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Abstract We survey some of the recent developments on quasi-Monte Carlo (QMC)
methods, which, in their basic form, are a deterministic counterpart to
the Monte Carlo (MC) method. Our main focus is the applicability of
these methods to practical problems that involve the estimation of a
high-dimensional integral. We review several QMC constructions and
different randomizations that have been proposed to provide unbiased
estimators and for error estimation. Randomizing QMC methods allows
us to view them as variance reduction techniques. New and old results
on this topic are used to explain how these methods can improve over
the MC method in practice. We also discuss how this methodology can
be coupled with clever transformations of the integrand in order to re-
duce the variance further. Additional topics included in this survey are
the description of figures of merit used to measure the quality of the
constructions underlying these methods, and other related techniques
for multidimensional integration.
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1. Introduction
To approximate the integral of a real-valued function f defined over

the unit hypercube [0, 1)s, given by

µ =
∫

[0,1)s
f(u)du, (1.1)

a frequently-used approach is to choose a point set Pn = {u1, . . . ,un} ⊂
[0, 1)s and then take the average value of f over Pn,

Qn =
1
n

n∑
i=1

f(ui), (1.2)

as an approximation of µ. Note that many problems can be formulated
as in (1.1), e.g., when simulation is used to estimate an expectation and
each simulation run requires s calls to a pseudorandom number generator
that outputs numbers between 0 and 1; see Section 2 for more details.

If f is very smooth and s is small, the product of one-dimensional in-
tegration rules such as the rectangular or trapezoidal rules can be used
to define Pn [20]. When these conditions are not met, the Monte Carlo
method (MC) is usually more appropriate. It amounts to choose Pn as
a set of n i.i.d. uniformly distributed vectors ui over [0, 1)s. With this
method, Qn is an unbiased estimator of µ whose error can be approxi-
mated via the central limit theorem, and whose variance is given by

σ2

n
=

1
n

(∫
[0,1)s

f2(u)du − µ2

)
,

assuming that σ2 < ∞ (i.e., f is square-integrable). This means that
the error |Qn−µ| associated with the MC method is in the probabilistic
order Op(n−1/2).

Quasi-Monte Carlo (QMC) methods can be seen as a deterministic
counterpart to the MC method. They are based on the idea of using
more regularly distributed point sets Pn to construct the approximation
(1.2) than the random point set associated with MC. The fact that QMC
methods are deterministic suggests that one has to make assumptions
on the integrand f in order to guarantee a certain level of accuracy for
Qn. In other words, the improved regularity of Pn comes with worst-case
functions for which the QMC approximation Qn is bad. For this reason,
the usual way to analyze QMC methods consists in choosing a set F
of functions and a definition of discrepancy D(Pn) to measure, in some
way, how far from the uniform distribution on [0, 1)s is the empirical
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distribution induced by Pn. Once F and D(Pn) are determined, one can
usually derive upper bounds on the deterministic error, of the following
form [80, 41]:

|Qn − µ| ≤ D(Pn)V (f), for any function f ∈ F , (1.3)

where V (f) is a measure of the variability of f such that V (f) < ∞
for all f ∈ F . A well-known special case of (1.3) is the Koksma-Hlawka
inequality [47], in which F is the set of functions having bounded varia-
tion in the sense of Hardy and Krause, and D(Pn) is the rectangular-star
discrepancy. To compute this particular definition of D(Pn), one con-
siders all rectangular boxes in [0, 1)s aligned with the axes and with a
“corner” at the origin, and then take the supremum, over all these boxes,
of the absolute difference between the volume of a box and the fraction
of points of Pn that fall in it. The requirement that V (f) < ∞ in this
case roughly means that f is assumed to have smooth derivatives.

It is clear from (1.3) that a small value of D(Pn) is desirable for the
set Pn. This leads to the notion of low-discrepancy sequences, which
are defined as sequences P∞ of points such that if Pn is constructed by
taking the first n points of P∞, then D(Pn) is significantly smaller than
the discrepancy of a typical set of n i.i.d. uniform points. The term
low-discrepancy point set usually refers to a set obtained by taking the
first n points of a low-discrepancy sequence, although it is sometimes
used in a looser way to describe a point set that has a better uniformity
than an independent and uniform point set.

In the case where D(Pn) is the rectangular-star discrepancy, it is
common to say that P∞ is a low-discrepancy sequence if D(Pn) =
O(n−1 logs n). Following this, the usual argument supporting the supe-
riority of QMC methods over MC is to say that if Qn is obtained using a
low-discrepancy point set, then the error bound (1.3) is in O(n−1 logs n),
which for a fixed dimension s is a better asymptotic rate than the n−1/2

rate associated with MC. For this reason, one expects QMC methods to
approximate µ with a smaller error than MC if n is sufficiently large.
However, the dimension s does not need to be very large in order to
have n−1 logs n > n−1/2 for large values of n. For example, if s = 10,
one must have n ≥ 1.2×1039 to ensure that n−1 logs n ≤ n−1/2, and thus
the superiority of the convergence rate of QMC over MC is meaningful
only for values of n that are much too large for practical purposes.

Nevertheless, this does not mean than QMC methods cannot improve
upon MC in practice, even for problems of large dimension. Arguments
supporting this are that firstly, the upper bound given in (1.3) is a
worst-case bound for the whole set F . It does not necessarily reflect
the behavior of Qn on a given function in this set. Secondly, it happens
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often in practice that even if the dimension s is large, the integrand f
can be well approximated (in a sense to be specified in the next sec-
tion) by a sum of low-dimensional functions. In that case, a good ap-
proximation Qn for µ can be obtained by simply making sure that the
corresponding projections of Pn on these low-dimensional subspaces are
well distributed. These observations have recently led many researchers
to turn to other tools than the setup that goes with (1.3) for analyzing
and improving the application of QMC methods to practical problems,
where the dimension s is typically large, or even infinite (i.e., there is
no a priori bound on s). In connexion with these new tools, the idea of
randomizing QMC point sets has been an important contribution that
has extended the practical use of these methods. The purpose of this
chapter is to give a survey of these recent findings, with an emphasis on
the theoretical results that appear most useful in practice. Along with
explanations describing why these methods work, our goal is to provide,
to the reader, tools for applying QMC methods to his/her own specific
problems.

A subjective choice of topics has been done, and we do not pretend to
be covering all the recent developments regarding QMC methods. Also,
the fact that we chose not to talk more about inequalities like (1.3)
does not mean that they are useless. In fact, the concept of discrepancy
turns out to be useful for defining selection criteria on which exhaustive
or random searches to find “good” sets Pn can be based, as we will
see later. Furthermore, we think it is important to be aware of the
discouraging order of magnitude for n required for the rate n−1 logs n to
be better than n−1/2, and to understand that this problem is simply a
consequence of the fact that placing points uniformly in [0, 1)s is harder
and harder as s increases because the space to fill becomes too large.
This suggests that the success of QMC methods in practice is due to a
clever choice of point sets exploiting the features of the functions that
are likely to be encountered, rather than to an unexplainable way of
breaking the “curse of dimensionality”.

Highly-uniform point sets can also be used for estimating the mini-
mum of a function instead of its integral, sometimes in a context where
function evaluations are noisy. This is discussed in Chapter 5 of [80] and
was also the subject of collaborative work between Sid Yakowitz and the
first author [112].

This chapter is organized as follows. In Section 2, we give some in-
sight on how point sets Pn should be constructed by using an ANOVA
decomposition of the integrand over low-dimensional subspaces. Section
3 recalls the definition of different families of low-discrepancy point sets.
In Section 4, we present measures of quality (or selection criteria) for
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low-discrepancy point sets that take into account the properties of the
decomposition discussed in Section 2. Various randomizations that have
been proposed for QMC methods are described in Section 5. Results on
the error and variance of approximations based on (randomized) QMC
methods are presented in Section 6. The purpose of Section 7 is to
briefly review different classes of transformations that can be applied
to the integrand f for reducing the variance further by exploiting, or
not, the structure of the point set Pn. Integration methods that are
somewhere between MC and QMC but that exploit specific properties
of the integrand more directly are discussed in Section 8. Conclusions
and ideas for further research are given in Section 9.

2. A Closer Look at Low-Dimensional
Projections

We mentioned earlier that as the dimension s increases, it becomes
difficult to cover the unit hypercube [0, 1)s very well with a fixed number
n of points. However, if instead our goal is to make sure that for some
chosen subsets I ⊂ {1, . . . , s}, the projections Pn(I) over the subspace of
[0, 1)s indexed by the coordinates in I are evenly distributed, the task is
easier. By doing this, one can get a small integration error if the chosen
subsets I match the most important terms in the functional ANOVA
decomposition of f , which we now explain.

The functional ANOVA decomposition [23, 49, 87] writes a square-
integrable function f as a sum of orthogonal functions as follows:

f(u) =
∑

I⊆{1,...,s}
fI(u),

where fI(u) = fI(u1, . . . , us) corresponds to the part of f that depends
only on the variables in {uj , j ∈ I}. Moreover, this decomposition is
such that f∅(u) = µ, ∫

[0,1)s
fI(u)du = 0

if I is non-empty, and ∫
[0,1)s

fI(u)fJ(u)du = 0,

if I 6= J . Defining σ2
I = Var(fI(u)), we then have

σ2 =
∑
∅6=I⊆S

σ2
I .
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The best mean-square approximation of f(·) by a sum of d-dimensional
(or less) functions is

∑
I:|I|≤d fI(·). Also, the relative importance σ2

I/σ
2

of each component fI indicates which variables or which subsets of vari-
ables are the most important [42].

A function f has effective dimension d (in the superposition sense)
if
∑

I:|I|≤d σ2
I ≈ σ2 [11]. Functions defined over many variables but

having a low effective dimension often arise in practical applications
[11, 68]. The concept of effective dimension has actually been intro-
duced (in a different form than above) by Paskov and Traub [90] in the
context of financial pricing to explain the much smaller error obtained
with QMC methods compared with MC, for a problem defined over a
360-dimensional space.

A broad class of problems that are likely to have low effective dimen-
sion (relative to s) are those arising from simulation applications. To see
this, note that simulation is typically used to estimate the expectation
of some measure of performance defined over a stochastic system, and
proceeds by transforming in a more or less complicated way a sequence
of numbers between 0 and 1 produced by a pseudorandom generator into
an observation of the measure of interest. Hence it fits the framework of
equation (1.1), with s equal to the number of uniforms required for each
simulation, and f taken as the mapping that transforms a point in [0, 1)s

into an observation of the measure of performance. In that context, it
is frequent that the uniform numbers that are generated close to each
other in the simulation (i.e., corresponding to dimensions that are close
together) are associated to random variables that interact more together.
In other words, for these applications it is often the subsets I containing
nearby indices and not too many of them that are the most important
in the ANOVA decomposition. This suggests that to design point sets
Pn that will work well for this type of problems, one should consider
the quality of the projections Pn(I) corresponding to these “important”
subsets. We present, in Section 4, measures of quality defined on this
basis.

We conclude this section by recalling two important properties related
to the projections of a point set Pn in [0, 1)s. Firstly, we say that Pn is
fully projection-regular [93, 63] if each of its projections Pn(I) over a non-
empty subset of dimensions I ⊆ {1, . . . , s} contains n distinct points.
Such a property is certainly desirable, for the lack of it means that some
of the ANOVA components of f are integrated by less than n points
even if n evaluations of f have been done. Secondly, we say that Pn is
dimension-stationary [63] if Pn(I) = Pn(I + j) for any I = {i1, . . . , id},
1 ≤ d, j < s, such that 1 ≤ i1 < . . . < id < id + j ≤ s; that is, only
the spacings between the indices in I are relevant in the definition of
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the projections Pn(I) of a dimension-stationary point set, and not their
individual values. Hence not all 2s − 1 non-empty projections of Pn
need to be considered when measuring the quality of Pn since many are
the same. Another advantage of dimension-stationary point sets is that
because the quality of their projections does not deteriorate as the first
index i1 increases, they can be used to integrate functions that have
important ANOVA components associated with subsets I having a large
value of i1. Therefore, when working with those point sets it is not
necessary to try rewriting f so that the important ANOVA components
are associated with subsets I having a small first index i1 (as is often
done; see, e.g., [33]). We underline that not all types of QMC point sets
have these properties.

