
Static Network Reliability Estimation
Via Generalized Splitting
Zdravko I. Botev, Pierre L’Ecuyer

DIRO, Université de Montreal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, CANADA,
{botev@iro.umontreal.ca, lecuyer@iro.umontreal.ca}

Gerardo Rubino
INRIA Rennes Bretagne Atlantique, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, FRANCE,

gerardo.rubino@inria.fr

Richard Simard
DIRO, Université de Montreal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H3C 3J7, CANADA,

simardr@iro.umontreal.ca

Bruno Tuffin
INRIA Rennes Bretagne Atlantique, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, FRANCE,

bruno.tuffin@inria.fr

We propose a novel simulation-based method that exploits a generalized splitting (GS) algo-

rithm to estimate the reliability of a graph (or network), defined here as the probability that

a given set of nodes are connected, when each link of the graph is failed with a given (small)

probability. For large graphs, in general, computing the exact reliability is an intractable

problem and estimating it by standard Monte Carlo methods poses serious difficulties, be-

cause the unreliability (one minus the reliability) is often a rare-event probability. We show

that the proposed GS algorithm can accurately estimate extremely small unreliabilities and

we exhibit large examples where it performs much better than existing approaches. It is

also flexible enough to dispense with the frequently made assumption of independent edge

failures.

Key words: Network Reliability, Generalized Splitting, Graph Connectivity, Gibbs sampling,

Permutation Monte Carlo, Rare-Event Simulation, Conditional Monte Carlo.

History: Submitted October 24, 2011

1. Introduction

We consider the problem of estimating the static reliability of a graph (or network), defined

as the probability that a given set of nodes are connected by operating links, where each link

of the graph is in the operational state with a given probability, called the reliability of the

link. Equivalently, we estimate the unreliability, defined as the complementary probability.

1

This problem is encountered in a wide range of applications such as telecommunications,

transportation, energy supply systems, and social networking, among others (Cancela et al.,

2009a; Gertsbakh and Shpungin, 2010).

If the graph has m links, then the configuration of all links (operating or failed) can be

given by an m-dimensional binary vector with 2m possible values, and the reliability can

be computed (in principle) by computing and adding the probabilities of all configurations

in which the graph is operational (that is, the selected nodes are connected). But as m

increases, running through the 2m configurations quickly becomes impractical. In fact, the

exact calculation of network reliability (or even just counting the number of operational

configurations) is a #P-complete problem (Ball and Provan, 1982; Colbourn, 1987). Other

exact methods, for example based on cuts, paths, and various reductions, and the methods

that approximate and bound the network reliability (Barlow and Marshall, 1964; Barlow and

Proschan, 1975; Burtin and Pittel, 1972; Esary et al., 1967) are impractical in general for

large graphs and their applicability depends heavily on the topology of the network.

All effective algorithms for estimating the reliability of large networks are based on some

form of Monte Carlo sampling combined with variance reduction ideas. The standard (or

crude) Monte Carlo method consists of simulating n independent copies of the binary vector

that represents the states of the m links and counting how many of the corresponding graphs

are operational. This number divided by n is an unbiased estimator of the reliability. How-

ever, in applications, the unreliability is often very small (e.g., smaller than 10−10), in which

case the situation where the selected nodes are not connected is a rare event, so crude Monte

Carlo is very ineffective and variance reduction techniques are essential. Several variance

reduction methods have been proposed for this problem. Among the most prominent ones,

we find conditional Monte Carlo approaches (Cancela and El Khadiri, 2003; Cancela et al.,

2009b; Elperin et al., 1991; Gertsbakh and Shpungin, 2010; Lomonosov and Shpungin, 1999),

methods that change the sampling distribution (usually by concentrating the sampling in

subsets of the sample space where there is more uncertainty, using paths and cuts to deter-

mine those subsets) (Fishman, 1986; Manzi et al., 2001; Zenklusen and Laumanns, 2011),

approximate zero-variance importance sampling (L’Ecuyer et al., 2011), and combinations

of those (Cancela et al., 2010). There are many more. Cancela et al. (2009a) survey and

compare the best available methods so far for large highly-reliable networks. They con-

clude that one of the best performing methods is that of Hui et al. (2005), which combines

a cross-entropy technique with the merge process (also called turnip method) described in

2

Gertsbakh and Shpungin (2010). On the other hand, Hui et al. (2005) observe that the

cross-entropy technique only brings a limited improvement over the turnip alone (at best a

factor 1.5 of variance reduction in their examples), and requires additional work. For this

reason, in this paper, the performance comparison of our method with others is focused on

the turnip, which furthermore uses a similar dynamic representation of the problem. Note

that other methods can be more efficient for certain particular examples, depending on the

network topology, its size, and its reliability. No method is a universal winner. Some meth-

ods provide estimators having (provably) bounded relative error when the link unreliabilities

converge to 0 while the network topology and size remain fixed. The method in L’Ecuyer

et al. (2011) even has vanishing relative error, which means that the relative error converges

to 0 when the unreliabilities converge to 0, under some conditions. A method having one of

those properties will eventually win over a method that does not have it, when the unreliabil-

ities become small enough, but not necessarily if the component unreliabilities are not very

small (the network can still have a very small unreliability if it is large and can fail in many

ways). All the efficient methods mentioned above assume that the links fail independently.

The important situation where the link failures are dependent has received little attention

so far. Our proposal is able to deal with this situation.

The new method proposed here is an adaptation of the generalized splitting (GS) algo-

rithm introduced by Botev and Kroese (2010), which is itself a modification of the classical

multilevel splitting methodology for rare-event simulation (L’Ecuyer et al., 2009). The gen-

eral idea of GS is to define a discrete-time Markov chain whose state (at any given step)

represents a realization of the random variables involved in the simulation. This chain evolves

by resampling these random variables (at each step) under a conditional distribution that

pushes the chain toward a state that corresponds to the rare event of interest. In our context,

this rare event occurs when the network is in a non-operating state, and the simulation (gen-

erating the link states) normally involves generating a vector of m binary random variables.

However, GS does not work very well with such a binary vector as a state of the Markov

chain, because we do not have a simple way of measuring how close each binary vector is to

the rare event. To make GS work effectively, we use an artificial state that contains more

information than the binary vector, based on a scheme borrowed from Elperin et al. (1991)

and Lomonosov (1974, 1994). The idea is to transform the static model into a dynamic one

by assuming that all the links start in the failed state at time 0 and that each link is “re-

paired” after a random time, whose distribution is selected so that the probability of repair

3

at time 1 is the reliability of the link. Thus, the reliability of the graph is the probability

that it is operational at time 1, and the crude Monte Carlo algorithm can be reformulated

as follows: Generate the vector of repair times and check if the graph is operational at time

1, repeat this n times independently, and estimate the reliability by the proportion of those

graphs that are operational. So far, this is just equivalent to crude Monte Carlo, but if we

take the vector Y of repair times as the state of the system (we call it the latent state of

the graph) then we can compute at what time the graph becomes operational and use this

number to measure how close we are to the rare event. Our GS implementation exploits this

feature. Note that the coordinates of Y do not have to be independent, so it is possible (at

least in principle) to handle dependence between the component failures.

For any latent state Y, let S(Y) denote the first time when the graph becomes operational

with this Y, and call it the score or measure of importance of Y. Ideally, we would like to

sample Y (repeatedly) from its distribution conditional on S(Y) > 1 (i.e., the graph being

not yet operational at time 1). To achieve this with GS, we first partition the interval [0, 1]

by fixed levels 0 = γ0 < γ1 < · · · < γτ = 1. At stage t of the algorithm, for t ≥ 1, we

have a collection of latent states Y (not necessarily independent) from their distribution

conditional on S(Y) > γt−1. For each of them, we construct a Markov chain starting in

that latent state, and which evolves by resampling some of the link repair times under their

distribution conditional on the score remaining larger than γt−1. While running all those

chains for a given number of steps, we collect all the visited latent states Y whose score is

above γt, and use them for the next stage. By discarding the latent states with score below

γt and starting new chains from those with score above γt, and repeating this at each stage,

we favor the latent states with larger repair times and eventually obtain a sufficiently large

number of states with score above 1. Based on the number of steps of the Markov chains

at each stage, and the proportion of latent states that reach the final level, we obtain an

unbiased estimator of P[S(Y) > 1], which is the graph unreliability.

The remainder is organized as follows. In Section 2, we define the static reliability problem

considered in this paper. In Section 3, we give a formulation with latent variables and discuss

alternative choices of repair time distributions. In Section 4, we state our GS algorithm, and

detail an implementation based on Gibbs sampling for the case of independent links. In

Section 5 we provide an adaptive pilot algorithm to estimate good choices of the levels. In

Section 6, we give the details of an appropriate data structure to represent the graph and

its connectivity structure for the current state Y of the Markov chain, for an effective GS

4

implementation. Numerical experiments reported in Section 7 show that the GS method

can outperform the best other available methods on some large examples. In Section 8, we

discuss the case of dependent links, where the dependence is captured via a copula, and we

show that, unlike other methods, GS also applies in that context.

