is reasonably
fast in the torus. We look at the quality of approximation of the exact distributions of the tests statistics by their asymptotic
distributions, discuss computational issues, and apply the tests to random number generators. Linear congruential generators fail
decisively certain variants of the tests as soon as n approaches the square root of the period length.

Multidimensional goodness-of-fit tests based on
nearest-neighbor distances have been proposed and
studied in the statistical literature; see Bickel and Breiman
(1983), Cressie (1993), Ripley (1977, 1988), and other ref-
erences therein. Given a set of points in space, these tests
seek evidence against the hypothesis that the points are an
iid. sample from a specified multivariate distribution.
They are based, for example, on the distance separating
the nearest pair of points, or on the number of pairs that
are less than a given distance apart, or on some more
general function of the distances from each point to its
nearest neighbor. In most cases, the distribution of the
relevant statistic under the null hypothesis is known as-
ymptotically as the number of sample points increases to
infinity. Otherwise, this distribution is often estimated by
Monte Carlo simulation (Ripley 1988, Schilling 1983a).

In this paper, we study different aspects of such goodness-
of-fit tests from an empirical perspective. First, we intro-
duce new test variants. Second, we assess how well the
exact distribution of the test statistic can be approximated
by the asymptotic one, as a function of the test parameters.
Third, we look at the issue of computational costs for large
sample sizes and in large dimensions. Fourth, we study
how certain types of random number generators (RNGs)
behave with respect to these tests. No statistical test can
ever prove that a given generator is flawless, but the tests
may improve somewhat our confidence in a generator, or
in some cases destroy this confidence completely. For
more on random number generators and their testing, see,
for example, Knuth (1981), L’Ecuyer (1992, 1994), Marsa-
glia (1985), and Niederreiter (1992).

The null hypothesis here is that the points produced by
the uniform RNGs are independently and uniformly distrib-
uted in the unit hypercube. The tests are designed to detect
clustering or repulsion between these points. Several types of
simulations (e.g., in spatial statistics, computational geometry,

operations research, etc.) involve random points in multidi-
mensional space and their results, in many cases, can be sen-
sitive to excessive clustering or repulsion. For example, the
average value of the objective function in a stochastic vehicle
routing problem can be affected by too much clustering be-
tween the (random) customer’s locations. It is therefore
highly desirable that the batteries of empirical tests, to which
the generators are submitted before being placed into
general-purpose software packages, contain tests that are
sensitive to such clustering, repulsion, or other spatial reg-
ularities that may adversely affect the results of the users.

Other tests commonly applied to RNGs, such as the
serial test and the collision test (Knuth 1981), can also
detect spatial clustering in the unit hypercube. However,
they have less power than the specially designed tests stud-
ied here against alternatives that correspond to regular
structures of commonly used generators. Consider for ex-
ample the following standard serial test. Partition the two-
dimensional unit hypercube into 2'* cubic cells, generate
2'® random points, count how many fall in each cell, and
apply a standard chi-square test. The commonly used lin-
ear congruential generators (LCGs) of period length 2*' —
1 will pass this test easily most of the time. With some
close-pair tests described in this paper, all these LCGs fail
repeatedly with 2'® points at significance level 10"

We now give an overview of the paper. In §1, we intro-
duce tests of uniformity based on close pairs of points in
the k-dimensional unit hypercube or unit torus. These tests
throw n random points, compute the L ,-distances between
the pairs of points that are close to each other, and sort
these distances by increasing order. For a specific function
¢,, the number of distinct pairs at a distance less than
¢,(1), as a function of ¢, is approximately a Poisson process
with unit rate. Saunders and Funk (1977) suggested certain
tests on this Poisson process, but here we consider differ-
ent ones. We also consider two-level tests, where the entire
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procedure is repeated N times and the distribution of the
N p-values is compared with the uniform. As a special
case, one can look only at the distance D}, between the two
nearest points. This D generalizes d; in Ripley and Silver-
man (1978) and D* in Ripley (1987, Theorem 2.6). For
RNGs with a regular structure, the N replicates of D}, tend
to cluster. We propose certain transformations that enhance
the ability of the test to detect such clustering. Bickel and
Breiman (1983) introduced a goodness-of-fit test specifically
designed to test the hypothesis of a given multivariate density
in the unit hypercube. Because this test is also based on
distances between close points in the hypercube, it is natural
to compare it with our tests and we do so.

In practice all these tests use the asymptotic theoretical
distributions for n — . In §2, we examine how well these
asymptotics approximate the exact finite-sample-size distri-
butions. To reduce the approximation error, we recommend
computing the distances in the torus instead of the hyper-
cube. The effect of the approximation error on the tests is
estimated by the Anderson-Darling distance between the ex-
act and asymptotic distributions. These error assessments are
interesting in general, not only for RNG testing.

In §3, we give CPU timings for computing the m short-
est interpoint distances for different values of n, k, and p.
In large dimensions (say, kK = 8), the computations are
much faster for large p (up to p = %) than for small p.

In §4, we first apply a set of tests to a small selection of
well-known RNGs. We find that all the LCGs fail and all
the other selected generators pass. The fact that all the
LCGs fail is no big surprise, because their regular lattice
structure implies that the small interpoint distances have a
limited number of possible values. Moreover, if the lattice
structure of the LCG is good, there is a large lower bound
on D}, independent of n (Ripley 1987, p. 26). Therefore,
for large n, the nearest-pair distance will be larger than
expected. To see the effect of this on the test results, we
selected LCGs of different prime period lengths, ranging
(approximately) from 2'* to 2%, and observed at which
sample size they started to fail the tests decisively. This
gives an idea of how soon the structure of these generators
begins to affect the results of simulations involving similar
random variables. We also give examples of generators
whose bad structure is detected by the tests only by large-
dimensional tests.