3. Main Constructions
In this section, we present constructions for low-discrepancy point sets

that are often used in practice. We first introduce lattice rules [93], and
a special case of this construction called Korobov rules [53], which turn
out to fit in another type of construction based on successive overlapping
s-tuples produced by a recurrence defined over a finite ring. This type
of construction is also used to define pseudorandom number generators
(PRNGs) with huge period length when the underlying ring has a very
large cardinality (e.g., ≥ 2100); low-discrepancy point sets are rather ob-
tained by using a ring with a small cardinality (e.g., between 102 and
106). For this reason, we refer to this type of construction as small
PRNGs, and discuss it after having introduced digital nets [80], which
form an important family of low-discrepancy point sets that also pro-
vides examples of small PRNGs. Various digital net constructions are
described. We also recall the Halton sequence [37], and discuss a method
by which the number of points in a Korobov rule can be increased se-
quentially, thus offering an alternative to digital sequences. Additional
references regarding the implementation of QMC methods are provided
at the end of the section.

3.1 Lattice Rules
The general construction for lattice rules has been introduced by Sloan

and his collaborators (see [93] and the references therein) by building
upon ideas developed by Korobov [53, 54], Bahklavov [5], and Hlawka
[48]. The following definition is taken from the expository book of Sloan
and Joe [93].
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Figure 1.1. Korobov lattice point set with n = 101 and a = 12; the two vectors
shown correspond to the basis {(−8/101, 5/101), (9/101, 7/101)}.

Definition: Let {v1, . . . ,vs} be a set of s-dimensional vectors linearly
independent over Rs , and with coordinates in [0, 1). Define

Ls = {v =
s∑
j=1

zjvj such that each zj ∈ Z}, (1.4)

and assume that Z
s ⊆ Ls. The approximation Qn based on the set

Pn = Ls ∩ [0, 1)s is a lattice rule. The number of points n in the rule
is equal to the inverse of the absolute value of the determinant of the
matrix V whose rows are the vectors vj, j = 1, . . . , s. This number n is
called the order of the rule.

Note that the basis for Ls is not unique, but the determinant of the
matrix V remains constant for all choices of basis.

Figure 1.1 gives an example of a point set Pn that corresponds to a
two-dimensional lattice rule, with n = 101. Here, the two vectors shown
in the figure, v1 = (−8/101, 5/101) and v2 = (9/101, 7/101), form a
basis for the lattice L2. Another basis for the same lattice is formed by
v1 = (1/101, 12/101) and v2 = (0, 1).

These 101 points cover the unit square quite uniformly. They are also
placed very regularly on equidistant parallel lines, for several families of
lines. For example, any of the vectors v1 or v2 given above determines
one family of lines that are parallel to this vector. This regularity prop-
erty stems from the lattice structure and it holds for any lattice rule—in
more than two dimensions, the lines are simply replaced by equidistant
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parallel hyperplanes [51, 15]. For Pn to cover the unit hypercube quite
well, the successive hyperplanes should never be too far apart (to avoid
wide uncovered gaps), for any choice of family of parallel hyperplanes.
Selection criteria for lattice rules, based on the idea of minimizing the
distance between successive hyperplanes for the “worst-case” family, are
discussed in Section 4.1.

From now on, we refer to point sets Pn giving rise to lattice rules
as lattice point sets. Each lattice point set Pn has a rank associated
with it, which can be defined as the smallest integer r such that Pn can
be obtained by taking all integer combinations, modulo 1, of r vectors
v1, . . . ,vr independent over Rs . Alternatively, the rank can be defined
as the smallest number of cyclic groups whose direct sum yields Pn [93].
For example, if a1, . . . , as are positive integers such that gcd(aj , n) = 1
for at least one j, then the lattice point set

Pn =
{

i

n
(a1, . . . , as) mod 1, i = 0, . . . , n− 1

}
(1.5)

has rank 1 and contains n distinct points. It can also be obtained by
taking Pn = Ls ∩ [0, 1)s with v1 = (a1, . . . , as)/n and vj = ej for
j = 2, . . . , s in (1.4), where ej is a vector of zeros with a one in the jth

position. The condition gcd(aj , n) = 1 for all j is necessary and sufficient
for a rank-1 lattice point set Pn to be fully projection-regular.

A Korobov rule is obtained by choosing an integer a ∈ {1, . . . , n− 1},
and taking aj = aj−1 mod n in (1.5), for all j = 1, . . . , s. In this case,
having n and a relatively prime is a necessary and sufficient condition
for Pn to be both fully projection-regular and dimension-stationary [63].
The integer a is usually referred to as the generator of the lattice point
set Pn. For instance, the point set given on Figure 1.1 has a generator a
equal to 12. In Section 3.3, we describe an efficient way of constructing
Pn for Korobov rules when n is prime and a is a primitive element
modulo n.

In the definition of a lattice rule, we assumed Z
s ⊆ Ls. This implies

that Ls has a period of 1 in each dimension. A lattice Ls with this
property is called an integration lattice [93]. A necessary and sufficient
condition for Ls to be an integration lattice is that the inverse V−1 of
the matrix V has only integer entries. In this case, it can be shown
that if the determinant of V is 1/n, then there exists a basis for Ls with
coordinates of the form a/n, where 0 ≤ a ≤ n. We assume from now on
that all lattices considered are integration lattices.

The columns of the inverse matrix V−1 form a basis of the dual lattice
of Ls, defined as

L∗s = {h ∈ Zs : h · v ∈ Z, for all v ∈ Ls}.
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If the determinant of V−1 is n, then L∗s contains n times less points per
unit of volume than Z

s. Also, L∗s is periodic with a period of n in each
dimension. As we will see in Sections 4.1 and 6.1, this dual lattice plays
an important role in the error and variance analysis for lattice rules, and
in the definition of selection criteria.

3.2 Digital Nets
We first recall the general definition of a digital net in base b, a concept

that was first introduced by Sobol’ [95] in base 2, and subsequently gen-
eralized by Faure [26], Niederreiter [80], and Tezuka [103]. The follow-
ing definition is from Niederreiter [80], with the convention from Tezuka
[103] that the generating matrices Cj contain an infinite number of rows
(although often, only a finite number of these rows are nonzero).

Definition 1 Let s ≥ 1 and k ≥ 1 be integers. Choose

1. a commutative ring R with identity and with cardinality b (usually
Zb);

2. bijections ψr : Zb→ R for 0 ≤ r ≤ k − 1;

3. bijections ηjl : R→ Zb for 1 ≤ j ≤ s and 1 ≤ l ≤ k;

4. Generating matrices C1, . . . ,Cs of dimension ∞× k over R.

For i = 0, . . . , bk − 1 let

i =
k−1∑
r=0

arb
r,

with ar ∈ Zb, be the digit expansion of i in base b. Consider the vector

y = (ψ0(a0), . . . , ψk−1(ak−1))T ∈ Rk

and compute
(bj,1, bj,2, . . .)T = Cj · y,

where each element bj,l is in R. For j = 1, . . . , s, let

uij =
ηj1(bj1)

b
+

ηj,2(bj,2)
b2

+ . . . (1.6)

Then Pn = {ui = (ui1, . . . , uis), i = 0, . . . , n − 1}, with n = bk, is a
digital net over R in base b.

This scheme has been used to construct point sets having a low-
discrepancy property that can be described by introducing the notion of
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(q1, . . . , qs)-equidistribution [67]. Let q = q1 + . . . + qs, where the qj are
non-negative integers, and consider the bq b-ary boxes obtained by parti-
tioning [0, 1)s into bqj equal intervals along the jth axis. If each of these
bq boxes contains exactly bk−q points from a point set Pn, where n = bk,
then Pn is said to be (q1, . . . , qs)-equidistributed. If a digital net Pn is
(q1, . . . , qs)-equidistributed whenever q ≤ k− t, for some integer t ≥ 0, it
is called a (t, k, s)-net [80]. The smallest integer t having this property
is a widely-used measure of uniformity for digital nets and we call it the
t-value of Pn. Note that the t-value is meaningless if k ≤ t, and that the
smaller t is, the better is the quality of Pn. Criteria for measuring the
equidistribution of digital nets are discussed in more details in Section
4.2.

Figure 1.2 shows an example of a two-dimensional point set with n =
34 = 81 points in base 3, having the best possible equidistribution; that
is, its t-value is 0 and thus, any partition of the unit square into ternary
boxes of size 3−4 is such that exactly one point is in each box. The
figure shows two examples of such a partition, into rectangles of sizes
3−2 × 3−2 and 3−3 × 3−1, respectively. The other partitions (not shown
here) are into rectangles of sizes 1× 3−4, 3−1× 3−3, and 3−4× 1. For all
of these partitions, each rectangle contains one point of Pn. This point
set contains the first 81 points of the two-dimensional Faure sequence
in base 3. In this case, in the definition above, R = Z3, all bijections
are the identity function over Z3, the generating matrix C1 for the first
dimension is the identity matrix, and C2 is given by 1 0 0 0

1 1 0 0
1 2 1 0
1 3 3 1

 .

The general definition of this type of construction is given in Section 1.2.
From now on, b is assumed to be prime power, and in all the con-

structions described below, R is taken equal to Fb . Also, we assume
that a bijection from Fb to Zb has been chosen to identify the elements
of Fb with the “digits” {0, . . . , b − 1}, and all bijections ψr and ηjl are
defined according to this bijection. In particular, when b is prime, these
bijections are equal to the identity function over Zb, and all operations
are performed modulo b. The base b and the generating matrices Cj

therefore completely describe these constructions, because the b-ary ex-
pansion of a given coordinate uij of Pn is obtained by simply multiplying
Cj with the digit expansion of i in base b. The goal is then to choose
the generating matrices so that the equidistribution property mentioned
above holds for b-ary boxes that are as small as possible. In terms of
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Figure 1.2. Digital net Pn in base 3 with n = 34 points obtained from a Faure
sequence. Left: Each of the 81 squares of size 3−2 × 3−2 contains one point from Pn;
Right: Each of the 81 rectangles of size 3−3 × 3−1 contains one point from Pn.

these matrices, this roughly means that we want them to have a large
number of rows that are linearly independent. For example, if for each
j the first k rows of the matrix Cj are linearly independent, then each
b-ary box obtained by partitioning the jth axis into n equal intervals of
length b−k has one point from Pn. In particular, this implies that Pn is
fully projection-regular.

Digital sequences in base b (see, e.g., [55, 80]) are infinite sequences
obtained in the same way as digital nets except that the generating
matrices Cj have an infinite number of columns; the first bk points of
the sequence thus form a digital net for each k ≥ 1. For example,
Sobol’, Generalized Faure, and Niederreiter sequences (to be discussed
below) are all defined as digital sequences since the “recipe” to add extra
columns in the generating matrices Cj is given by the method.

We now describe specific well-known constructions of digital nets with
a good equidistribution. We do not discuss recent constructions pro-
posed by Niederreiter and Xing (e.g., [82, 83]), as they require the in-
troduction of many concepts from algebraic function fields that go well
beyond the scope of this chapter. These sequences are built so as to
optimize the asymptotic behavior of their t-value as a function of the
dimension, for a fixed base b. See [91] for a definition of these sequences
and a description of a software implementation.

Sobol’ Sequences. Here the base is b = 2 and the specification of
each generating matrix Cj requires a primitive polynomial fj(z) over F2 ,
and integers mj,q, for 1 ≤ q ≤ k = deg(fj(z)), to initialize a recurrence
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based on fj(z) that generates the direction numbers defining Cj. The
method specifies that the polynomial fj(z) should be the jth one in the
list of primitive polynomials over F2 sorted by increasing degree (within
each degree, Sobol’ specifies a certain order which is given in the code
of Bratley and Fox [8] for j ≤ 40). There remains the parameters mj,q

to control the quality of the point set.
Assume fj(z) = zk +aj,1z

k−1 + . . . +aj,k, where aj,l ∈ F2 for each j, l.
The direction numbers vj,1, vj,2, . . . are rationals of the form

vj,q =
mj,q

2q
=

q∑
l=1

vj,q,l2−l,

where mj,q is an odd integer smaller than 2q, for q ≥ 1. The first k
values vj,1, . . . , vj,k must be (carefully) chosen, and the following ones
are obtained through the recurrence

vj,q = aj,1vj,q−1 ⊕ . . . ⊕ aj,k−1vj,q−k+1 ⊕ vj,q−k ⊕ (vj,q−k � k),

where ⊕ denotes a bit-by-bit exclusive-or operation, and vj,q−k � k
means that the binary expansion of vj,q−k is shifted by k positions to
the right (i.e., vj,q−k is divided by 2k). These direction numbers are then
used to define Cj, whose entry in the lth row and qth column is given by
vj,q,l.

A good choice of the initial values vj,1, . . . , vj,k (or mj,1, . . . ,mj,k) in
each dimension j is important for the success of this method, especially
when n is small. The implementation of Bratley and Fox [8] uses the
initial values given in [98] for mj,q, with q ≤ k = deg(fj(z)) and j ≤ 40.
More details on how to choose these initial values to optimize certain
quality criteria are given in Section 4.2.

