
Comparison of Point Sets and Sequences for
Quasi-Monte Carlo and for Random Number

Generation ?

Pierre L’Ecuyer1

DIRO, CIRRELT, and GERAD,
Université de Montréal, Canada

http://www.iro.umontreal.ca/∼lecuyer

Abstract. Algorithmic random number generators require recurring se-
quences with very long periods and good multivariate uniformity prop-
erties. Point sets and sequences for quasi-Monte Carlo numerical inte-
gration need similar multivariate uniformity properties as well. It then
comes as no surprise that both types of applications share common (or
similar) construction methods. However, there are some differences in
both the measures of uniformity and the construction methods used in
practice. We briefly survey these methods and explain some of the rea-
sons for the differences.

1 Introduction

1.1 Random Number Generators

(Pseudo)Random number generators (RNGs) are typically defined by a (deter-
ministic) recurring sequence in a finite state space S, usually a finite field or
ring, and an output function mapping each state to an output value in U , which
is often either a real number in the interval (0, 1) or an integer in some finite
range [1–4]. We shall assume here that each output is a real number in (0, 1)
and that the purpose of the RNG is to mimic a sequence of independent U(0, 1)
random variables (i.e., uniformly distributed over (0, 1)). Of course, with such an
algorithmic construction, this can only be a fake. The quality of the fake should
be measured in a way that depends on the application.

One could argue that physical noise would provide a safer source of (true)
randomness. With careful design, it does, and it is appropriate for certain appli-
cations such as generating random keys in cryptology and for gaming machines,
for example, where unpredictability is a major requirement. In this paper, we
focus on RNGs for simulation applications, where fast algorithmic RNGs are
much more convenient than physical sources, because they are faster, they per-
mit one to replicate the same exact sequence several times (this is often needed in

? This work was supported NSERC-Canada Grant Number ODGP0110050 and by a
Canada Research Chair to the author.

2

simulation, for example for comparing similar systems and in optimization and
variance reduction algorithms [5–7]), and they do not require special hardware.

Let s0, s1, s2, . . . denote the successive states of our RNG, and u0, u1, u2, . . .
be the corresponding sequence of output values. After selecting s0 (which might
be random), the successive states follow the deterministic recurrence si = f(si−1)
for a given transition function f : S → S, and the output at step i is ui = g(si)
for some output function g : S → (0, 1). This output sequence is necessarily
(eventually) periodic, with period ρ that cannot exceed the number of distinct
states, |S|. When the state occupies b bits of memory, we have ρ ≤ 2b and we
usually require that ρ be close to 2b, to avoid wasting memory. Values of b for
certain practical RNGs can be as much as 20,000 or even more [8–10], but for
simulation, a few hundred is probably large enough.

Besides a long period, other standard requirements for RNGs include high
running speed (in 2008, fast RNGs can produce over 100 million U(0, 1) random
numbers per second on a standard computer), reproducibility and portability
(the ability to reproduce the same sequence several times on the same com-
puter, and also on any standard computing platform), and the possibility to
quickly jump ahead by an arbitrarily large number of steps in the sequence. The
latter is frequently used to split the sequence into several shorter (but still very
long) disjoint subsequences, in order to provide an arbitrary number of virtual
generators (often called RNG streams) [5, 6].

However, these basic properties are not sufficient To see why, just note that
an RNG defined by ui = si = (i+1/2)/210000 mod 1 easily satisfies all the above
properties, and the values cover the interval (0, 1) very evenly in the long run,
but this RNG certainly fails to provide a good imitation of independent U(0, 1)
random variables. The problem is the lack of (apparent) independence between
successive values.

A key observation is that we have both uniformity and independence if and
only if for any integer s > 0, (u0, . . . , us−1) is a random vector with the uniform
distribution over the s-dimensional unit hypercube (0, 1)s. We want the RNG
to provide a good approximation of this property. If the seed s0 is selected at
random in S, then the vector (u0, . . . , us−1) has the uniform distribution over
the finite set Ψs = {(u0, . . . , us−1) : s0 ∈ S}, which can be viewed as a discrete
approximation of the uniform distribution over (0, 1)s. For this approximation
to be good, Ψs must provide a dense and uniform coverage of the unit hypercube
(0, 1)s, at least for moderate values of s. This is possible only if S has large
cardinality. In fact, this is a more important reason for having a long period than
the risk of exhausting the RNG cycle. More generally, we want high uniformity
of the sets of the form Ψ(u) = {(ui1 , . . . , uid

) : s0 ∈ S}, where u = {i1, . . . , id} is
an arbitrary set of integers such that 0 ≤ i1 < · · · < id.

But how should we measure the uniformity of Ψs (and of the sets Ψ(u))?
There are many ways. But a crucial requirement is that the selected measure
of uniformity must be computable efficiently without generating the random
numbers (or enumerating the points of Ψs) explicitly, because there are just too
many of them. For nonlinear RNGs, easily computable measures of uniformity

3

are difficult to find. This is the main reason why most good RNGs used in
practice are based on linear recurrences [3, 9]. Specific measures for linear RNGs
are discussed later in this paper. The choice generally depends on the type of
RNG, for computability reasons.

To construct a new RNG, one would usually specify a parameterized class of
(large-period) constructions (based on the availability of a fast implementation)
and a figure of merit, and then perform a computer search for the construction
with the largest figure of merit that can be found within that class. Then, the
selected RNG is implemented and tested empirically. There is a large variety of
empirical statistical tests for testing the statistical behavior of RNGs [1, 9].