1. CLOSE-PAIR TESTS OF UNIFORMITY
1.1. L,-Distance in the Unit Hypercube and Torus

We consider the k-dimensional unit hypercube [0, 1]%, with
the L,-norm:

I {(|x1|P+~--+|xk|”)1/p ifl<p<oo,
)=

max(|x|, ..., [xg]) ifp =o0,

for X = (x;,..., x,) € R*. The distance between two
points X, and X, in R* is thus [X, — X/|,. One obtains a
torus by identifying (pairwise) the opposite sides of the
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unit hypercube. Points that are face to face on opposite
sides are thus considered close to each other. This is equiv-
alent to replacing the L, norm by

X117
[min(jx ], 1 =[x, [)? + - - - + min(jxg], 1T —|xg]) P
_ ifl<p <o,
| max(min(fx; [, 1=y ]), . .., min(lxg], 1= |xe])
ifp = oo,

defined for vectors X whose coordinates belong to the
interval [—1, 1]. The following applies with either of these
two norms.

1.2. A Poisson Process Approximation for the
Close-Pair Countings

Let X,, ..., X, be n points in [0, 1]*. Let D,,,; = |X; —
X, be the distance between X; and X, D,,; = min;; D,, ; ;
the distance from X, to its nearest neighbor, and D} =
min, —,—, D, ; the distance between the two nearest points.
Define the null hypothesis #,: “X, ..., X,, are i.i.d. ran-
dom variables uniformly distributed over [0, 1]*.”

Put A(n) = n(n — 1)V, (1)/2, where Vi (r) = [2rT'(1 +
1p)/T(1 + kjp) is the volume of the ball {x € R¥|x||, <
r}, and I is the usual gamma function. For each t = 0, let
Y,(¢) be the number of distinct pairs of points (X, X)),
with i < j, such that D,,;; < (t/M(n))"*.

PROPOSITION 1. In the unit hypercube or the unit torus,
take any fixed t, > 0 and assume that ¥, holds. Then, as n
— o, {Y,(t), 0 < t < t;} converges weakly to a Poisson
process with unit rate truncated to the interval [0, t,]. More-
over, in the unit torus, for t < )\(n)/Zk, the exact mean and
variance of Y, (t) are: E[Y,(t)] = t and Var[Y,(¢)] =t —
26%/(n(n — 1)).

Proor. The first part follows from the results of Saunders
and Funk (1977) or Silverman and Brown (1978), after
making the appropriate change of variables. For the sec-
ond part, let /; ; = I[)\(n)D’,‘l’i’j < ¢] for i <j, where [ is the
indicator function. In the torus, these /; ; are pairwise (but
not mutually) independent Bernoulli random variables
with parameter ¢ = P[I,; = 1] = P[D,,;; < (t/\(n))"*] =
Vi((t/\(n))*) = tV,(1)/A(n) = 2t/(n(n — 1)). Then,
n_l n nn—1
ElY,0]= 2 X El;l= %q =t

i=1 j=i+1

Because the [;; are pairwise independent,

n—-1 n
VarlY, ()] = X > Varll,;]

i=1 j=i+1

n(n —1) (1 - ) 212 -

=———ql-q)=t———.
2 1 1 nn—1)
Let T,; = inf{t = 0|Y,,(t) = i},i =1, 2,3,..., be the

jump times of Y,,, with T, ; = 0. Proposition 1 implies that

for any fixed integer m > 0, for large enough n, the ran-
dom variables
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- Tn,i*l)]:

are approximately i.i.d. U(0, 1). In the unit torus, the first
moment of Y, (¢) matches exactly that of the Poisson pro-
cess with unit rate, and the second moment matches up to
O(’n™?). But this is not true in the hypercube (the I, ; are
not pairwise independent in that case). Exact formulas for
the mean and variance of the W;, in the torus or the
hypercube are not available.

Wi =1— exp[—(T,,

1<ism

1.3. Goodness-of-Fit Tests Based on the Poisson
Process

The test statistic W, ; was proposed by Ripley (1977) for
p = 2 and further studied in Ripley and Silverman (1978),
Silverman and Brown (1978), and other references given
therein. Saunders and Funk (1977) suggest using G, (¢,
t) = sup, <=, Y,(O)/t, for 0 < #, <, fixed. This statistic
tends to inflate when the points are more clustered than
they should be. To detect the opposite situation of too
much repulsion between the points, one may consider the
companion statistic G, (ty, t,) = inf, -, Y,(¢)/t. These
two statistics have complicated discontinuous distributions
that can be derived from the results of Pyke (1959). In our
experiments, they were less sensitive than those that we
now introduce.