2. The static graph reliability problem

We consider an undirected graph G = (V , E) with a set of vertices (or nodes) V and a set

of edges (or links) E . Each edge can be either operational or failed. The configuration of

the system can be denoted by x = (x1, . . . , xm) where m is the number of edges, xi = 1 if

edge i is operational, and xi = 0 if edge i is failed. Let G(x) denote the subgraph of G that

contains only the edges i for which xi = 1.

A subset of nodes V0 ⊂ V is selected a priori and the system (or graph) is said to be

operational in the configuration x if all nodes in V0 are connected to each other by at least

one path in G(x). Let Ψ(x) = 1 when the system is operational and Ψ(x) = 0 otherwise.

This function Ψ is referred to as the structure function of the graph (Barlow and Proschan,

1975).

Suppose that edge i is operational with probability ri, so the system’s configuration

is a random vector X = (X1, . . . , Xm) where P(Xi = 1) = ri = 1 − P(Xi = 0). It is

typically assumed in the literature that the Xi’s are independent. Here, we consider both

the independent and dependent cases. In the dependent case, X has a multivariate Bernoulli

distribution, which may be specified via a copula, as explained in Section 8. The goal is to

estimate r = P(Ψ(X) = 1), the reliability of the system.

An important special case is the two-terminal network reliability problem, where V0

contains only two nodes, V0 = {v0, v1}, and Ψ(x) = 1 if and only if there is a path between

v0 and v1. Another special case of interest is the all-terminal network reliability problem,

where V0 = V , so Ψ(x) = 1 if and only if all nodes are connected.

Standard Monte Carlo estimates r by generating n independent realizations of X, and

taking the average of the n replicates of Ψ(X) as an estimator of r, or equivalently taking

the average of the n replicates of 1−Ψ(X) as an estimator of the unreliability u = 1−r. The
square relative error (the relative variance) of this estimator of u is r/(nu), which increases

to infinity when u→ 0. For highly-reliable systems, u is very small, so we have a rare-event

situation, and n must be very large to get a meaningful estimator. For example, if u = 10−10,

5

we need n > 1012 to obtain a relative error below 10%. This is much too inefficient and better

sampling strategies are needed.

3. A time-dependent formulation with latent variables

Inspired by the graph evolution method in Elperin et al. (1991), we turn the static system

into a fictive dynamic model where all edges are initially failed, and edge i becomes opera-

tional (repaired) at some random time Yi, where Yi has a continuous cumulative distribution

function (cdf) Fi for which Fi(0) = 0 and Fi(1) = ri. This vector Y = (Y1, . . . , Ym) is the

latent state of the system.

We start with the situation where the Xi’s are assumed independent (the dependent case

is discussed in Section 8). Then, the Yi are also taken as independent and they are easy to

generate by inverting Fi. Note that P[Yi ≤ γ] = Fi(γ) and P[Yi ≤ 1] = Fi(1) = ri. We define

Xi(γ) = I(Yi ≤ γ) for all γ ≥ 0, where I is the indicator function, and Xi = Xi(1). The

random variable Xi(γ) gives the status of link i at time γ. The resulting random variables

X = (X1, . . . , Xm) and Ψ(X) have exactly the same distributions as for the original static

model. The interpretation is that the components (or edges) become operational one by one

at random times and we are interested in the reliability at time 1. We also define

S(Y) = inf{γ ≥ 0 : Ψ(X(γ)) = 1},

the first time when the graph becomes operational. The function S acts as an importance

function in the splitting method. The figure of merit S(Y) can be interpreted as a measure

of closeness of Y to a non-operational state (the higher the value, the closer we are, and

S(Y) > 1 means that the graph is already non-operational). We will explain in Section 6

how to compute S(Y) efficiently, for any Y, and update it when we change Y.

This reformulation with the latent variables Yi allows us to consider the reliability at any

time γ > 0: the configuration is X(γ) and the graph is operational if and only if Ψ(X(γ)) = 1.

Once the latent variables Yi are generated, we can compute from them an estimator of the

reliability for any γ > 0. Note that the “time” γ and the Yi’s here have nothing to do with

simulation time; they are just a convenient abstraction useful for the GS algorithm.

In Elperin et al. (1991, 1992); Gertsbakh and Shpungin (2010); Lomonosov (1974, 1994),

Lomonosov and Shpungin (1999), each Fi is taken as an exponential distribution with rate

λi = − ln(1 − ri) (or mean 1/λi). Then P[Yi ≤ γ] = 1 − e−λiγ = 1 − (1 − ri)
γ and

6

P[Yi ≤ 1] = ri. To generate Yi by inversion in this case, we generate Ui ∼ U(0, 1) and return

Yi = ln(1 − Ui)/ ln(1 − ri). A simpler choice is the uniform distribution over the interval

[0, 1/ri], for which P[Yi ≤ γ] = riγ. In this case, Yi is generated via Yi = Ui/ri. Another

possible choice is the normal distribution with mean 0 and standard deviation σ = 1/Φ−1(ri),

for which P[Yi ≤ γ] = P[Yi/σ ≤ γ/σ] = Φ(γ/σ), where Φ is the standard normal cdf. Here,

we can generate Yi via Yi = Φ−1(Ui)/Φ
−1(ri). This one can be used for the modeling of

dependent links via a normal copula, as we will see later. Note that in this case, the repair

times Yi are generated over (−∞,∞), and we must take γ0 = −∞ instead of γ0 = 0.

Changing the distributions Fi, for example from exponential to uniform, does not change

the distribution of the graph state at time γ = 1, but it can change the distribution of the

repair permutation (the order in which the links are repaired) when the ri are not all equal.

To illustrate this, consider two links, with reliabilities r1 = 0.99 and r2 = 0.5. Suppose that

their repair times are generated by inversion from U1 = 0.693 and U2 = 0.25, respectively. If

the Yi are taken as exponential, this gives Y1 ≈ 0.2564 and Y2 ≈ 0.4150, so Y1 < Y2, whereas

if they are taken as uniform, this gives Y1 = 0.7 and Y2 = 0.50, so Y1 > Y2. The performance

of the GS method may thus depend on the choice of distribution Fi, because the chains that

are selected for splitting at intermediate levels may differ. On the other hand, if r1 = r2

and if we assume that the same type of distribution Fi is used for all components (we see

no reason for doing otherwise), then Y1 < Y2 if and only if U1 < U2 for all choices of Fi,

which means that the order of repairs is the same for all continuous repair-time distributions,

including the exponential and the uniform. This implies that if all the links have the same

reliability and we use the same Fi for all i, all choices of repair distributions are equivalent.

4. A generalized splitting algorithm

We adapt to the present setting the GS algorithm introduced by Botev and Kroese (2010).

This provides an efficient way to sample sufficiently many latent states Y in the region where

S(Y) > 1 and obtain from that an unbiased estimator of the unreliability u = P[S(Y) > 1].

This algorithm is a modification of the classical multilevel splitting method used for rare-

event simulation (Ermakov and Melas, 1995; Garvels et al., 2002; Glasserman et al., 1999;

Kahn and Harris, 1951; L’Ecuyer et al., 2006, 2007, 2009). In the GS algorithm, we first

choose an integer s ≥ 2, called the splitting factor, then we select an integer τ > 0 and real

7

numbers 0 = γ0 < γ1 < · · · < γτ = 1 for which

ρt
def
= P[Ψ(X(γt)) = 0 | Ψ(X(γt−1)) = 0] = P[S(Y) > γt | S(Y) > γt−1] ≈ 1/s (1)

for t = 1, . . . , τ (except for ρτ , which can be larger than 1/s). These γt represent the levels

of the splitting algorithm and τ is the number of levels. Good values can be estimated by

an (independent) adaptive pilot algorithm, as explained in Section 5. In Botev and Kroese

(2010), the authors typically use s = 10, so ρt ≈ 1/10, but this choice is arbitrary and has no

particular justification. Our empirical experiments with various choices of s (see Section 7)

suggest than s = 2 typically gives the most efficient estimator (i.e., whose product of variance

and expected computing time is smallest). The splitting factor of e2 ≈ 7.39 has been proved

optimal for classical multilevel splitting under simplifying assumptions, but this does not

apply to GS, which operates quite differently.

For each level γt, we construct a Markov chain {Yt,j, j ≥ 0} having a stationary density

equal to the density of Y conditional on S(Y) > γt, given by

ft(y)
def
= f(y)

I[S(y) > γt]

P[S(Y) > γt]
, (2)

where f ≡ f0 is the unconditional density of Y. The transition kernel density of this

Markov chain, which is the density of the next state Yt,j conditional on the current state

Yt,j−1, is denoted by κt(· | Yt,j−1). There are many possibilities for how to construct κt;

two of them, based respectively on Gibbs sampling and on hit-and-run, will be examined

later. Note that at the first level, generating Y conditional on S(Y) > γ0 is the same as

generating it unconditionally, so the density f0 is the same as f , and if a generated state Y

satisfies S(Y) > γ1, then its distribution is obviously the distribution of Y conditional on

S(Y) > γ1, so it has density f1. At the t-th stage, if a Markov chain starts from a state

having density ft−1 and evolves according to the kernel κt−1(· | Yt−1,j−1), then each visited

state also has density ft−1, which is a stationary density for the Markov chain with kernel

κt−1. In particular, the chain will never again go below the level γt−1 that we have already

reached.