1.2 Low-discrepancy Sets and Sequences

In quasi-Monte Carlo (QMC) numerical integration, we want a set of n points,
Pn = {u0, . . . ,un−1}, that cover the s-dimensional unit hypercube [0, 1)s very
evenly. These points are used to approximate the integral of some function f :
[0, 1)s → R, say

µ =
∫

[0,1)s

f(u)du,

by the average

µ̄n =
1
n

n−1∑
i=0

f(ui). (1)

This µ can be interpreted as the mathematical expectation µ = E[f(U)], where
U is a random vector uniformly distributed over [0, 1)s. Here, the cardinality n
of the point set is much smaller than for RNGs, because we need to evaluate f
at each of these points. It rarely exceeds a million.

Again, a key question is: How do we measure the uniformity of the point set
Pn? Standard practice is to use a figure of merit that measures the discrepancy
between the empirical distribution of Pn and the uniform distribution over [0, 1)s

[11–14, 4]. Many of these discrepancies are actually defined as the worst-case
integration error, with Pn, over all functions f whose variation V (f) = ‖f − µ‖
does not exceed 1, in a given Banach (or Hilbert) space H of functions [11,
15]. In this setting, the worst-case error can be bounded by the product of the
discrepancy D(Pn), that depends only on Pn, and the function’s variation, that
depends only on f :

|µ̄n − µ| ≤ D(Pn)V (f) (2)

for all f ∈ H. This is a generalized form of the Koksma-Hlawka inequality [4].
Generally speaking, for a given point set, the more restricted (or smoother) the
class of functions f for which V (f) ≤ 1, the smaller will be the discrepancy,
and the faster minPn

D(Pn) will converge to 0 as a function of n. That is, the
worst-case error bound for the best possible point set will converge to 0 more
quickly. Specific examples of discrepancies are mentioned in Section 2.

4

Here, because n is not so large, a computing time of O(n) or even O(n2) for
the discrepancy is acceptable (in contrast to RNGs). The choice of discrepancy
can be different for this reason.

In practice, the worst-case error bound (2) is usually much too difficult to
compute or even to approximate, and may be very loose for our specific function
f . For these reasons, one would rather turn the deterministic approximation
µ̄n into a randomized unbiased estimator, and replace the error bound by a
probabilistic error estimate obtained by estimating the variance of the estimator.
This is achieved by randomizing the point set Pn so that [16, 17, 13, 18]:

(a) it retains its high uniformity when taken as a set and
(b) each individual point is a random vector with the uniform distribu-

tion over (0, 1)s.

A randomized QMC (RQMC) estimator of µ, denoted µ̂n,rqmc, is defined as
the average (1) in which the ui are replaced by the n randomized points. By
performing m independent replicates of this randomization, and computing the
sample mean and sample variance of the m independent realizations of µ̂n,rqmc,
one obtains an unbiased estimator of µ and an unbiased estimator of the variance
of this estimator. This permit one to obtain an asymptotically valid confidence
interval on µ [17, 13].

A simple randomization that satisfies these conditions is a random shift mod-
ulo 1 [19, 17, 20]: Generate a single point U uniformly over (0, 1)s and add it to
each point of Pn, modulo 1, coordinate-wise. Another one is a random digital
shift in base b [21, 13, 22]: generate U uniformly over (0, 1)s, expand each of its
coordinates in base b, and add the digits, modulo b, to the corresponding dig-
its of each point of Pn. For b = 2, this amounts to applying a coordinate-wise
exclusive-or (xor) of U to all the points.

The variance of the RQMC estimator is the same as its mean square error,
because it is unbiased, so by squaring on each side of (2) we obtain that

Var[µ̂n,rqmc] ≤ V 2(f) · E[D2(Pn)],

so the variance converges at least as fast as the mean square discrepancy.
A low-discrepancy sequence is an infinite sequence {u0,u1,u2, . . .} such that

the point set Pn formed by the first n points of the sequence has low discrepancy
for all large enough n. Often, the discrepancy is lower along a subsequence of
values of n; e.g., if n is a power of a given integer. Such sequences are convenient
if we want to increase n (adding more points to the set) until some error bound
or error estimate is deemed small enough, instead of fixing n a priori. A low
discrepancy point set of sequence can also be infinite-dimensional ; i.e., each point
has an infinite sequence of coordinates. In this case, the sequence of coordinates
are usually defined by a recurrence. This is convenient when f(U) depends on a
random and unbounded number of uniform random variables, which is frequent.

1.3 Importance of low-dimensional projections

When the dimension s is large, filling up the s-dimensional unit cube evenly
requires too many points. For s = 100, for example, we already need 2100 points

5

just to have one point near each corner of the hypercube. For quasi-Monte Carlo,
this is impractical. For RNGs, we can easily have more than 2100 points in Ψs,
but the high-dimensional uniformity eventually breaks down as well for a larger
s.

In QMC, we are saved by the fact that f is often well approximated by a sum
of low-dimensional functions, that depend only on a small number of coordinates
of u; that is,

f(u) ≈
∑
u⊆J

fu(u), (3)

where each fu : (0, 1)s → R depends only on {uj , j ∈ u}, and J is a family of
small-cardinality subsets of {1, . . . , s}. Then, to integrate f with small error, it
suffices to integrate with small error the low-dimensional functions fu making
up the approximation. For that, we only need high uniformity of the projections
Pn(u) of Pn over the low-dimensional sets of coordinates u ∈ J . This suggests a
figure of merit defined as a weighted sum (or supremum) of discrepancy measures
computed over the sets Pn(u) for u ∈ J . The figures of merit used to select QMC
point sets are typically of that form.