As a first alternative, we simply compare the empirical
distribution of W, ;,..., W, ,, to the uniform, using the
Anderson-Darling (AD) goodness-of-fit statistic. If Uy,
<+ < Uy denote the values of Wi ..., Wy, sorted
by increasing order and F' their empirical distribution, then
the AD statistic is defined by

P u=-m

det [V (F(u) — u)?
= ——d
Jo u(l—u)

1 m
- 21{(2,' = DIn(U;)) +Q2m+1-2)In(1 - U}
f=
1)

The null hypothesis ?v(fo: “The W, are iid. U(0, 1) ran-
dom variables” is rejected when the value of 42 is too
large. This hypothesis differs from 7, but holds approxi-
mately when 7, holds and # is large enough. We call this
test the m-nearest-pairs (m-NP) test. For the distribution of
A2, under %,, we refer to Durbin (1973).

1.4. Two-Level Tests

Increasing the sample size n normally increases the power
of the test and decreases the approximation error (i.e., the
difference between ¢, and ?@0) However, the computing
time for the m nearest pairs increases faster than linearly
with n (see §3). The size of the memory to store the points
also becomes a problem when n gets too large. Eventually,
instead of increasing n further, one would rather replicate
independently the entire procedure, say N times, then
compute the N values of A2, and test the fit of their distri-
bution to the AD distribution. If F,, denotes the theoreti-
cal distribution of 42, under %0’ then the random variable

8=1—F,(A2) is the p value of the first-level m-NP test.
The N p values 8, ..., 8y are i.i.d. U(0, 1) under . At
the second level, the AD statistic is

1

A= N -

N
- 2{(2i — DIn(84) + 2N + 1 — 2i)In(1 — §4))},
i=1
(2)

where &), ..., 8y, are the §; sorted by increasing order.
One rejects ¥, if the p value & = 1 — Fy(A%) is deemed
too small. This setup fits the paradigm of the two-level
tests that are commonly used in RNG testing (Fishman
1996, Knuth 1981).

1.5. The Nearest-Pair Test

As an interesting special case, take m = 1; that is, com-
pute only the distance between the nearest pair of points,
and repeat this N times, independently. This yields N rep-
licates of W,, ;, which we denote by Uy < - - - < Uy, after
they are sorted by increasing order. One can then test the
null hypothesis %,: “The N replicates of W7 ; are i.i.d. U(0,
1) random variables,” via the AD statistic A3, defined by
replacing m with N in (1). The hypothesis is rejected if
8y = 1 — Fy(A%) is too small. We call this the nearest-pair
(NP) test.

The NP test is not exactly equivalent to computing the p
value &' of the statistic (1) for the 1-NP test replicated N
times. In the 1-NP test, & is small when U = Wﬁyl is either
close to 0 or close to 1, and 6 is close to 1 when U is close
to 1/2 (one has 6 = min(2U, 2(1 — U)) whenm = 1). It is
thus more appropriate to use §, rather than 6" when m =
1 to avoid spoiling the power of the test for detecting
values of W), ; close to 1/2.

1.6. Spacings, Power Ratio, and Other
Transformations

When the points produced by an RNG have a structure
that is too regular, the small values of D, ; often tend to
cluster. This happens in particular with LCGs (see §4).
This means that the jumps of Y,, tend to cluster, so many
W, are very close (or equal) to zero. This produces a
large value of 42, (see the definition of 42,). For the NP
test, the N replicates of W ; typically tend to cluster, but
not necessarily near zero or one. This does not affect 43 as
much as 42, in the m-NP test. To make the effect of clus-
tering more easily detectable by A3, we consider two types
of transformations on the observations: The spacings and
the power ratio. Both are well known in statistics (e.g.,
Stephens 1986), but their use in conjunction with the NP
test seems new.

Consider again U, . . ., Uy, the N replicates of Wi,
sorted by increasing order. Define the spacings S; =
Uity = Uy, i =0,...,N,where Uy = 0 and Uy =
1. If the U; tend to cluster, several of these S; will take
very small values. Now, one can transform these spacings



into a new set of spacings as follows. Sort S, ..., Sy to
optain Sy < -- =< Sy, and then compute the weighted
differences

0=WIN+1)Sq,

S;:(N_i‘f'l)(S(i)_S(i_l)), 1=<i=<N.

Under %, the vector (S0 - - -, Sy) has the same distribu-
tion as (S, ..., Sn) (see, e.g., Pyke 1965). Consequently,
{Uj=8y+---+S8/_,,1 <i=< N} forms a new sample of
N i.i.d. uniforms. Now, if several S; are close to zero, the
first several S; and U; will also be close to zero. As a result,
if the AD test is applied to the U, A% will be large.

The spacings transformation can be iterated to obtain a
new set of spacings S¢, ..., S%, new uniforms U7, ...,
U%, and so on. We tried this, but the second and subse-
quent iterations did not increase the power in our experi-
ments. In a similar vein, we tried applying the spacings
transformation to the (sorted) values of W, |, ..., W, in
the m-NP test, and this tended to reduce the power of the
test. When several observations are already concentrated
near zero or one, further iterations of the spacings do not
help.

The other transformation that we consider is the power
ratio (see Stephens 1986):

U; = (U(i)/U(iJrl))i’ i= 1’ L N.

Under %,, these U} form a new sample of i.i.d. U(0, 1). If
the Uy, are clustered, this will produce several Uj close to
one. This transformation can also be iterated, but we
found no advantage in applying it more than once in our
context, just as for the spacings transformation.