Generalized Faure Sequences. The Faure sequences were intro-
duced in [26] and generalized by Tezuka [103]. For this type of sequence,
the base b is the smallest prime power larger or equal to the dimension
s (which means that these sequences are practical only for small values
of s). An important feature of this construction is that their t-value has
the best possible value (t = 0), provided n is of C the form n = λbd,
for some integers λ, d ≥ 1. Assuming n = bk, the matrices Cj take the
form:

Cj = Aj(PT )j−1,

where P is the ∞× k Pascal’s matrix (i.e., with entries Pi,j =
(i−1
j−1

)
∈

Fb ), and Aj is an arbitrary∞×∞ non-singular lower-triangular matrix.
The original Faure sequence is obtained by taking b prime and Aj as
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the identity matrix for all j = 1, . . . , s. By allowing the matrices Aj to
be different from the identity matrix, point sets that avoid some of the
defects observed on the original Faure sequence [77, 6, 100] can be built.
For instance, the Generalized Faure sequence of Tezuka and Tokuyama
[105] amounts to take Aj = Pj−1. Recently, Faure suggested another
form of Generalized Faure sequence that consists in taking Aj equal to
the lower-triangular matrix with all nonzero entries equal to 1, for all j
[27].

Niederreiter Sequences. This construction has been proposed in
1988 [79]. We first describe a special case [80, Section 4.5], and then
briefly explain how it can be generalized. The base b is assumed to be a
prime power, and for this special case the generating matrices are defined
by distinct monic irreducible polynomials p1(z), . . . , ps(z) in Fb [z]. Let
dj = deg(pj(z)) for j = 1, . . . , s. In what follows, Fb((z−1)) represents
the field of formal Laurent series over Fb ; that is,

Fb((z−1)) =

{ ∞∑
l=w

dlz
−l such that w ∈ Z and dl ∈ Fb for each l

}
.

To find the element on the lth row and qth column of Cj, for 1 ≤ j ≤ s,
l ≥ 1, 1 ≤ q ≤ k, consider the expansion

zr

pj(z)l
=
∞∑
w=0

a
(j)
l,r,wz−w−1, (1.7)

where r = r(l, q) is the unique integer satisfying 0 ≤ r < dj and l − 1 =
αdj + r, and α is also uniquely determined. The element on the lth row
and qth column of Cj is then given by ajα+1,r,q. For these sequences, the
t-value is given by

∑s
j=1(dj − 1), which suggests that to minimize t, the

pj(z)’s should be taken equal to the s monic irreducible polynomials of
smallest degree over Fb . In the general definition of Niederreiter sequence
[79], the numerator zr in (1.7) can be multiplied by a different polynomial
for each pair (j, l) of dimension and row index, and the pj(z)’s just need
to be pairwise relatively prime polynomials. Tezuka [103, Section 6.1.2]
generalizes this concept a step further by removing more restrictions on
this numerator.

Polynomial Lattice Rules. This construction can be seen as a lat-
tice rule in which the ring of integers is replaced by a ring of polynomials
over a finite field. As we explain below, it generalizes the construction
discussed in [80, Section 4.4] and [56], and is studied in more details in
[67].
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Definition: Let {v1(z), . . . ,vs(z)} be a set of s-dimensional vectors of
formal Laurent series over Fb , linearly independent over (Fb((z−1)))s,
where b is a prime power. Define

Ls =

v(z) =
s∑
j=1

qj(z)vj(z) such that each qj(z) ∈ Fb [z]

 , (1.8)

and assume that (Fb [z])s ⊆ Ls. Let ϕ : (Fb((z−1)))s → [0, 1)s be the
mapping that evaluates each component of a vector v(z) in (Fb((z−1)))s

at z = 2. The approximation Qn based on the set Pn = ϕ(Ls) ∩ [0, 1)s

is a polynomial lattice rule. The number of points n in the rule is called
the order of the rule and is equal to bk, where k is the degree of the
inverse of the determinant of the matrix V whose rows are the vectors
vj(z).

Most definitions and results that we mentioned for lattice rules, which
from now on are referred to as standard lattice rules, have their counter-
part for polynomial lattice rules, as we now explain. First, we refer to
point sets Pn that define polynomial lattice rules as polynomial lattice
point sets, whose rank r is equal to the smallest number of basis vectors
v1(z), . . . ,vr(z) required to write Pn as

Pn =

ϕ(v(z)) : v(z) =
r∑
j=1

qj(z)vj(z) mod Fb [z], qj(z) ∈ Fb [z]

 .

In the expression above, “mod Fb [z]” represents the operation by which
all non-negative powers in v(z) are dropped. The construction discussed
in [80, Section 4.4] and [56], and sometimes referred to as the “method
of optimal polynomials”, is a polynomial lattice point set of rank 1, since
it can be obtained as

Pn =
{

ϕ(v(z)) : v(z) =
q(z)
P (z)

(g1(z), . . . , gs(z)) mod Fb [z],

q(z) ∈ Fb [z]/(P )
}

, (1.9)

where n = bk, P (z) = zk + a1z
k−1 + . . . + ak is a polynomial of de-

gree k over Fb , and the gj(z) are polynomials in Fb [z]/(P ), the ring of
polynomials over Fb modulo P (z). A Korobov polynomial lattice point
set is obtained by taking gj(z) = g(z)j−1 mod P (z) in (1.9) for some
g(z) ∈ Fb [z]/(P ). As in the standard case, the condition gcd(g(z), P (z))
is necessary and sufficient to guarantee that a Korobov polynomial lat-
tice point set is dimension-stationary and fully projection-regular [67].
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An efficient way of generating this type of point set when P (z) is a
primitive polynomial is described in the next subsection.

The condition that (Fb [z])s ⊆ Ls implies that ϕ(Ls) has a period
of 1 in each dimension, and we call Ls a polynomial integration lattice
in this case. If V represents a matrix whose rows are formed by basis
vectors of Ls, then Ls is a polynomial integration lattice if and only if
all entries in V−1 are in Fb [z]. In that case, a basis for Ls with vectors
having coordinates of the form q(z)/P (z) can be found, where P (z)
is the determinant of V−1 and q(z) is in Fb [z]/(P ) or equal to P (z).
Finally, the columns of V−1 form a basis of the dual lattice of Ls, which
is defined by

L∗s = {h(z) ∈ (Fb [z])s : h(z) · v(z) ∈ Fb [z], for all v(z) ∈ Ls},
where the scalar product · is defined as h(z) · v(z) =

∑s
j=1 hj(z)vj(z).

This construction is a special case of digital nets in which the gener-
ating matrices are defined by

Cj
l,q = vij(z)|l+q−1 ,

where vij(z)|m denotes the coefficient of z−m in the formal series vij(z),
the jth coordinate of vi(z), and the index i is determined by q and the
structure of Ls as follows: i has the property that for some non-zero
polynomials h11(z), . . . , hss(z) coming from a triangular basis of L∗s and
such that

∏s
m=1 hm,m(z) = P (z) (see [67, Lemma A.2] for more details),

we have

deg(h11(z) + . . . + hi−1,i−1(z)) < q ≤ deg(h11(z) + . . . + hi,i(z)).

In other words, the deg(h11(z)) first columns of each matrix Cj con-
tain the coefficients associated with the first basis vector v1(z); the
deg(h22(z)) next columns are associated with the second basis vector
v2(z), and so on.

For polynomial lattice point sets of rank 1, the corresponding gener-
ating matrices can be described a bit more easily [80, Section 4.4], as
we now explain. For each dimension j = 1, . . . , s, consider the formal
Laurent series expansion

gj(z)
P (z)

=
∞∑
l=1

wj,lz
−l.

The first k coefficients wj,1, . . . , wj,k satisfy

A

wj,1
...

wj,k

 =

 gj,1
...

gj,k

 ,
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where A is defined as

A =


1 0 . . . 0
a1 1 . . . 0
...

. . . . . .
...

ak−1 . . . a1 1


(see, e.g., [67]), and the coefficients gj,l are such that gj(z) =

∑k
l=1 gj,lz

k−l.
The coefficients wj,l for l > k satisfy the recurrence determined by P (z),
i.e.,

wj,l = −a1wj,l−1 − . . .− akwj,l−k,

where the minus sign represents the subtraction in Fb . The entries of
the generating matrices C1, . . . ,Cs are defined by

Cj
l,q = wj,l+q−1, for l ≥ 1, 1 ≤ q ≤ k.

Note that in the definition given in [80, 92], the matrices Cj are restricted
to k rows.

3.3 Constructions Based on Small PRNGs
Consider a PRNG based on a recurrence over a finite ring R and a

specific output function from R to [0, 1). The idea proposed here is to
define Pn as the set of all overlapping s-tuples in [0, 1)s than can be
obtained by running the PRNG from all possible initial states in R.
More precisely, let φ : R→ R be a bijection over R called the transition
function of the PRNG, and define

ri = φ(ri−1),

for i ≥ 0. The sequence r0, r1, . . . obtained from any seed r0 ∈ R has a
period of at most |R|. Now let g : R→ [0, 1) be an output function, and
define

ui = g(ri)

for i ≥ 0. We call the point set

Pn = {(u0, . . . , us−1), r0 ∈ R}, (1.10)

where n = |R|, a recurrence-based point set. The requirement that φ
be a bijection guarantees that Pn is dimension-stationary, and therefore
fully-projection regular [63]. In concrete realizations, it is often the case
that the recurrence r0, r1, . . . has two main cycles, one of period length
|R| − 1, and the other of period length 1 and which contains 0, the zero
of R. In this case, Pn can be generated very efficiently (provided the



18

function φ is easy to compute) by running the PRNG for n+ s− 3 steps
to obtain the point set

{(ui, . . . , ui+s−1), i = 0, . . . , n− 2}, (1.11)

and adding the vector (g(0), . . . , g(0)) to this set.
An important advantage of this construction is that it can be used

easily on problems for which f depends on a random an unbounded
number of variables. For this type of function, one needs a point set
whose defining parameters are independent of s, and for which points
of arbitrary size can be generated. Recurrence-based point sets satisfy
these requirements since they are determined by the functions φ, g and
the set R, and those are independent of the dimension. Also, points of
any size can be obtained by running the PRNG as long as required. Note
that when s > n, the coordinates of each point in Pn have a periodic
structure but by randomizing Pn as in Section 5, this periodicity disap-
pears and the coordinates of each point become mutually independent,
so one can have s� n without any problem.

The link between PRNG constructions and QMC point sets was poin-
ted out by Niederreiter [78]. Not only similar constructions have been
proposed in both fields but in addition, some of the selection criteria used
in the two settings have interesting connections. Criteria measuring the
uniformity of the s-dimensional point set Pn given in (1.10) are also
required in the PRNG context because in this case, this point set can be
seen as the sampling space for the PRNG when it is used on a problem
requiring s uniform numbers per run. See [59] for details on this aspect
of PRNGs and more.

We now describe two particular cases of this type of construction that
provide an alternative way of generating Korobov-type lattice point sets
(either standard or polynomial).

Example 1 Let R = Zn for some prime n, define

ri = φ(ri−1) ≡ ari−1 mod n, (1.12)

for some nonzero a ∈ Zn, and let g(ri) = ri/n. This type of PRNG
is a linear congruential generator (LCG) [52, 59], and the recurrence-
based point set Pn is a Korobov lattice point set. When a is a primitive
element modulo n (see [69] for the definition), the recurrence (1.12) has
the maximal period of n − 1 for any nonzero seed, and Pn can thus be
generated efficiently using (1.12) and (1.11).

Example 2 Let P (z) = zk + a1z
k−1 + . . . + ak be a primitive poly-

nomial over F2 (see [69] for the definition), ν be a positive integer,
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R = F2 [z]/(P ), and

ri(z) = φ(ri−1(z)) ≡ zνri−1(z) mod P (z). (1.13)

Let g : F2 [z]/(P )→ [0, 1) be given by the composition

g(ri(z)) = ψ(ri(z)/P (z)),

where ψ : F2((z−1)) → [0, 1) is defined as the evaluation of a formal
Laurent series over F2 at z = 2; that is,

ψ

( ∞∑
l=w

dlz
−l
)

=
∞∑
l=0

dl2−l.

This type of PRNG is called a polynomial LCG [59, 103], and the
recurrence-based point set Pn is a Korobov polynomial lattice point set.
When ν and 2k − 1 are relatively prime, the recurrence (1.13) has max-
imal period length 2k − 1. Polynomial LCGs can also be obtained via
Tausworthe-type linear feedback shift-register sequences [101]: the idea
is to use the recurrence

xi = (a1xi−1 + . . . + akxi−k) mod 2

over F2 , and to define the output at step i as

ui =
∞∑
l=1

xiν+l−12−l,

which in practice is typically truncated to the word-length of the com-
puter. Tezuka and L’Ecuyer give an efficient algorithm to generate the
output ui under some specific conditions [104, 60].