This heuristic interpretation can be made rigorous via a functional ANOVA
decomposition of f [23, 18, 24]. When (3) holds for J = {u : |u| ≤ d} for a
small d, we say that f has low effective dimension in the superposition sense,
while if it holds for J = {u ⊆ {1, . . . , d}} for a small d, we say that f has low
effective dimension in the truncation sense [25, 18]. Low effective dimension can
often be achieved by redefining f without changing its expectation, via a change
of variables [26, 25, 27, 28, 14, 29, 30]. That is, we change the way the uniforms
(the coordinates of u) are transformed in the simulation. There are important
applications in computational finance, for example, where after such a change
of variable, the one- and two-dimensional functions fu account for more than
99% of the variability of f [14, 30]. For these applications, it is important that
the one- and two-dimensional projections Pn(u) have very good uniformity, and
there is no need to care much about the high-dimensional projections.

It makes sense that the figures of merit for the point sets Ψs produced by
RNGs also take the low-dimensional projections into account, as suggested in
[3, 31, 17], for example. In fact, the standardized figures of merit based on the
spectral test, as defined in [32–34] for example, already do this to a certain extent
by giving more weight to the low-dimensional projections in the truncation sense
(where u = {1, . . . , d} for small d).

2 Examples of Discrepancies for QMC

Discrepancies and the corresponding variations are often defined via reproducing
kernel Hilbert spaces (RKHS). An RKHS is constructed by selecting a kernel
K : [0, 1]2s → R, which is a symmetric and positive semi-definite function. The
kernel determines in turn a set of basis functions and a scalar product, that
define a Hilbert space H [35]. For f ∈ H and a point set Pn, (2) holds with

6

V (f) = ‖f − µ‖K , where ‖ · ‖K is the norm that corresponds to the scalar
product of H, and D(Pn) that satisfies

D2(Pn)

=
1
n2

n−1∑
i=0

n−1∑
j=0

K(ui,uj)−
2
n

n−1∑
i=0

∫
[0,1]s

K(ui,v)dv +
∫

[0,1]2s

K(u,v)dudv (4)

(see [11, 12]). When K(u,v) can be computed in O(s) time for an arbitrary
(u,v), then this D(Pn) can be computed in O(n2s) time, but this assumption
does not always hold.

One important type of kernel has the form

K(u,v) =
∑
h∈Zs

w(h)e2πιht(u−v) (5)

where ι =
√
−1, the t means “transposed”, and the w(h) are non-negative

weights such that
∑

h∈Zs w(h) < ∞. The corresponding square variation is

V 2(f) =
∑

0 6=h∈Zs

|f̂(h)|2/w(h),

where the f̂(h) are the Fourier coefficients of f . The corresponding discrepancy
is easily computable only for special shapes of the weights.

For example, if

w(h) =
s∏

j=1

min(1, γj |hj |−2α), (6)

for some integer α ≥ 1 and positive real numbers (weights) γj , then the kernel
becomes

Kα(u,v) =
s∏

j=1

[
1− γj

(−4π2)α

(2α)!
B2α((uj − vj) mod 1)

]
, (7)

where B2α is the Bernoulli polynomial of degree 2α [20]. This kernel can be
computed in O(s) time, so the discrepancy can be computed in O(n2s) time.
The corresponding V (f) in this case satisfies

V 2(f) =
∑

φ6=u⊆S

∏
j∈u

γ−α
j

 (4π2)−α|u|
∫

[0,1]|u|

∣∣∣∣∣
∫

[0,1]s−|u|

∂α|u|f

∂uα
u

(u)duū

∣∣∣∣∣
2

duu,

(8)
where uu represents the coordinates of u whose indices are in the set u and uū

represents those whose indices are not in u. This RKHS contains only periodic
functions f of period 1 with respect to each coordinate. and the variability
measures the smoothness via the partial derivatives of f .

Slight variations of this discrepancy have interesting geometric interpreta-
tions. For example, if we replace B2α((uj − vj) mod 1) in (7) by an appropriate

7

(simple) polynomial in uj and vj , we obtain a weighted L2-unanchored dis-
crepancy whose interpretation is the following [11, 12]. For each subset u of co-
ordinates and any u,v ∈ [0, 1]|u|, let D(Pn(u),u,v) be the absolute difference
between the volume of the |u|-dimensional box with opposite corners at u and v,
and the fraction of the points of Pn that fall in that box. The square discrepancy
is then defined as

[D2(Pn)]2 =
∑

φ6=u⊆S

∏
j∈u

γj

 ∫
[0,1]|u|

∫
[0,v]

D2(Pn(u),u,v)dudv. (9)

Other similarly defined RKHSs contain non-periodic functions f . For exam-
ple, by taking again the appropriate (simple) function in place of B2α((uj −
vj) mod 1) in (7), we obtain a weighted L2-star discrepancy, whose square can
be written as

[D2(Pn)]2 =
∑

φ6=u⊆S

∏
j∈u

γj

 ∫
[0,1]|u|

D2(Pn(u),0,v)dv (10)

and the square variation is

V 2(f) =
∑

φ6=u⊆S

∏
j∈u

γ−1
j

 ∫
[0,1]|u|

∣∣∣∣ ∂|u|

∂uu
fu(uu)

∣∣∣∣2 duu

(see [11, 12]). All these discrepancies can be computed in O(n2s) time for general
point sets.

It is known that there exists point sets Pn for which the discrepancy based
on (7) converges as as O(n−α+δ) for any δ > 0, and point sets for which the
discrepancy (10) converges as O(n−1+δ).

3 RNGs Based on Linear Recurrences Modulo a Large
Integer m

An important (and widely used) class of RNGs is based on the general linear
recurrence

xi = (a1xi−1 + · · ·+ akxi−k) mod m, (11)

where k and m are positive integers, a1, . . . , ak ∈ {0, 1, . . . ,m − 1}, and ak 6=
0. The state at step i is si = xi = (xi−k+1, . . . , xi). Suppose the output is
ui = xi/m (in practice it is slightly modified to make sure that 0 < ui < 1).
This RNG is called a multiple recursive generator. For k = 1, it is known as a
linear congruential generator (LCG). For prime m and well-chosen coefficients,
the period length can reach mk − 1 [1], which can be made arbitrarily large by
increasing k. Because of the linearity, jumping ahead from xi to xi+ν is easy,

8

regardless of ν: One can write xi+ν = Aνxi mod m, where Aν is a k× k matrix
that can be precomputed once for all [3].

