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1. Proof of the Theorems

We first recall the working notation. Let A be a class of measurable sets. For any A⊆A and

i≥ 1, let Mi and Hi(A) be the cardinalities of Yi and of Yi ∩A. These are the realizations

of M and H(A) for replication i of Algorithm 2 (GS sampler 2). Let M̄n and H̄n(A) be

the respective averages of these n realizations, and let m := EGS[M ], so that the target

distribution is Q(A) = EGS[H(A)]/m. For simplicity of notation, unless there is ambiguity,

we henceforth drop the GS subscripts from EGS. When we draw an Y from Q̂n, it belongs

to A with probability H̄n(A)/M̄n (since Y∪ is not empty, M̄n > 0). Note that H(A)≤M
for all A∈A, and that Mi and Hi take their values in {1, ...sτ−1}.

In particular, in Algorithm 3 (Sampling an empirical distribution from n iid non-empty

GS replications) we obtain the independent sets, Y1,Y2, · · · ,Yn, of states Y . We can

(re)label all the states Y such that:

Y1︷ ︸︸ ︷
Y 1, . . . ,Y T1 , . . . . . . . . . ,

Yn︷ ︸︸ ︷
Y Tn−1+1, . . . ,Y Tn .

In this way, {Y t, t= 1,2, . . .} is a discrete-time regenerative process with regeneration times

0 = T0 < . . . < Tn, and tour lengths Mi = Ti− Ti−1, j = 1,2, . . . , n with stationary measure

Q(A). With this notation we have that N(t) = min{n : Tn > t} in Algorithm 4 (Sampling

an empirical distribution with more than t retained states). Moreover, if we define the

number of renewals in (0, t] as Ñ(t) := N(t)− 1 = max{n : Tn ≤ t} with N(0) = 0, then

{Ñ(t), t≥ 0} is a renewal process (Asmussen 2008, Chapter 5).

Since N(t) = Ñ(t) + 1 is a stopping time with respect to the filtration generated by

the sequence of iid random variables {Mi, i≥ 1}, by the Wald identity we have E[TN(t)] =

E[N(t)]E[Mi]. We define Q̂n(A) = H̄n(A)/M̄n and Q̂N(t)(A) = 1
TN(t)

∑N(t)
i=1 Hi(A). With

Zi(A) :=Hi(A)−MiQ(A), Wald’s identity also gives

E

N(t)∑
i=1

Zi(A)

=E[N(t)]E[Zi(A)] = 0. (1)

Remark 1 (Elapsed-time process). Note that the autocorrelation plot of the age

(or current lifetime) process, E(t) := t−TÑ(t), may be used as a graphical tool to diagnose

the convergence of {Y t, t= 1,2, . . .} to its stationary distribution Q(A), because (Asmussen

2008, Page 170, Proposition 1.3):

sup
A
|P(Y t ∈A)−Q(A)| ≤ 2 sup

A
|P(E(t)∈A)−P(E(∞)∈A)|.
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In other words, ensuring the convergence of the Markov process {E(t), t ≥ 0} to its sta-

tionary measure is sufficient to ensure the convergence of {Y t, t= 1,2, . . .} to its stationary

measure.

1.1. Proof of Theorem 1 (Sampling via n iid runs of GS)

First, we prove the bound on the TV error. Using the identity, (Meketon and Heidelberger

1982, Page 180)
x

y
− α
β

=
x

y

(y−β)2

β2
+
x

β
− αy
β2
− (x−α)(y−β)

β2
, (2)

with α= 0, we have that

E
[
H̄n(A)

M̄n

]
− h(A)

m
= E

[
Z̄n(A)

M̄

]
=E

[
Z̄n(A)

M̄n

(M̄n−m)2

m2

]
− Cov(Z̄n(A), M̄n)

m2

(|Z(A)| ≤M was used) ≤E
[

(M̄n−m)2

m2

]
− Cov(Z̄n(A), M̄n)

m2

=
Var(M)−Cov(Z1(A),M1)

nm2
.