Combining a few Tausworthe generators to define the output ui can
greatly help improving the quality of the associated set Pn, as explained
in [60, 104, 109]. Another way of enhancing the quality of point sets
based on linear recurrences modulo 2 is to use tempering transforma-
tions [73, 74, 64]. Note that these transformations generally destroy the
lattice structure of Pn [67]. However the point set obtained is still a
digital net and therefore, it can be studied under this more general set-
ting. Conditions that preserve the dimension-stationarity of Pn under
these transformations are given in [67]. The idea of combining different
constructions to build sets Pn with better equidistribution properties is
also discussed in [81] in the more general setting of digital nets.
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3.4 Halton sequence
This sequence was introduced in 1960 by Halton [37] for construct-

ing point sets of arbitrary length, and is a generalization of the one-
dimensional van der Corput sequence [80]. Although it is not a digital
sequence, it uses similar ideas and can thus be thought of as an ancestor
of those sequences. For i ≥ 0, the ith point in the sequence is given by

ui = (φb1(i), . . . , φbs(i)),

where the integers b1, . . . , bs are typically chosen as the s first prime num-
bers sorted in increasing order, and φb(i) is the radical-inverse function
in base b, defined by

φb(i) =
∞∑
r=0

arb
−r−1,

where the integers ar ∈ Zb are the coefficients in the b-ary expansion of
i, i.e., i =

∑∞
r=0 arb

r, as in the digital net definition.

3.5 Sequences of Korobov rules
With (infinite) digital sequences, one can always add new points to Pn

until the estimation error is deemed small enough. The lattice point sets
that we have discussed so far, on the other hand, contain only a fixed
number of points. We now consider a method discussed in [95, 71, 45, 46]
for generating an infinite sequence of point sets {P2k , k ≥ 1} in [0, 1)s

such that for k ≥ 1, P2k is a Korobov (polynomial) lattice point set and
P2k ⊆ P2k+1 .

Sequences based on nested Korobov lattice point sets can be con-
structed by choosing a nonzero odd integer a and defining

P2k =
{

i

n
(1, ak, . . . , as−1

k ) mod 1, i = 0, . . . , n− 1
}

,

where ak = a mod 2k. Hickernell et al. [46] give tables of generators
a, to build these sequences, that were chosen with respect to different
selection criteria to be explained in Section 4.1.

One way of constructing a sequence based on Korobov polynomial
lattice point sets is to choose a polynomial p1(z) of degree 1 in F2 [z] (i.e.,
p1(z) = z or p1(z) = z + 1), and a generating polynomial g(z) ∈ F2 [z]
such that gcd(g(z), p1(z)) = 1. Then define

P2k =
{

ϕ(v(z)) : v(z) =
q(z)
Pk(z)

(1, gk(z), . . . , gs−1
k (z)) mod F2 [z],

q(z) ∈ F2 [z]/(Pk)
}

,
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where ϕ is defined as in Section 1.2, Pk(z) = pk1(z), and gk(z) = g(z)
mod Pk(z). In this case, the sequence {P2k , k = 1, 2, . . .} turns out to
be a special case of a digital sequence; see also [55, page 187] for the
particular case where p1(z) = z, and for a more general setting based on
irrational formal Laurent series.

3.6 Implementations
The points of a digital net Pn in base b can be generated efficiently us-

ing a Gray code. This idea was first suggested in [3] for Sobol’ sequence,
and for other constructions in, e.g., [50, 92, 103, 9]. Assuming n = bk,
the idea is to modify the order in which the points are generated by
replacing the digits (a0, . . . , ak−1) from the b-ary expansion of i by the
Gray code (g0, . . . , gk−1) for i, which satisfies the following property: the
Gray code for i and i + 1 only differ in one position; if c is the smallest
index such that ac 6= b− 1, then gc is the digit whose value changes, and
it becomes gc + 1 in the Gray code for i + 1 [103, Theorem 6.6]. This
reduces the generation time because only a dot product of two vectors
has to be performed in each dimension to generate a point.

It is sometimes suggested in the literature [9, 72, 1, 32, 77] that for
most low-discrepancy sequences, an initial portion of the sequence should
be discarded because of the so-called “leading-zeros phenomenon”. For
sequences such as Sobol’s that require initial parameters, this problem
can be avoided (at least partially) by choosing these parameters carefully.
Using a sufficiently large number of points and randomizing the point set
can also help alleviate this problem. We refer the reader to the papers
mentioned above for more details.

The FORTRAN code of Bratley and Fox [8] can be used to gen-
erate Sobol’ sequence for s ≤ 40, and is available from the Collec-
tive Algorithms of the ACM at www.acm.org/calgo, where Fox’s code
[32] for generating the Faure sequence can also be found, as well as
a code for Niederreiter’s sequence [10]. A code to generate Gener-
alized Faure sequences (provided the matrices Cj have been precom-
puted) is given in [103]. Recently, a C++ library called libseq has
been developed by Friedel and Keller [34], in which they use efficient
algorithms to generate scrambled digital sequences, Halton sequences,
and other techniques such as Latin Hypercube and Supercube Sampling
[75, 87]. This library can be found at www.multires.caltech.edu/
software/libseq/index.html. There are also a few commercial soft-
ware packages to generate different QMC point sets (e.g., QR Streams
at www.mathdirect.com/products/qrn/, and the FinDer software [90]
at www.cs.columbia.edu/~ap/html/finder.html).
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4. Measures of Quality
In this section, we present a number of criteria that have been pro-

posed in the literature for measuring the uniformity (or non-uniformity)
of a point set Pn in the unit hypercube [0, 1)s, i.e., for measuring the
discrepancy between the distribution of the points of Pn and the uniform
distribution, in the context of QMC integration.

In one dimension (i.e., s = 1), several such measures are widely used
in statistics for testing the goodness of fit of a data set with the uniform
distribution; e.g., the Kolmogorov-Smirnov (KS), Anderson-Darling, and
chi-square test statistics. Chi-square tests also apply in more than one
dimension, but their efficiency vanishes quickly as the dimension in-
creases. The rectangular-star discrepancy discussed earlier turns out
to be one possible multivariate generalization of the KS test statistic.
Other variants of this measure are discussed in [80], and connections be-
tween discrepancy measures and goodness-of-fit tests used in statistics
are studied in [43].

The asymptotic behavior of quality measures like the rectangular-
star discrepancy is known for many constructions. For example, the
Halton sequence has a rectangular-star discrepancy in O(n−1 logs n), but
with a hidden constant that grows superexponentially with s. This is
also true for Sobol’ sequence, but with a smaller hidden constant. By
contrast, Faure and Niederreiter-Xing sequences are built so that this
hidden constant goes to zero exponentially fast as the dimension s goes
to infinity.

In practice however, as soon as the number of dimensions exceeds
a few units, these general measures of discrepancy are unsatisfactory
because they are too hard to compute. A more practical and less general
approach is to define measures of uniformity that exploit the structure
of a given class of highly structured point sets. Here we concentrate our
discussion on these types of criteria, starting with criteria for standard
lattice rules, then covering those for digital nets.

4.1 Criteria for standard lattice rules
The criteria discussed here all relate to the dual lattice L∗s, defined

in Section 3. The first criterion we introduce has a nice geometrical
interpretation, and is often used to measure the quality of LCGs through
the so-called spectral test [31, 30, 52, 61]. It was introduced by Coveyou
and MacPherson in 1967 [18] and was first used in [25] for choosing
lattice point sets. It amounts to computing the euclidean length ls of
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the shortest nonzero vector in L∗s, i.e.,

ls = min
0 6=h∈L∗s

‖h‖2.

The quantity ls turns out to be equal to the inverse of the distance ds
between the successive hyperplanes in the family of most distant parallel
hyperplanes on which the points of Ls lie. This distance ds should be as
small as possible so there are no wide gaps in [0, 1)s without any point
from Pn. Equivalently, ls should be as large as possible. Algorithms for
computing ls are discussed in, e.g., [21, 29, 52, 62]. For instance, the
dual of the basis shown in Figure 1.1 contains the shortest vector in L∗s,
given by h = (5, 8), so d2 = 1/

√
52 + 82 = 1/

√
89 in this case.

This test can be applied not only to Pn, but also to any projec-
tion Pn(I) of Pn. More precisely, assume |I| = t and let LI be the
t-dimensional integration lattice such that Pn(I) = LI ∩ [0, 1)t. The idea
is to compute

lI = min
0 6=h∈L∗I

‖h‖2,

where L∗I = {h ∈ Zt : h · v ∈ Z for all v ∈ LI}. To define a criterion in
which lI is computed for several subsets I, it is convenient to normalize
lI so that the same scale is used to compare the different projections.
This can be achieved by using upper bounds l∗t derived from the “best”
possible lattice in t dimensions (not necessarily an integration lattice).
Such bounds can be found in, e.g., [15, 61]. Criteria using these ideas
have been used for measuring LCGs [31, 30, 61], usually for subsets I
containing successive indices, i.e., of the form I = {1, 2, . . . , t}. The
following criterion is more general and has been used to provide tables
of “good” Korobov lattice point sets in [63]:

Mt1,...,td = min
(

min
I={1,...,t},t≤t1

lI/l
∗
t , min

2≤j≤d
min

I∈S(j,tj)
lI/l
∗
j

)
, (1.14)

where S(j, tj) = {{1, i2, . . . , ij}, 1 < i2 < . . . < ij ≤ tj}. Let the range of
a subset I = {i1, . . . , it} be defined as it − i1 + 1. The criterion Mt1,...,td
considers projections over successive indices whose range is at most t1;
over pairs of indices whose range is at most t2; over triplets of indices
whose range is at most t3, etc. Note that for dimension-stationary point
sets, it is sufficient to do as in the definition of Mt1,...,td and to only
consider subsets I having 1 as their first index.

The next criterion is called the Babenko-Zaremba index, and is similar
to ls except that a different norm is used for measuring the vectors h in
L∗s. It is defined as follows [80]:

ρs = min
0 6=h∈L∗s

‖h‖,
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where ‖h‖ =
∏s
j=1 max(1, |hj |). It has been used in [70] to provide

tables of “good” Korobov rules, but its computation is typically much
more time-consuming than computing ls. Both ls and ρs can be seen as
special cases of more general criteria such as general discrepancy mea-
sures defined by Hickernell in e.g., [42, Theorem 3.8], or the generalized
spectral test of Hellekalek [39, Definition 5.2]. These criteria use a gen-
eral norm to measure h and apply to point sets that do not necessarily
come from a lattice.

The following criterion, called p-alpha, uses the same norm as the
Babenko-Zaremba index, but it sums a fixed power of the length of all
vectors in the dual lattice L∗s instead of only considering the smallest
one. For an arbitrary integer α > 1, it is defined as [93, 42]

Pα =
∑

0 6=h∈L∗s

‖h‖−α.

When α is even, it simplifies to [93, 42]

Pα = −1 +
1
n

∑
u∈Pn

s∏
j=1

[
1− (−1)α/2(2π)α

α!
Bα(uj)

]
,

where Bα(·) is the Bernoulli polynomial of degree α [93], and it can
then be computed in O(ns) time. This criterion has been used in, e.g.,
[36, 94, 93] to choose lattice point sets.

The definition of Pα has been generalized by Hickernell [42] by the
introduction of weights βI that take into account the relative importance
of each subset I (e.g., with respect to the ANOVA decomposition of f).
The generalization is defined as

P̃α =
∑

0 6=h∈L∗s

β2
I(h)‖h‖−α,

where I(h) = {j : hj 6= 0} is the set of nonzero indices of h. Assuming
that α is even and the βI are product-type weights, i.e., that

βI = β0

∏
j∈I

βαj , (1.15)

this “weighted” Pα becomes

P̃α = β2
0

−1 +
1
n

∑
u∈Pn

s∏
j=1

[
1− (−1)α/2(2πβj)α

α!
Bα(uj)

] ,
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which can still be computed in O(ns) time. By letting βj = 1 for
j = 0, . . . , s, we recover the criterion Pα. A normalized version of this
criterion and the quality measure Mt1 described above have been used
for selecting generators a defining sequences of nested Korobov lattice
point sets in [46]. Note that P̃α can be considered as a special case of
the weighted spectral test of Hellekalek [39, Definition 6.1]. Various other
measures of quality for lattice rules can be found in [80, 93, 42] and the
references therein.

