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Chapter 1

Splitting techniques

1.1 Introduction

As already explained in previous chapters, rare event simulation requires ac-
celeration techniques to speed up the occurrence of the rare events under
consideration, otherwise it may take unacceptably large sample sizes to get
enough positive realizations, or even a single one, on average. On the other
hand, accelerating too much can be counter-productive and even lead to a
variance explosion and/or an increase in the computational time. Therefore,
an appropriate balance must be achieved, and this is not always easy. This
difficulty was highlighted in the previous chapter when discussing the impor-
tance sampling (IS) technique, whose idea is to change the probability laws
driving the model in order to make the events of interest more likely, and to
correct the bias by multiplying the estimator by the suitable likelihood ratio.

In this chapter, we review an alternative technique called splitting, to
accelerate the occurrence rate of the rare events of interest. Here, we do not
change the probability laws driving the model. Instead, we use a selection
mechanism to favor the trajectories deemed likely to lead to those rare events.
The main idea is to decompose the paths to the rare events of interest into
shorter subpaths whose probability is not so small, encourage the realizations
that take these subpaths (leading to the events of interest) by giving them
a chance to reproduce (a bit like in selective evolution), and discourage the
realizations that go in the wrong direction by killing them with some positive
probability. The subpaths are usually delimited by levels, much like the level
curves on a map. Starting from a given level, the realizations of the process
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(which we also call trajectories or chains or particles) that do not reach the
next level will not reach the rare event, but those that do are split (cloned)
into multiple copies when they reach the next level, and each copy pursues
its evolution from then on. This creates an artificial drift toward the rare
event by favoring the trajectories that go in the right direction. In the end,
an unbiased estimator can be recovered by multiplying the contribution of
each trajectory by the appropriate weight. The procedure just described in
known as multilevel splitting.

If we assume for instance that we are simulating a stochastic process
(usually a Markov chain) and that the rare event of interest occurs when we
reach a given subset of states before coming back to the initial state, then the
levels can be defined by a decreasing (embedded) sequence of state sets that
all contain the rare set of interest. In general, these levels are defined via an
importance function whose aim is to represent how close a state is from this
rare set. Several strategies have been designed to determine the levels, to
decide the number of splits at each level, and to handle the trajectories that
tend to go in the wrong direction (away from the rare event of interest). The
amount of splitting when reaching a new level is an important issue; with too
much splitting, the population of chains will explode, while with too little
splitting, too few trajectories are likely to reach the rare event.

There is also the possibility to do away with the levels, by following a
strategy that can either split the trajectory of kill it at any given step. One
applies splitting (sometimes with some probability) if the weighted impor-
tance function is significantly larger at the current (new) state than at the
previous state, and we apply Russian roulette (we kill the chain with some
probability), when the weighted importance function becomes smaller in-
stead. Russian roulette can also be viewed as splitting the chain into zero
copies. The expected number of clones after the split (which is less than 1 in
the case of Russian roulette) is usually taken as the ratio of the importance
function value at the new state and that at the old state [13, 22].

The most important difficulty in general is to find an appropriate impor-
tance function. This function defines the levels (or the amount of splitting
if we get rid of levels), and a poor choice can easily lead to bad results. In
this sense, its role is analogous to the importance measure whose choice is
critical in IS (see the previous chapter).

A question that naturally comes to mind is: What are the advantages
and disadvantages of splitting compared with IS? One important advantage
of splitting is that there is no need to modify the probability laws that drive
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the system. This means (among other things) that the computer program
that implements the simulation model can just be a black box, as long as there
are facilities to make copies (clones) of the model, and to maintain weights
and obtain the current value of the importance function for each of those
copies. It is also interesting to observe that for splitting implementations
where all chains always have the same weight at any given level, the empirical
distribution of the states of the chains when they hit a given level provides
an unbiased estimate of the theoretical entrance distribution of the chain
at that level (the distribution of the state when it hits that level for the
first time) under the original probabilities. With splitting implementations
where chains may have different weights, and with IS, this is true only for
the weighted (and rescaled) empirical distributions, where each observation
keeps its weight when we define the distribution. There are also
situations where it is simpler and easier to construct a good importance
function for splitting than for IS, because IS can be more sensitive to the
behavior of the importance function near the boundaries of the state space,
as explained in [9, 12] (see also Section 1.2.3). One limitation of splitting
with respect to IS is the requirement to decompose the state space in subsets
(or layers) determined by the levels of some importance function, such that
the probability of reaching the next level starting from the current one is
not so small. When such a decomposition can be found, splitting can be
efficiently applied. However, there are situations where the most probable
paths that lead to the rare event have very few steps (or transitions), and
where rarity comes from the fact that each of these steps has a very low
probability. For example, in a reliability setting, suppose that the rare event
is a system failure and that the most likely way that this failure occurs
is by a failure of two components of the same type, which happens from
two transitions of the Markov chain, where each transition has a very small
probability. In such a situation, splitting cannot be effectively applied, at
least not directly. It would require a trick to separate the rare transitions
into several phases. IS, on the other hand, can handle this easily by increasing
the probability of occurrence of these rare transitions. It is also important to
recognize that in the case of large models (such as a large queueing system
with many state variables), the state-cloning operations can easily induce a
significant overhead in CPU time.