Hence, using the fact that |Cov(Z1(A),M1)|2 ≤ Var(M1)Var(Z1(A)) ≤ Var(M1)EM 2, we

obtain

sup
A
|Qn(A)−Q(A)| ≤ Var(M) + supA |Cov(Z1(A),M1)|

nm2

≤
Var(M) +

√
Var(M)EM 2

nm2

We can thus clearly see that the convergence of Qn(A) depends on the relative error of M .

Next, we prove the bound for the mean absolute value. First, note that the term

E(Z̄n(A)V̄n)2, where Vk := Mk −m, can be bounded using the independence of the pairs

(Zi(A), Vi) and EZi(A) = EVi = 0, as follows:

EZ̄2
n(A)V̄ 2

n =

∑
i,j,k,lE[ZiZjVkVl]

n4
≤ 3n2− 2n

n4
max
i,j,k,l

E|ZiZjVkVl| ≤
3EM 4

n2
.

Therefore, using the triangle inequality, we have:

mE|Q̂n(A)−Q(A)|=E
∣∣∣Z̄n(A)− Z̄n(A)(M̄n−m)

M̄n

∣∣∣
(M̄n ≥ 1) ≤E|Z̄n(A)|+E|Z̄n(A)(M̄n−m)|

≤
√

EZ̄2
n(A) +

√
E(Z̄n(A)(M̄n−m))2

(|Z(A)| ≤M) ≤
√
EM 2

√
n

+

√
3EM 4

n
.
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1.2. Proof of Theorem 2 (Sampling until GS returns t states)

Recall that N(t) = Ñ(t) + 1 is a stopping time. Let R(t) := TÑ(t)+1 − t, so that r(t) :=

ER(t) =mE[N(t)]− t. Using Wald’s identity (1), we can write:

Qt(A)−Q(A) = E
∑N(t)
k=1 (Hk(A)−MkQ(A))

TN(t)

=E
∑N(t)
k=1 Zk(A)

TN(t)
=E

1
t

∑N(t)
k=1 Zk(A)

1+R(t)/t

= E
(

1
1+R(t)/t

− 1
)
Z̄t(A),

where Z̄t(A) := 1
t

∑N(t)
k=1 Zk(A). Then, using the fact that 1

1+R(t)/t
≤ 1, we obtain the uniform

bound

|Qt(A)−Q(A)|= 1
t

∣∣∣E[ R(t)
1+R(t)/t

Z̄t(A)
]∣∣∣

≤ 1
t
E
∣∣R(t)Z̄t(A)

∣∣
≤
√
ER2(t)E[Z̄2

t (A)]

t

=

√
ER2(t)

t

√
E[N(t)]E[Z2(A)/t2]

=

√
E[R2(t)]

t3/2

√
E[Z2(A)]E[N(t)]/t

≤
√

E[R2(t)]

t3/2

√
EM 2

m
(1 + r(t)/t),

where in the third last line we used Wald’s second-moment identity (see (3) below). To

finish the proof we apply Lorden’s moment inequalities (E[R(t)]≤E[M 2]/m and E[R2(t)]≤
4E[M 3]/(3m), see Lorden (1970)) to obtain

sup
A
|Qt(A)−Q(A)| ≤

√
4
3
E[M 3]E[M 2](m+E[M 2]/t)/m3

(t/m)3/2
.

To prove the bound for the mean absolute value, we proceed as follows. Again using
1

1+R(t)/t
≤ 1, we have:

E|Qt(A)−Q(A)|=E
∣∣∣∣ 1
t

∑N(t)
k=1 Zk(A)

1+R(t)/t

∣∣∣∣
≤
√
E
(

1
t

∑N(t)
k=1 Zk(A)

)2

=

√
E[N(t)]EZ2(A)

t

≤
√

EZ2(A)

tm
+

E[M 2]E[Z2(A)]

t2m2
≤
√
EM 2

√
tm

+
EM 2

tm
,

where in the second last line we used Cauchy’s inequality and Wald’s second-moment

identity, and in the last line we used Lorden’s inequality and the sub-additivity of the

square root.