1.7. The Bickel-Breiman Statistic

As a goodness-of-fit test for an arbitrary density in the
Euclidean space, Bickel and Breiman (1983) proposed a
nearest-neighbor statistic, which in the case of the uniform
density becomes

B, =2 W,u —iln)? (3)
i=1

where W, ) <--- < W, are the ordered values of the
W, =1 — exp[—nVi(D,;)], 1 < i < n. Their develop-
ment works with any norm, and for a nonuniform density
the W, ; are simply defined in a more general way. These
W, ; are approximately U(0, 1) under %, and B, measures
their deviation from uniformity.

The theoretical distribution of B,, under ¥, is hard to
obtain. As n — o, B, = [§ Z*(t) dt, where Z is a Gaussian
process with mean zero and complicated covariance func-
tion (Bickel and Breiman 1983, equation (5.13)) that de-
pends on k. Schilling (1983b) was able to compute that
covariance for k = 1 and for k — o, and obtained the limit
distribution of B, under #,, as both k and n go to infinity.
For finite kK > 1, the distribution of B,, can be estimated by
simulation, as did Schilling (1983b).
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Table 1.  Error estimates in the hypercube, for p =
2.

n k N Ao,n n k N AO,n
10 2 10° 40
25 2 10° 15
107 2 10° 1
10° 21 1wt 2 10t 0
10° 4 10° 40 10* 4 10* 2
10° 6 10° ~1,000 10* 6 10* 16
10° 9 10° ~10,000 10* 9 10* 350

2. QUALITY OF THE APPROXIMATION FOR
FINITE N

If n is not large enough, the difference between the distri-
bution of our test statistic under 9, and that under %, or
?vﬁo could be substantial, leading to too many false rejec-
tions. We did a simulation study to assess (crudely) what
the minimal n should be in terms of p, k, m, and N for the
different tests. For this and all the other simulation studies
in this paper, we used the generator G15 of §4. We also
checked the results with G14 and G16, and they agreed.

To explain what we did, consider the NP test. The test
statistic (2) satisfies

P Jl (Fw) ~w)? le (F(u) = Fo,@)?

u(l —u) u(l —u)

0 0

du, 4

Y (Fo,(u) —u)?
+L u(l —u)

where F,(u) def P[W, , < u|#,]. Denote the last two
integrals in (4) by 121,2\,,,, and A, respectively. (F,,, and
A, depend on 7 and k, but are independent of N.) This
12112\,’,, is the AD statistic that we should calculate if we knew
Fy,., whereas A, is the Anderson-Darling distance be-
tween the uniform distribution and the true distribution of
Wi 1 under ¥,,. This A,,, is an upper bound on the error
A} — A%,

Because F,, is unknown, we cannot compute A, ex-
actly, but we can estimate it by simulation. The obvious
candidate for an estimator is

. Jl (Fon(u) — 1)
0

Bon = u(l —u) du, ®)

where F, 0. 18 the empirical distribution of N i.i.d. replicates
of Wi, , for a very large N. This estimator turns out to be
A% itself. As N — o, A%, converges in distribution to a
random variable 4 having the asymptotic AD distribution,
s0 A5, converges to Ay, + ¢, where { is a random variable
satisfying 0 < ¢ < A, because A% < A, + A%,

The theoretical distribution of A3, under 3760 (or, equiva-
lently, of ;1,2\,’" under #,) converges quickly with N. For
N = 10, one has P[4% > 2.5] =~ 0.05 and P[4} > 3.9] ~
0.01. Therefore, a value of AO,n larger than 3 or 4 is a
statistically significant indication of approximation error.

Table 1 reports a few values of AO,n computed for the
unit hypercube with the Euclidean norm (p = 2). These



312/ L’ECUYER, CORDEAU, AND SIMARD

simulations used N = 10° replications, except for larger
values of n where we took N = 10*. The approximation
error is clearly nonnegligible for n < 10? in four dimensions
or more, and even for n = 10* and k = 6. The same
problem occurs with p = 1 and p = %, and for the other
tests such as m-NP, and so on. The effect of the error is in
fact worse for the m-NP tests than for the NP tests, and
increases with m.

These results contrast with those of Ripley (1987, p. 26),
who said “The approximation. ..is remarkably accurate
for n as small as 25.” Even in two dimensions, we find a
significant error for n = 25. However, Ripley was using a
single value of W), , for his tests, not a goodness-of-fit test
for the distribution of N replicates as we do here, and he
reported experiments only for two dimensions.

Most of the approximation error that we just measured
is due to the boundary effect. The proof of Proposition 1
assumes grossly that the ball of radius » = D, ; centered at
X; is contained in the unit hypercube, at least for the small-
est D, ;s. But this holds only for the points X; that are at a
distance at least r from each boundary. The fraction of the
hypercube volume where this property holds is (1 — 2r)~.
For fixed r, it decreases to zero exponentially fast in k. For
large k, most of the space is near the boundary. To keep
1 - 2Dn,i)k close to one, n must increase exponentially
fast as a function of k. For example, suppose that for a
given k we compute the value of r such that (1 — 2r)F =~
0.95 (i.e., 95% of the points are at distance at least r from
the boundary) and then the minimal n such that P[D} <
r|%,] ~ 0.95 (i.e., there is a 95% chance that the shortest
distance is less than r). For k = 2, 4, 8, 12, 16 (for in-
stance), one obtains n = 110, 27,150, 1.16 X 10'?, 2.25 X
10%, 1.17 X 10%, respectively. The required n quickly
becomes excessive.