This chapter is organized as follows. Section 1.2 describes the general
principles of splitting techniques and the main versions (or implementations)
found in the literature. Section 1.3 provides an asymptotic analysis of the
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method in a simplified setting that consists in assuming that reaching the
next level from the current one can be modeled by a Bernoulli random vari-
able independent of the current state (given that we have just reached the
current level). This is equivalent to assuming that there is a single entrance
state at each level. We then discuss how much we should split and how many
levels we should define to minimize the variance, or its work-normalized ver-
sion (the variance multiplied by the expected computing time), in an asymp-
totic setting. In Section 1.4, we provide an analysis based on interacting
particle systems, following the general framework of [10]. This permits us to
obtain a central limit theorem in a general setting, in an asymptotic regime
where the number of initial trajectories (or particles) increases to infinity.
While previous results were focusing on a specific case of splitting where the
number of trajectories at each level is fixed, we additionally provide versions
of the central limit theorem for other splitting implementations. Section 1.5
applies different versions of the splitting technique to a simple example of a
tandem queue, used earlier by several authors. It illustrates the effectiveness
of the method, and also the difficulties and the critical issue of finding an
appropriate importance function.

Note that both IS and the splitting techniques have been introduced and
investigated with the Monte Carlo method as early as in the mid 1940’s, in
Los Alamos [21, 22, 29]. The main relevant issues, such as an analysis of the
optimal splitting strategies and the definition of the importance function,
were already identified at that time.

1.2 Principles and implementations

1.2.1 Mathematical setting

Assume that the dynamics of the system under consideration is described
by a strong Markov process X = {X(t) , t ≥ 0} with state space E, where
the time index t can be either continuous (on the real line) or discrete (over
the non-negative integers, i.e., t = 0, 1, 2, . . . ). In the continuous-time case,
we assume that all the trajectories are right-continuous with left-hand limits
(càdlàg). Let B ⊂ E be some closed critical region, in which the system
could enter with a positive but very small probability, for example 10−10 or
less. Our objective is to compute the probability of the critical event, i.e.,

γ = P[TB ≤ T ], where TB = inf{t ≥ 0 : X(t) ∈ B}
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denotes the entrance time into the critical region B, and where T is an almost
surely finite stopping time.

Note that this can always be transformed into a model where the stopping
time T is defined as the first hitting time of some set ∆ by the process X,
i.e.,

T = inf{t ≥ 0 : X(t) ∈ ∆}.

For this, it suffices to put enough information in the state of the Markov
process X so that T and every statistic that we want to compute are mea-
surable with respect to the filtration generated by X up to time T . From
now on, we assume that T is a stopping time of that form. As an important
special case, this covers the situation where T is a deterministic finite time
horizon: It suffices to include either the current clock time, or the time that
remains on the clock before the time horizon is reached, in the definition of
the state X(t). For example, if we are interested in the probability that
some Markov process {Y (t), t ≥ 0} hits some set C before some determinis-
tic time t1, then we can define X(t) = (t, Y (t)) for all t, B = (0, t1)×C, and
∆ = B ∪ ([t1,∞)×E). Here, TB is the first time when Y hits C if this hap-
pens before time t1, TB =∞ otherwise, and T = min(t1, TB). Alternatively,
it may be more convenient to define X(t) = (t1− t, Y (t)), where t1− t is the
time that remains on the clock before reaching the horizon t1, B is the same
as before, and ∆ = B ∪ ((−∞, 0] × E). For situations of this type, we will
assume (when needed) that the state X(t) always contains the clock time t,
and that the sets B and ∆ depend on the time horizon t1. More generally,
we could also have one of more clocks with random time-varying speeds.

Our results could be generalized to situations where the objective is to
compute the entrance distribution in the critical region, or the probability
distribution of critical trajectories, i.e.,

E[φ(X(TB)) | TB ≤ T ] or E[f(X(t) , 0 ≤ t ≤ TB) | TB ≤ T ],

respectively, for some measurable functions φ and f . For simplicity, we fo-
cus our development here on the problem of estimating γ, which suffices to
illustrate the main issues and tools.

The fundamental idea of splitting is based on the assumption that there
exist some well identifiable intermediate subsets of states that are visited
much more often than the rare set B, and that must be crossed by sample
paths on their way to B. In splitting, the step-by-step evolution of the
system follows the original probability measure. Entering the intermediate
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states, which is usually characterized by crossing a threshold determined by
a control parameter, triggers the splitting of the trajectory. This control is
generally defined via the a so-called importance function h [16] which should
satisfy B = {x ∈ E : h(x) ≥ L} for some level L.

Multilevel splitting uses an increasing sequence of values L0 ≤ · · · ≤ Lk ≤
· · · ≤ Ln with Ln = L, and defines the decreasing sequence of sets

E ⊃ B0 ⊃ · · · ⊃ Bk ⊃ · · · ⊃ Bn = B,

with
Bk = {x ∈ E : h(x) ≥ Lk} ,

for any k = 0, 1, · · · , n. Note that in the case of a deterministic time horizon,
h(x) will usually depend on the current time, which is contained in the state
x. Similarly, we can define the entrance time

Tk = inf{t ≥ 0 : X(t) ∈ Bk},

into the intermediate region Bk, and the event Ak = {Tk ≤ T}, for k =
0, 1, · · · , n. Again, these events form a decreasing sequence

A0 ⊃ · · · ⊃ Ak ⊃ · · · ⊃ An = {TB ≤ T},

and the product formula

P[TB ≤ T ] = P(An) = P(An ∩ · · · ∩ Ak ∩ · · · ∩ A0)

= P(An | An−1) · · ·P(Ak | Ak−1) · · ·P(A1 | A0) P(A0),
(1.1)

clearly holds, where ideally each conditional probability on the right side
of (1.1) is “not small”. The idea is to estimate each of these conditional
probabilities somehow separately, although not completely independently,
according to a branching splitting technique.