It is well-known that in this case, Ψs is the intersection of a lattice

Ls =

v =
s∑

j=1

hjvj such that each hj ∈ Z

 (12)

with the unit hypercube [0, 1)s [1, 36], where a lattice basis {v1, . . . ,vs} is easy
to obtain [36]. Theoretical measures of uniformity used in practice are defined in
terms of the geometry of this lattice. The lattice structure implies in particular
that Ψs is contained in a family of equidistant parallel hyperplanes. For the
family for which the successive hyperplanes are farthest apart, the inverse of the
distance between the successive hyperplanes is equal to the Euclidean length of
the shortest nonzero vector in the dual lattice L∗s, defined by L∗s = {h ∈ Rs :
htv ∈ Z for all v ∈ Ls}. The L1 length of the shortest nonzero vector in L∗s
gives the number of hyperplanes required to cover the points. The computing
time of these shortest vectors is exponential in s (in the worst case, with the
best known algorithms), but depends very little on m and k. In practice, one can
handle values of s up to 50 (or more, for easier lattices), even with mk > 21000

[32].
Note that for every subset of coordinates u = {i1, . . . , id}, the projection set

Ψ(u) is also the intersection of a lattice with the unit hypercube [0, 1)d, and one
can compute the length `(u) of a shortest nonzero vector in the corresponding
dual lattice L∗(u). Moreover, for any given number of points n = mk and a given
dimension d, there is a theoretical upper bound `∗d(n) on this length `(u). One
can divide `(u) by such an upper bound to obtain a standardized value between
0 and 1, and take the worst case over a selected class J of index sets u. This
gives a figure of merit of the form

min
u∈J

`(u)/`∗|u|(n). (13)

This type of criterion has been proposed in [17]. Simplified versions, where J
contains only the subsets of successive coordinates up to a given dimension, have
been used for a long time to measure the quality of RNGs [34, 1, 32, 3].

It is important to look at the projections Ψ(u), because fast long-period (but
otherwise poorly designed) RNGs often have some very bad low-dimensional
projections. For example, lagged-Fibonacci generators follow the recurrence (11)
with only two nonzero coefficients, say ar and ak, both equal to ±1. It turns
out that for these generators, with u = {0, k − r, k}, all the points of Ψs(u) lie
in only two parallel planes in the three-dimensional cube. This type of structure
can have a disastrous impact on certain simulations. The add-with-carry and
subtract-with-borrow generators, proposed in [37] and still available in some
popular software, have exactly the same problem. A well-chosen figure of merit
of the form (13) should give high penalties to these types of bad projections.

9

A variant of the multiple recursive generator is the multiply-with-carry gen-
erator, based on a linear recurrence with carry:

xi = (a1xi−1 + · · ·+ akxi−k + ci−1)d mod b,

ci = b(a0xi + a1xi−1 + · · ·+ akxi−k + ci−1)/bc,
ui = xi/b + xi+1/b2 + · · ·

where b ≥ 2 is an integer, a0 is relatively prime to b, and d is the multiplicative
inverse of −a0 modulo b. In practice, the expansion that defines ui is truncated
to a few terms. An important result, if we neglect this truncation, states that
this RNG is exactly equivalent to an LCG with modulus m =

∑k
`=0 a`b

` and
multiplier a equal to the inverse of b modulo m [38–40]. This means that this
RNG can be seen as a clever way of implementing an LCG with very large
modulus and large period (this RNG can be quite fast if b is a power of two,
for example), and that its uniformity can be measured in terms of the lattice
structure of this LCG [39].

4 RNGs Based on Linear Recurrences Modulo 2

Another important class of construction methods uses a linear recurrence as in
(11), but with m = 2 [41, 42]. That is, all operations are performed in the finite
field F2 = {0, 1}. This general construction can be written in matrix form as [3,
31]:

xi = Axi−1, yi = Bxi, ui =
w∑

`=1

yi,`−12−`,

where xi = (xi,0, . . . , xi,k−1)t is the state at step i, A is a k × k binary matrix,
yi = (yi,0, . . . , yi,w−1)t, B is a w×k binary matrix, k and w are positive integers,
and ui ∈ [0, 1) is the output at step i. (In practice, the output can be modified
slightly to avoid returning 0.)

This framework covers several well-known generators such that the Taus-
worthe, polynomial LCG, generalized feedback shift register (GFSR), twisted
GFSR, Mersenne twister, WELL, xorshift, linear cellular automaton, and com-
binations of these [43, 3, 31, 44, 42]. With a careful design, for which A has a
primitive characteristic polynomial over F2, the period length can reach 2k − 1.
The matrices A and B should be constructed so that the products (14) and (14)
can be computed very quickly by a few simple binary operations on blocks of
bits, such as or, exclusive-or, shift, and rotation. A compromise must be made
between the number of such operations and a good uniformity of the point sets
Ψs (with too few operations, there are in general limitations on the quality of the
uniformity that can be reached). For these types of generators, the uniformity of
the point sets Ψs is measured by their equidistribution properties, as explained
in Section 6.

Combined generators of this type, defined by xoring the output vectors yi

of the components, are equivalent to yet another generator from the same class.

10

Such combinations provide efficient ways of implementing RNGs with larger
state spaces [45, 46, 31].