4.2 Criteria for digital nets
As we mentioned in Section 3.2, the t-value of a digital net is often used

to assess its quality. To compute this value, one has to find q∗ = k − t,
which is the largest integer q such that for any integers qj ≥ 0 satisfying
q1 + · · ·+qs ≤ q, the vectors {cjr, r = 1, . . . , qj , j = 1, . . . , s} are linearly
independent, where cjr denote the rth row of the generating matrix Cj

of Pn, for j = 1, . . . , s. Hence, computing t is typically quite time-
consuming since for a given integer q, there are

(q+s−1
q

)
different vectors

(q1, . . . , qs) satisfying qj ≥ 0 and q1 + · · ·+ qs = q [92].
If we define tI as the value of the t-value for the projection Pn(I), an

equivalent definition of t is

t = max
∅6=I⊆{1,...,s}

tI .

That is, t measures the regularity of all projections Pn(I) and returns the
worst case. Inside this definition of t, we can also normalize the value of
tI so that projections over subspaces of different dimensions are judged
more equitably, in the same way as the value l∗t is used to normalize lI
in the criterion Mt1,...,td . To do so, we can use the lower bound for t in
s dimensions, given by [83]

t∗s = max
(

k,
s− 1

b
− logb

(b− 1)(s− 1) + b + 1
2

)
,

and define,
t̃ = max

∅6=I⊆{1,...,s}
t∗|I|/tI , (1.16)

for example. The idea behind this is that a large value of tI for a low-
dimensional subset I is usually worse than when I is high-dimensional
and therefore it should be more penalized.

The definition of the t-value that we used so far is of a geometrical
nature, similarly to the interpretation of ls as being the inverse of the
distance ds between the hyperplanes of a lattice. Interestingly, just like
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ls the t-value can also be related to the length of a shortest vector in a
certain dual space [103, 57, 81, 16] as we now explain. Our presentation
follows [81].

Let C1, . . . ,Cs be the ∞× k generating matrices associated with a
digital net in base b with n = bk points. Let C be the k × sk matrix
obtained by concatening the transposed of the first k rows of each Cj;
that is, if C̃j denotes the matrix containing the first k rows of Cj, then

C = ((C̃1)T | . . . |(C̃s)T ).

The analysis in [81] assumes that the generating matrices are k× k, but
we will explain shortly why it remains valid even if we start with ∞× k
matrices and truncate them.

Let C∗s be the null space of the row space of C, i.e,

C∗s = {h ∈ Fskb : Ch = 0}. (1.17)

We refer to C∗s as the dual space of the digital net Pn from now on. Define
the following norm on F

k
b : for any nonzero hj = (hj,1, . . . , hj,k) ∈ Fkb , let

v(hj) = max{1 ≤ l ≤ k : hj,l 6= 0}, and v(0) = 0. Define the norm of a
vector h = (h1, . . . , hs) ∈ Fskb by

V (h) =
s∑
j=1

v(hj). (1.18)

The following result about the t-value is proved in [81]:

t = k + 1− min
0 6=h∈C∗s

V (h). (1.19)

We now explain why this result is valid even if the matrices Cj have
been truncated to their first k rows. Let C∗s,tot denote the dual space that
would be obtained without the truncation. Observe that by definition,

min
0 6=h∈C∗s,tot\C∗s

V (h) ≥ k + 1.

Also, using Proposition 1 in [81] and the fact that the dimension of the
row space of C is not larger than k, we have that

min
0 6=h∈C∗s

V (h) ≤ k + 1.

Therefore,

min
0 6=h∈C∗s,tot

V (h) = min

(
min

0 6=h∈C∗s,tot\C∗s
V (h), min

0 6=h∈C∗s
V (h)

)
= min

0 6=h∈C∗s
V (h),
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which means that (1.19) is also true if we replace C∗s by C∗s,tot. From
now on, we assume that C∗s actually represents the dual space obtained
without truncating the generating matrices Cj. Also, we view C∗s as a
subspace of (Fb [z])s, which means that each element in C∗s is represented
by a vector of polynomials h = (h1(z), . . . , hs(z)) over Fb [z] and the
norm v(·) is defined by v(hj(z)) = deg(hj(z)) + 1, with the convention
that deg(0) = −1.

In the special case where Pn is a polynomial lattice point set, the dual
space C∗s corresponds to the dual lattice L∗s. If we define the norm

‖h‖ = max
1≤j≤s

v(hj(z)), (1.20)

then
`s = −1 + min

0 6=h∈L∗s
‖h‖,

where `s is the resolution of the polynomial lattice point set. This result
is discussed in [17, 16, 67, 103]. The resolution is often used for measur-
ing the quality of PRNGs based on linear recurrences modulo 2 such as
Tausworthe generators [106, 60]. From a geometrical point of view, the
resolution is the largest integer l for which Pn is (l, . . . , l)-equidistributed.
Obviously, `s ≤ bk/sc if n = bk.

This concept can be extended from polynomial lattice point sets to
general digital nets by replacing L∗s by C∗s above. More precisely, we
have:

Proposition 1 Let Pn be a digital net in base b, and let C∗s be the dual
space of Pn. The resolution `s of Pn satisfies:

`s = −1 + min
0 6=h∈C∗s

‖h‖,

where ‖h‖ is defined as in (1.20).

Proof: The proof of this proposition requires results given in the forth-
coming sections, and it can be found in the appendix.

The resolution can be computed for any projection of Pn: for I =
{i1, . . . , it}, let

`I = min
0 6=h∈C∗I

‖h‖,

where C∗I is the dual of the row space of the k× tk matrix (C̃T
i1
| . . . |C̃T

it).
The following criterion has been proposed to select polynomial lattice
point sets [67], and it could also be used for any digital net:

∆t1,...,td = max
(

max
I={1,...,t},t≤t1

(`∗t − `I), max
2≤j≤d

max
I∈S(j,tj)

(`∗j − `I)
)

,

(1.21)
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where the set S(j, tj) has the same meaning as in the definition of the
criterion Mt1,...,td in (1.14).

Another criterion is the digital version of the quality measure P̃α. It
is closely related to the dyadic dyaphony [40] and the weighted spectral
test [39], and was introduced in [67] for polynomial lattice point sets in
base 2. It uses a norm W (h) defined as

W (h) =
∑

1≤j≤s
hj (z)6=0

deg(hj(z)),

and is defined for any integer α > 1 and weights βI , as

D̃α =
∑

0 6=h∈C∗s

β2
I(h)W (h),

where I(h) = {j : hj(z) 6= 0}. In the special case where b = 2, α is even,
and the weights βI are product-type weights as in (1.15), we have that

D̃α =
β2

0

n

n−1∑
i=0

ξ̃(ui),

where

ξ̃(u) = −1 +
t∏

j=1

[
1 + 2β2

j

(
1− 3 · 2blog2 ujc

)]
,

and it is assumed that 2blog2 ujc = 0 when uj = 0.
We conclude this subsection by giving references where numerical val-

ues of the previous criteria are given for specific point sets. The value
of the t-value for Sobol’ sequence can be found in [83] for dimensions
s ≤ 20; these values are compared in that paper with those obtained
from the improved base-2 sequences proposed by Niederreiter and Xing
[82, 83]. The “Salzburg Tables” given in [92] list optimal polynomial
pairs (g(z), P (z)) and their associated t-value, to build Korobov poly-
nomial rules. Generalized Faure sequences are built so that t = 0, but
with the drawback that the base b must be at least as large as the di-
mension. Hence only small powers k of the bases are typically used in
practice, and the quality of Pn is measured only for k-dimensional (or
less) projections, where k is small. This illustrates the fact that for
comparisons to be fair between different constructions, the value of the
t-value should be considered in conjunction with the base b. Algorithms
to compute t are discussed in [92].

The resolution has been used by Sobol’ for finding optimal values to
initialize recurrences defining the direction numbers in his construction
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[95, 97]. More precisely, his Property A means that the first 2s points
of the sequence have the maximal resolution of 1, and his Property A′

means that the first 22s points have the maximal resolution of 2.
Following ideas from [77, 13], a criterion related to ∆t1,...,td is used to

find initial direction numbers for Sobol’ sequence in dimensions s > 40
in the forthcoming RandQMC library [66]; the maximum in (1.21) is taken
over all two-dimensional subsets I of the form I = {i1, j}, where j > 40
is the dimension for which we want to find initial direction numbers, and
j − 8 ≤ i1 ≤ j − 1. Examples of parameters for polynomial lattice point
sets chosen with respect to ∆t1,...,t4 for different values of t1, . . . , t4 are
given in [67].

5. Randomizations
Once a construction is chosen for Pn and the approximation Qn given

by (1.2) is computed, it is usually important to have an estimate of
the error |Qn − µ|. For that purpose, upper bounds of the form (1.3)
are not very useful since they are usually much too conservative, in
addition to being hard to compute and restricted to a possibly small set
of functions. Instead, one can randomize the set Pn so that: 1) each point
in the randomized point set P̃n has a uniform distribution over [0, 1)s;
2) the regularity (or low-discrepancy property) of Pn, as measured by
a specific quality criterion, is preserved under the randomization. The
first property guarantees that the approximation

µ̂RQMC =
1
n

∑
ui∈P̃n

f(ui)

is an unbiased estimator of µ. When the second property holds, the
variance of the estimator µ̂RQMC can usually by expressed in a way that
establishes a relation between the optimization of the criterion whose
value is preserved under the randomization, and the minimization of the
estimator’s variance. Hence these two properties help viewing random-
ized QMC methods as variance reduction techniques that preserve the
unbiasedness of the MC estimator. In practice, the variance of µ̂RQMC can
be estimated by generating i.i.d. copies of µ̂RQMC through independent
replications of the randomization. This estimator can then be compared
with the estimated variance of the MC estimator to assess the effective-
ness of QMC for any particular problem.

We now describe some randomizations having these two properties
and that have been proposed in the literature for the constructions pre-
sented in the preceding section.
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5.1 Random shift modulo 1
The following randomization has originally been proposed by Cranley

and Patterson for standard lattice rules [19]. Some authors suggested
that it could also be used for other low-discrepancy point sets [107, 76].

Let Pn = {ui, i = 0, . . . , n − 1} be a given point set in [0, 1)s, and ∆
an s-dimensional random vector uniformly distributed over [0, 1)s. The
randomly shifted estimator based on Pn is defined as

µ̂sh =
1
n

n−1∑
i=0

f((ui + ∆) mod 1). (1.22)

When Pn is a lattice point set, the length lI of the shortest vector asso-
ciated with any projection Pn(I) is preserved under this randomization.
An explicit expression for the variance of µ̂sh in that case will be given
in Section 6.1.

With this randomization, each shifted point ũi = ((ui + ∆) mod 1)
is uniformly distributed over [0, 1)s. Therefore, even if the dimension
s is much larger than the number of points n and if many coordinates
are equal within a given point ui (for instance, when Pn comes from a
LCG with a small period, as in Section 3.3), these coordinates become
mutually independent after the randomization. Hence each point has
the same distribution as in the MC method; the difference with MC
is that the n points of the shifted lattice are not independent. These
properties also hold for the other randomizations described below.

5.2 Digital b-ary shift
When Pn is a digital net in base b, the counterpart of the previous

method is to consider the b-ary expansion of the random vector ∆, and
to add it to each point of Pn using operations over Fb . More precisely,
if ∆ = (∆1, . . . ,∆s) and

∆j =
∞∑
l=1

dj,lb
−l, uij =

∞∑
l=1

uijlb
−l,

we compute
ui ⊕∆ = (ũi1, . . . , ũis), (1.23)

where

ũij =
∞∑
l=1

(ui,j,l + dj,l) b−l, (1.24)

and let P̃n = {ũi, i = 0, . . . , n− 1}.
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This randomization was proposed by Raymond Couture for point sets
based on linear recurrences modulo 2 [67]. It is also used in an arbitrary
base (along with other more time-consuming randomizations) in [50, 72]
as we will see in Section 5.4. It is best suited for digital nets in base
b, and its application preserves the resolution and the t-value of any
projection.

5.3 Scrambling
This randomization has been proposed by Owen [85], and it also pre-

serves the t-value of a digital net and its resolution, for any projection.
It works as follows: in each dimension j = 1, . . . , s, partition the interval
[0, 1) in b equal parts and permute them uniformly and randomly; then,
partition each of these sub-intervals into b equal parts and permute them
uniformly and randomly; etc. More precisely, to scramble L digits one
needs to randomly and uniformly generate several independent permu-
tations πji1,...,it of the integers [0 . . . b − 1] (assuming a specific bijection
has been chosen to identify the elements in Fb with those in Zb, if b is
not prime), where i1 = 0, it ∈ {0, . . . , b− 1}, 1 ≤ t ≤ L, 1 ≤ j ≤ s, and
compute

ũi,j =
∞∑
l=1

ũi,j,lb
−l,

where

ũi,j,l =


πj0(ui,j,1) for l = 1,
πj0,ui,j,1,...,ui,j,l−1

(ui,j,l) for 1 < l ≤ L,
ui,j,l for l > L.