Suppose for now that all the chains have the same weight at any given
level. A population of N0 independent trajectories of the Markov process is
created (their initial states can be either deterministic or generated indepen-
dently from some initial distribution), and each trajectory is simulated until
it enters the first intermediate region B0 or until time T is reached, whichever
occurs first. Let R0 be the number of trajectories that have managed to enter
the first intermediate region B0 before time T , The fraction p̂0 = R0/N0 is an
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unbiased estimate of P(A0) = P[T0 ≤ T ]. At the next stage, N1 replicas (or
offspring) of these R0 successful trajectories are created, so as to maintain a
sufficiently large population; this is done by cloning some states if N1 > R0

or choosing them randomly otherwise. Each new trajectory is simulated un-
til it enters the second intermediate region B1 or until time T is reached,
whichever occurs first. Again, the fraction p̂1 = R1/N1 of the R1 successful
trajectories that have managed to enter the second intermediate region B1

before time T is a natural estimate of P(A1 | A0) = P[T1 ≤ T | T0 ≤ T ]. The
procedure is repeated again until the last step, in which each trajectory is
simulated until it enters the last (and critical) region Bn = B or until time T
is reached, whichever occurs first. The fraction of the successful trajectories
that have managed to enter the last (and critical) region Bn = B before time
T is a natural estimate of P(An | An−1) = P[Tn ≤ T | Tn−1 ≤ T ]. In other
words, the probability of the rare event is estimated as the product of esti-
mates of the transition probabilities from one intermediate region to the next
intermediate region, where the transition probability at level k is estimated
as the fraction p̂k = Rk/Nk of the number Rk of successful trajectories that
have managed to enter the next intermediate region before time T over the
number Nk of trials. In case Rk = 0 at any given stage k, we define p̂k′ = 0
for all k′ > k.

It is worth noting that the resulting estimator is unbiased, although the
successive estimates are dependent because the result at level k + 1 depends
on the entrance states in region Bk [15, 26]. Indeed, by induction, assuming
that E[p̂0 · · · p̂k−1] = p1 · · · pk−1 with pk = P(Ak | Ak−1), we have

E[p̂0 · · · p̂k] = E[p̂0 · · · p̂k−1 E[p̂k | N0, · · · , Nk−1, R0, · · · , Rk−1] ]

= E[p̂0 · · · p̂k−1 (Nk−1 pk)/Nk−1]

= p0 · · · pk = γ.

(1.2)

All the implementations described below are also unbiased [27].
The entrance distribution to Bk is the probability distribution µk of

X(Tk), the first entrance state into Bk, conditional on Tk ≤ T . An im-
portant observation is that each of the Rk trajectories that hits Bk before T
hits it for the first time at a state having distribution µk. Using the same
conditioning argument as in (1.2), one can see that for any measurable set
C ⊆ Bk, the proportion of these Rk trajectories that hit Bk for the first
time in C is a random variable (actually a ratio of two random variables)
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with expectation µk(C). That is, the empirical distribution µ̂Nk of these Rk

entrance states into Bk is an unbiased estimators of µk. Then, the Nk+1

states obtained after the splitting are essentially a bootstrap sample from
this empirical distribution. However, the Rk entrance states into Bk are not
independent (in fact, they can be strongly dependent in some cases, espe-
cially when k is large), and this complicates the convergence analysis of this
empirical distribution. We will return to this in Section 1.4. We recognize
that the empirical distribution is undefined when Rk = 0. This is rarely a
problem in practice and we neglect this possibility here.

In a more general setting where the chains can have different weights, we
also define the weight of a trajectory as follows. A starting trajectory has
weight 1. Each time it is split, its weight is divided by the number of offspring
(or its expected value when this number is random). As a consequence, the
above estimator of γ is just the sum of weights of the successful trajectories,
divided by the number of trajectories that were originally started. If Russian
roulette is applied, the weights can also increase when a chain survives the
roulette. In that case, an unbiased estimator of γ is the sum of (final) weights
of the chains that reach B at time TB ≤ T , and an unbiased estimator of
the entrance distribution to Bk is the weighted empirical distribution of the
states of the chains that hit k, at the first step when they hit it.

1.2.2 Implementations

There are many different ways of implementing the splitting idea. First,
various types of strategies can be used to determine the number of retrials
(i.e., clones) of a chain at each level, including the following ones:

• In a fixed splitting implementation, each trajectory that has managed
to reach the intermediate region Bk−1 before time T receives the same
deterministic number Ok−1 of offspring. Then, Nk = Rk−1Ok−1 is a
random variable. One advantage is that this can be implemented in a
depth-first fashion, recursively: at level k, each chain is simulated until
min(T, Tk). If Ak occurs, each clone is completely simulated by looking
at all its offspring, before going to the next clone. Thus, it suffices to
store a single entrance state at each level.

