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Preventive Replacement for Multicomponent Systems:
An Opportunistic Discrete-Time Dynamic Programming Model

Pierre L'Ecuyer Assumptions
GERAD, Ecole des Hautes Etudes Commerciales, 1. The system has m components with non-identical s-inde-
Montreal pendent life-time distributions characterized by discrete non-

Alain Haurie, Member IEEE decreasing failure rates.

GERainDHauri,EcolembesHautesEtudesCommercial2. The state of the system is perfectly observed at discrete
GERAD, Ecole des Hautes Etudes Comnerciales, times. A strategy tells, for each possible state, which operative
Montreal components should be replaced (preventive replacement) in

addition to the mandatory replacement of failed components.
Key Words - Dynamic programming, Multicomponent system, Pre- 3. Replacements, if any, are instantaneous and by new

ventive replacement, Opportunistic replacement, Stochastic optimization, components only.
Control-limit rule.

4. The optimality criterion, to be minimized through the
Readers Aids - choice of an appropriate strategy, is the discounted s-expected

Purpose: Present a derivation cost-to-go over an infinite time horizon. The discount factor
Special math needed for explanations: Probability, Dynamic programming per time-step is 3 < 1.
Special math needed to use results: Same At an observation time, the system is in a state x E X and
Results useful to: Maintenance theoreticians

a set R of components to be replaced is chosen; the set
Abstract-We propose a dynamic programming (DP) model for contains at least the set of failed components. The components

the optimal preventive replacement of elements in a multicomponent in the set W(R) must be dismantled, and a cost
system. The model generalizes previous work on the subject by: i)
allowing for non identical components, ii) permitting the computation C(R) = C +E
of an e-optimal strategy for a medium size system (4 to 5 components), e R e W(R)
iii) showing that the control-limit rule does not extend to most of the
multicomponent systems, and iv) proposing a class of suboptimal strate- is incurred.
gies to be used when the system is too large for directly implementing The transition probabilities for the next step can be easily
the DP algorithm. These features of the model are illustrated in a sepa-
rately available Supplement via a numerical example inspired from the computed from the failure probabilities. A Markov decision
modular structure of a modern fighter aircraft's engine. process is thus defined. The dynamic programming successive

approximation method can be used to obtain an e-optimal
strategy and to characterize the functionals Jk and J, as well

1. INTRODUCTION as the optimal strategy. The following properties are proved

Most preventive replacement optimization models assume in [2-3]:
that the system consists of a single element; but many systems 1. J(x) =lim k (x) for all x in X.
are multicomponent with some form of cost dependency k= ok
between the components. If economies of scale are possible 2. Jk (x) for each k, as well as J(x), are non-decreasing
in the replacement activity, the optimal preventive replacement w.r.t. each component of x (d being considered larger than
strategy is usually opportunistic [1]. every integer).

3. There exists an optimal stationary strategy I 0* (x),
x E X], where H* (x) is the optimal set of components to

2. MODEL replace when the system is in state x.
4. Optimality precludes preventive replacements in the

Notation absence of failure.
m number of components in the system 5. The following "control-limit" property holds: 0* (x) = M
M [1, 2.in,], the set of components . ..........impliesO*(x) =M for all x¢x.
d state of a failed component
X ([0, 1, 2, .1..U [d]) m; vector state space for the . ..............Aversion of the DP algorithm, allowing approximations

space for the system and permitting the efficient computation of an e-optimal
Jk (x) minimal discounted s-expected cost-to-go for the next opportunistic preventive replacement strategy is proposed in

k periods if the system is now in state x the Supplement [3].
J(x) minimal discounted s-expected cost-to-go for an A numerical illustration is given in [3], with a 4-component

infinite horizon if the system is now in state x system similar to a modular jet engine. An optimal strategy
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(FE being negligibly small) has been obtained and happens to [2] P. L'Ecuyer, 'Politiques optiniales et sous-optimiiales pooLr IC remipliace-
be quite complex. It shows, among other things, that the ment des composantes d'un systeme (Optimal and suboptimal policies

for the replacement of componenits of a system).'' Les Cahiers diiwell known, control-limit rule, valid for a 1- or 2-component GERAD, Report No G-80-05. 1980 Nov. Available from GERADL
system, cannot be readily generalized to larger systems. More Ecole des Hautes Etudes Commerciales; 5255 avenuLe Decelles; Montreal.
precisely. 0* (.x) can be a strict subset of 0, (x) even if Quebec H3T IV6, CANADA.

[3] Supplement: NAPS document No. 04009-B; 9 pages in this Supplemlent.
For current ordering information, see ''Information for Readers &

Authors' in a current issue. Order NAPS document No. 04009. 313. SIMPLE SUBOPTIMAL STRATEGIES pages. ASIS-NAPS; Microfiche Publications; PO Box 3513, Grand

The optimal strategy is generally very complicated; thus Central Station: New York, NY 10017 USA.
there is an incentive for considering only a restricted class of
rules having a fixed predetermined form. Consider, as an
example, the following class of rules: for given thresholds
1j, i= 1, ..., m, replace, in addition to the set H of failed AUTHORS
components, every component i which is already dismantled
(i.e., i E W(H) ) and whose age is larger or equal to 4i. To Pierre L'Ecuyer: GERAD; Ecole des Hautes Etudes Commerciale.s: 525avenue Decelles; Montreal, Quebec H3T IV6, CANADA.
to find the optimal 4i values, repeated simulation can be used. P. L'Ecuyer was born in Rimouski, Canada in 1950. He received a BSc
For the numerical illustration [3], the best strategy of this degree in mathematics in 1972 and a MSc degree in operations research in
form yielded an s-expected cost-to-go for a new system only 1980, both from the University of Montreal, Canada. He is a PhD student
3% higher than the optimal value J(0). in operations research at the same university. His research interests are in

markov renewal decision processes, approximation methods in dynamicThis class of suboptimal strategies could also be refined as
suggested in [3], in order to take advantage of the increased p
accessibility to some components when others are dismantled. Alain Haurie; GERAD; Ecole des Hautes Etudes Commerciales: 5255 avenue

Decelles; Montr6al, Qu6bec H3T 1V6, CANADA.
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