5 Lattice rules for QMC

When a lattice Ls as in (12) contains Zs, it is called an integration lattice, and
the QMC approximation (1) with Pn = Ls ∩ [0, 1)s is a lattice rule [4, 20]. The
most frequently used lattice rules are of rank 1: we have v1 = a1/n where
a1 = (a1, . . . , as), and vj = ej (the jth unit vector) for j ≥ 2. A special case is
when Pn is the point set Ψs that correspond to a LCG; we then have a Korobov
lattice rule.

Integration lattices are usually randomized by a random shift modulo 1.
The shift preserves the lattice structure. It turns out that the variance of the
corresponding RQMC estimator can be written explicitly as

Var[µ̂n,rqmc] =
∑

0 6=h∈L∗
s

|f̂(h)|2, (14)

where the f̂(h) are the coefficients in the Fourier expansion of the function f
[17]. Assuming that we want to minimize the variance, (14) gives the ultimate
discrepancy measure of a lattice point set to integrate a given function f . The
square Fourier coefficients are generally unknown, but they can be replaced by
weights w(h) that try to approximate their expected behavior for a given class
of functions of interest. It might be difficult to obtain such an approximation.
Another problem is that computing (14) with the weights w(h), and searching
for lattices that minimize its value, may be difficult unless the weights have a
special form. In [17], the authors argue that since the Fourier coefficients for the
short vectors h represent the main trends of the function’s behavior, they are
likely to be those having the most impact on the variance, so we should try to
keep them out of the dual lattice to eliminate them from the sum in (14). If
we do this for a selected class of low-dimensional projections of Ls, and weight
these projections, this leads to the same criterion as in (13). Specific Korobov
lattice parameters found on the basis of this criterion are given in [17].

In these criteria, the Euclidean length of h could also be replaced by other
notions of length; for example, the L1 length, as discussed earlier, of the product
length

∏s
j=1 max(1, |hj |), for which the length of the shortest vector in L∗s is

called the Zaremba index [20].
For lattice rules, discrepancies based on kernels of the general form (5) admit

simplified formulas, thanks to the fact that
∑n−1

i=0 e2πιhtui = n for h ∈ L∗s, and 0
otherwise [20]. In particular, the square discrepancy for the kernel (7) simplifies
to

D2(Pn) = −1 +
1
n

n−1∑
i=0

s∏
j=1

(
1 + γj

(−4π2)α

(2α)!
B2α(uj)/2

)
, (15)

which can be computed in O(ns) time. This discrepancy is a weighted version
of a criterion known as P2α [11, 20], widely used for lattice rules.

11

It is known that for any given dimension s and arbitrarily small δ > 0,
there exist lattice rules whose discrepancy (15) is O(n−α+δ) [47, 4, 20]. Until
very recently, it was unclear if those lattices were easy to find, but explicit
construction methods are now available.

Indeed, for a large s and moderate n, trying all possibilities for the basis
vectors is just impractical. Even if we restrict ourselves to a rank-1 lattice, there
is already (n−1)s possibilities. So one must either search at random, or perform
a more restricted search. One possibility is to limit the search to Korobov rules,
so that there is only the parameter a1 to select. Another possibility is to adopt
a greedy component-by-component (CBC) construction of a rank-1 lattice, for a
given n, by selecting the components aj of the vector a1 = (a1, . . . , as) iteratively
as follows [48, 49]. Start with a1 = 1. At step j, a1, . . . , aj−1 are fixed and we
select aj to optimize a given discrepancy measure for the j-dimensional rank-1
lattice with generating vector v1 = a1/n. At each step, there is at most n − 1
choices to examine for aj , so at most O(ns) discrepancies need to be computed
to construct a lattice of dimension s. For a discrepancy of the form (15), since
each discrepancy is computable in O(ns) time, we can conclude that computing
a1 = (a1, . . . , as) requires at most O(n2s2) time. But in fact, faster algorithms
have been designed that can compute a1 in O(n log(n)s) time using O(n) memory
[50, 48, 51].

The remarkable feature of these CBC constructions is that for a large variety
of discrepancies, defined mostly via RKHS, it has been proved that one obtains
rank-1 lattices whose discrepancy converges at the same rate, as a function of
n, as the best possible lattice constructions [50, 52, 47, 53]. In other words, for
these discrepancies, CBC provides a practical way of constructing lattices with
optimal convergence rate of the discrepancy. These results provide supporting
arguments for the use of these types of discrepancies as figures of merit.

6 Digital nets for QMC

We start with an arbitrary integer b ≥ 2, usually a prime. An s-dimensional
digital net in base b, with n = bk points, is a point set Pn = {u0, . . . ,un−1}
defined by selecting s generator matrices C1, . . . ,Cs with elements in Zb =
{0, . . . , b− 1}, where each Cj is ∞× k. The points ui are defined as follows. For
i = 0, . . . , bk − 1, we write

i =
k−1∑
`=0

ai,`b
`,

 ui,j,1

ui,j,2

...

 = Cj

ai,0

ai,1

...
ai,k−1

 mod b, (16)

ui,j =
∞∑

`=1

ui,j,`b
−`, and ui = (ui,1, . . . , ui,s). (17)

12

In practical implementations, only the first r rows of the Cj ’s are nonzero, for
some positive integer r (for example, with br ≈ 231 on 32-bit computers).

It is usually the case that the first k rows of each Cj form a nonsingular k×k
matrix, so each one-dimensional projection Pn({j}) truncated to the first k digits
is equal to Zn/n = {0, 1/n, . . . , (n − 1)/n}. The role of each Cj is to define a
permutation of Zn/n so that these numbers are enumerated in a different order
for the different coordinates. The choice of these permutations determines the
uniformity of Pn and of its projections Pn(u) (which are also digital nets).