Algorithm 1 states this procedure with a single starting chain. It computes an unbiased

estimator W of the unreliability u and returns its value. In the algorithm, Xt denotes a set

of latent states Y that have reached the level γt. Indentation delimits the scope of the if,

else, and for statements. This algorithm will be invoked n times, independently, to obtain n

realizationsW1, . . . ,Wn ofW , and one can estimate u by the average W̄n = (W1+· · ·+Wn)/n

8

Algorithm 1 : The GS algorithm; returns W , an unbiased estimate of u
Require: s, τ, γ1, . . . , γτ
Generate a repair-time vector Y from its unconditional density f .
if S(Y) > γ1 then
X1 ← {Y}

else
return W ← 0

for t = 2 to τ do
Xt ← ∅ // set of states that have reached the level γt
for all Y0 ∈ Xt−1 do

for j = 1 to s do
sample Yj from the density κt−1(· | Yj−1)
if S(Yj) > γt then

add Yj to Xt
return W ← |Xτ |/sτ−1 as an unbiased unreliability estimate.

and the variance σ2 = Var[W] by the empirical variance S2
n =

∑n
i=1(Wi − W̄n)2/(n − 1).

Proposition 1 states that these are unbiased estimates. From this, a confidence interval for

u can be computed in the usual way; for example [W̄n − 1.96Sn/
√
n, W̄n + 1.96Sn/

√
n] for

a 95% confidence interval based on the normal distribution.

Proposition 1 The empirical mean W̄n and variance S2
n defined above are unbiased esti-

mators of u and σ2, respectively.

Proof. The result follows directly from Proposition 3.1 of Botev and Kroese (2010).

Note that E[S2
n] = σ2 follows from the fact that the Wj are independent. 2

To sample Yj from the density κt−1(· | Yj−1) in the inner loop of the algorithm, in

the independent case, one possibility (which we adopt here) is to use Gibbs sampling as

follows. We first select a permutation of the m coordinate indexes {1, . . . ,m}. For example,

it could be just the identity permutation (the natural order), which gives the systematic scan

Gibbs sampler, or a new random permutation at each step, which gives the random scan

Gibbs sampler (Rubinstein and Kroese, 2007). Then we visit the coordinates one by one,

in the order specified by the permutation. When visiting coordinate Yi (say) of the current

vector Y, we erase and forget the current value of Yi and resample it from its distribution

conditional on S(Y) > γt−1, given the other coordinates of Y, so the chain will never again

go below the level γt−1 that we have already reached. If Y has density ft−1 and we resample

any of its coordinates as just described, then the modified Y still has density ft−1.

9

It turns out that there are just two possibilities for the conditional distribution of Yi
when we resample it. If we currently have Yi > γt−1 and if by adding link i to the current

configuration (changing Yi to a value smaller than γt−1) we would have S(Y) ≤ γt−1, i.e., if

adding link i makes the graph operational, then we must resample Yi from its distribution

conditional on Yi > γt−1. Otherwise, we resample it from its original distribution, which is

allowed because link i alone has no influence on the graph status given the current config-

uration of the other links. This Gibbs sampler is stated in Algorithm 2. In this algorithm,

(Y1, . . . , Yi−1, 0, Yi+1, . . . , Ym) represents the current vector Y but with component i forced

to be repaired at time 0, so the condition S(Y1, . . . , Yi−1, 0, Yi+1, . . . , Ym) ≤ γt−1 means that

the graph becomes operational at level γt−1 when component i is forced to be operational.

Algorithm 2 : Gibbs sampling for the transition density κt−1 in the independent case
Require: Y = (Y1, . . . , Ym) for which S(Y) > γt−1 and a permutation π of {1, . . . ,m}.

for k = 1 to m do
i← π(k)
if S(Y1, . . . , Yi−1, 0, Yi+1, . . . , Ym) ≤ γt−1 then

resample Yi from its density truncated to (γt−1,∞)
else

resample Yi from its original density
return Y as the resampled vector.

For the situation where the links are independent, when the Yi are uniform over [0, 1/ri],

their distribution conditional on Yi > γ is uniform over (γ, 1/ri]. If Yi is exponential with

rate λi, then the conditional distribution is that of an exponential with rate λi, shifted

to the right by γ, so we can just generate the exponential as usual and add γ. For the

normal distribution, we can generate Yi conditional on Yi > γ by generating U uniform over

(Φ(σγ), 1) and returning Yi = σΦ−1(U).

5. Pilot algorithm to estimate the levels

We now explain the adaptive pilot algorithm that we use to estimate the appropriate levels

γt for the GS algorithm. Given an integer s ≥ 2, we want to estimate the levels γt for which

(1) is satisfied. To do this, we first select a large integer n0, multiple of s. We generate n0

independent states Y from density f0 = f , and select γ1 so that exactly n0/s of them have

S(Y) > γ1. Then at each step t, for t = 2, 3, . . . , we run a Markov chain with transition

kernel density κt−1 for s steps from each of those n0/s states Y for which S(Y) > γt−1. This

10

gives another n0 states and we select γt so that exactly n0/s of them have S(Y) > γt. This

is done until γt ≥ 1 for some t. Then τ is set to this t and we put γτ = 1. This is stated in

Algorithm 3.

Algorithm 3 Adaptive pilot algorithm to estimate the appropriate levels.
Require: an integer s ≥ 2 and a large integer n0 multiple of s.
q ← n0 − n0/s
X1 ← ∅
for i = 1 to n0 do

generate a repair-time vector Y from density f and add it to X1

sort the elements of X1 by increasing order of S(Y), say Y(1), . . . ,Y(n0)

γ1 ← [S(Y(q)) + S(Y(q+1))]/2
t← 1
while γt < 1 do

t← t+ 1
Xt−1 ← {Y(q), . . . ,Y(n0)} // retain only the best n0/s elements from Xt−1

Xt ← ∅
for all Y0 ∈ Xt−1 do

for j = 1 to s do
sample Yj from the density κt−1(· | Yj−1) and add it to Xt

sort the elements of Xt by increasing order of S(Y), say Y(1), . . . ,Y(n0)

γt ← [S(Y(q)) + S(Y(q+1))]/2
τ ← t and γτ ← 1
return τ, γ1, . . . , γτ

In this algorithm, Xt denotes a set of latent states Y for which S(Y) > γt−1. When

this set contains n0 elements, we sort it to retain the n0/s states having the largest value

of S(Y), and we remove the other states from this set. The level γt is placed heuristically

midway between the (n0/s)th and the (n0/s+ 1)th largest values of S(Y).

6. Data structures for an efficient implementation

An efficient implementation of the GS algorithm requires an adequate representation of the

graph so that the appropriate conditional distribution for resampling a link can always be

identified rapidly, and this representation must be easy to update (quickly) after a link has

been resampled. In our implementation, we use the following representation.

The basic structure of the graph is represented by a data structure (an object) that

contains the set of nodes and the set of edges, both stored in an array. Each node has a

list of adjacent edges and corresponding neighbors. Each edge i connects a pair of nodes j

11

and k (we write i = (j, k)) and has parameter ri. Other fixed parameters of the links, for

example the means 1/λi for the exponential distributions, can be memorized in this structure.

This structure is stored in a single object that does not change during the execution of the

algorithm.

During the execution of the GS algorithm, we keep track of the current vector Y =

(Y1, . . . , Ym) for each instance of the Markov chain. From this vector Y, we immediately

obtain X(γ), and we can eventually compute Ψ(X(γ)), for any level γ. But we want a data

structure that permits us to see immediately from what conditional distribution each Yi

should be resampled in the conditional Gibbs sampling at the current level γ, that tells us

immediately the value of X(γ), and that can be updated quickly after Yi is changed. The

information in this data structure (or object) represents the state of the Markov chain in the

splitting algorithm. It changes at each step of the chain and must be cloned each time we

make a new copy of the chain. Therefore, it must be kept small.

In our implementation, at the current level γt−1, we maintain the set of connected com-

ponents of the graph when the configuration is X(γt−1) by following the principles described

in Zaroliagis (2002). Any two vertices in the same connected component are connected by a

path formed by links i for which Xi(γt−1) = 1, and there is no such link if the two vertices are

in different connected components. Thus, the connected components form a partition of the

set V of vertices. In the terminology of dynamic connectivity algorithms, each component

is connected by (at least) some spanning tree, and the set of components form a forest of

spanning trees. For each vertex, we memorize the component (or tree) to which it currently

belongs.