Botev and L’Ecuyer: Sampling via Splitting
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 5

1.3. Proof of Theorem 3 (asymptotic version)

Denote r(t) := ER(t) and r := (EM 2 + m)/(2m) and note that under the condition

EM p+5 <∞ for some p≥ 0, we have (Glynn 2006)

r(t) = r+ o(1/tp+3).

Using 0≤ 1
1+x
− 1 +x≤ x2 for x≥ 0, we have the error bound:

|Qt(A)−Q(A)|=
∣∣∣E( 1

1+R(t)/t
− 1
)
Z̄t(A)

∣∣∣
(triangle ineq.) ≤ |ER(t)Z̄t(A)|

t
+
∣∣∣E( 1

1+R(t)/t
− 1 + R(t)

t

)
Z̄t(A)

∣∣∣
≤ |ER(t)Z̄t(A)|

t
+ ER2(t)|Z̄t(A)|

t2

≤ |ER(t)
∑N(t)
k=1 Zk(A)|
t2

+

√
E[R4(t)]E[Z̄2

t (A)]

t2
.

Since EM 5 <∞, by Lorden’s inequality, we have ER4(t) <∞ and the second term is

O(t−5/2), because by Wald’s second-moment identity:

E[Z̄2
t (A)] =

E[N(t)]

t2
E[Z2

1(A)]≤ (1 + r(t)/t)E[M 2]/t=O(1/t) . (3)

For the first term, we verify that eA(t) := ER(t)
∑N(t)

k=1 Zk(A) <∞ satisfies the renewal

equation eA(t) = (u ∗ vA)(t) with vA(t) := E[R(t)Z1(A)] = E[(R(t)− r)Z1(A)], see (Awad

and Glynn 2007, Page 25). The latter is bounded uniformly in A:

|vA(t)|= |E[(R(t)− r)Z1(A);M1 > t] +E[(R(t)− r)Z1(A);M1 ≤ t]|

= |E[(M1− r)Z1(A);M1 > t] +E[(r(t−M1)− r)Z1(A);M1 ≤ t]|

≤E[|M1− r|M1;M1 > t] +E[|r(t−M1)− r|M1;M1 ≤ t] .

For the first term, we obtain:

E[|M1− r|M1;M1 > t] =O(E[M p+5;M > t]/tp+3) = o(1/tp+3) .

For the second term,

E[|r(t−M)− r|M ;M ≤ t]≤E[|r(t−M)− r|M ;M ≤ t/2] +E[|r(t−M)− r|M ;M ≥ t/2]

≤ sup
s>t/2

|r(s)− r|E[M ] + sup
s<t/2

|r(s)− r|E[M ;M > t/2]

= o(1/tp+3) + o(1/tp+4) .
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Hence, we have the convergence uniformly in A:

eA(t) =
E(M1− 1− 2r)M1Z1(A)

2m
+ o(1/tp+2)

≤ E|M1− 1− 2r|M 2
1

2m
+ o(1/tp+2) .

Putting it all together, we obtain

sup
A
|Qt(A)−Q(A)| ≤ E|M − 1− 2r|M 2

2mt2
+O(t−5/2) + o(1/tp+4) .

where r= (EM 2 +m)/(2m). The exponential convergence comes from the fact that EM p <

∞ for all p > 0, because M ≤ sτ−1 is always bounded. This completes the proof.

Notational Setup for Proofs of Theorems 4 and 5

We now introduce some working notation that will apply to both the proofs of Theorem 4

and 5. Define

F(Y∪) = {(b1, . . . , bTn)∈ {0,1}Tn : there exists an A∈A : bi = I{xi ∈A},xi ∈Y∪} (4)

to be a class of binary functions on {0,1}Tn such that each element of F corresponds to

an intersection of Y∪ with a set A in A. Without any conditions on the class of sets A, the

cardinality of F(Y∪) grows exponentially in Tn, and we have |F(Y∪)| ≤ 2Tn for any n. Let

SA({yi}ni=1) := max
y1,...,yn

#|A∩{y1, . . . ,yn},A∈A|

denote the Vapnik-Chervonenkis shatter coefficient (Vapnik 2013). Loosely speaking, the

shatter coefficient SA(Y∪) is the maximum number of distinct ways in which the point-set

Y∪ can intersect with elements of A.