• In a fixed effort implementation, a fixed and predetermined number
Nk of offspring is allocated to the collection of successful trajectories
that have managed to reach the intermediate region Bk−1 before time
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T . To determine the starting point of the offspring, all the entrance
states must be known, which means that the algorithm must be ap-
plied sequentially, level by level. Several strategies are then possible to
assign the offspring to a successful trajectory. In the random assign-
ment, the Nk starting states are selected at random, with replacement,
from the Rk−1 available states. In the fixed assignment, each successful
trajectory is split approximately the same number of times, resulting
in a smaller variance [1]. This is applied by first assigning bNk/Rk−1c
offspring (or splits) to each state, and then assigning the remaining
Nk mod Rk−1 offspring to distinct trajectories chosen at random (with-
out replacement), so these chosen trajectories would have bNk/Rk−1c+1
offspring assigned to them [25, 26].

• In a fixed success implementation [24], a different perspective is con-
sidered. The idea is to create and simulate sufficiently many offspring,
from time Tk−1 onward, so that a fixed and predetermined number Hk

of trajectories actually manage to reach the intermediate region Bk

before time T . The issue here is to control the computational effort,
because the number Nk of replicas needed to achieve exactly Hk suc-
cesses is random. On the positive side, this implementation sorts out
the extinction problem automatically, by construction, i.e., the simula-
tion will always run until it reaches the rare event a sufficient number
of times. On the other hand, the computing effort may have a large
variance.

• In a fixed probability of success implementation proposed in [8], the
level sets are constructed recursively such that the probability to reach
one level from the previous level is approximately q, where q a fixed
constant such that 0 < q < 1. In this variant, assuming E[T ] < ∞,
each of the N = N0 chains is simulated until it reaches the recurrent
set ∆. Let us denote by X i(·) the trajectory of the ith chain, T i

its stopping time, and SN,i = sup0≤t≤T i h(X i(t)) the maximum value of
the importance function over its entire trajectory. Sort in increasing
order the values (SN,1, · · · , SN,N), to obtain SN,(1) ≥ · · · ≥ SN,(N). The
K = bN qc chains yielding the largest values SN,(N−K+1), · · · , SN,(N)

are kept, and in order to maintain a population of N chains, (N −K)
new trajectories are simulated with initial state the state at which the
value SN,(N−K) was recorded, and until they reach ∆. Combining
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the maximum value of the importance function of these (N −K) new
trajectories with the K values recorded previously, we obtain a new
sample of N values that we sort again in increasing order. We repeat
the procedure while SN,(N−K) ≤ L, i.e., while at least N − K chains
have not reached B. The number n of iterations of the algorithm,
and the number R of chains reaching B when the algorithm stops, are
random variables, and the estimator of the probability of the rare event
is (K/N)n (R/N). This estimator is biased, but consistent. It also
achieves the same asymptotic variance as N →∞ than the fixed effort
algorithm, with a probability q of going from any given level to the
next one.

Another important issue, from a practical viewpoint, is the computational
effort required at each level. If T is the return time to a given set A of
“initial” states, for example, then the average time before either reaching
the next level or going back to A is likely to increase significantly when k
increases. Several techniques can be designed to alleviate this problem. A
simple heuristic is to pick a positive integer β and just kill (truncate) the
chains that go down by β levels or more below the current level Lk−1, based
on the idea that they are very unlikely to come up again and reach level
k. This reduces the computational time, but on the other hand introduces a
bias. One way to deal with this bias is to apply the Russian roulette principle
[22] and modify accordingly the weight of the chain. Several versions of this
are proposed in [25, 26], including the following ones (where we also select a
positive integer β and we assume that the chain tries to reach level k):

• Probabilistic truncation applies the Russian roulette each time a tra-
jectory crosses a level k − 1 − j downward, for any j ≥ β. We select
real numbers rk−1,j ∈ [1,∞) for j = β, . . . , k − 1. Whenever a chain
crosses level k − 1− j downward from level k− 1, for j ≥ β, it is killed
with probability 1− 1/rk−1,j. If it survives, its weight is multiplied by
rk−1,j. When a chain of weight w > 1 reaches level k, it is cloned into
w− 1 additional copies and each copy is given weight 1 (if w is not an
integer, we make bwc additional copies with probability δ = w − bwc
and bw − 1c additional copies with probability 1 − δ). The latter is
done to reduce the variance introduced by the weights.

• Periodic truncation [26] reduces the variability due to the Russian
roulette in probabilistic truncation by adopting a more systematic se-
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lection of the chains that we keep. Otherwise it works similarly to
probabilistic truncation and also uses positive integers rk−1,j. It also
uses a random integer Dk−1,j generated uniformly in {1, . . . , rk−1,j}, for
each k and j ≥ β. When a chain crosses a level k− 1− j downward, if
it is the (i rk−1,j +Dk−1,j)-th chain that does that for some integer i, it
is retained and its weight is multiplied by rk−1,j, otherwise it is killed.

• Tag-based truncation [26] fixes beforehand the level at which a chain
would be killed. Each chain is tagged to level k−1− j with probability
qk−1,j = (rk−1,j−1)/(rk−1,β · · · rk−1,j) for j = β, . . . , k−1, and it is killed
if it reaches that level. With the remaining probability, it is never killed.
By properly choosing integers rk−1,j, the proportion of chains tagged
to level Lk−1−j can be exactly qk−1,j, while the probability of receiving
a given tag is the same for all chains.

To get rid of the weights, which carry additional variance, we can let
the chain resplits when it up-crosses some levels after it went down and its
weight was increased. The idea is to keep the weights close to 1. The above
truncation schemes can be adapted to fit that framework.