In practice, L may be chosen equal to the word-length of the computer,
and the digits ui,j,l for l > L are then dropped. However, as Matousěk
points out [72], if n = bk and no two points have the same first k digits in
each dimension (i.e., for each j, the unidimensional projection Pn({j})
has a maximal resolution of k), then the permutations after level k are
independent for each point and therefore, the random digits ũi,j,l for
l > k can be generated uniformly and independently over Zb. Hence in
this case we do not need to generate any permutation after level k.

When b and s are large, the amount of memory required for storing
all the permutations becomes very large, and only a partial scrambling
might then be feasible, as described by Tan and Boyle [100]. However, a
clever way of avoiding storage problems is discussed by Matousěk [72],
and a related idea is used in Morohosi’s code (which can be found at
www.misojiro.t.u-tokyo.ac.jp/~morohosi) for scrambling Faure se-
quences. The idea is to avoid storing all the permutations by reinitial-
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izing appropriately the underlying PRNG so that the permutations can
be regenerated as they are needed. This is especially useful when the
base b is large, which happens when Faure sequences are used in large
or even moderate dimensions.

5.4 Random Linear Scrambling
Matousěk [72] proposes an alternative scrambling method that does

not require as much randomness and storage. It borrows ideas from
the scrambling technique and transformations proposed by Faure and
Tezuka [28, 103]. This method is also discussed in [50], where it is
called “Owen-Scrambling”; our presentation follows theirs but we pre-
fer the name used by Matousěk to avoid any confusion with the actual
scrambling proposed by Owen. The idea is to generate s nonsingular
lower-triangular k × ∞ matrices L1, . . . ,Ls with elements chosen ran-
domly, independently, and uniformly over Fb (the elements on the main
diagonal of each Lj are chosen over Fb\{0}), where k is such that n = bk,
and s ∞-dimensional vectors d1, . . . ,ds with entries independently and
uniformly distributed over Fb . The digits ũi,j,1, ũi,j,2, . . . of a randomized
coordinate ũi,j are then obtained as ũi,j,1

ũi,j,2
...

 = Lj

ui,j,1
ui,j,2

...

+ dj,

where all operations are performed in Fb .

5.5 Others
We briefly mention some other ideas that can be used to randomize

QMC point sets. In addition to the linear scrambling, Matousěk [72]
proposes randomization techniques for digital sequences that are easier
to generate than the scrambling method, while retaining enough ran-
domness for the purpose of some specific theoretical analyses. Hong and
Hickernell suggest another form of linear scrambling that incorporates
transformations proposed by Faure and Tezuka [28]. Randomizations
that use permutations in each dimension to reorder the Halton sequence
are discussed in [7, 77]. Wang and Hickernell [110] propose to randomize
this sequence by randomly generating its starting point.

Some authors [84, 99] suggest partitioning the set of dimensions {1, . . . ,
s} into two subsets (typically, of successive indices, i.e., {1, . . . , t} and
{t + 1, . . . , s}), and then to use a QMC method on one subset and MC
on the other one. One of the justifications for this approach is that some
digital nets (e.g., Sobol’ sequence) are known to have projections Pn(I)
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with better properties when I contains small indices; this suggests using
QMC on the first few dimensions and MC on the remaining ones. How-
ever, this becomes irrelevant if a dimension-stationary point set is used
and, more importantly, if the QMC point set is randomized and can be
shown (or presumed) to do no worse than MC in terms of its variance.
In this case no advantage or “safety net” is gained by using MC on one
part of the problem. Owen [87] discusses some other “padding” tech-
niques, as well as a method called Latin Supercube Sampling to handle
very high-dimensional problems.

6. Error and Variance Analysis
In this section, we study the error for the approximations Qn based

on low-discrepancy point sets, and the variance of estimators obtained
by randomizing these sets. All the results mentioned here are obtained
by using a particular basis for L2([0, 1)s), the set of square-integrable
functions over [0, 1)s, to expand the integrand f . In each case, the basis is
carefully chosen, depending on the structure of Pn, so that the behavior
of the approximation Qn on the basis functions is easy to analyze.

6.1 Standard Lattices and Fourier Expansion
For standard lattice rules, the following result suggests that expand-

ing f in a Fourier series is appropriate for error and variance analysis.
Recall that the Fourier basis for L2([0, 1)s) is orthonormal and given by
{e2πιh·u, h = (h1, . . . , hs) ∈ Zs}, where ι =

√
−1, and h·u =

∑s
j=1 hjuj .

Lemma 1 ([93, Lemma 2.7]) If Pn = {ui, i = 0, . . . , n− 1} is a lattice
point set, then for any h ∈ Zs,

1
n

n−1∑
i=0

e2πιh·ui =
{

1 if h ∈ L∗s,
0 otherwise.

Hence, the lattice rule integrates a basis function e2πιh·u with no error
when h /∈ L∗s or h = 0, and with error 1 otherwise. Using this, we get
the following result:

Proposition 2 Let Pn be a lattice point set, µ̂sh be defined as in (1.22),
and

f̂(h) =
∫

[0,1)s
f(u)e−2πιh·udu
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be the Fourier coefficient of f evaluated in h. (From [93]) If f has an
absolutely convergent Fourier series, then

Qn − µ =
∑

0 6=h∈L∗s

|f̂(h)|.

(From [63]) If f ∈ L2([0, 1)s), then

Var(µ̂sh) =
∑

0 6=h∈L∗s

|f̂(h)|2, (1.25)

whereas for the MC estimator µ̂MC based on n points,

Var(µ̂MC) =
σ2

n
=

1
n

∑
0 6=h∈Zs

|f̂(h)|2.

The result (1.25) was proved independently in [108], but under the
stronger assumption that f has an absolutely convergent Fourier series.
Notice that by contrast with the MC estimator, there is no factor of 1/n
that multiplies the sum of squared Fourier coefficients for the randomly
shifted lattice rule estimator µ̂sh. Hence in the worst case, the variance
of µ̂sh could be n times as large as the MC estimator’s variance. This
worst case corresponds to an extremely unlucky pairing of function and
point set for which f̂(h) = 0 for all h /∈ L∗s. However, in the expression
for the variance of µ̂sh the coefficients are summed only over the dual
lattice L∗s, which contains n times less points than the set Zs over which
the sum is taken in the MC case. Therefore, if the dual lattice L∗s is such
that the squared Fourier coefficients are smaller “on average” over L∗s
than over Zs, then the variance of µ̂sh will be smaller than the variance
of µ̂MC.

From the results given in the previous proposition, different bounds on
the error and variance can be obtained by making additional assumptions
on the integrand f [93, 42, 44]. Most of these bounds involve the quality
measures Pα or P̃α. Hence a point set Pn that minimizes one of these
two criteria minimizes a bound on the error or variance for the class
of functions for which those bounds hold. Such analyses often provide
arguments in favor of these criteria. A different type of analysis, based
on the belief that the largest squared Fourier coefficients tend to be
associated with “short vectors” h, corresponding to the low frequency
terms of f , suggests that the lattice point set should be chosen so that
L∗s does not contain those “short” vectors. From this point of view, a
criterion like Mt1,...,td seems appropriate since it makes sure that L∗s does
not contain vectors with a small euclidean length. This criterion also has
the advantage of being usually much faster to compute than Pα or ρs
[25, 46].
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6.2 Digital Nets and Haar or Walsh Expansions
Recall that digital nets are usually built so as to satisfy different

equidistribution properties with respect to partitions of the unit hy-
percube [0, 1)s into b-ary boxes. For this reason, it is convenient to use
a basis consisting of step functions that are constant over b-ary boxes
for studying their associated error and variance. Both Walsh and Haar
basis functions have this property. In addition, the Walsh functions form
an orthonormal basis of L2([0, 1)s).

Scrambled-type estimators. We first define the Haar basis func-
tions in base b, following the presentation in [86, 38]. Let I ⊆ {1, . . . , s},
κI = (κj)j∈I be a vector of positive integers, τ = (τj)j∈I be a vector
such that 0 ≤ τj < bκj , and γ = (γj)j∈I be such that 0 ≤ γj < b. A
multivariate Haar wavelet basis function is defined as

ψκI ,τ,γ(u) = b(|κI |−|I|)/2
∏
j∈I

(
b1bbκj+1 ujc=bτj+γj − 1bbκjujc=τj

)
,

where |κI | =
∑

j∈I κj . Now consider the part of the Haar expansion of
f that depends on the basis functions associated with a given vector κI ,
i.e., let

νκI (u) =
∑
τ

∑
γ

〈ψκI ,τ,γ(u), f〉ψκI ,τ,γ(u),

where

〈ψκI ,τ,γ(u), f〉 =
∫

[0,1)s
f(u)ψκI ,τ,γ(u)du.

The function νκI (u) is also a step function, which is constant within the
b-ary boxes obtained by partitioning [0, 1)s into bκj equal intervals along
the jth axis, for each j ∈ I. Owen [86] shows that the variance of the
estimator µ̂scr based on a scrambled digital net with n points is given by

Var(µ̂scr) =
1
n

∑
I

∑
κI

ΓκIσ
2
κI ,

where

σ2
κI

= Var(νκI (u)), (1.26)

and ΓκI depends on the equidistribution properties of the digital net and
the definition of the scrambling. Assuming that the t-value of the net is
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t and n = bk, we have [88]:

ΓκI


= 0 if |κI |+ |I| ≤ k − t,

≤ bt
(
b|I|+(b−2)|I|

2(b−1)|I|

)
if |κI | > k − t,

≤ bt
(
b+1
b−1

)|I|
otherwise.

(1.27)

Using this, Owen obtains the following bound on the variance of the
scrambled-net estimator:

Proposition 3 [88, Theorem 1] Let µ̂scr be the estimator constructed
from a scrambled digital net with n = bk points. For any square-integrable
function,

Var(µ̂scr) ≤
bt

n

(
b + 1
b− 1

)s
σ2. (1.28)

Hence the variance of the scrambled-net estimator cannot be larger
than the MC estimator’s variance, up to a certain constant (independent
of n but growing exponentially with s). In the case where f satisfies
certain smoothness properties (its mixed partial derivatives satisfy a
Lipschitz condition), Owen shows that

σ2
κI = O(b−2|κI |).

Under this assumption, he obtains a bound in O(n−3(log n)s) for the
variance of the scrambled-net estimator. Other results on the asymptotic
properties of the scrambled-net estimator, that use Haar wavelets, can
be found in [38] and the references cited there. Haar series are also
considered in the context of QMC integration in e.g., [24, 96].

An important point to mention is that the scrambling is not the only
randomization for which (1.27) holds; the result is valid for any random-
ization satisfying the following properties [50, 72]:

1 each point ũi, i = 0, . . . , n − 1 in the randomized point set P̃n is
uniformly distributed over [0, 1)s;

2 for 0 ≤ i, r < n and 1 ≤ j ≤ s, if ui,j,l = ur,j,l for l = 1, . . . , k but
ui,j,k+1 6= ur,j,k+1, then

(a) ũi,j,l = ũr,j,l for l = 1, . . . , k;
(b) (ũi,j,k+1, ũr,j,k+1) is uniformly distributed over {(a1, a2) ∈ F2

b :
a1 6= a2};

(c) (ũi,j,p, ũi,j,q) are uncorrelated, for any p, q > k + 1.



Recent Advances in Randomized Quasi-Monte Carlo Methods 37

The random linear scrambling mentioned in Section 5.4 is shown to
satisfy these properties in [50], and therefore the bound (1.28) given
in Proposition 3 holds for linearly scrambled estimators as well. This
is interesting since this method has a faster implementation than the
scrambling of Section 5.3. Note that the digital b-ary shift does not sat-
isfy 2(b) since the digits ũi,j,k+1, ũr,j,k+1 are such that ũr,j,k+1−ũi,j,k+1 =
ur,j,k+1 − ui,j,k+1 ∈ Fb .

Digitally b-ary shifted estimators. To study the variance of a
b-ary shifted digital net we use a Walsh expansion for f . Walsh series
have also been used to analyze the error produced by (non-randomized)
digital nets by Larcher and his collaborators, e.g., in [57, 56, 58]. In the
presentation of the forthcoming results, the vector h will be used both to
represent elements of Ns0 , where N0 = N ∪ {0}, and elements of the ring
(Fb [z])s. When required, we will use the bijection ζ : Ns0 → (Fb [z])s de-
fined by ζ(h1, . . . , hs) = (

∑∞
l=1 h1,lz

l−1, . . . ,
∑∞

l=1 hs,lz
l−1), where hj =∑∞

l=1 hj,lb
l−1 for each j, to go back and forth between these two spaces.