Sauer’s Lemma (Sauer 1972) tells us that if A is a class of sets with Vapnik-Chervonenkis

dimension v <∞, then the shatter coefficient eventually grows polynomially in n, instead

of exponentially:

SA({yi}ni=1)≤ (ne/v)v, n > v . (5)

Let ρ1, . . . , ρn be iid random variables with marginal distribution P(ρ=±1) = 1/2. Let Y ′∪
be a sample independent from Y∪ that can, in principle, be obtained from another n inde-

pendent calls to Algorithm 1 (GS Sampler 1). The Y ′∪ sample is a “ghost” sample (Giné

and Zinn 1984) that does not need to be constructed, but is only used in symmetrization

inequalities. We denote quantities computed using Y ′∪ by H ′i,Y
′
i,M

′
i , T

′
i , etc. For example,



Botev and L’Ecuyer: Sampling via Splitting
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 7

H ′ is an independent “ghost” copy of H. We will make use of two symmetrization inequal-

ities by Giné and Zinn (1984). The first will be used in Theorem 5 (Bound on Expected

TV for Empirical Distribution):

E sup
A⊆A

∣∣H̄n(A)−EH(A)
∣∣≤E sup

A⊆A

∣∣∣∣∣ 1n
n∑
i=1

ρi(Hi(A)−H ′i(A))

∣∣∣∣∣ . (6)

The second will be used in Theorem 4 (Almost-Sure TV Convergence):

P(sup
A⊆A
|H(A)−EH(A)|> ε)≤ 2P(sup

A⊆A
|H(A)−H ′(A)|> ε/2) for ε >

√
8 sup
A⊆A

Var(H(A)).

(7)

1.4. Proof of Theorem 4 (Almost-Sure TV Convergence)

If we can show that (with gn = o(n)⇔ limn↑∞ gn/n= 0),

P(sup
A⊆A
|Q̂n(A)−Q(A)|> ε)≤ c1 exp(−c2nε

2 + o(n)) (8)

for some constants c1, c2 > 0, then the fact that
∑

n≥1 P(supA⊆A |Q̂n(A)−Q(A)|> ε)<∞

for any ε > 0 implies the almost sure convergence result of the theorem. To show (8) we

will use the symmetrization inequality (7) and the simple union bound:

P(|X ±Y |> ε)≤ P(|X|>αε) +P(|Y |> (1−α)ε) α∈ (0,1). (9)

Using these two inequalities, we have

P(sup
A⊆A
|Q̂n(A)−Q(A)|> ε)

(9)

≤ P(|M̄n−m|> mε
2

) +P(supA⊆A |H̄n(A)−EH(A)|> mε
2

)

(Hoeffding’s with M <sτ ) ≤ 2 exp
(
−nm2ε2

2s2τ

)
+P(supA⊆A |H̄n(A)−EH(A)|> mε

2
) .

Thus, in order to show (8), we only need an exponentially decaying bound on the second

term with ε1 =mε/2:

P(sup
A⊆A
|H̄n(A)−EH(A)|> ε1)

(7)

≤ 2P(sup
A⊆A
|H̄n(A)− H̄ ′n(A)|> ε1/2) for ε1 >

√
8
EM 2

n
⇔ n>

8EM 2

ε21
.