When a given Yi is modified, if it was larger than the current level γt−1 and it becomes

smaller, then link i is added to the configuration. If this link connects two nodes j and k

in the same component, there is nothing to do, otherwise the two components are merged

into a single one. This is straightforward. If Yi was smaller than the current level γt−1 and

it becomes larger, then link i must be removed from the configuration. If i = (j, k), then

we must check if there is still a path between j and k after removing link i; if not, then the

component (or tree) that contains these nodes must be split in two. This verification is on

average the most time-consuming task. We do it via a breadth-first search (BFS) algorithm

that starts from j and tries to connect with k, using only the links that are up and connect

nodes that belong to the (previous) tree that contained j and k. Our implementation is

adapted from the C++ graph package LEDA (Zaroliagis, 2002; Italiano, 2009). The state

12

representation as a forest of spanning trees reduces the number of calls to the (expensive)

BFS algorithm, because any link that does not belong to a spanning tree can be removed

without invoking BFS.

When the level is increased, say from γt−1 to γt, we take all the links i for which γt−1 <

Yi ≤ γt, set Xi = 1 for these links (they are added to the current configuration), and we

merge the connected components that these added links may connect.

In the special case where V0 = {v0, v1} (only two nodes), we resample conditional on

Yi > γ if and only if v0 and v1 are in two different components (trees) and link i connects

these same two components. This is straightforward to check from the data structure.

In the GS and pilot algorithms, we must also check, at each step of the chain, if the next

level has been reached or not. That is, if we are simulating at level γt−1, after each step

of the Markov chain we must check if Ψ(X(γt)) = 0, i.e., if the nodes of V0 are still not

connected at the next level γt. If Ψ(X(γt)) = 0, then we make a copy of the chain and insert

it in the set Xt, so that it can be used as one of the starting points at the next stage. To

compute Ψ(X(γt)), we temporarily add the links i for which γt−1 < Yi ≤ γt, and check if it

connects the nodes in V0.

7. Numerical examples

In this section, we report numerical experiments with the GS algorithm. The reported

results are a representative selection from a larger set of experiments that we performed.

Unless indicated otherwise, the link unreliabilities qi are all equal to the same constant q,

the splitting factor is s = 2 (in our experiments this was always the best choice), the levels

were estimated from the adaptive Algorithm 3 with n0 = 104, and we used uniform lifetime

distributions. For each graph, we tried several values of q. GS was applied with n = 106 in

most cases, but sometimes with n = 107 or 108 when deemed necessary to make the results

more meaningful. In the tables, we report the number τ of levels specified by Algorithm 3,

the unreliability estimate W̄n, the empirical relative variance of W , S2
n/(W̄n)2, the relative

error of W̄n, defined as RE[W̄n] = Sn/(
√
nW̄n), the CPU time T (in seconds) required by

the n runs of the GS algorithm, and the work-normalized relative variance (WNRV) of W̄n,

defined as WNRV[W̄n] = T × RE2[W̄n]. The latter measure is approximately independent

of n, when n is large. It is appropriate for comparing unbiased estimators by taking into

account both the variance and the computing time. On the other hand, the computing time

13

may depend strongly on the computing platform and the quality of the implementation. For

this reason, the WNRV is not always a definitive measure and it is also relevant to look at

the relative variance S2
n/(W̄n)2.

We also compare the performance of GS with the permutation Monte Carlo of Elperin

et al. (1991), and its improvement, the turnip method described in Gertsbakh and Shpungin

(2010), which is one of the most effective algorithms that we know.

7.1 The dodecahedron graph

We start with the dodecahedron graph illustrated in Figure 1, and often used as a benchmark

for network reliability estimation methods (Cancela et al., 2009a,b). This graph has 20 nodes

and 30 links. The system is operational when nodes 1 and 20 (shaded) are connected.

Figure 1: A dodecahedron graph with 20 nodes and 30 links. The sets of links {1, 2, 3} and
{28, 29, 30} form two important disjoint cuts: Among the minimal cuts that separate nodes
1 and 20, they are the two cuts with the smallest number of links.

In Table 1, we compare some values of the split factor s for q = 10−3, for which the

graph unreliability is approximately 2×10−9, and n = 107. When s increases, the number of

levels decreases (as expected). We also find that the CPU time decreases, but the variance

increases at a faster rate, and the WNRV increases as a result. Thus, s = 2 seems to be the

optimal value. We made similar experiments with other examples and observed the same

type of behavior. An intuitive explanation is that with a smaller s, the computing effort is

readjusted more frequently toward the chains that have already passed the next threshold.

14

Table 1: GS for the dodecahedron: n = 107, q = 10−3, V0 = {1, 20}
split factor 2 5 10 20
τ 29 13 9 7
W̄n 2.004e-9 2.017e-9 2.019e-9 1.988e-9
S2
n/(W̄n)2 60.2 265 829 2241

RE[W̄n] 0.00245 0.00515 0.00911 0.015
T (sec) 2408 969 638 519
WNRV[W̄n] 0.0145 0.0257 0.0529 0.116

Table 2: GS for the dodecahedron: n = 106, V0 = {1, 20}
q 10−1 10−2 10−3 10−4 10−5 10−6

τ 9 19 29 39 49 59
W̄n 0.002877 2.054e-6 2.022e-9 2.01e-12 1.987e-15 1.969e-18
S2
n/(W̄n)2 16.211 38.388 59.101 79.179 98.37 124.49

RE[W̄n] 0.0040 0.0062 0.0077 0.0089 0.0099 0.0112
T (sec) 93 167 224 278 334 376
WNRV[W̄n] 0.0015 0.0064 0.0132 0.0221 0.0329 0.0469

Table 2 reports simulation results with n = 106, for link unreliabilities q ranging from

10−1 to 10−6, giving unreliabilities u from 3 × 10−3 to 2 × 10−18, approximately. Both the

relative error and the CPU time T increase very slowly when q decreases. The increase in T is

essentially due to the fact that there are more levels when the unreliability gets smaller. The

slow increase in RE is apparently due to an accumulation of noise (variance) from level to

level. Thus, GS does not appear to have bounded relative error. However, the relative error

remains quite reasonable (around 1.1%) even for the smallest graph unreliability of 2×10−18.

With exponential instead of uniform lifetime distributions, the CPU times increase by about

35% for q = 10−1, up to 70% for q = 10−9.

Table 3: GS for the dodecahedron: n = 106, V0 = {1, 4, 7, 10, 13, 16, 20}
q 10−1 10−2 10−3 10−4 10−5 10−6

τ 7 18 28 37 48 57
W̄n 0.009047 7.188e-6 6.997e-9 7.024e-12 6.853e-15 7.128e-18
S2
n/(W̄n)2 12.675 33.849 54.683 74.732 91.04 110.81

RE[W̄n] 0.0036 0.0058 0.0074 0.0086 0.0095 0.0105
T (sec) 75 154 212 260 331 379
WNRV[W̄n] 0.00095 0.0052 0.0116 0.0195 0.0302 0.0420

15

Table 4: GS for the dodecahedron with random qi’s: n = 106, V0 = {1, 20}
τ 18 25 27 20 23 21
W̄n 5.636e-6 4.289e-8 1.209e-8 1.363e-6 2.019e-7 6.258e-7

Uni- S2
n/(W̄n)2 50.172 68.585 910.06 47.466 57.644 58.975

form RE[W̄n] 0.0071 0.0083 0.0302 0.0069 0.0076 0.0077
T (sec) 164 200 226 177 188 176
WNRV[W̄n] 0.0082 0.0137 0.2060 0.0084 0.0108 0.0104
τ 18 25 27 20 23 21
W̄n 5.659e-6 4.296e-8 1.213e-8 1.362e-6 2.005e-7 6.256e-7

Expo- S2
n/(W̄n)2 38.521 60.355 55.67 42.514 53.284 43.481

nential RE[W̄n] 0.0062 0.0078 0.0075 0.0065 0.0073 0.0066
T (sec) 215 283 302 240 269 241
WNRV[W̄n] 0.0083 0.0171 0.0168 0.0102 0.0143 0.0105

To illustrate the fact that GS works well for an arbitrary set of terminal nodes, we

report in Table 3 our results for a larger set V0, selected (somewhat randomly) as V0 =

{1, 4, 7, 10, 13, 16, 20}. The graph is operational when all these nodes are connected, so the

unreliability is larger than for V0 = {1, 20}. The relative errors and the CPU times are very

similar to those for V0 = {1, 20}.
We performed empirical investigations on the impact of the choice of distribution for the

repair times Yi’s when the qi’s are different. Overall, although the CPU times are slightly

smaller with the uniform, our experiments suggest that the exponential distribution is a

more robust choice in general, in the sense that it seems to provide more reliable mean

and variance estimators. As a representative illustration, Table 4 reports the results of

an experiment where the 30 link unreliabilities qi were generated randomly as qi = 10−ei ,

with the ei independent and uniformly distributed over the interval [1, 4]. After generating

the qi’s, we applied the pilot algorithm with n0 = 104 to determine the levels γt, then we

applied GS with n = 106. This was done with the repair times generated first from the

uniform distribution (upper half of the table), then from the exponential distribution (lower

half), based on exactly the same uniform random numbers for each run (common random

numbers). This experiment was replicated six times, independently, and the six columns

of the table give the results of those six independent replications, which correspond to six

totally different choices of the link unreliabilities. We see that the CPU time T is always

larger with the exponential case, but the empirical variance is always smaller, by more than

an order of magnitude in one case (the third column in the table, for which the unreliability

16

is much smaller and the relative variance with the uniform is much larger than for the other

columns). The WNRV is marginally smaller with the uniform case (but not significantly

smaller), except for the third replication. In other examples that we tried, the WNRV was

a bit smaller for the exponential. The variance was always smaller for the exponential.