For any h ∈ Ns0 , the Walsh basis function in h is defined as

φh(u) = e2πιh·u/b,

where h ·u =
∑s

j=1 hj · uj =
∑s

j=1

∑∞
l=1 hj,luj,l, and the coefficients hj,l

and uj,l are such that hj =
∑∞

l=1 hj,lb
l−1 and uj =

∑∞
l=1 uj,lb

−l, and all
operations are performed in Fb . For h1,h2 ∈ Ns0 , we have that

φh1⊕h2(u) = φh1(u)φh2(u),

where h1 ⊕ h2 corresponds to a digit-by-digit addition over Fb (as if
we were adding the corresponding elements in (Fb [z])s). See [57, 58]
for more information on generalized definitions of Walsh series in the
context of QMC integration.

Let f̃(h) denote the Walsh coefficient of f in h, that is

f̃(h) =
∫

[0,1)s
f(u)e−2πιh·u/bdu. (1.29)

The following result may be interpreted as the digital counterpart of the
result stated in Lemma 1. Recall that C∗s denotes the dual space of Pn.

Lemma 2 Let Pn be a digital net in base b with n = bk. For any h ∈ Ns0 ,
we have

1
n

n−1∑
i=0

e2πιh·ui/b =
{

1 if ζ(h) ∈ C∗s ,
0 otherwise.
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In [57] it is shown that the above sum is 0 when h satisfies V (h) ≤ k−t.
Proof: If h ∈ C∗s , then h · ui = 0 since (ui,1,1, ui,1,2, . . . , ui,s,1, ui,s,2, . . .)
is in the row space of C for all i = 0, . . . , n − 1, and the result follows
easily. If h /∈ C∗s , then Ch = y 6= 0, where y ∈ F

k
b . We are interested

in the scalar product h · ui for i = 0, . . . , n− 1. Notice that {h · ui, i =
0, . . . , n − 1} = {yTx,x ∈ F

k
b }, which is the image of Fkb under the

application of a mapping that corresponds to the multiplication by yT .
Since y 6= 0, the dimension of this image is 1 and the dimension of
the kernel of this mapping is thus k − 1. Hence each element in Fb has
bk−1 pre-images in F

k
b under this mapping, and therefore as a multiset

{h ·ui, i = 0, . . . , n−1} contains bk−1 copies of each element of Fb . Using
this and the fact that

b−1∑
j=0

e2πιj/b = 0,

the result immediately follows. 2

Using this lemma, we get the following result, which is analogous to
that presented in Proposition 2. It is proved in [67] for the case where
b = 2 and Pn is a polynomial lattice point set.

Proposition 4 Let Pn be a digital net in base b. For any function f
having an absolutely convergent Walsh series expansion, we have

Qn − µ =
∑

0 6=h:ζ(h)∈C∗s

f̃(h).

Let P̃n be a b-ary shifted digital net in base b, and µ̂bsh be the associated
estimator. For any square-integrable function f , we have

Var(µ̂bsh) =
∑

0 6=h:ζ(h)∈C∗s

|f̃(h)|2, (1.30)

and the variance of the MC estimator µ̂MC based on n points is given by

Var(µ̂MC) =
σ2

n
=

1
n

∑
0 6=h∈Ns0

|f̃(h)|2.

Proof: Assume
∑

h∈Ns0 |f̃(h)| <∞. Then we can write

Qn − µ =
1
n

n−1∑
i=0

f(ui)− f̃(0)

=
1
n

n−1∑
i=0

∑
h∈Ns0

f̃(h)e2πιh·ui/b − f̃(0)
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=
1
n

∑
h∈Ns0

f̃(h)
n−1∑
i=0

e2πιh·ui/b − f̃(0)

=
∑

h:ζ(h)∈C∗s

f̃(h)− f̃(0) =
∑

0 6=h:ζ(h)∈C∗s

f̃(h).

If f is square-integrable, then the function g : [0, 1)s → R defined by

g(u) =
1
n

n−1∑
i=0

f(ui ⊕ u),

is also square-integrable, where ⊕ corresponds to a digit-by-digit ad-
dition in Fb . In addition, Var(µ̂bsh) = Var(g(u)) =

∑
0 6=h∈Ns0 |g̃(h)|2,

because Parseval’s equality holds for the Walsh series expansion (see
[35], for example). Now, for any h̃ ∈ Ns0 , we have

g̃(h̃) =
∫

[0,1)s
g(u)e−2πιh̃·u/bdu

=
∫

[0,1)s

1
n

n−1∑
i=0

f(ui ⊕ u)e−2πιh̃·u/bdu

=
1
n

n−1∑
i=0

∫
[0,1)s

f(vi)e−2πιh̃·(vi	ui)/bdvi

=
1
n

n−1∑
i=0

e2πιh̃·ui/b
∫

[0,1)s
f(vi)e−2πιh̃·vi/bdvi

=
1
n

n−1∑
i=0

e2πιh̃·ui/bf̃(h̃)

=
{

f̃(h̃) if ˜ζ(h) ∈ C∗s ,
0 otherwise.

(1.31)

In the above display, the third line is obtained by letting vi = ui ⊕ u,
and thus u = vi 	 ui, where 	 denotes a digit-by-digit subtraction in
Fb . From (1.31), the result follows. The variance of the MC estimator
is obtained by applying Parseval’s equality. 2

To see the connection with scrambled-type estimators, we use the
following result (proved for b = 2 in [65]), whose proof is given in the
appendix:
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Lemma 3 Let κI be a vector of positive integers and σ2
κI

be defined as
in (1.26). If f is square-integrable, then

σ2
κI =

∑
h∈G(κI)

|f̃(h)|2,

where G(κI) = {h ∈ Ns0 : 2κj−1 ≤ hj < 2κj if j ∈ I, hj = 0 otherwise}.
Hence in the digital shift case, in comparison with MC, the contribu-

tion of a basis function φh(·) to the variance expression is either multi-
plied by n (if h is in the dual space) or by 0, whereas in the scrambled
case, this contribution is multiplied by 0 for “small vectors”, and by a
factor that can be upper-bounded by a quantity independent of n other-
wise. This factor being sometimes n in the digital shift case prevents us
from bounding Var(µ̂bsh) by a constant times σ2. Similarly, the case of
smooth functions yields a variance bound in O(n−2(log n)s) for digitally-
shifted estimators, which is larger by a factor n than the order of the
bound obtained for scrambled-type estimators. On the other hand, the
b-ary shift is a very simple randomization easy to implement; the esti-
mator µ̂bsh can typically be constructed in the same (or less) time as the
MC estimator based on the same number of points.

Based on the expression (1.30) for the variance of the digitally shifted
estimator, the same type of heuristic arguments as those given for ran-
domly shifted lattice rules can be used to justify selection criteria such
as ∆t1,...,td to choose digital nets. That is, if we assume that the largest
Walsh coefficients are those associated with “small” vectors h, then it
is reasonable to choose Pn so that the dual space C∗s does not contain
those small vectors. If we use the norm ‖h‖ defined in (1.20) to mea-
sure h, this suggests using a criterion based on the resolution such as
∆t1,...,td ; if instead we use the norm V (h) defined in (1.18), then the
t-value or the variant t̃ defined in (1.16) should be employed. We refer
the reader to [40, 102] for additional connections between Walsh expan-
sions and nonuniformity measures (e.g., the so-called ‘Walsh-spectral
test’ of Tezuka). Note that criteria based on the resolution are faster to
compute than those based on the t-value, because the latter verifies the
(q1, . . . , qs)-equidistribution of Pn for a much larger number of vectors
(q1, . . . , qs).

7. Transformations of the Integrand
So far, our description of how to use QMC methods can be summa-

rized as follows: Choose a construction and a randomization; choose a
selection criterion; find a good point set with respect to this criterion
(or use a precomputed table of “good” point sets); randomize the point
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set, and compute µ̂RQMC as an estimator for µ. If the selection crite-
rion mimics the variance of µ̂RQMC well enough, one should obtain a low
variance estimator with this approach. Most of the selection criteria
presented in Section 4 are defined so that they should imitate more or
less the variance of µ̂RQMC for a large class of functions, i.e., they pro-
vide “general-purpose” low-discrepancy point sets. However, once the
problem at hand is known, the variance can sometimes be reduced fur-
ther by making use of information on f in a clever way. In particular,
techniques used to reduce the MC variance can also be used in combi-
nation with QMC methods. Examples of such techniques are antithetic
variates, control variables, importance sampling, and conditional Monte
Carlo. These methods can all be seen as transformations applied to f in
order to reduce its variability; that is, one replaces f by a function g such
that

∫
[0,1)s g(u)du = µ and (hopefully)

∫
[0,1)s g2(u)du <

∫
[0,1)s f2(u)du.

If the function g requires more computation time for its evaluation, one
should make sure that the variance reduction gained is worth the extra
effort, i.e., that the efficiency is improved.

A second class of methods that can reduce the variance of QMC esti-
mators for certain functions are dimension reduction methods. Among
this class are the Brownian bridge technique of Caflisch and Moskovitz
[12], approaches based on principal components [1, 2], and various meth-
ods discussed by Fox [33] for generating Poisson and other stochastic
processes.

Typically, these methods are used when f is defined in terms of a
stochastic process for which a sample path is generated using the uniform
numbers ui1, . . . , uis provided by a point ui in P̃n. The goal is then
to generate the sample path in a way that will decrease the effective
dimension of f . This is usually achieved by using a method that gives
a lot of importance to a few uniform numbers. As an illustration, we
describe in the example below the Brownian bridge technique, which can
be used to generate the sample paths of a Brownian motion.

Example 3 As this often happens in financial simulations (see e.g.,
[6, 11]), suppose we want to generate the sample path of a Brownian
motion at s different times B(t1), . . . , B(ts), using s uniform numbers
u1, . . . , us. For instance, this Brownian motion might be driving the price
process of an asset on which an option has been written [22]. Instead of
generating these observations sequentially (that is, by using uj to gen-
erate the Gaussian random variable B(tj)/B(tj−1) given B(tj−1)), u1 is
used to generate B(ts), u2 is used to generate B(tbs/2c), u3 for B(tbs/4c),
u4 for B(tb3s/4c), etc. This can be done easily since for u < v < w, the
distribution of B(v) given B(u) and B(w) is Gaussian with parameters
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depending only on u, v,w. By generating the Brownian motion path this
way, more importance is given to the first few uniform numbers since
they determine important aspects of the path such as its value at the
end, middle, first quarter, etc.

Another type of transformation that can sometimes reduce the actual
dimension of the problem (and not only the effective one) is the condi-
tional Monte Carlo method; see [63, Section 10.1] for example, where
this method is used with randomly shifted lattice rules.

8. Related Methods
We now discuss integration methods that are closely related to QMC

methods, but that do not exactly fit the framework presented so far.
First, a natural extension for the estimator Qn or µ̂RQMC would be to

assign weights to the different evaluation points; that is, for a point set
Pn = {u0, . . . ,un−1}, define

µ̂w =
n−1∑
i=0

wif(ui),

with
∑n

i=1 wi = 1. Hickernell [42] proved that when Pn is a lattice point
set, then a certain measure of discrepancy (called the L2-star discrep-
ancy), defined so that these weights wi are accounted for, is minimized
by setting the weights to be all equal to 1/n. In other words, using
weights is useless in this case.

However, if Pn is not restricted to have a particular form, then it can
be shown that in some cases allowing different weights can bring a signif-
icant improvement [111]. For example, one can use the MC method with
weights wi defined by the Voronöı tessellation induced by the uniform
and random points u0, . . . ,un−1; more precisely, define

wi = λ({u ∈ [0, 1)s : ‖u− ui‖2 ≤ ‖u− uj‖2 for all j 6= i}),

where λ denotes the Lebesgue measure on [0, 1)s. This approach yields
an estimator µ̂w with variance in O(n−2) when s = 2. Weighted approx-
imations also based on Voronöı tessellations are discussed in [89].

A closely related idea is used in stratified sampling [14]. In this
method, the unit hypercube is partitioned into n cells W0, . . . ,Wn−1,
and ui is uniformly distributed over Wi, for i = 0, . . . , n− 1. The strat-
ified sampling estimator is then

µ̂str =
1
n

n−1∑
i=0

wif(ui),
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where wi = λ(Wi). It can be shown [14] that for any square-integrable
function,

Var(µ̂str) ≤ Var(µ̂MC).