Recall that ρ1, . . . , ρn is an iid random sample with P(ρ = ±1) = 1/2, and that each H ′i

is an independent “ghost” copy of Hi. By symmetry, each Hi(A)−H ′i(A) has the same
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distribution as ρi(Hi(A)−H ′i(A)). Using this observation, we obtain (with ε2 := ε1/2 and

for n> 2EM 2/ε22):

P(sup
A⊆A
|H̄n(A)− H̄ ′n(A)|> ε2) = P

(
sup
A⊆A

1

n

∣∣∣∣∣
n∑
i=1

ρi(Hi(A)−H ′i(A))

∣∣∣∣∣> ε2
)

(9)

≤ P

(
sup
A⊆A

1

n

∣∣∣∣∣
n∑
i=1

ρiHi(A)

∣∣∣∣∣> ε2
2

)
+P

(
sup
A⊆A

1

n

∣∣∣∣∣
n∑
i=1

ρiH
′
i(A)

∣∣∣∣∣> ε2
2

)

= 2P

(
sup
A⊆A

1

n

∣∣∣∣∣
n∑
i=1

ρiHi(A)

∣∣∣∣∣> ε2
2

)
.

The proof will be complete if we show that (ε3 = ε2/2)

P
(
supA⊆A

∣∣ 1
n

∑n
i=1 ρiHi(A)

∣∣> ε3)≤ c1 exp(−c2nε
2
3 + o(n))

for some constants c1, c2 > 0. Let

NA(Y∪) := #|A∩{Y 1, . . . ,Y Tn},A∈A|

be the number of different subsets of the points in Y∪ that can be picked out by the class

A (so that, by definition, the shatter coefficient is SA(Tn) = maxY∪NA(Y∪)). Similarly, let

NA(Y∪) := #|A∩Y∪,A∈A|,

where Y∪ = {Y 1, . . . ,Y nsτ−1} is the collection of all nsτ−1 potential states from n indepen-

dent runs of splitting (L’Ecuyer et al. 2018)[Section 3.1] (in practice only a small fractions

of these trajectories survive till the final level of splitting). Clearly, NA(Y∪)≥NA(Y∪).

A well-known result (see (Rao 1962) and (Devroye et al. 2013, Theorem 13.13)) asserts

that when the Y ’s have a density and A is the class of all convex sets, then:

ENA(Y∪) = 2o(n) . (10)
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Thus, by conditioning on Y∪, we can write:

P

(
sup
A⊆A

∣∣∣∣∣ 1n
n∑
i=1

ρiHi(A)

∣∣∣∣∣> ε3
)

=E

[
P

(
sup
A⊆A

∣∣∣∣∣ 1n
n∑
i=1

ρiHi(A)

∣∣∣∣∣> ε3
∣∣∣∣∣Y∪

)]

(union bound) ≤E

[
NA(Y∪) sup

A⊆A
P

(∣∣∣∣∣ 1n
n∑
i=1

ρiHi(A)

∣∣∣∣∣> ε3
∣∣∣∣∣Y∪

)]

(Hoeffding’s with |ρiHi(A)|< sτ ) ≤E
[
NA(Y∪) sup

A⊆A
2 exp

(
− 2nε23

(2sτ )2

)]
(using |Y∪| ≤ |Y∪|= nsτ−1) ≤ 2 exp

(
− nε

2
3

2s2τ

)
E
[
NA(Y∪)

]
(10)
= 2 exp

(
− nε

2
3

2s2τ
+ o(n)

)
.

This completes the proof.

1.5. Proof of Theorem 5 (Bound on Expected TV for Empirical Distribution)

Our proof follows as closely as possible the proof of the classical VC inequalities, as

described in (Devroye and Lugosi 2001, Theorems 3.1 & 3.2).

Applying the triangle inequality and then the symmetrization inequality (6), yields:

E sup
A⊆A
|Q̂n(A)−Q(A)| ≤E sup

A⊆A

∣∣∣∣H̄n(A)

M̄n

− H̄n(A)

m

∣∣∣∣+E sup
A⊆A

∣∣∣∣H̄n(A)

m
−Q(A)

∣∣∣∣
≤ 1

m
E|M̄n−m|+

1

mn
E sup
A⊆A

∣∣∣∣∣
n∑
i=1

ρi(Hi(A)−H ′i(A))