In a more general definition of digital net [4], one can also apply bijections (or
permutations) to the digits of Zb before and after the multiplication by Cj . These
multiplications are performed in an arbitrary ring R of cardinality b, and the
bijections may depend on ` and j. The bijections provide additional opportunity
for improving the uniformity.

A digital sequence in base b is defined by selecting matrices Cj with an
infinite number of columns. This gives an infinite sequence of points. For each
k, the first k columns determine the first bk points, which form a digital net.
Widely-used instances of digital sequences are those of Sobol’ [54] in base 2, of
Faure [55] in prime base b, of Niederreiter [56], and of Niederreiter and Xing
[57]. With an infinite sequence of matrices Cj , we have an infinite-dimensional
digital net. These infinite sequences of columns and matrices are often defined
via recurrences (each column and matrix being a function of the previous ones).

Polynomial lattice rules use point sets defined by a lattice as in (12), but
where the hj are polynomials over Zb, and the coordinates of the vj are poly-
nomials over Zb divided by a common polynomial of degree k. The output is
produced simply by “evaluating” each v(z), which is a vector of formal series in
z, at z = b. These polynomial lattice rules turn out to be special cases of digital
nets in base b. Moreover, much of the theory developed for ordinary lattice rules
has a counterpart for those other types of lattice rules [58, 59].

Important parts of this theory also extends to digital nets in general [60, 61].
In particular, there is a dual space C∗s that plays the same role as the dual lattice
L∗s (in the case of polynomial lattice rules, C∗s is also a lattice). For a digital net
with a random digital shift in base b, in analogy with (14), the RQMC estimator
has variance

Var[µ̂n,rqmc] =
∑

0 6=h∈C∗s

|f̃(h)|2, (18)

where the f̃(h) are the coefficients of the Walsh expansion of f . For a given
f , this expression provides an ultimate discrepancy measure for a digital net
with a random digital shift. This discrepancy has the same limitations as (14)
for ordinary lattices (the Walsh coefficients are usually unknown, etc), and the
practical alternatives are analogous. They lead to figures of merit as in (13), but
where the `(u) are lengths of shortest vectors in the dual spaces C∗(u) associated
with the projections Pn(u) instead of in the dual lattices L∗(u).

Do the discrepancies discussed in Section 2 have simplified expressions for
digital nets, as was the case for lattice rules? Those based on the kernel (5) do
not, but they do if we take a slightly different kernel, based on Walsh expansions

13

in base b instead of Fourier expansions. This can be exploited to develop practical
figures of merit analogous to those used for lattice rules.

The most widely used class of figures of merit, for both RNG and QMC
point sets, are those based on the notion of equidistribution, defined as follows.
For a vector of non-negative integers (q1, . . . , qs), we partition the jth axis into
bqj equal parts for each j. This partitions the hypercube [0, 1)s into bq1+···+qs

rectangular boxes of the same size and shape. A point set Pn of cardinality
n = bk is (q1, . . . , qs)-equidistributed in base b if each box of this partition contains
exactly bt points of Pn, where t = k − q1 − · · · − qs. For a digital net in base
b, this property holds if and only if the set of k − q = q1 + · · · + qs rows that
comprise the first qj rows of Cj , for j = 1, . . . , s, is linearly independent in the
finite ring R [4].

The set Pn is a (t, k, s)-net in base b if it is (q1, . . . , qs)-equidistributed when-
ever q1+· · ·+qs ≤ k−t [4]. The smallest such t is the t-value of the net. A digital
sequence {u0,u1, . . . , } in s dimensions is a (t, s)-sequence in base b if for all in-
tegers k > 0 and ν ≥ 0, the point set Q(k, ν) = {ui : i = νbk, . . . , (ν + 1)bk − 1}
is a (t, k, s)-net in base b. The t-value is a widely used figure of merit for digital
nets. Ideally, we would like it to be zero, but there are theoretical lower bounds
on it. In particular, a (0, k, s)-net in base b can exist only if b ≥ s − 1, and a
(0, s)-sequence in base b can exist only if b ≥ t. Lower bounds for general pairs
(b, s), together with the best values achieved by known constructions, are tabu-
lated in [62]. For example, for b = 2, k = 16, and s = 20, the t-value cannot be
smaller than 9. A t-value of 9 in this case only guarantees equidistribution for
a partition in 27 = 128 boxes, which must contain 29 = 512 points each. For a
given partition, this is a weak requirement.

The problem is that a small t-value would require equidistribution for a very
rich family of partitions into rectangular boxes, and this becomes impossible
when t is too small. To get around this, we may restrict our consideration to a
smaller family of partitions; for example, only cubic boxes. We then want Pn to
be (`, . . . , `)-equidistributed for the largest possible `, which obviously cannot
exceed bk/sc. We want to minimize the resolution gap δ = bk/sc − `.

These definitions apply to the projections Pn(u) as well. Let tu and δu denote
the t-value and the resolution gap for Pn(u), and t∗|u| a theoretical lower bound
on tu. Discrepancy measures for digital nets can be defined by

max
u∈J

γuδu, or
∑
u∈J

γuδu, or

max
u∈J

γu

[
tu − t∗|u|

]
, or

∑
u∈J

γu

[
tu − t∗|u|

]
,

for some non-negative weights γu and a preselected class J of index sets u [58,
13, 59, 63]. The choice of J is a matter of compromise. With a larger (richer)
J , the criterion is more expensive to compute, and its best possible value is
generally larger, so it will have less discriminating power for the more important
low-dimensional projections. In practice, the weights are often taken all equal
to 1.

14

Specific instances of these criteria, and search results for good parameters
for specific types of digital nets, are reported in [64, 21, 65, 63]. A special case of
the first of these four criteria has been widely used to assess the uniformity of
F2-linear RNGs [45, 66, 31, 67, 10, 42].