Recall that at the final iteration of GS (t = τ), each state Y for which S(Y) > 1, that

is for which Y ∈ Xτ , has been generated from the conditional density fτ of Y given that

the system is failed at time 1 (although these states are not independent and there is also

a dependence between their values and their number). Note that if the exact conditional

density fτ was used in an importance sampling scheme here, this would give zero variance

(L’Ecuyer and Tuffin, 2008; L’Ecuyer et al., 2011). The empirical distribution of the states

Y ∈ Xτ collected at the end of the n runs of the GS algorithm provides an approximation of

this conditional distribution. To get an idea of its behavior for the dodecahedron example,

we computed the average of each coordinate of Y over all states Y ∈ Xτ , for q = 10−6,

for the case of exponential repair times. Note that the original (unconditional) mean repair

time in this case is 1/λi = −1/ ln q = 1/(6 ln 10) ≈ 0.07238. Denoting µ̂i the empirical

average for coordinate i (that is, the average repair time for edge i), we found µ̂1 = 0.5714,

µ̂2 = 0.5714, µ̂3 = 0.5712, µ̂28 = 0.5733, µ̂29 = 0.5734, µ̂30 = 0.5736, and all other µ̂i’s were

in the interval [0.0721, 0.0727]. This shows that conditional on the system’s failure, the

edges in the two edge sets (minimal cuts) {1, 2, 3} and {28, 29, 30} have much larger repair

times, or much smaller reliabilities, than unconditionally, and the averages are practically

unchanged for the other edges. Those two sets are minimal cuts in the graph, meaning

that if none of the links in one of those cuts is operational, the system cannot be operational

(nodes 1 and 20 are necessarily disconnected), and this property no longer holds if we remove

one link from the cut. They are also the minimal cuts with maximal probability, that is,

the probability that all links of the cut are down is maximal, because they have the smallest

number of links and all links have the same failure probability q. In this case, the probability

that a given cut with ` links is down is simply q`, so this probability is larger for these two

cuts compared with that of the other cuts by at least a factor of 1/q, which is 106 in this

numerical example. We can also observe that typically, when all the edges in {1, 2, 3} are

down, the edges in {28, 29, 30} are not, and vice-versa. This shows up via a strong negative

dependence between the minimum repair time R1 = min(Y1, Y2, Y3) of edges {1, 2, 3} and the

minimum R2 = min(Y28, Y29, Y30) for edges {28, 29, 30}. Figure 2 gives a scatter plot of the

pairs (R1, R2) for the 2092 states Y that reached the last level in the first 4000 runs of GS.

17

In all of these pairs, either R1 or R2 is slightly larger than 1, but never both simultaneously.

This means that at time 1, either node 1 is totally isolated, or node 20 is totally isolated, but

not both at the same time. We observed the same behavior for all 106 runs of GS. In total,

there were 573366 states Y that reached the last level, and for all the corresponding pairs

(R1, R2), either R1 or R2 was larger than 1, but never both. Note that the event that both

R1 and R2 are smaller than 1 while S(Y) > 1 because nodes 1 and 20 are disconnected in a

different way has a positive probability, but this probability is very small here for q = 10−6,

because the two three-link minimal cuts have a failure probability at least one million times

larger than any other cut. With larger values of q, we have observed realizations where

R1 < 1 and R2 < 1, and their frequency increased when q increased. For example, for

q = 10−2, there were 16258 such realizations out of 537488 chains reaching the last level for

n = 106.

R1
0 0.25 0.5 0.75 1 1.25

R2

0

0.25

0.5

0.75

1

Figure 2: Scatter plot of 2092 observed pairs (R1, R2) for GS applied to the dodecahedron
example with q = 10−6.

For this example, the probability that one of these two cuts is down is 2q3 − q6, which is

very close to the value of W̄n given in Table 2 when q is small. The fact that failure occurs

mostly by the failure of one of these two cuts can be exploited in many ways to provide more

effective estimators than for GS. For example, Fishman’s sampling plan (Fishman, 1986;

Manzi et al., 2001) and the importance sampling scheme of L’Ecuyer et al. (2011) exploit

this type of structural information and can be more effective than GS for this example when

q is small. However, an important property of GS is its ability to identify automatically

a nearly optimal way of sampling the repair times, without exploiting this type of prior

knowledge on important cuts or paths in the network. With GS, there is no need to select

18

cuts and paths at all.

We also performed experiments with a larger graph constructed as in L’Ecuyer et al.

(2011) by juxtaposing three copies of the dodecahedron of Figure 1 in parallel, merging the

terminal nodes 1 of the three copies as a single node, and similarly for the three terminal

nodes 20. The resulting system has 56 nodes and 90 links. It is operational when the

(merged) nodes 1 and 20 are connected. We found that even for q = 10−6, which gives

an unreliability near 8 × 10−54 and 176 levels for GS, the relative error with one million

runs remained around 2%. Thus, GS was able to learn adaptively the joint repair times

distribution conditional on network failure for this larger three-dodecahedron network as

well, without exploiting specific knowledge of its structure.

7.2 A lattice graph

An m1×m2 lattice graph has m1 rows that contain m2 nodes each, arranged in a rectangular

lattice. Each node is connected to its neighbors on the left, right, above, and below, when

they exist. As an illustration, a 5× 8 lattice graph is displayed in Figure 3. We performed

experiments with GS for square lattice graphs of several sizes, from 10× 10 to 50× 50. The

terminal nodes were the two nodes at opposite corners, shaded in the figure. The results

for the 50× 50 graph are shown in Table 5. Even with this very large number of nodes and

links, GS manages to estimate the reliability to reasonably good accuracy. Note that here,

there is a very large number of cuts with maximal probability.

Figure 3: A 5×8 lattice graph, with 40 nodes and 67 edges. The terminal nodes are shaded.

19

Table 5: GS results for a 50× 50 lattice graph, with 2500 nodes and 4900 edges, for n = 104

and V0 = {1, 2500}
q 10−2 10−3 10−4 10−5 10−6

τ 13 19 26 33 39
W̄n 2.148e-4 2.085e-6 2.179e-8 2.156e-10 1.932e-12
S2
n/(W̄n)2 21.7 36.5 46.0 61.7 82.6

RE[W̄n] 0.0466 0.0604 0.0678 0.0785 0.0909
T (sec) 19818 19283 18413 17967 17851
WNRV[W̄n] 42.9 70.4 84.7 111 148

7.3 Comparison with the Permutation Monte Carlo and Turnip
Methods

7.3.1 Permutation Monte Carlo

As mentioned in the introduction, one of the most effective Monte Carlo-based methods

for static network reliability estimation is the turnip algorithm, described in Gertsbakh and

Shpungin (2010) and Lomonosov and Shpungin (1999), based on ideas from Elperin et al.

(1991, 1992); Lomonosov (1974), and Lomonosov (1994). We will therefore compare GS

with this method, which also uses a time-dependent formulation with latent variables. The

conceptual principle of the method is to generate repair times Y1, . . . , Ym for the links, exactly

as in Section 3, with Fi taken as the exponential distribution with rate λi = − ln(1 − ri),
sort these repair times by increasing order to obtain the order statistics Y(1), . . . , Y(m), then

erase the repair times and retain only the order in which the links are repaired. This gives a

permutation π = (π(1), . . . , π(m)) of the links, where Y(j) = Yπ(j) for each j. One can then

compute numerically (using an exact formula) the probability that the graph is operational

at time 1, conditional on the permutation π. This conditional probability is the permutation

Monte Carlo (PMC) estimator. To compute it, one can add the links to the graph one by

one, in the specified order, until it becomes operational, say at step C. This integer random

variable C is called the critical number. At step j of this procedure, before adding the jth

link π(j), we know that the time Aj = Yπ(j)−Yπ(j−1) until this link is added (the next repair

time) is an exponential with rate Λj equal to the sum of repair rates of all links not yet

repaired. We have Λ1 = λ1 + · · ·+ λm, and Λj+1 = Λj − λπ(j) for j ≥ 1.

Conditional on π and on C = c (an integer), the repair time of the graph is then A1 +

· · ·+Ac, a sum of c independent exponential random variables with known rates Λ1, . . . ,Λc.

This sum has an hypoexponential (or generalized Erlang) distribution, a special case of a

20

phase-type distribution, and whose (complementary) cumulative distribution function (cdf)

can be written using a matrix exponential:

P [A1 + · · ·+ Ac > t] = e1e
Dt1 = e1

∞∑
k=0

Dk tk

k!
1, (3)

where e1 = (1, 0, . . . , 0) is an 1× c vector, 1 is a c× 1 column vector of ones, and

D =

−Λ1 Λ1 0 . . . 0

0 −Λ2 Λ2 . . . 0
...