∣∣∣∣∣
=

√
Var(M)

m
√
n

+
1

mn
EΨ({Y k},{Y ′k}),

where we define the conditional expectation

Ψ({Y k},{Y ′k}) := E

[
sup
A⊆A

∣∣∣∣∣
n∑
i=1

ρi(Hi(A)−H ′i(A))

∣∣∣∣∣
∣∣∣∣∣Y∪,Y ′∪

]
,

and the last expectation is with respect to ρ. Let Ă ⊂A be the collection of sets such that

all intersections with the pointset {Y 1, . . . ,Y Tn,Y
′
1, . . . ,Y

′
Tn} are represented once, and

any two sets in Ă are different. Observe that

Ψ({Y k},{Y ′k}) = E

[
sup
A⊆Ă

∣∣∣∣∣
n∑
i=1

ρi(Hi(A)−H ′i(A))

∣∣∣∣∣
∣∣∣∣∣Y∪,Y ′∪

]

and that |Ă| ≤ SA(Tn +T ′n).



Botev and L’Ecuyer: Sampling via Splitting
10 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Let ‖X‖G <∞ denote the sub-Gaussian coefficient of the random variable X. In other

words, the moment generating function of X satisfies

E exp(tX)≤ exp(t2‖X‖2
G/2), ∀t .

We shall next use the maximal inequality

Emax
k∈K
|Xk| ≤

√
2 ln(2|K |) max

k∈K
‖Xk‖G (11)

for a finite index set K , which holds even if the Xk’s are dependent. We will also make

use of the property that

‖
∑

kwkXk‖2
G =

∑
kw

2
k‖Xk‖2

G, (12)

whenever X1,X2, . . . are independent. Conditioning on all {Y k},{Y ′k}, and taking expec-

tation over ρ, we obtain:

Ψ({Y k},{Y ′k}) = Eρ sup
A⊆Ă

∣∣∣∣∣
n∑
k=1

ρk(Hk(A)−H ′k(A))

∣∣∣∣∣
(maximal ineq.)

(11)

≤
√

2 ln(2SA(Tn +T ′n)) sup
A⊆A

∥∥∥∥∥
n∑
k=1

ρk(Hk(A)−H ′k(A))

∥∥∥∥∥
G

(Sauer’s Lemma)
(5)+(12)

≤
√

2 ln(2[(Tn +T ′n)e/v]v) sup
A⊆A

√√√√ n∑
k=1

‖ρk(Hk(A)−H ′k(A))‖2
G

≤
√

2 ln(2[(Tn +T ′n)e/v]v) sup
A⊆A

√√√√ n∑
k=1

(Hk(A)∨H ′k(A))2

≤

√√√√2 ln(2[(Tn +T ′n)e/v]v)

n∑
k=1

(Mi ∨M ′
i)

2 .

Therefore, using the bound (Ri := (Mi ∨M ′
i), r

2
n := 1

n

∑
iR

2
i ):

Er2
n ln(Tn +T ′n)≤ ln(2n)Er2

n +E
(

1
n

∑
iR

2
i

)
ln( 1

n

∑
iRi)

(Cauchy-Schwartz) ≤ ln(2n)Er2
n +E

(
1
n

∑
iR

2
i

)
1
2

ln( 1
n

∑
iR

2
i )

(Jensen’s on x ln(x)) ≤ ln(2n)Er2
n +E 1

2n

∑
iR

2
i ln(R2

i )

= ln(2n)ER2 +ER2 ln(R)

≤ 2 ln(2n)EM 2 + 2EM 2 ln(M),
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we obtain:

E sup
A⊆A
|Q̂n(A)−Q(A)| ≤

√
Var(M)

m
√
n

+
E
√

2(ln(2)+v ln(Tn+T ′n)+v−v ln(v))r2n
m
√
n

≤
√

Var(M)

m
√
n

+
2
√

(ln(2)+v+v ln(2n/v))EM2+vEM2 lnM

m
√
n

≤
√

Var(M)

m
√
n

+
2
√
v ln(2n)E[M2 lnM ]

m
√
n

ψ1(v,n),

where

ψ1(v,n) =

√
(ln(2) + v+ v ln(2n/v))EM 2

v ln(2n)EM 2 lnM
+

1

ln(2n)
.