7 Conclusion

Low-discrepancy point sets and sequences used for QMC, and the point sets
formed by vectors of successive output values produced by RNGs, have much
in common. They are often defined via similar linear recurrences. We also want
both of them to be highly uniform in the unit hypercube. However, the figures of
merit commonly used to measure their uniformity are slightly different. One of
the reasons for this difference is the difference of cardinality between those types
of point sets: For RNGs, the cardinality is huge and we must restrict ourselves
to criteria that can be computed without enumerating the points explicitly, for
example. For QMC, on the other hand, certain discrepancies are motivated by
the fact that they provide explicit error bounds or variance bounds on certain
classes of functions.

References

1. Knuth, D.E.: The Art of Computer Programming, Volume 2: Seminumerical Al-
gorithms. Third edn. Addison-Wesley, Reading, MA (1998)

2. L’Ecuyer, P.: Uniform random number generation. Annals of Operations Research
53 (1994) 77–120

3. L’Ecuyer, P.: Uniform random number generation. In Henderson, S.G., Nelson,
B.L., eds.: Simulation. Handbooks in Operations Research and Management Sci-
ence. Elsevier, Amsterdam, The Netherlands (2006) 55–81 Chapter 3.

4. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods.
Volume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathe-
matics. SIAM, Philadelphia, PA (1992)

5. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis. Third edn. McGraw-
Hill, New York, NY (2000)

6. L’Ecuyer, P., Buist, E.: Simulation in Java with SSJ. In Kuhl, M.E., Steiger, N.M.,
Armstrong, F.B., Joines, J.A., eds.: Proceedings of the 2005 Winter Simulation
Conference, Pistacaway, NJ, IEEE Press (2005) 611–620

7. L’Ecuyer, P.: Pseudorandom number generators. In Platen, E., Jaeckel, P., eds.:
Simulation Methods in Financial Engineering. Encyclopedia of Quantitative Fi-
nance. Wiley (2008) Forthcoming.

8. Deng, L.Y.: Efficient and portable multiple recursive generators of large order.
ACM Transactions on Modeling and Computer Simulation 15(1) (2005) 1–13

9. L’Ecuyer, P., Simard, R.: TestU01: A C library for empirical testing of random
number generators. ACM Transactions on Mathematical Software 33(4) (August
2007) Article 22

10. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators
based on linear recurrences modulo 2. ACM Transactions on Mathematical Soft-
ware 32(1) (2006) 1–16

15

11. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Mathe-
matics of Computation 67 (1998) 299–322

12. Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature? In
Niederreiter, H., Spanier, J., eds.: Monte Carlo and Quasi-Monte Carlo Methods
1998, Berlin, Springer-Verlag (2000) 16–55

13. L’Ecuyer, P., Lemieux, C.: Recent advances in randomized quasi-Monte Carlo
methods. In Dror, M., L’Ecuyer, P., Szidarovszky, F., eds.: Modeling Uncertainty:
An Examination of Stochastic Theory, Methods, and Applications. Kluwer Acad-
emic, Boston (2002) 419–474

14. L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized quasi-Monte Carlo simulation
method for Markov chains. Operations Research (2008) To appear.

15. Hickernell, F.J., Sloan, I.H., Wasilkowski, G.W.: On strong tractability of weighted
multivariate integration. Mathematics of Computation 73(248) (2004) 1903–1911

16. Ben-Ameur, H., L’Ecuyer, P., Lemieux, C.: Combination of general antithetic
transformations and control variables. Mathematics of Operations Research 29(4)
(2004) 946–960

17. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Management
Science 46(9) (2000) 1214–1235

18. Owen, A.B.: Latin supercube sampling for very high-dimensional simulations.
ACM Transactions on Modeling and Computer Simulation 8(1) (1998) 71–102

19. Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for
multiple integration. SIAM Journal on Numerical Analysis 13(6) (1976) 904–914

20. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Clarendon Press,
Oxford (1994)

21. L’Ecuyer, P., Lemieux, C.: Quasi-Monte Carlo via linear shift-register sequences.
In: Proceedings of the 1999 Winter Simulation Conference, IEEE Press (1999)
632–639

22. Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer-Verlag,
Berlin (1999)

23. Liu, R., Owen, A.B.: Estimating mean dimensionality. manuscript (2003)
24. Wang, X., Sloan, I.H.: Why are high-dimensional finance problems often of low

effective dimension? SIAM Journal on Scientific Computing 27(1) (2005) 159–183
25. Caflisch, R.E., Morokoff, W., Owen, A.: Valuation of mortgage-backed securities

using Brownian bridges to reduce effective dimension. The Journal of Computa-
tional Finance 1(1) (1997) 27–46

26. Avramidis, T., L’Ecuyer, P.: Efficient Monte Carlo and quasi-Monte Carlo option
pricing under the variance-gamma model. Management Science 52(12) (2006)
1930–1944

27. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer-Verlag,
New York (2004)

28. Imai, J., Tan, K.S.: A general dimension reduction technique for derivative pricing.
Journal of Computational Finance 10(2) (2006) 129–155

29. Morokoff, W.J.: Generating quasi-random paths for stochastic processes. SIAM
Review 40(4) (1998) 765–788

30. Wang, X., Sloan, I.H.: Brownian bridge and principal component analysis: Toward
removing the curse of dimensionality. IMA Journal of Numerical Analysis 27
(2007) 631–654

31. L’Ecuyer, P., Panneton, F.: F2-linear random number generators. In Alexopoulos,
C., Goldsman, D., eds.: Advancing the Frontiers of Simulation: A Festschrift in
Honor of George S. Fishman. Springer-Verlag, New York (2007) To appear.