Removing the boundary effect motivates taking the unit
torus instead of the hypercube. We re-computed AO,n as
defined previously, with N = 10°, but using the distances
in the torus. For £k < 12 and n = 1,000, AO,,, never ex-
ceeded the 0.01 significance level. We performed a similar
empirical analysis for all the other tests that we tried, such
as the m-NP test, the NP test with the spacings or power
ratio transformations, and so on. Our findings can be suc-
cinctly summarized by the following (conservative) rule of
thumb: For k < 8 and n = 4m*V/N, all these tests appear
safe; i.e., they give p values that are reasonably close to the
correct ones. The approximation error increases with k
and m and decreases with n. Increasing N generally in-
creases the effect of that error on the test outcome. The
smaller the p value in a given test, the larger is the value of
A% and the smaller are the chances that this is due only to
the approximation error. It is therefore advisable to seek
extremely small p values before rejecting a generator.

We also performed simulation experiments with the
Bickel-Breiman statistic in the torus. We estimated the
distribution of B,, under ¥, for values of k ranging from 1
to 20 and »n from 100 to 10,000. Our results with the L,-
norm agree with those of Schilling (1983b), and our esti-

Table 2. CPU time (sec) to find the nearest pair in
the hypercube, for p = 2.

k n=10° n=10* n=10° n = 10°
2 0.01 0.05 1.3 17

4 0.01 0.11 2.3 31

8 0.03 0.47 6.3

12 0.17 1.7 23

16 0.62 13 120

mated distribution for any k = 15 and n = 10 is close to
his infinite-dimensional approximation (with no statisti-
cally significant difference for N = 10*). However, comput-
ing B,, is very time consuming for such a large k. Practical
parameter ranges could be n < 10° for k = 2, n < 10* for
k =4, and n < 10° for k < 15 and p = . To apply the
tests, we selected (p, k) = (2, 2), (%, 2), (e, 15). For these
parameter values, we estimated the distribution of B, by
simulation with N = 10° for k = 2, and N = 10° for k =
15, fitted a least-squares cubic spline approximation to the
data, and used these estimated distributions for our tests.
We actually repeated this for some larger values of n, and
the distribution did not change significantly, indicating that
the distribution for n = 1,000 is already quite close to the
asymptotic one.

Another important practical issue is the discretization
error when computing the AD statistic. For floating-point
numbers with a 53-bit precision, the difference between
two numbers close to 1 and less than 2~ apart (for exam-
ple) will be considered as zero. And if one of the U;, is
zero in (2), then A3, = . In our implementation we thus
(heuristically) replaced any U, or 1 — U;, that was 0 by
27%* in the computation of A3. Under the null hypothesis
this has a negligible effect, at least for the parameter val-
ues we consider.

3. COMPUTING TIMES

The naive way of computing W, ,, ..., W, for a given
set of points is to compute the distances between all n(n —
1)/2 pairs and keep the m shortest ones. We implemented
a better algorithm, which is a modification of that outlined
by Preparata and Shamos (1985). It is explained in a
longer version of this paper, which is available from the
authors. It works for any p = 1, for the hypercube and the
torus, and is programmed in the Modula-2 language.
Tables 2 to 4 give some CPU timings (in seconds) to
find the nearest pair of points (i.e., m = 1) with our imple-
mentation for different values of # and k. Each table entry
is the average over five trials, and nonsignificant digits
have been removed or replaced by zeroes. The blank en-
tries are cases that we did not try because they seemed to
take a lot of time. These and all other computations re-
ported in this paper were performed on a SUN Ultra-1.
The timings depend of course on the choice of machine
and compiler. They are meant to give a crude indication of
the speed of the algorithm as a function of the parameters.
Table 2 is for the Euclidean distance in the unit hyper-
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Table 3.  CPU time (sec) to find the nearest pair in Table 5.  CPU time (sec) to compute B,, in the
the torus, for p = 2. torus, for p = .
k n=10° n = 10* n=10° n = 10° k n=10° n = 10* n = 10° n = 10°
2 0.01 0.05 1.3 18 2 0.1 1 16 210
4 0.01 0.09 2.4 31 4 0.3 6 305
8 0.05 0.6 7.7 8 0.8 29 1300
12 0.45 6.0 54 12 1.5 72 2800
16 5.0 80 876 16 23 130

cube, and Tables 3 and 4 are for the unit torus for p = 2
and p = oo, respectively. We made similar experiments
with p = 1 and also with m = 10 and m = 32. The results
can be summarized as follows. The computing times in-
crease faster than linearly in k and increase much faster in
k for small p than for large p. In small dimensions (e.g.,
k =< 4), the computing time is almost the same for the
hypercube and torus and almost independent of p. But in
larger dimensions, computing the nearest pair is more ex-
pensive in the torus than in the hypercube and much more
expensive for small p than for large p. When increasing m
from 1 to 32, the increase in CPU time goes from negligi-
ble in two and four dimensions to approximately 100% for
(p, k, n) = (=, 24, 104), 300% for (p, k, n) = (2, 16, 104),
and more for p = 1.

To compute B,, one needs the nearest-neighbor dis-
tance from each point. Table 5 gives some timings for our
implementations with p = o« in the unit torus. As can be
seen by comparing these results to those of Table 4, com-
puting B,, is much more time consuming than finding only
the closest pairs.