This completes the proof of the theorem.

1.6. Proof of Theorem 6 (Second Bound on Expected TV for Empirical
Distribution)

We need to introduce more working notation. First, recall a number of standard definitions.

Define the weighted Lp(P) metric on the probability space (Rd,B,P) via the norm ‖X‖p :=(∫
Rd |X(ω)|pdP(ω)

)1/p
, p ≥ 1. Let F be a class of functions. An ε-cover of F under the

Lp(P) metric is a finite set C = {f1, . . . , f|C|} with cardinality |C| such that for every f ∈F

there exists an fk ∈ C that satisfies ‖f − fk‖p ≤ ε. Let C∗ be the ε-cover with the smallest

cardinality. The cardinality of the smallest ε-cover of F under the metric Lp(P) is called

the covering number and is denoted by N (ε,F ,Lp(P)). We will write N (ε,F ,Lp(P)) =

N (ε,F) if the metric is clear from the context.

Recall that Y∪ with Tn = nM̄n = |Y∪| is the agglomeration of all the final states from n

independent runs of Algorithm 1 (GS Sampler 1). Since the splitting factor is s, we have

M ≤ sτ . Denote σ2
n := 1

n

∑n
j=1M

2
j . We know that σn ≤ sτ . For each index k= 0,1 . . . ,K :=

dlogs(s
τ
√
n)e, we define a cover as follows.

Conditional on Y∪, we let C∗k be the smallest (σns
−k)-cover of the set of functions

F(Y∪) = {(H1(A), . . . ,Hn(A));A∈A},

under the weighted metric with norm ‖h‖2 :=
√

1
n

∑n
j=1 h

2
j .

Observe that the zero vector is within σns
−0 radius of all elements of F(Y∪), and that

C0 = {0} is an minimal (σns
−0)-cover, that is, N (σns

−0,F(Y∪)) = 1. Further, the minimal

ε-cover for ε ∈ [0, 1√
n
) contains all the elements of F(Y∪), that is, N (σns

−K ,F(Y∪)) =

|F(Y∪)|= |C∗K |.
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Conditional on Y∪, we let h = (h1, . . . , hn) be the vector with components hj(A) =∑
k∈Yj I{Y k ∈A} (each hj is a conditional version of Hj). For a given ρ= (ρ1, . . . , ρn)>, let

h∗ correspond to the vector maximizing

sup
A⊆A

∣∣∣∣∣
n∑
k=1

ρkhk(A)

∣∣∣∣∣=
∣∣∣∣∣
n∑
k=1

ρkh
∗
k

∣∣∣∣∣= |ρ>h∗| .
Then, for k= 0, . . . ,K, let hk be the vector in the minimal cover C∗k , which is closest to h∗,

that is ‖hk−h∗‖2 = infh∈C∗k ‖h−h
∗‖2 ≤ σns−k. It follows that h∗ =hK =

∑K
k=1(hk−hk−1).

By the triangle inequality we have

‖hk−hk−1‖2 ≤ ‖hk−h∗‖2 + ‖hk−1−h∗‖2 ≤ (s+ 1)σns
−k .

Hence,

|ρ>h∗|=

∣∣∣∣∣
K∑
k=1

ρ>(hk−hk−1)

∣∣∣∣∣≤
K∑
k=1

∣∣ρ>(hk−hk−1)
∣∣

≤
K∑
k=1

max
h∈C∗k ,h

′∈C∗k−1

‖h−h′‖2<(s+1)σns−k

∣∣ρ>(h−h′)
∣∣ (13)

Taking expectation with respect to ρ and using the maximal inequality (11), we thus

obtain

Eρ max
h∈C∗k ,h

′∈C∗k−1

‖h−h′‖2<(s+1)σns−k

∣∣ρ>(h−h′)
∣∣≤√2 ln(2|C∗k−1||C∗k |) (s+ 1)σns

−k .