16

32. L’Ecuyer, P.: Good parameters and implementations for combined multiple recur-
sive random number generators. Operations Research 47(1) (1999) 159–164

33. L’Ecuyer, P.: Tables of linear congruential generators of different sizes and good
lattice structure. Mathematics of Computation 68(225) (1999) 249–260

34. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer
Series in Operations Research. Springer-Verlag, New York, NY (1996)

35. Wahba, G.: Spline Models for Observational Data. Volume 59 of SIAM CBMS-
NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA
(1990)

36. L’Ecuyer, P., Couture, R.: An implementation of the lattice and spectral tests
for multiple recursive linear random number generators. INFORMS Journal on
Computing 9(2) (1997) 206–217

37. Marsaglia, G., Zaman, A.: A new class of random number generators. The Annals
of Applied Probability 1 (1991) 462–480

38. Tezuka, S., L’Ecuyer, P., Couture, R.: On the add-with-carry and subtract-with-
borrow random number generators. ACM Transactions of Modeling and Computer
Simulation 3(4) (1994) 315–331

39. Couture, R., L’Ecuyer, P.: Distribution properties of multiply-with-carry random
number generators. Mathematics of Computation 66(218) (1997) 591–607

40. Goresky, M., Klapper, A.: Efficient multiply-with-carry random number generators
with maximal period. ACM Transactions on Modeling and Computer Simulation
13(4) (2003) 310–321

41. Golomb, S.W.: Shift-Register Sequences. Holden-Day, San Francisco (1967)
42. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic

Publishers, Norwell, MA (1995)
43. L’Ecuyer, P.: Tables of maximally equidistributed combined LFSR generators.

Mathematics of Computation 68(225) (1999) 261–269
44. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistrib-

uted uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation 8(1) (1998) 3–30

45. L’Ecuyer, P.: Maximally equidistributed combined Tausworthe generators. Math-
ematics of Computation 65(213) (1996) 203–213

46. L’Ecuyer, P., Panneton, F.: A new class of linear feedback shift register generators.
In Joines, J.A., Barton, R.R., Kang, K., Fishwick, P.A., eds.: Proceedings of the
2000 Winter Simulation Conference, Pistacaway, NJ, IEEE Press (2000) 690–696

47. Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Good lattice rules in weighted
Korobov spaces with general weights. Numerische Mathematik 103 (2006) 63–97

48. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction
of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Mathe-
matics and Computers in Simulation 75 (2006) 903–920

49. Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte
Carlo rules that achieve strong tractability error bounds in weighted Sobolev
spaces. Mathematics of Computation 71 (2002) 1609–1640

50. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multi-
variate integration. SIAM Journal on Scientific Computing 28(16) (2006) 2162–
2188

51. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice
rules with a non-prime number of points. Journal of Complexity 22 (2006) 4–28

52. Dick, J., Sloan, I.H., Wang, X., Wozniakowski, H.: Liberating the weights. Journal
of Complexity 20(5) (2004) 593–623

17

53. Kuo, F.Y., Sloan, I.H.: Lifting the curse of dimensionality. Notices of the AMS
52(11) (2005) 1320–1328

54. Sobol’, I.M.: The distribution of points in a cube and the approximate evaluation
of integrals. U.S.S.R. Comput. Math. and Math. Phys. 7 (1967) 86–112

55. Faure, H.: Discrépance des suites associées à un système de numération en dimen-
sion s. Acta Arithmetica 61 (1982) 337–351

56. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatshefte für
Mathematik 104 (1987) 273–337

57. Niederreiter, H., Xing, C.: The algebraic-geometry approach to low-discrepancy
sequences. In Hellekalek, P., Larcher, G., Niederreiter, H., Zinterhof, P., eds.:
Monte Carlo and Quasi-Monte Carlo Methods 1996. Volume 127 of Lecture Notes
in Statistics., New York, NY, Springer-Verlag (1998) 139–160

58. L’Ecuyer, P.: Polynomial integration lattices. In Niederreiter, H., ed.: Monte Carlo
and Quasi-Monte Carlo Methods 2002, Berlin, Springer-Verlag (2004) 73–98

59. Lemieux, C., L’Ecuyer, P.: Randomized polynomial lattice rules for multivariate
integration and simulation. SIAM Journal on Scientific Computing 24(5) (2003)
1768–1789

60. L’Ecuyer, P., Touzin, R.: On the Deng-Lin random number generators and related
methods. Statistics and Computing 14 (2004) 5–9

61. Niederreiter, H., Pirsic, G.: Duality for digital nets and its applications. Acta
Arithmetica 97 (2001) 173–182

62. Schmid, W.C., Schürer, R.: MinT, the database for optimal (t, m, s)-net parame-
ters. http://mint.sbg.ac.at (2005)

63. Panneton, F., L’Ecuyer, P.: Infinite-dimensional highly-uniform point sets defined
via linear recurrences in F2w . In Niederreiter, H., Talay, D., eds.: Monte Carlo and
Quasi-Monte Carlo Methods 2004, Berlin, Springer-Verlag (2006) 419–429

64. Joe, S., Kuo, F.Y.: Constructing Sobol sequences with better two-dimensional
projections. SIAM Journal on Scientific Computing (2008) to appear.

65. Lemieux, C.: L’utilisation de règles de réseau en simulation comme technique de
réduction de la variance. PhD thesis, Université de Montréal (May 2000)

66. L’Ecuyer, P., Panneton, F.: Fast random number generators based on linear recur-
rences modulo 2: Overview and comparison. In: Proceedings of the 2005 Winter
Simulation Conference, IEEE Press (2005) 110–119

67. Panneton, F., L’Ecuyer, P.: On the xorshift random number generators. ACM
Transactions on Modeling and Computer Simulation 15(4) (2005) 346–361