...
0 . . . 0 −Λc−1 Λc−1

0 . . . 0 0 −Λc

is a c× c matrix (Neuts, 1981). The formula (3) can be developed into

P [A1 + · · ·+ Ac > t] =
c∑
j=1

e−Λjt

c∏
k=1, k 6=j

Λk

Λk − Λj

, (4)

which can be computed in O(c2) time (Ross, 2007, page 299) and (Gertsbakh and Shpungin,

2010, Appendix B). The PMC method computes P [A1 + · · ·+ Ac > t | π] via (4) or (3) and

uses it as an estimator of u.

7.3.2 Numerical stability problems

The expression (4) is usually faster to compute than the matrix exponential, but it becomes

numerically unstable when c gets large and/or the λi are too small (which happens when

the link unreliabilities qi are not sufficiently small), because it is an alternating sum with

relatively large terms of similar size. When the λi are small, many of the factors Λj+1−Λj =

λπ(j) in (4) are small, and the effect of this is amplified when c is large. This gives rise to

large terms of opposite sign in the sum and the formula becomes unstable. For example, with

the computations done in standard 64-bit floating-point arithmetic, if λi = 0.1 for all i, the

formula (4) breaks down already for c ≈ 15, while if λi = 3 for all i, it is usable up to c ≈ 300.

Formula (4) is still usable with the PMC method in the case of the 15 × 15 square graph

with 225 nodes and 420 edges when the link unreliabilities are qi = 0.01 (λi = 4.6), for which

E[C] ≈ 276; however it breaks down for the 6×6 square graph (with 36 nodes and 60 edges)

when qi = 0.5 (λi ≈ 0.7), for which E[C] ≈ 38. Gertsbakh and Shpungin (2010, Chapter 7)

partially recognize the problem: they say that (4) becomes unusable when C exceeds about

30 or 40 (they do not mention the λi’s), and suggest using Monte Carlo to estimate the

21

convolution conditional on π in that case. This makes the method much less efficient. In

fact, the instability depends on both the λi’s and on the generated permutation π.

A naive evaluation of the matrix exponential, for example via the sum in (3), is also

unreliable and unstable in much the same way as formula (4). We experimented with stan-

dard procedures for computing the matrix exponential in software libraries and were able to

handle more cases than with (4), but soon ran into instabilities as well. These problems were

solved when we switched to the recently proposed scaling and squaring algorithm with Padé

approximating polynomials (Higham, 2009). We found this algorithm to be stable and accu-

rate in all of our numerical experiments. On the other hand, this algorithm is significantly

slower than the direct use of (4), as we will illustrate in our examples.

7.3.3 The turnip method

An improvement on PMC is the so-called turnip method described in Gertsbakh and Sh-

pungin (2010); its difference from PMC is that each time a link is added (repaired), all

the links not yet repaired and that connect two nodes that are already connected (that is,

the links that become redundant) are immediately removed from consideration. Thus, the

subgraph formed by the links repaired so far never contains a cycle. The estimator is also

computed via (4), but with Λj defined as the sum of repair rates of the links that are still

under consideration immediately before step j. Thus, when redundant links are removed

from consideration, their repair rates are subtracted from the current Λj.

Algorithm 4 : The turnip method
Λ1 ← λ1 + · · ·+ λm
L ← {1, . . . ,m} // set of links still under consideration
x = (x1, . . . , xm)← (0, . . . , 0) // current configuration
k ← 1
while the nodes in V0 are not all connected do

draw link I at random from L, with P[I = i] = λi/Λk

xI ← 1 and k ← k + 1
Λk ← Λk−1 − λI and remove I from L
for all i ∈ L that connect two nodes already connected in G(x) do

Λk ← Λk − λi and remove i from L
C ← k
return the unreliability estimate W computed from (4) or (3), with t = 1.

For the turnip method, the naive formula (4) is usable for a larger number of cases than

for the PMC method, because the difference Λj+1−Λj in the denominator is often a sum of

22

many λk’s and thus is larger than for the corresponding PMC case. For example, the turnip

with the naive formula (4) yields stable numerical results for the 6 × 6 square graph when

qi = 0.5, unlike the PMC method. It also works fine for the 20× 20 square graph with 400

nodes and 760 edges with qi = 0.01, for which E[C] ≈ 383.

In our experiments, the turnip always performed better than PMC, and was compara-

tively much better when the link unreliabilities qi were small and/or when the number of

links was large. For example, we tried complete graphs (with a link between each pair of

nodes). For a (relatively small) complete graph with 7 nodes and 21 edges, with q = 10−3,

PMC took approximately 100 times more CPU time to run and its variance was about 6700

times larger than for the turnip. PMC was more efficient than GS only for very small graphs,

such as complete graphs with 6 nodes or less and k × k square lattice graphs with k ≤ 4.

For either variant, PMC or turnip, it is possible to generate the permutation π directly

without generating the repair times, as follows (Gertsbakh and Shpungin, 2010). The first

link in the permutation is selected as link j with probability λj/(λ1 + · · · + λm). At step

k, the kth link in the permutation is selected among the links still in consideration, with

probability λj/Λk for link j, where Λk is the sum of repair rates of the links that remain in

consideration. For turnip, this gives Algorithm 4. As for GS, this algorithm will be invoked

n times, independently, and the empirical mean W̄n and variance S2
n of the n realizations

W1, . . . ,Wn of W will be used to estimate the unreliability u and the variance of W , and

eventually compute a confidence interval.

This algorithm has been proved to provide bounded relative error when all the link

unreliabilities qi converge to 0 together, for a fixed graph (Gertsbakh and Shpungin, 2010).

This can be observed empirically in Table 6, which reports the results of n = 106 independent

runs of Algorithm 4 for the dodecahedron graph, using formula (4). The average value of C

was approximately 15.6 for all values of q. We see that the relative error is approximately

independent of q when q is small. We also find that the turnip is more efficient than GS

(smaller RE and smaller WNRV) for this example. With the PMC method (not shown in the

table), the variance was roughly 100 times larger than with the turnip for 10−6 ≤ q ≤ 10−2,

and the WNRV was similar to that of GS.

7.3.4 Limitation of the turnip method

A limitation of the turnip is that for large highly-reliable graphs, there may be a relatively

small set P∗ of permutations π for which P[S(Y) > 1] ≈ P[S(Y) > 1 and π ∈ P∗] and

23

Table 6: Turnip for the dodecahedron: n = 106, V0 = {1, 20}
q 10−1 10−2 10−3 10−4 10−5 10−6

W̄n 2.881e-3 2.065e-6 2.006e-9 1.992e-12 1.999e-15 2.005e-18
S2
n/(W̄n)2 9.1348 17.736 18.738 19.002 18.924 18.842

RE[W̄n] 0.00302 0.00421 0.00433 0.00436 0.00435 0.00434
T (sec) 15.6 15.5 15.5 15.5 15.5 15.5
WNRV[W̄n] 0.000142 0.000275 0.000290 0.000294 0.000293 0.000292

P[π ∈ P∗] is extremely small. Then, getting a permutation π that contributes significantly

to the estimator becomes a rare event, and we are back into the trap of rare event simulation.

For the example with three dodecahedrons in parallel, using (4) to compute the condi-

tional probabilities, the turnip gave empirical relative variances S2
n/(W̄n)2 larger than for GS

by factors ranging roughly from 100 to 300. This indicates that the turnip has difficulty find-

ing the important permutations, whereas GS finds them by some form of multilevel learning.

The WNRV was also larger for the turnip, but by a smaller factor (from 2 to 10), because

the CPU time per run was smaller. For the turnip, both the relative error and the WNRV

are essentially independent of q for q small enough. If we use the stable matrix exponen-

tial formula instead of (4) to compute the conditional probabilities, the CPU time (and the

WNRV) increase approximately by a factor between 70 and 90 with our implementation, for

10−5 ≤ q ≤ 10−1. With the PMC method, the variance is about 100 times larger than for

the turnip for q = 0.1, while for q ≤ 10−2, the variance is so large that the estimator becomes

practically useless (and estimating the variance would be much too time-consuming).

Figure 4 provides more insight on the probabilistic behavior (the distribution) of the

GS and turnip estimators for the example of three dodecahedrons in parallel, with q =

10−2. It shows three histograms, with a logarithmic horizontal scale (in base 10), and

a vertical scale expressed in percentages of the observations visible in the histograms. The

histogram represents the nonzero values of W for GS. There were 15482 nonzero values of

W out of n = 106 (that is 1.55%), and their average was 5.7 × 10−16 ≈ 10−15.25, while

W̄n ≈ 8.8 × 10−18 ≈ 10−17.06. The histogram on the left represents the n = 108 values of

W for the turnip, truncated to the values larger than 10−25. The truncated part represents

approximately 99.5% of the realizations and its total contribution to the average W̄n ≈
8.8 × 10−18 is negligible (less than 10−27). It goes down to values smaller than 10−150, the

bins with largest counts (in log scale for W) are around 10−63, and the largest values are

24

−25 −23 −21 −19 −17 −15 −13 −11
0

20

40

-17.06

log10Wi

pe
rc
en
t

GS
turnip

GS+cond.