Therefore, taking expectation over Y∪:

E|ρ>h∗| ≤ (s+ 1)
K∑
k=1

s−kE
[
σn

√
2 ln(2|C∗k |2)

]
≤ (s+ 1)

K∑
k=1

s−k
√

2E [ln(2|C∗k |2)σ2
n] .

Finally, from the triangle inequality and symmetrization inequality (6), we have

E sup
A⊆A
|Q̂n(A)−Q(A)| ≤E sup

A⊆A

∣∣∣∣H̄n(A)

M̄n

− H̄n(A)

m

∣∣∣∣+E sup
A⊆A

∣∣∣∣H̄n(A)

m
−Q(A)

∣∣∣∣
≤ 1

m
E|M̄n−m|+

2

mn
E sup
A⊆B

∣∣∣∣∣
n∑
i=1

ρiHi(A)

∣∣∣∣∣
≤
√

Var(M)

m
√
n

+
(s+ 1)2

√
2

mn

K∑
k=1

s−k
√

E [σ2
n ln(2N 2(σns−k,F(Y∪)))] .
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It thus remains to bound the metric entropy lnN (σnε,F(Y∪)). For a fixed Y∪, let C ′1, . . . ,C ′n
be minimal ε-covers corresponding to each of the n binary function classes (j = 1, . . . , n):

F(Yj) = {(b1, . . . , bMj
) :A∈A, bi = I{Y i ∈A},Y i ∈Yj} .

This implies that for any bj ∈F(Yj), there exists an sj ∈ C ′j such that:

‖bj − sj‖2 =

√√√√ 1

Mj

Mj∑
k=1

(b
(k)
j − s

(k)
j )2 ≤ ε .

Then, the set
{
s

(1)
j + · · ·+ s

(Mj)
j : sj ∈ C ′j, j = 1, . . . , n

}
is an σnε-cover of F(Y∪). To see this,

note that for any h∈F(Y∪), we have

hj ∈
{
b

(1)
j + · · ·+ b

(Mj)
j : bj ∈F(Yj)

}
, j = 1, . . . , n

and by the Cauchy-Schwartz inequality:∥∥∥h−(∑M1

k=1 s
(k)
1 , . . . ,

∑Mn

k=1 s
(k)
n

)∥∥∥2

2
= 1

n

∑n
j=1

(
hj −

∑Mj

k=1 s
(k)
j

)2

= 1
n

∑n
j=1M

2
j

(
1
Mj

∑Mj

k=1(b
(k)
j − s

(k)
j )
)2

≤ 1
n

∑n
j=1M

2
j

(
1
Mj

∑Mj

k=1 |b
(k)
j − s

(k)
j |
)2

≤ 1
n

∑n
j=1M

2
j

(
1
Mj

∑Mj

k=1 |b
(k)
j − s

(k)
j |2

)
≤ σ2

nε
2 .

Using the inequality of Haussler (1995)

lnN (ε,F(Yj))≤ ln(e[v+ 1]) + v ln(2e/ε2), ε∈ [0,1] (14)

for the cover number of a class of sets A with VC dimension v <∞, we thus have the

bound on the metric entropy of F(Y∪):

lnN (σnε,F(Y∪))≤
n∑
j=1

lnN (ε,F(Yj))
(14)

≤ n(ln(e[v+ 1]) + v ln(2e/ε2)), ε∈ [0,1] .

Hence, combining all the results so far we obtain the upper bound for E supA⊆A |Q̂n(A)−
Q(A)| −

√
Var(M)

m
√
n

:

(s+ 1)2
√

2

mn

K∑
k=1

√
E [σ2

n ln(2N 2(σns−k,F(Y∪)))]
sk

≤ (s+ 1)4
√
vEM 2

m
√
n

K∑
k=1

√
ln(2)
2nv

+ ln(e[v+1])
v

+ ln(2es2k)

sk

≤ (s+ 1)4
√
vEM 2

m
√
n

ψ2(τ, v,n) .

Hence, the result of the theorem follows.
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