4. EXPERIMENTAL RESULTS FOR RNG TESTING

In this section, we apply close-pair tests to some RNGs to
investigate the relative effectiveness of different test vari-
ants and parameter choices for detecting deficiencies in
RNGs, particularly in LCGs. We know in advance that
LCGs should fail these tests because of their regular lattice
structure. We want to see for which sample size an LCG
with good lattice structure fails decisively, as a function of
its period length, for the different test variants. This will
give some indication about how safe are the linear-type
generators with large periods and good lattice structure for
simulating similar random variables.

Table 4.  CPU time (sec) to find the nearest pair in
the torus, for p = .
k n = 10° n = 10* n =10’ n = 10°
2 0.01 0.05 1.3 18
4 0.01 0.10 2.4 31
8 0.03 0.32 55
12 0.06 0.94 15
16 0.11 2.2 31
20 0.19 4.1 68
24 0.32 8.0

4.1. A Sample of Random Number Generators

Table 6 gives a short list of RNGs selected to illustrate our
tests. Each generator outputs a real number between 0 and
1 at each step. The points X, are nonoverlapping
k-dimensional vectors of successive output values. G1 to
G7 are well-known LCGs, based on a recurrence of the
form x; = (ax;_, + ¢) mod M, with output u; = x,/M at
step i. They are discussed in many books and used in
various software packages (see, e.g., Bratley et al. 1987,
Fishman 1996, Law and Kelton 1991). G8 is a multiple
recursive generator (MRG) of order 5, with modulus M =
2! — 1 and multipliers a, = 107374182, a5 = 104480,
a, = as = a, = 0, proposed by L’Ecuyer et al. (1993). G9
is an explicit inversive generator of the form x; = (ai + b)
mod M, z; = x; " mod M = xM 2 mod M, u; = z/;M
(Eichenauer-Herrmann 1992, Hellekalek 1995). G10 is the
GFSR generator given in Ripley (1990, appendix). G11,
G12, and G13 are the combined LCG of L’Ecuyer (1988),
the combined MRG given in L’Ecuyer (1996a, Figure 1),
and the combined Tausworthe generator in L’Ecuyer
(1996b, Figure 1), respectively. G14 to G16 are double
precision versions of G11 to G13. Each call to G14 makes
two calls to G11 to get two uniforms w, and w, and out-
puts u = (w; + 27*w,) mod 1. The motivation for this is
to obtain more bits of resolution in the output. G15 and
G16 work the same way.

Table 6.  List of selected generators.

Gl1. LCG with M = 2*' — 1 and a = 742938285.
G2. LCG with M = 2°" — 1 and a = 630360016.
G3. LCG with M = 2! — 1 and a = 16807.

G4. LCG with M = 232, a = 69069, and ¢ = 1.

G5. MCG with M = 23! and @ = 65539.

Go. LCG with M = 2*! and a = 452807053.

G7. LCG with M = 2°', a = 1103515245, ¢ = 12345.

GS. MRG of order 5, from L’Ecuyer, Blouin, and
Couture (1993).

G9. Explicit inversive generator with M = 23! and a =
b=1.

G10. GFSR-521 in the Appendix of Ripley (1990).

G11.  Combined LCG in Fig. 3 of L’Ecuyer (1988).

G12.  Combined MRG in Fig. 1 of L’Ecuyer (1996a).

G13.  Combined Tausworthe generator in Fig. 1 of
L’Ecuyer (1996b).

G14. A double precision version of G11.

G15. A double precision version of G12.

G16. A double precision version of G13.
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Table 7.  Parameters for some NP and m-NP test. Table 9.  The p-values for G3.

Test )4 k m n N Nn Nnk Test NP NP-S NP-PR m-NP
T1 o 2 32 214 1 214 215 T1 €
T2 o 2 16 212 4 214 215 T2 3.1E-3
T3 e 2 8 210 16 214 215 T3

T4 o 2 32 217 1 217 218 T4 €
TS5 o 2 8 213 16 217 218 TS 9.3E-7 4.1E-7 €
T6 e 4 32 27 1 27 219 T6 1.7E-3 34E-3 1.7E-3 €
T7 o 4 8 283 16 217 219 T7 1.2E-3
T8 o 8 32 217 1 217 220 T8 €
T9 e 2 32 2%0 32 2% 226 T9 € € € €
T10 o 4 32 220 32 2% 227 T10 € € € €
T11 o 8 32 2%0 32 2% 2%8 T11 € € € €

4.2. Test Results for the Selected Generators

Table 7 gives a list of test parameters for the NP and
m-NP tests in the unit torus. Table 8 gives another set for
the Bickel-Breiman test. In both tables, Nn and Nnk are
the total number of points generated and the total number
of calls to the generator for the test, respectively. These
parameter values have been chosen to illustrate things that
typically happen when these tests are applied to LCGs. For
each selection of parameters, we applied (among others)
the following four tests: the NP test, the NP test combined
with the spacings transformation (NP-S), the NP test com-
bined with the power ratio transformation (NP-PR), and
the m-NP test. We now summarize the results.