One of the best-known versions of splitting is the RESTART method
[31, 32, 33]. Here, when a chain hits a level upward, fixed splitting is used
(i.e., the chain is split by a fixed factor), but one of the copies is tagged as the
original for that level. Truncation is used to reduce the work: When a non-
original copy hits its creation level downward, it is killed. Only the original
chain continues its path (to avoid starvation). The weight of the original
chain accounts (in some sense) for those that are killed, to keep the estimator
unbiased. This rule applies recursively, and the method is implemented in
a depth-first fashion, as follows: whenever there is a split, all the copies are
simulated completely, one after the other, then simulation continues for the
original chain. The gain in work-reduction is counter-balanced by the loss in
terms of a higher variance in the number of chains, and a stronger positive
correlation between the chains due to resplits [15].

In the discrete-time situation, another implementation does not make
use of levels, but applies splitting and Russian roulette at each step of the
simulation [3, 5, 13, 28]. The number of splits and the killing probabilities
are determined in terms of the importance function h. Define α = α(x, y) =
h(y)/h(x) the ratio of importance values for a transition from x to y. If
α ≥ 1, the chain is split in C copies where E[C] = α, whereas if α < 1
it is killed with probability 1 − α (this is Russian roulette). A weight is
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again associated to each chain to keep the estimator unbiased: whenever a
chain of weight w is split in C copies, the weight of all the copies is set to
w/E[C]. When Russian roulette is applied, the weight of a surviving chain
is multiplied by 1/(1− α).

Yet another version, again in the discrete-time situation, mixes splitting
and Russian roulette with IS. The weight of a chain is redefined as the weight
due to splitting and Russian roulette (just like above) times the likelihood
ratio accumulated so far (see the previous chapter on IS). To reduce the
variance of the weights, the idea of weight windows was introduced in [2],
and further studied in [4, 14, 27]. The goal is to keep the weights of chain
inside a given predefined window, with the aim of reducing the variance. This
is done by controlling the weighted importance of each chain, defined as the
product of its weight w and the value of the importance function h(x) at its
current state, so that it remains close to γ = P[TB ≤ T ] for the trajectories
for which TB ≤ T . If these windows are selected correctly (this requires a
good prior approximation of γ), the main source of variance will then be
the random number of chains that reach B [4]. To proceed, we select three
real numbers 0 < amin < a < amax. Whenever the weighted importance
ω = w h(x) of a chain falls below amin, Russian roulette is applied, killing
the chain with probability 1 − ω/a. If the chain survives, its weight is set
(increased) to a/h(x). If the weighted importance ω rises above amax, we
split the chain in c = dω/amaxe copies and give (decreased) weight w/c to
each copy. If a = (amin + amax)/2 ≈ P[TB ≤ T ], this number has expectation
N0 (approximately), the initial number of chains.

1.2.3 Major issues to address

The general principles and some known versions of splitting having been
described, we now discuss several key issues that need to be addressed for an
efficient implementation of splitting.

• How to define the importance function h? This is definitely the most
important and most difficult question to address. For the multilevel
splitting, in the simple case where the state space is one-dimensional
and included in R, the final time is an almost surely finite stopping
time, and the critical region has the form B = [b,∞), then all strictly
increasing functions h are equivalent if we assume that we have the
freedom to select the levels (it suffices to move the levels to obtain
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the same subsets Bk). So we can just take h(x) = x, for instance.
Otherwise, especially if the state space is multidimensional, the ques-
tion is much more complicated. Indeed, the importance function is a
one-dimensional projection of the state space. Under simplifying as-
sumptions, it is shown in [16] and later in this paper that ideally, to
minimize the residual variance of the estimator from the current stage
onward, the probability of reaching the next level should be the same
at each possible entrance state to the current level. This is equivalent
to having h(x) proportional to P[TB ≤ T | X(0) = x]. But if we knew
these probabilities, we would know the exact solution and there would
be no need for simulation. In this sense, it is a similar issue to that of
the optimal (zero variance) change of measure in importance sampling.
The idea is then to use an approximation of P[TB ≤ T | X(0) = x],
or an adaptive (learning) technique. One way to learn the importance
function was proposed in [4]: the state space is partitioned in a finite
number of regions and the importance function h is assumed to be con-
stant in each region. The “average” value of P[TB ≤ T | X(0) = x] in
each region is estimated by the fraction of chains that reach B among
those that have entered this region. These estimates are combined to
define the importance function for further simulations, which are used
in turn to improve the estimates, and so on. We will see in Section 1.5,
on a simple tandem queue, that the choice of the importance function
is really a critical issue; an intuitively appealing (but otherwise poor)
selection can lead to high inefficiency.

It is important to emphasize that the above analysis considers only
the variance and not the computing time (the work). If we take the
work into account (which we should normally do) then taking h(x)
proportional to P[TB ≤ T | X(0) = x] is not necessarily optimal,
because the expected work to reach B may depend substantially on
the current state x.

In a rare event setting, it is important to understand how a proposed
importance function would behave asymptotically as a function of the
rare event probability γ when γ → 0, i.e., in a rare-event asymptotic
regime. This type of analysis is pursued in [9], in a framework where γ
is assumed to be well approximated by a large deviation asymptotic, for
which the rate of decay is described by the solution of the Hamilton-
Jacobi-Bellman (HJB) nonlinear partial differential equations associ-
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ated with some control problem. The authors show that a good impor-
tance function must be a viscosity subsolution of the HJB equations,
multiplied by an appropriate scalar selected so that the probability of
reaching a given level k from the previous level k − 1, is 1/Ok−1 when
Lk = k−1. In the context of fixed splitting, this condition is necessary
and sufficient for the expected total number of particles not to grow
exponentially with − log γ. Moreover, if the subsolution also has its
maximal possible value at a certain point, then the splitting scheme is
asymptotically optimal, in the sense that the relative variance grows
slower than exponentially in − log γ.