The amount of variance reduction depends on the definition of the cells
W0, . . . ,Wn−1 and their interaction with the integrand f .

An integration method that is guaranteed to yield an estimator with a
variance not larger than the MC estimator for monotone functions is the
Latin Hypercube Sampling [75]. It uses a point set whose unidimensional
projections are evenly distributed (i.e., one point per interval [j/n, (j +
1)/n), for j = 0, . . . , n − 1). To construct this point set, one needs to
generate s random, uniform, and independent permutations π1, . . . , πs
of the integers from 0 to n− 1, and n independent shifts ∆0, . . . ,∆n−1

uniformly distributed over [0, 1/n)s. Then define the point set

P̃n =
{(

π1(i)
n

+ ∆i,1, . . . ,
πs(i)

n
+ ∆i,s

)
, i = 0, . . . , n− 1

}
.

Additional results on this method can be found in, e.g., [4, 87] and the
references therein.

9. Conclusions and Discussion
We have described various QMC constructions that can be used for

multidimensional numerical integration. Measures of quality that can
help selecting parameters for a given construction have been presented.
We also discussed different randomizations, and provided results on the
variance of estimators obtained by applying these randomizations. In
particular, we gave a new result that expresses the variance of an es-
timator based on a digitally shifted net Pn as a sum of squared Walsh
coefficients over the dual space of Pn.

In the near future, we plan to compare empirically various construc-
tions and randomizations on practical problems, to study selection cri-
teria and compare their effectiveness, and to investigate in more details
the effect of transformations, such as those discussed in Section 7, on
the variance of the randomized QMC estimators.

Appendix: Proofs
Proof of Proposition 1: The result is obtained by first generalizing Proposition 5.2
in [67] to arbitrary digital nets in base b. This can be done by using Lemma 2 from
Section 6.2. More precisely, we show that Pn is (q1, . . . , qs)-equidistributed if and
only if C∗s ∩ H(q1, . . . , qs) = {0}, where

H(q1, . . . , qs) = {h ∈ (Fb [z])
ssuch that v(hj(z)) ≤ qj for each j}.
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Consider the class F(q1, . . . , qs) of all real-valued functions that are constant on each
of the bq b-ary boxes in the definition of (q1, . . . , qs)-equidistribution. Clearly, Pn is
(q1, . . . , qs)-equidistributed if and only if the corresponding point set integrates every
function f ∈ F with zero error. But due to its periodic structure, each function
f ∈ F(q1, . . . , qs) has a Walsh expansion of the form

f(u) =
X

h∈H(q1,...,qs)

f̃(h)e2πιh·u/b, (1.A.1)

where H(q1, . . . , qs) = {h ∈ Ns0 : ζ(h) ∈ H(q1, . . . , qs)}, and ζ is the bijection between
N
s
0 and (Fb [z])

s mentioned on page 37. To see this, note that any f ∈ F can be
written as

f(u) =

bq1−1X
v1=0

. . .

bqs−1X
vs=0

cv1,...,vs

sY
j=1

1
vjb
−qj≤uj<(vj+1)b

−qj , (1.A.2)

where the cv1,...,vs are real numbers. When h /∈ H(q1, . . . , qs), there exists j ∈
{1, . . . , s} and an integer wj ≥ qj such that hj > 2wj . Let d = wj + 1 − qj , and

recall that hj · u =
Pwj+1

l=1 hj,lul, where the coefficients hj,l and ul come from the

representation hj =
Pwj+1

l=1 hj,lb
l−1 and u =

P∞
l=1 ulb

−l, respectively. When uj goes
from vjb

−qj to (vj +1)b−qj , l goes from 0 to bd−1 in hj · (vjb−qj + lb−wj−1), and this
dot product is then equal to each number between 0 and b − 1 exactly bd−1 times.
Hence, if we first integrate f(u) with respect to uj when computing f̃(h) via (1.29),
any term from the sum (1.A.2) will be 0 because

Z 1

0

cv1,...,vs1vjb
−qj≤uj<(vj+1)b

−qj e
−2πιhj ·uj/bduj

= cv1,...,vs

bd−1X
l=0

e−2πιhj ·(vjb
−qj+l2

−wj−1
)/b = 0.

Therefore, f̃(h) = 0 if h /∈ H(q1, . . . , qs), and (1.A.1) follows. Now, for any nonzero

h̃ ∈ H(q1, . . . , qs), g(u) ≡ e−2πιh̃·u/b is in F(q1, . . . , qs). Hence by Proposition 4, the
error obtained by using Pn to integrate g is

P
0 6=h:ζ(h)∈C∗s

g̃(h) = 1ζ(h̃)∈C∗s
since the

only nonzero Walsh coefficient of g is the one evaluated in h̃ (and it is equal to 1). From
this, we see that if Pn is (q1, . . . , qs)-equidistributed, then C∗s ∩ H(q1, . . . , qs) = {0}.
Hence if Pn has a resolution of `s, then it is (`s, . . . , `s)-equidistributed and therefore
min0 6=h∈C∗s ‖h‖ > `s.

We now show that min0 6=h∈C∗s ‖h‖ ≤ `s + 1, which will prove the result. Since the
resolution is `s, it means that Pn is not (`s+1, . . . , `s+1)-equidistributed. Therefore,
the k× s(`s + 1) matrix L formed by concatenating the transposed of the first `s + 1
rows of each generating matrix Cj has a row space whose dimension is strictly smaller
than s(`s + 1). Hence there exists a nonzero vector x in F

s(`s+1)
b such that Lx = 0.

Furthermore, we can assume ‖x‖ = `s + 1 since ‖x‖ ≤ `s would contradict our
assumption that Pn has a resolution of `s. Define h = (h1(z), . . . , hs(z)) ∈ (Fb [z])

s

by

hj(z) =

`s+1X
l=1

xj,lz
l−1.
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Since L is just a truncated version of C and the coefficients of hj(z) for powers of z
larger than `s + 1 are zero for all j, we have that Ch = 0, and therefore h ∈ C∗s with
‖h‖ = ‖x‖ = `s + 1, which proves the result. 2

Proof of Lemma 3: Recall that

σ2
κI = Var(νκI (u)),

where νκI (u) is a step function constant on the b-ary boxes obtained by partitioning
the jth axis of [0, 1)s in bκj equal intervals, for each j ∈ I. Using the same notation
as for the preceding proof, we have that νκI ∈ F(q1, . . . , qs), where

qj =

�
κj if j ∈ I,
0 otherwise.

Hence from the proof of Proposition 1, we know that ν̃κI (h) = 0 if h /∈ H(q1, . . . , qs).
Assume h ∈ H(q1, . . . , qs) and that there exists one j ∈ I such that hj < 2κj−1.

We need to verify that ν̃κI (h) = 0. Now,

ν̃κI (h) =

Z
[0,1)s

X
τ

X
γ

〈ψκI ,τ,γ, f〉ψκI ,τ,γ(u)e−2πιh·u/bdu

=
X
τ

X
γ

〈ψκI ,τ,γ, f〉
Z

[0,1)s
ψκI ,τ,γ(u)e−2πιh·u/bdu

=
X
τ

X
γ

〈ψκI ,τ,γ, f〉b(|κI−|I|)/2 ·

0
@ Y
k∈I,k 6=j

Z 1

0

(b1bbκk+1 ujc=bτk+γk
− 1bbκkukc=τk)e

−2πιhk·uk/bduk

1
A

Z 1

0

(b1bbκj+1
ujc=bτj+γj

− 1bbκj ujc=τj )e
−2πιhj ·uj/bduj . (1.A.3)

Now, since hj < 2κj−1, the function e−2πιhj ·uj/b is constant over any interval of the
form [db−κj+1, (d+ 1)b−κj+1), 0 ≤ d < bκj−1. Hence, if

Z (d+1)b
−κj+1

db
−κj+1

(b1bbκj+1
ujc=bτj+γj

− 1bbκj ujc=τj )duj = 0, (1.A.4)

for any d ∈ [0, . . . , bκj−1 − 1], then (1.A.3) is equal to zero and the result is proved.
To show (1.A.4), it suffices to observe that

Z (d+1)b
−κj+1

db
−κj+1

(b1bbκj+1
ujc=bτj+γj

− 1bbκjujc=τj )duj = b · b−κj−1 − b−κj = 0,

for any d, which proves the result. 2
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[2] F. Åkesson and J. P. Lehoczy. Path generation for quasi-Monte
Carlo simulation of mortgage-backed securities. Management Sci-
ence, 46:1171–1187, 2000.

[3] I. A. Antonov and V. M. Saleev. An economic method of computing
LPτ -sequences. Zh. Vychisl. Mat. i. Mat. Fiz., 19:243–245, 1979.
In Russian.

[4] A. N. Avramidis and J. R. Wilson. Integrated variance reduction
strategies for simulation. Operations Research, 44:327–346, 1996.

[5] N. S. Bakhvalov. On approximate calculation of multiple integrals.
Vestnik Moskovskogo Universiteta, Seriya Matematiki, Mehaniki,
Astronomi, Fiziki, Himii, 4:3–18, 1959. In Russian.

[6] P. Boyle, M. Broadie, and P. Glasserman. Monte Carlo methods
for security pricing. Journal of Economic Dynamics & Control,
21(8-9):1267–1321, 1997. Computational financial modelling.

[7] E. Braaten and G. Weller. An improved low-discrepancy sequence
for multidimensional quasi-Monte Carlo integration. Journal of
Computational Physics, 33:249–258, 1979.

[8] P. Bratley and B. L. Fox. Algorithm 659: Implementing Sobol’s
quasirandom sequence generator. ACM Transactions on Mathe-
matical Software, 14(1):88–100, 1988.

[9] P. Bratley, B. L. Fox, and H. Niederreiter. Implementation and tests
of low-discrepancy sequences. ACM Transactions on Modeling and
Computer Simulation, 2:195–213, 1992.

[10] P. Bratley, B. L. Fox, and H. Niederreiter. Algorithm 738: Pro-
grams to generate Niederreiter’s low-discrepancy sequences. ACM
Transactions on Mathematical Software, 20:494–495, 1994.

[11] R. E. Caflisch, W. Morokoff, and A. Owen. Valuation of mortgage-
backed securities using Brownian bridges to reduce effective dimen-
sion. The Journal of Computational Finance, 1(1):27–46, 1997.

[12] R. E. Caflisch and B. Moskowitz. Modified Monte Carlo methods
using quasi-random sequences. In H. Niederreiter and P. J.-S. Shiue,
editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, number 106 in Lecture Notes in Statistics, pages 1–16,
New York, 1995. Springer-Verlag.



REFERENCES 47

[13] J. Cheng and M. J. Druzdzel. Computational investigation of low-
discrepancy sequences in simulation algorithms for bayesian net-
works. In Uncertainty in Artificial Intelligence Proceedings 2000,
pages 72–81, 2000.

[14] W. G. Cochran. Sampling Techniques. John Wiley and Sons, New
York, second edition, 1977.

[15] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and
Groups. Grundlehren der Mathematischen Wissenschaften 290.
Springer-Verlag, New York, 3rd edition, 1999.

[16] R. Couture and P. L’Ecuyer. Lattice computations for random
numbers. Mathematics of Computation, 69(230):757–765, 2000.

[17] R. Couture, P. L’Ecuyer, and S. Tezuka. On the distribution
of k-dimensional vectors for simple and combined Tausworthe se-
quences. Mathematics of Computation, 60(202):749–761, S11–S16,
1993.

[18] R. R. Coveyou and R. D. MacPherson. Fourier analysis of uniform
random number generators. Journal of the ACM, 14:100–119, 1967.

[19] R. Cranley and T. N. L. Patterson. Randomization of number theo-
retic methods for multiple integration. SIAM Journal on Numerical
Analysis, 13(6):904–914, 1976.

[20] P. Davis and P. Rabinowitz. Methods of Numerical Integration.
Academic Press, New York, second edition, 1984.

[21] U. Dieter. How to calculate shortest vectors in a lattice. Mathe-
matics of Computation, 29(131):827–833, 1975.

[22] D. Duffie. Dynamic Asset Pricing Theory. Princeton University
Press, second edition, 1996.

[23] B. Efron and C. Stein. The jackknife estimator of variance. Annals
of Statistics, 9:586–596, 1981.

[24] K. Entacher. Quasi-Monte Carlo methods for numerical integration
of multivariate Haar series. BIT, 37:846–861, 1997.

[25] K. Entacher, P. Hellekalek, and P. L’Ecuyer. Quasi-Monte Carlo
node sets from linear congruential generators. In H. Niederreiter
and J. Spanier, editors, Monte Carlo and Quasi-Monte Carlo Meth-
ods 1998, pages 188–198, Berlin, 2000. Springer.
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