None of the generators G8 to G16 had difficulty with
these tests. We observed a few p values just below 0.01
now and then, as normally expected. On the other hand,
all the LCGs G1 to G7 failed several tests. In particular,
with T9 to T11, which are two-level and throw approxi-
mately one million points in the hypercube 32 times, in
different dimensions, G1 to G7 failed all the tests at signif-
icance level 10~"°. For the other selected parameter sets,
for the LCGs, the m-NP test generally appears more effi-
cient than the other three types of tests, and gains power
when m is increased (at least for m < 32). Also, for a fixed
value of Nn, it is usually better to take N = 1. For exam-
ple, we obtained several p values less than 10~'° with T1
(for the m-NP test), a few p values below 0.01 for T2, and
no p value less than 0.01 for T3. With T4, T6, and T8, the
32-NP test had several p values less than 107'5, but the

Table 8. Parameter values for the Bickel-Breiman
test.
Test P k n N Nn Nnk
B1 2 2 218 1 218 219
B2 2 2 218 16 222 223
B3 2 2 220 16 224 225
B4 o0 2 216 1 216 217
B5 o0 2 214 16 218 219
B6 o0 2 218 1 218 219
B7 o0 2 218 16 222 223
B8 o0 2 220 1 220 221
B9 o0 2 220 16 224 225
B10 o0 15 216 1 216 2199
B11 o0 15 218 1 218 2219

other three types of tests had very few below 107°. Of
course, we should not expect the NP tests with N = 1 to
perform well unless 7 is quite large because they look only
at W, ;. With T5 and T7, NP-S and NP-PR generally did
better than m-NP with several very small p values, some
below 10~ . But there were a few exceptions. For exam-
ple, for G3 and T3, the p value of the 8-NP test was less
than 10~ '°, whereas those of the NP-S and NP-PR tests
were around 107°. For a specific illustration, Table 9 re-
ports the “suspect” p values (those smaller than 0.01) for
the generator G3. The entries with nonsuspect p values are
left blank. Values smaller than 10~ "> are denoted e.

We ran similar tests with p = 1 and p = 2, and for other
parameter sets not shown here. The tests with p = « were
at least as sensitive in our experiments as those with
smaller values of p. For large k, the tests with p = o« also
run faster. For the LCGs in our list, for a fixed n, the tests
with k = 2 were as sensitive and less costly to run than the
higher dimensional ones. For a given number of calls to the
generator, they were the most efficient. However, one
should not conclude that k = 2 is sufficient in general.
Taking k > 2 is appropriate and indicated if there is rea-
son to believe that a generator may behave badly for some
large k or if defective behavior for a specific £k > 2 would
badly affect the application at hand.

Figures 1 and 2 illustrate the typical behavior of an LCG
when it starts to fail the m-NP test. They are for G3 with

Figure 1.

Part of the trajectory of Y,(f) for G3 with
n=2"%k=2p=o.




Figure 2.  Empirical distribution of W, |, - - -, W 5, for

G3withn = 2% k=2, p = o,

08 | J ]
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T1. Figure 1 shows the first 32 jumps of Y,,, Figure 2 shows
the distribution of the corresponding W, ;. We count a
jump each time Y, (¢) increases by one unit. Some of the
jumps occur at the same ¢ (for instance, the second, third,
and fourth jumps, as well as the seventh and eighth, and so
on). For larger n, this behavior is accentuated. For n = 27
(T4), for example, the first 32 jumps occur at only five
different values of ¢. Because of these simultaneous jumps,
several W, ; are zero, so their empirical distribution has a
large jump at the origin (Figure 2). The AD statistic then
becomes huge and would be infinite if the W}, that are
zero were not replaced by 27,

What causes this kind of behavior? Because of the reg-
ular lattice structure of the LCG, the distances between
the close points are distributed over a (small) finite set of
values. When n increases, this set remains fixed and the
smallest values in the set are picked by a larger number of
pairs (the number of pairs is O(n?), so the number of pairs
at a given distance should also increase as O(n?) in proba-
bility). The other generators also have their output values
distributed over a finite set (e.g., are all multiples of 1/M
for GY, etc.). But this discretization is too fine to affect the
results of the tests performed here.

Figure 3 shows the empirical distribution of the W}, s

Figure3.  Empirical distribution of the Wj ;s for G4

with T7.

0.8 r

0.8 1z
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Figure 4.

Empirical distribution of the W, s after IS
for G4 with T7.

for G4 with T7. There are five cases where two values of
W, | are equal or nearly equal, but the AD statistic does
not detect this. Figure 4 gives the empirical distribution of
the uniforms after applying the spacings transformation to
these W, ;s. There is now a large jump at the origin, easily
detected by the AD statistic. A similar figure for the distri-
bution after the power ratio transformation would show a
large jump at the other end, near 1.

Table 10 gives the suspect p values for the Bickel-
Breiman tests of Table 8. The tests with N = 16 are two-
level tests, where the second level computes an AD
statistic from the 16 p values of the first level, as in Equa-
tion (2). All the LCGs G1-G7 fail some of the tests, but
for total sample sizes significantly larger than for the m-NP
tests. For a given Nn, a larger n usually gives more power,
but at a larger CPU cost. G8 to G16 passed these tests.
The Bickel-Breiman statistic is sensitive to general cluster-
ing between the points, but is not very sensitive to cluster-
ing or equalities between the values of the first few
nearest-neighbor distances D, ;, in contrast to the m-NP
tests. Certain generators could produce a different type of
clustering than the LCGs and perhaps the Bickel-Breiman
tests could then be more useful.

Table 10.  The p-values for the Bickel-Breiman
tests.