• How to choose the number of offspring? In fixed splitting, the question
is how to select the number Ok of offspring at each level. If we do
not split enough, reaching the next level (and the rare event) becomes
unlikely. On the other hand, if we split too much, the number of tra-
jectories will explode exponentially with the number of levels, which
will result in computational problems. The proper amount has to be
found out. In the next subsection, we investigate this issue in a simpli-
fied setting. In fixed effort splitting, no explosion is possible, as a fixed
total number Nk of offspring is allocated at level k to the collection
of successful trajectories that have managed to reach Bk. Nonetheless,
deciding how many offspring to create, as well as the number of suc-
cessful trajectories in the case of a fixed-performance implementation,
are important issues.

• Given the importance function h, how many intermediate regions should
be introduced and how to define the increasing sequence of thresholds ?
The next subsection investigates this point. However, the exact optimal
strategy depends on the implementation considered. There is also the
option to learn the levels, as done in the fixed-probability-of-success
method of [8].

1.3 Analysis in a simplified setting: a coin-

flipping model

Suppose we have already selected an importance function and one of the
splitting implementations discussed in the previous section. For a given total
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computing budget, we would like to find the number and the locations of
the thresholds, or equivalently the numbers n, p0, · · · , pn, that minimize
the variance of the estimator. We are also interested in convergence results
for the variance and the work-normalized variance, under various asymptotic
regimes, such as when N →∞ while n and p0, · · · , pn are fixed, or when γ →
0 and n→∞, for example. Here we study these questions and provide partial
answers under a very simplified (but tractable) model, for the fixed-effort
and fixed-splitting strategies. The main focus is on the asymptotic behavior
when N → ∞. Our simplified setting is a coin-flipping model uniquely
characterized by the initial probability p0 = P(A0) (i.e., the occurrence of
the event A0 depends only on the outcome of a {0, 1} Bernoulli trial with
parameter p0), and by the transition probabilities pk = P(Ak | Ak−1) (i.e.,
the occurrence of Ak, conditional on Ak−1, depends only on the outcome of
a {0, 1} Bernoulli trial with parameter pk), for k = 1, · · · , n. This model is
equivalent to assuming that there is only a single entrance state at each level.

For the work-normalized analysis, we need to make some assumptions
on how much work it takes, on average, to run a trajectory from a given
level k − 1 until it reaches either the next level or the set A = ∆ \ B (i.e.,
the stopping time T without reaching B). In case where there is a natural
drift toward A, it appears reasonable to assume that the chains will reach
A is O(1) expected time, independently of n, if A and B (and therefore γ)
are fixed. If we use truncation and/or Russian roulette, we still have O(1)
expected time. Then, the total expected work for all stages is proportional to∑n

k=0 E[Nk]. This is the assumption we will make everywhere in this section,
unless stated otherwise. If E[Nk] = N for all k, then this sum is N(n + 1).
For simplicity, we will further assume that the constant of proportionality
(in the O(1) expected time mentioned above) is 1.

In a different asymptotic regime, where γ → 0 and n→∞ jointly, and if
truncation and/or Russian roulette are not applied, the average time to reach
A should increase when γ → 0, typically as O(− ln γ), in which case the total
work will be proportional to (− ln γ)(n + 1)

∑n
k=0Nk. If we further assume

that p0, · · · , pn are all equal to a fixed constant p, then γ = p(n+1), so − ln γ =
−(n+ 1) ln p and the total work is proportional to (− ln p)(n+ 1)2

∑n
k=0Nk.

As it turns out, the extra linear factor (n + 1) has a negligible role in the
asymptotic behavior [18, 20, 26].
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1.3.1 Fixed effort

Several analytical studies have been performed for the fixed-effort model.
In [25], an asymptotic analysis is performed for the case where Nk = N
and pk = p = γ1/(n+1) for all k, in the simplified setting adopted here. In
this setting, R0, R1, · · · , Rn are independent binomial random variables with
parameters n and p. Then, we have [15, 25, 26]:

var(p̂0 · · · p̂n) =
n∏
k=0

E(p̂2k)− γ2

= (p2 + p (1− p)/N)n+1 − p2(n+1)

=
(n+ 1) p2n+1 (1− p)

N
+
n (n+ 1) p2n (1− p)2

2N2

+ · · ·+ (p (1− p))n+1

Nn+1
.

If we assume that N � n(1− p)/p, the first term

(n+ 1) p2n+1 (1− p)/N ≈ (n+ 1) γ2−1/(n+1)/N

dominates this variance expression. Given that the expected work isN(n+1),
the work-normalized variance is proportional to [(n+1) γ2−1/(n+1)/N ]N (n+
1) = (n + 1)2 γ2−1/(n+1), asymptotically, when N →∞. Minimizing w.r.t. n
yields a minimum value at (n+ 1) = −1

2
ln γ, which corresponds to p = e−2.

If we assume that the constant of proportionality is 1, as we said earlier, then
the resulting work-normalized relative variance is (ln γ)2e2/4.