Figure 4: Histograms of the realizations of log10(W) for GS with n = 106 (middle, in blue),
turnip with n = 108 (left, in red), and for the conditional probabilities of failure for the
permutations π obtained at the last level of GS (right, in brown), for the example of three
dodecahedrons in parallel, with q = 10−2. The countings are all expressed in percentages of
the visible parts. The exact average to be estimated here is µ ≈ 8.8× 10−18 ≈ 10−17.06.

between 10−12 and 10−11 (there are 12 values out of 108 in that bin). The histogram looks

somewhat like a symmetric bell curve with maximum at around 10−63. The turnip clearly

provides a histogram with much larger variability than GS. For the third histogram, on the

right, we examined the 15482 GS runs for which W was nonzero, and for each of them, we

collected all the states Y for which S(Y) > 1 at the end of the algorithm. There were 631078

such states. For each of them, we found the corresponding permutation π, then forgot about

Y and computed P[S(Y) > 1 | π] as in the turnip algorithm. Then we made a histogram

of these conditional probabilities. Note that the average of these conditional probabilities

is not a meaningful estimator of the probability µ of interest (it is highly biased, with an

average around 10−13). The purpose of this third histogram is to show that the permutations

π found by GS at the last level are typically the important permutations, that correspond

to significant conditional probabilities P[S(Y) > 1 | π], whereas the turnip has difficulties

finding these important permutations.

In summary, the types of situations that favor GS over the turnip appear to be mostly

when the graph is large (the typical situation when simulation is required) and the qi are

not so small, while the turnip should be preferred in the opposite situation.

Another difficulty with the turnip is that the stable computation of the matrix exponential

sometimes becomes too slow. For example, for the 20 × 20 square graph, the turnip with

the stable matrix exponential method is approximately between 1600 times and 2000 times

25

slower than the naive method for 10−5 ≤ q ≤ 10−1. For the 40 × 40 lattice graph (1600

nodes and 3120 edges), one run of the stable turnip algorithm takes about 17.5 minutes on

our desktop computer. An experiment with n = 106 runs would take about 33 years. GS

was able to solve these examples easily.

8. The case of dependent links

In the dependent case, the distribution of Y is taken as a multivariate distribution with

density f , for which X has the correct target multivariate Bernoulli distribution. The most

general way of specifying a dependence structure for the vector Y (and indirectly for the

vector X) is via a copula (Joe, 1997; Nelsen, 1999). A copula is simply a multivariate

cdf whose one-dimensional marginal distributions are all uniform over (0, 1). To generate

Y = (Y1, . . . , Ym), we can generate U = (U1, . . . , Um) from the copula, and put Yi = F−1
i (Ui)

for all i, where Fi is the selected cdf for Yi, for which Fi(1) = ri and Fi(γ0) = 0. The

multivariate distribution of Y determines that of X in a unique way.

A simple example is a normal (or Gaussian) copula, which can be specified via a correla-

tion matrix R. To generate U from the copula, we generate a vector Z = (Z1, . . . , Zm) from

the multinormal distribution with mean 0 and covariance matrix R, and we put Ui = Φ(Zi)

for each i. Each Zi has the standard normal distribution, and we can obtain a corre-

lation matrix of U with prespecified elements r(u)
i,j by taking a matrix R with elements

ri,j = 2 sin(r
(u)
i,j π/6) (Kruskal, 1958).

A more flexible copula model, still easy to handle, is the multivariate t copula, defined

as follows. A random vector Y (in general) has a multivariate (Student) t distribution with

ν degrees of freedom, mean vector µ, and positive-definite scale matrix Σ, if its density is

given by

f(y) =
Γ ((ν +m)/2)

(πν)m/2 Γ (ν/2)
√

det(Σ)

(
1 +

1

ν
(y − µ)′Σ−1(y − µ)

)−(ν+m)/2

.

We denote this by Y = (Y1, . . . , Ym) ∼ tν(µ,Σ). The covariance matrix of Y is ν
ν−2

Σ for

ν > 2.

We now assume that Y = (Y1, . . . , Ym) ∼ tν(0,Σ) where the diagonal elements σi,i of Σ

are selected so that

σ2
i,i = σ2

i =
1

(F−1(qi; ν))2
for i = 1, . . . ,m ,

26

where F−1(·; ν) is the inverse cdf of the univariate Student t distribution with ν degrees of

freedom, tν(0, 1). With this choice of diagonal elements, it follows that P(Yi > 1) = qi =

1− ri.
Here we take each Fi as the Student distribution with ν degrees of freedom. We could

also take Fi as another distribution (uniform, exponential, etc.). To do this, we could first

transform each Yi to a U(0, 1) random variable Ui by applying the appropriate Student cdf,

and then transforming Ui to a new random variable Yi with cdf Fi by applying the inverse

cdf: Ui ← F (Yi/σi; ν) and Yi ← F−1
i (Ui). In this case, in GS, γ0 = −∞.

In contrast to the independent case, where the transition density κt(· | Yj−1) is defined

via the Gibbs sampler, in our experiments we found it computationally simpler and more

efficient to define the transition density κt(· | Yj−1) of the Markov chain via a hit-and-run

sampling scheme (Smith, 1984; Chen et al., 2000), as follows.

Suppose the current state of the Markov chain is Yt,j−1. The hit-and-run algorithm

first generates a random direction of movement in the m-dimensional space by generating a

random point d on the surface of the m-dimensional unit sphere. For this, we generate a

vector Z = (Z1, . . . , Zm) of m independent standard normal random variables, Z ∼ N(0, I),

and normalize its Euclidean length to 1. Then we generate the length Λ of the proposed

move in that direction from the density

fΛ(λ) =
f(Yt,j−1 + λd)∫∞

−∞ f(Yt,j−1 + θ d) dθ
, (5)

so the proposed new point has a density proportional to f in the given direction. The chain

moves to the new proposed state Y = Yt,j−1 + Λ d if and only if S(Y) > γt, otherwise it

remains in the same state. That is,

Yt,j =

{
Y if S(Y) > γt

Yt,j−1 otherwise.
(6)

The transition density thus defined is that of a Markov chain whose stationary density is

the conditional density ft in (2). Therefore, Proposition 1 applies and the GS algorithm

provides an unbiased estimator. The hit-and-run sampler is summarized in Algorithm 5. In

this algorithm, the parameter b is a positive integer that can be taken as 1, but a higher

value of b reduces the dependence between the input state Yt,j−1 and the output state Yt,j.

For the case where Y has a tν(0,Σ) density, one can show that the density (5) becomes

27

Algorithm 5 : Transition density κt(yj | yj−1) defined via hit-and-run sampler
Require: a vector Yt,j−1 of repair times such that S(Yt,j−1) > γt and a positive integer b

Y0 ← Yt,j−1

for i = 1 to b do
generate d uniformly over the m-dimensional unit sphere:

Z ∼ N(0, I) and d =

(
Z1

‖Z‖
, . . . ,

Zm
‖Z‖

)
generate a random scale factor Λ from the density (5)
if S(Yi−1 + Λ d) > γt then

Yi ← Yi−1 + Λ d
else

Yi ← Yi−1

return Yt,j ← Yb.

that of the Student distribution (here y = Yt,j−1)

tν

(
−y′Σ−1d

d′Σ−1d
,
ν + y′Σ−1y

ν(d′Σ−1d)
− (y′Σ−1d)2

ν(d′Σ−1d)2

)
. (7)

To see this, note that fΛ(λ) in (5) is proportional to(
1 +

(y + λd)′Σ−1(y + λd)

ν

)−(ν+m)/2

=

(
1 +

(λ+ y′Σ−1d
d′Σ−1d

)2 − (y′Σ−1d
d′Σ−1d

)2 + y′Σ−1y
d′Σd

ν/(d′Σ−1d)

)−(ν+m)/2

,

which after rearrangement and normalization yields the distribution (7). To speed up the

generation of Λ in this case, the Cholesky factor of Σ can be precomputed and memorized

once and for all to facilitate the computation of Σ−1d and Σ−1xi−1 via backward and forward

substitution.

For a purely diagonal covariance matrix Σ = σ2I, the distribution of Λ simplifies to

Λ ∼ tν(−x′d, σ2).

For a numerical illustration, suppose the unreliability of each edge in the dodecahedron

graph of Figure 1 is qi = 1 − ri = 10−6, and that the links fail in such a way that all

repair times Yi are positively correlated. We take the covariance matrix Σ = σ2Σ̃, where

σ = −1/F−1(1 − r; ν) and Σ̃ is a correlation matrix whose non-diagonal elements are all

equal to 0.5.

We used the GS algorithm with n = 30000 and a splitting factor of s = 2, for different

values of the number of degrees of freedom ν. For the pilot runs we took n0 = 103. Table 7

28

shows the numerical results. It is striking to see how much the unreliability increases when

the number of degrees of freedom ν become smaller. For ν = 30, system’s failure is no longer

a rare event. The last row with ν = ∞ corresponds to a Gaussian copula model and is the

most reliable. If the edges were to fail independently (that is, Σ̃ = I), then the unreliability

(in the case with ν =∞) would be u ≈ 10−18.