Test Gl1 G2 G3 G4 G5 Go6 G7

B1 e 22E-3

B2 1.0E-4 € €

B3 € € € € € € €

B4

B5

B6 € €

B7 € € € 3.0E-4

B8 5.7E-3 € € € €

B9 8.4E-12 14E-4 € € € € €

B10 € €

B11 43E-5 5.5E-6 € € € €
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Table 11.  The p values for the NP test with N = 1,
for several LCGs.
e v=20 v=1 v=2 v=273
14 5.5E-07 €
16 7.6E-03 3.3E-09 €
18 7.5E-06 €
20 1.8E-03 1.0E-11 €
22 9.5E-03 8.1E-09 €
24 7.0E-04 2.3E-13 €
26 2.6E-03 4.6E-11 €
28 1.0E-07 €
30 1.8E-07 €
32 6.5E-08 €
34 3.0E-03 7.6E-11 €
36 7.2E-03 2.8E-09 €
38 3.7E-03 1.8E-10 €
40 2.5E-03 4.1E-11 €

4.3. Other Experiments and Examples with LCGs
and MRGs

For each even integer e from 14 to 40, we took an LCG
with modulus M equal to the largest prime less than 2°,
with period length M — 1, and with excellent lattice struc-
ture in two dimensions. The selected LCGs are those with
the best value of My in L’Ecuyer (1999, Table 2). For each
e, we applied the tests in k = 2 dimensions with p = % and
n=2""2~2"\/M, for v= —4,...,4. Table 11 gives the
p values for the NP test with N = 1. The columns not
shown in the table are blank for v < 0 and filled with e for
v > 3. The upcoming of the small p values when v is
increased is remarkably systematic for the different values
of e. For this and other similar tables, define v* as the
smallest value of v for which most of the column entries
are e. As a crude rule, the test rejects almost certainly any
LCG in a very decisive way at sample size n ~ 2*"\/M. For
the NP test with N = 1, we have v* = 3.

We made similar tables for other close-pair tests and
observed the same systematic behavior, except that v* took
different values depending on the test. We also observed
that the smallest value of v where most of the column
entries are less than 0.01 is almost always v* — 1. Table 12
gives the value of v* that we obtained for certain tests,
with p = » and k = 2. To reject decisively, the NP test
with N = 1 (which is the test discussed by Ripley 1987)
needs n ~ 8\V/M, whereas the 32-NP test with N = 1 needs
n ~ VM. With N = 32, the NP-S and NP-PR tests need a
sample size approximately eight times smaller than the NP

Table 12.  Value of v* for different tests applied to
LCGs (p = =, k = 2).

Test N v*
NP 1 3
32-NP 1 0
NP 32 1
NP-S 32 -2
NP-PR 32 -2
16-NP 16 -1
32-NP 32 -1

test. So, the spacings and power ratio transformations are
quite effective.

We now give two examples of long-period generators
that pass the tests in two dimensions but fail badly in some
higher dimension. Consider the MRG defined by x, =
(3x,_, — 7x,_») mod M and u,, = x,/M, where M = 23! —
1. This generator has period length M*> — 1 ~ 2%, In two
dimensions, all the pairs (i/M, j/M), i,j € {0,..., M — 1},
except (0, 0), appear exactly once as a value of (u,, u, )
over the generator’s period. But in three dimensions, all
the triples (u,,, 4,1, U,+-) lie on 10 planes. We applied
the two-dimensional tests with parameters T9 to this gen-
erator, and it passed nicely. But for T10, the p values were
all e. In three dimensions, for N = 1, the p value of the
16-NP test is already 2.8 X 10~'* with n = 2'° and is € for
n =22

As another example, consider x, = (2, ; — 2x,_s)
mod M and u,, = x,/M, where M = 23! — 22641. Here, the
period length is M° — 1 ~ 2'%°, and the structure is good
up to five dimensions but awful in six or more dimensions:
The points all lie in at most four hyperplanes. This gener-
ator easily passed all the close-pair tests that we tried in
two to five dimensions, but it failed badly in six dimensions
Or more.

The two previous examples have been constructed on
purpose to have a bad structure in three and six dimen-
sions, respectively. But generators with similar bad proper-
ties have been proposed and used in the past. For
example, G5 in our list (RANDU) has a much worse struc-
ture in three dimensions than in two dimensions (Knuth
1981). Also, the add-with-carry, subtract-with-borrow, and
additive lagged-Fibonacci generators behave very similarly
to the MRG of order 5 in our last example (L’Ecuyer
1994, 1997).

5. CONCLUSION

We have examined and compared different variants of
close-pair tests to detect the regularities of linear congru-
ential generators. For N = 1, the m-NP test appears the
most powerful, and it gets better as n and m are increased.
The NP-S and NP-PR also do well for large enough N. We
recommend keeping n = 4m*\V/N for k < 8 to avoid dam-
aging errors of approximation by the asymptotics. For a
fixed value of Nn, N = 1 seems best for the m-NP test with
large enough m. But the computing time increases faster
than linearly with n. The main bottleneck for using a large
n is usually the memory size. For example, for n = 107 and
k = 4, approximately 320 megabytes of memory are
needed just to store the points. Therefore, to implement a
very stringent test, one should first raise n to the highest
reasonable value (depending on the available memory on
the computer at hand), then increase N.

From the results of Table 12, we can anticipate for ex-
ample that any good LCG with period 2% will fail deci-
sively a 32-NP test with N = 1 and n ~ 2°°, or with N = 32
and n ~ 22%. Such sample sizes are not out of reach for



current computers with enough memory. And if the lattice
structure is not so good, clear failure may occur for much
smaller n. But for a good LCG with period length (say)
over 2'%, the sample size required for testing is prohibi-
tively large with current technology.
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