For the asymptotic regime where γ → 0 while p and N are fixed (so
n→∞), the first term no longer dominates the variance expression, because
the assumption N � n(1− p)/p is no longer valid. In this case, the relative
error and it work-normalized version both increase to infinity at a logarithmic
rate [26].

1.3.2 Fixed splitting

Under a fixed-splitting setting, the algorithm is equivalent to a simple Galton-
Watson branching processes, where each successful trial for which the event
Ak occurs receives the same (deterministic) number Ok of offspring, for k =
0, · · · , n− 1. Each pk is estimated by p̂k = Rk/Nk. An unbiased estimator
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of γ = P(An) = p0 p1 · · · pn is then given by

p̂0 · · · p̂n =
R0

N0

R1

N1

· · · Rn

Nn

=
Rn

N0 O0 · · ·On−1
= γ

Rn

N mn

,

where N = N0 and mk = mk−1 Ok−1 pk = p0 O0 p1 · · · pk−1 Ok−1 pk for
k = 1, · · · , n, with m0 = p0 by definition. The second equality in the display
follows from the relation Nk = Rk−1 Ok−1, which holds for k = 1, · · · , n, and
means that the probability of the rare event is equivalently estimated as the
fraction of the number Rn of successful trials, for which the rare event An
occurs, over the maximum possible number of trials, N0 O0 · · ·On−1.

The relative variance of this estimator is

var(p̂0 · · · p̂n)

γ2
=

1

N

n∑
k=0

1− pk
mk

.

Moreover, by the strong law of large numbers, Rk/N → mk almost surely
for any k = 0, 1, · · · , n when N →∞, and in particular p̂0 · · · p̂n → γ almost
surely when N →∞. We also have the central limit theorem:

√
N

(
p̂0 · · · p̂n

γ
− 1

)
=⇒ N

(
0,

n∑
k=0

1− pk
mk

)
in distribution as N →∞, where N (µ, σ2) denotes a normal random variable
with mean µ and variance σ2.

The following performance analysis follows [23]. Under our assumptions,
the total work is approximately C =

∑n
k=0Nk, which satisfies

C

N
=

n∑
k=0

Nk

N
=

n∑
k=0

Nk

Rk

Rk

N
→

n∑
k=0

mk

pk
,

almost surely when N →∞.
Suppose that we are allowed a fixed expected total computing budget c,

i.e., we have the constraint E[C] ≤ c. What is the optimal way of selecting
N , n, p0, · · · , pn and O0, · · · , On−1, to minimize the variance given this fixed
budget? Assuming that we use all the budget and that N is large enough so
we can approximate C/N by its almost sure limit as N →∞, and neglecting
the fact that n and the Ok must be integers, this optimization problem can
be formulated as:

min
1

N

n∑
k=0

1− pk
mk

subject to N

n∑
k=0

mk

pk
= c.
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Solving this in terms of N and O0, · · · , On, with the other variables fixed,
yields

N = c
(1/p0 − 1)1/2

n∑
k=0

(1/pk − 1)1/2
and Ok =

(
pk+1(1− pk+1)

pk(1− pk)

)1/2
1

pk+1

,

for k = 0, · · · , n− 1. This gives the relative variance

var(p̂0 · · · p̂n)

γ2
=

1

c

(
n∑
k=0

(1/pk − 1)1/2

)2

.

Next, minimizing w.r.t. p0, p1, · · · , pn for a given n gives that the transition
probabilities should all be equal to the same value, pk = p = γ1/(n+1) for all k.
This implies that the branching rates should all be the same, Ok = O = 1/p,
which corresponds to the critical regime of the Galton–Watson branching
process, for which O p = 1. It also implies that the initial population size
should be equal to N = c/(n+ 1). In this optimal case, the work-normalized
relative variance becomes

c
var(p̂0 · · · p̂n)

γ2
= (n+ 1)2(γ−1/(n+1) − 1) = (n+ 1)2

(1− p)
p

.

Finally, minimizing w.r.t. n gives

n =
− ln γ

ln(1 + u∗)
− 1 ≈ −0.6275 ln γ − 1,

where u∗ ≈ 3.9214 is the unique positive minimum of the mapping u 7→
u/(ln(1 + u))2. Thus, the transition probabilities should all be equal to
p = 1/(1 + u∗). The resulting work-normalized variance is

c
var(p̂0 · · · p̂n)

γ2
=

u∗ (ln γ)2

(ln(1 + u∗))2
≈ 1.5449(ln γ)2,

which is slightly smaller than the value (ln γ)2e2/4 ≈ 1.8473(ln γ)2 obtained
in the fixed–effort case.

Consider now an asymptotic regime where pk = p is fixed and n → ∞,
so that γ = pn+1 → 0. Suppose that Ok = 1/p, i.e., Nk+1 = Rk/p, for
k = 0, · · · , n. Then the relative variance

var(p̂0 · · · p̂n)

γ2
=

1

N
(n+ 1) (1− p)/p
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is unbounded when n → ∞. However, the asymptotic logarithmic relative
variance (see the chapter on robustness issues for rare event estimators) is

lim
n→∞

ln[var(p̂0 · · · p̂n)/γ2]

ln γ
= lim

n→∞

ln[1 + (1/N) (n+ 1) (1− p)/p]
(n+ 1) ln p

= 0,

which means that the splitting estimator is asymptotically efficient under the
assumptions made. Asymptotic results of this type were shown in [18, 20]
in a more general setting where the probability transition matrix for the
first-entrance state at level k, given the first-entrance state at level k − 1,
converges to a matrix with spectral radius ρ < 1, which implies that pk → ρ
when k → ∞. In [20], the authors also show that in their setting, the
multilevel splitting estimator is also work-normalized asymptotically efficient
if and only if Ok = 1/ρ for all k. This results holds if the expected computing
time at level k is proportional to Nk, and it still holds if this expected time
increases polynomially in k.