Table 7: The unreliablity of the dodecahedron network for different values of the tail-
parameter ν. The last row, with ν =∞, corresponds to a Gaussian copula model.

ν W̄n RE[W̄n]
30 1.21× 10−2 0.024
50 7.07× 10−5 0.028
100 3.10× 10−7 0.030
200 1.55× 10−8 0.036
1000 1.23× 10−9 0.037
∞ 6.74× 10−10 0.028

9. Conclusion and Further Work

We have introduced a new rare-event simulation technique for the static reliability estimation

of a graph when links are subject to random failures. Our method is an adaptation of a

generalized multilevel splitting method applied to a transformation of the static model into

a dynamic model for which the definition of intermediate levels is easier and more effective.

We have also described and experimented an effective implementation of the method, using

an appropriate data structure to manage the connected components efficiently. We compared

our GS method with the turnip algorithm, which is recognized in the literature as one of the

most efficient for this reliability problem. We found GS to be much more efficient than the

turnip in situations where the graph has a large number of links whose unreliabilities are

not very small. In those situations, the graph can fail in a large number of ways. The GS

method also applies to the important case of graphs with dependent link failures, something

barely addressed in the literature.

Our future research activity on this topic includes the development of a method that

combines GS with the turnip, and/or with importance sampling, and perhaps with other

variance reduction techniques. We also plan to study specific models of dependent link

failures, for instance batch failures and cascading failures (Iyer et al., 2009).

29

Acknowledgments

This work has been supported by an NSERC-Canada Discovery Grant and a Canada Re-

search Chair to the second author, the EuroNF Network of Excellence to the third and fifth

author, and INRIA’s associated team MOCQUASIN to all authors. We benefited from the

computing facilities of the Réseau québécois de calcul haute performance (RQCHP).

References

Ball, M. O., J. S. Provan. 1982. Bounds on the reliability polynomial for shellable indepen-

dence systems. SIAM Journal on Algebraic and Discrete Methods 3 166–181.

Barlow, R., A. Marshall. 1964. Bounds for distribution with monotone hazard rate, I and

II. Annals of Mathematical Statistics 35 1234–1274.

Barlow, R., F. Proschan. 1975. Statistical Theory of Reliability and Life Testing . Holt,

Rinehart and Wilson, New York.

Botev, Z. I., D. P. Kroese. 2010. Efficient Monte Carlo simulation via the general-

ized splitting method. Statistics and Computing URL http://dx.doi.org/10.1007/

s11222-010-9201-4. To appear.

Burtin, Y., B. Pittel. 1972. Asymptotic estimates of the reliability of a complex system.

Engineering Cybernetics 10 445–451.

Cancela, H., M. El Khadiri. 2003. On the RVR simulation algorithm for network reliability

evaluation. IEEE Transactions on Reliability 52 207–212.

Cancela, H., M. El Khadiri, G. Rubino. 2009a. Rare event analysis by Monte Carlo techniques

in static models. G. Rubino, B. Tuffin, eds., Rare Event Simulation Using Monte Carlo

Methods . Wiley, 145–170. Chapter 7.

Cancela, H., P. L’Ecuyer, M. Lee, G. Rubino, B. Tuffin. 2009b. Analysis and improvements

of path-based methods for Monte Carlo reliability evaluation of static models. J. Faulin,

A. A. Juan, S. Martorell, E. Ramirez-Marquez, eds., Simulation Methods for Reliability

and Availability of Complex Systems . Springer Verlag, 65–84.

30

Cancela, H., P. L’Ecuyer, G. Rubino, B. Tuffin. 2010. Combination of conditional Monte

Carlo and approximate zero-variance importance sampling for network reliability estima-

tion. B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, E. Yücesan, eds., Proceedings

of the 2010 Winter Simulation Conference. 1263–1274.

Chen, M.-H., Q. M. Shao, J. G. Ibrahim. 2000. Monte Carlo Methods in Bayesian Compu-

tations . Springer-Verlag, New York.

Colbourn, C. J. 1987. The Combinatorics of Network Reliability . Oxford University Press,

New York.

Elperin, T., I. B. Gertsbakh, M. Lomonosov. 1991. Estimation of network reliability using

graph evolution models. IEEE Transactions on Reliability 40 572–581.

Elperin, T., I. B. Gertsbakh, M. Lomonosov. 1992. An evolution model for Monte Carlo

estimation of equilibrium network renewal parameters. Probability in the Engineering and

Informational Sciences 6 457–469.

Ermakov, S. M., V. B. Melas. 1995. Design and Analysis of Simulation Experiments . Kluwer

Academic, Dordrecht, The Netherlands.

Esary, J. D., F. Proschan, D. W. Walkup. 1967. Association of random variables, with

applications. Annals of Mathematical Statistics 38 1466–1473.

Fishman, G. S. 1986. A Monte Carlo sampling plan for estimating network reliability.

Operations Research 34 581–594.

Garvels, M. J. J., D. P. Kroese, J.-K. C. W. Van Ommeren. 2002. On the importance function

in splitting simulation. European Transactions on Telecommunications 13 363–371.

Gertsbakh, I. B., Y. Shpungin. 2010. Models of Network Reliability . CRC Press, Boca Raton,

FL.

Glasserman, P., P. Heidelberger, P. Shahabuddin, T. Zajic. 1999. Multilevel splitting for

estimating rare event probabilities. Operations Research 47 585–600.

Higham, N. J. 2009. The scaling and squaring method for the matrix exponential revisited.

SIAM Review 51 747–764.

31

Hui, K.-P., N. Bean, M. Kraetzl, D. Kroese. 2005. The cross-entropy method for network

reliability estimation. Annals of Operations Research 134 101–118.

Italiano, G. F. 2009. LEDA extension package: Dynamic graph algorithms. http://www.

mpi-inf.mpg.de/LEDA/friends/dyngraph.html.

Iyer, S. M., M. V. Nakayama, A. V. Gerbessiotis. 2009. A Markovian dependability model

with cascading failures. IEEE Transactions on Computers 58 1238–1249.

Joe, H. 1997. Multivariate Models and Dependence Concepts . Chapman and Hall, London.

Kahn, H., T. E. Harris. 1951. Estimation of particle transmission by random sampling.

National Bureau of Standards Applied Mathematical Series 12 27–30.

Kruskal, W. 1958. Ordinal measures of association. Journal of the Americal Statistical

Association 53 814–861.

L’Ecuyer, P., V. Demers, B. Tuffin. 2006. Splitting for rare-event simulation. Proceedings of

the 2006 Winter Simulation Conference. IEEE Press, 137–148.

L’Ecuyer, P., V. Demers, B. Tuffin. 2007. Rare-events, splitting, and quasi-Monte Carlo.

ACM Transactions on Modeling and Computer Simulation 17 Article 9.

L’Ecuyer, P., F. LeGland, P. Lezaud, B. Tuffin. 2009. Splitting techniques. G. Rubino,

B. Tuffin, eds., Rare Event Simulation Using Monte Carlo Methods . Wiley, 39–62. Chapter

3.

L’Ecuyer, P., G. Rubino, S. Saggadi, B. Tuffin. 2011. Approximate zero-variance importance

sampling for static network reliability estimation. IEEE Transactions on Reliability 8

590–604.

L’Ecuyer, P., B. Tuffin. 2008. Approximate zero-variance simulation. Proceedings of the 2008

Winter Simulation Conference. IEEE Press, 170–181.

Lomonosov, M. 1974. Bernoulli scheme with closure. Problems of Information Transmission

(USSR) 10 73–81.

Lomonosov, M. 1994. On Monte Carlo estimates in network reliability. Probability in the

Engineering and Informational Sciences 8 245–264.

32

Lomonosov, M., Y. Shpungin. 1999. Combinatorics and reliability Monte Carlo. Random

Structures and Algorithms 14 329–343.

Manzi, E., M. Labbé, G. Latouche, F. Maffioli. 2001. Fishman’s sampling plan for computing

network reliability. IEEE Transactions on Reliability 50 41–46.

Nelsen, R. B. 1999. An Introduction to Copulas , Lecture Notes in Statistics , vol. 139.

Springer-Verlag, New York, NY.

Neuts, M. F. 1981. Matrix-Geometric Solutions in Stochastic Models . John Hopkins, Uni-

versity Press, Baltimore.

Ross, S. M. 2007. Introduction to Probability Models . ninth ed. Academic Press.

Rubinstein, R., D. P. Kroese. 2007. Simulation and the Monte Carlo Method . 2nd ed. John

Wiley & Sons, New York.

Smith, R. L. 1984. Efficient Monte Carlo procedures for generating points uniformly dis-

tributed over bounded regions. Operations Research 32 1296–1308.

Zaroliagis, C. 2002. Implementations and experimental studies of dynamic graph algorithms.

R. Fleischer, B. M. E. Moret, E. M. Schmidt, eds., Experimental Algorithms , Lecture Notes

in Computer Science, vol. 2547, chap. 11. Springer, Berlin, Heidelberg, 229–278.

Zenklusen, R., M. Laumanns. 2011. High-confidence estimation of small s-t reliabilities in

acyclic networks. Networks 57 376–388.

33