It is important to emphasize that for practical applications, γ and p are
unknown, so the condition Ok = 1/p (exactly) for all k cannot really be
satisfied. Then, the population of chains is likely to either decrease too much
and perhaps extinguish (so no chain will reach B) or explode (so the amount
of work will also explode). This suggests that when γ is very small, fixed
splitting is likely to lead to a large relative variance of the estimator and also
a huge variance in the computing costs. For this reason, the more robust
fixed-effort approach is usually preferable.

1.4 Analysis and central limit theorem in a

more general setting

We will now relax the “coin-flipping” assumption of the previous section, so
that the probability of hitting the next level Lk+1 may now depend on the
entrance state into the current set Bk. This is certainly more realistic. For
example, the are situations where we might enter Bk and Bk+1 simultane-
ously, in which case this probability is 1.

We study the performance of some of the splitting implementations intro-
duced in Section 1.2.2 in the framework of multilevel Feynman–Kac distri-
butions and their approximation in terms of interacting particle systems [6,
7, 10, 11]. We state a central limit theorem and provide expressions for
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the asymptotic variance for the various implementations, in the large-sample
asymptotic regime in which γ is fixed and N = N0 → ∞ (assuming that
this implies E[Nk] → ∞ for all k). This provides some insight on the issues
raised in Section 1.2.3. The results are stated here without proofs; most of
the proofs can be found in the references cited above. We emphasize that
this analysis is not for a rare-event asymptotic regime, for which γ → 0; for
this, we refer the reader to [9, 20]. For simplicity, all along this section, we
make the assumption that at any level, all the chains have the same weight
(so no Russian roulette is allowed, for example).

1.4.1 Empirical entrance distributions

As we pointed out earlier, splitting can be used to estimate expectations of
more general functions of the sample paths than just the probability γ. In
particular, we argued in Section 1.2.1 that when all the particles have the
same weight, then the entrance distribution at any level does not depend on
the choice of importance function, is the same as for the original chain, and
can be estimated in an unbiased way by the empirical entrance distribution
at that level, which we shall denote by µ̂Nk . This empirical distribution is
already available at no extra cost when running the simulation.

More specifically, recall that Nk particles are simulated in stage k, and
Rk of them hit Bk at the end of that stage. Let {ξik, i = 1, . . . , Nk} be the
states of the Nk chains at the end of stage k, and let Ik = {i : ξik ∈ Bk}
be the subset of those states that have successfully hit Bk by their stopping
time T . Note that Ik has cardinality Rk. We have

µ̂Nk =
1

Rk

∑
i∈Ik

δξik , (1.3)

where δx represents the Dirac mass at x.

Proposition 1.4.1 For any measurable set C ⊆ Bk, E[µ̂Nk (C)] = µk(C).
This implies that for any measurable function φ,

E[E[φ(X(Tk)) | Tk ≤ T ]] = E

[
1

Rk

∑
i∈Ik

φ(ξik)

]
.

By taking φ(x) equal to the indicator that x ∈ Bk in this proposition, we
recover the unbiasedness result in (1.2).
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1.4.2 Large sample asymptotics

We saw that the empirical entrance distribution µ̂Nk provides an unbiased
estimate of µk, but what about the convergence (and convergence speed) of
µ̂Nk to µk when N → ∞? The next proposition answers this question by
providing a central limit theorem, which can be proved using the technology
developed in [10].

Proposition 1.4.2 Let φ : E → R be a bounded and continuous function
and 0 ≤ k ≤ n. Then there is a constant vk(φ), that depends on φ and on
the splitting implementation, such that

√
N

(
1

Rk

∑
i∈Ik

φ(ξik)− E[φ(X(Tk)) | Tk ≤ T ]

)
=⇒ N (0, vk(φ)) ,

in distribution when N → ∞, where N (0, σ2) is a normal random variable
with mean 0 and variance σ2. The result also extends to unbounded functions
φ under appropriate uniform integrability conditions.

We also have a central limit theorem for the probability of reaching level
k before T . When k = n, this gives a central limit theorem for the estimator
of γ, the probability of the rare event.

Proposition 1.4.3 For 0 ≤ k ≤ n, there is a constant Vk that depends on
the splitting implementation, such that

√
N

(
p̂0 · · · p̂k
p0 · · · pk

− 1

)
=⇒ N (0, Vk)

in distribution when N →∞.

By combining these two propositions, we also obtain a central limit result
for the unconditional average cost, when a cost is incurred when we hit Bk:

√
N

p0 · · · pk

(
p̂0 · · · p̂k
Rk

∑
i∈Ik

φ(ξik)− E[φ(X(min(T, Tk)))]

)
=⇒ N (0, vk(φ)) ,

in distribution when N →∞, if we assume that φ(x) = 0 when x 6∈ Bk. By
taking φ(x) equal to the indicator that x ∈ Bk, and vk(φ) = Vk, we recover
the result of the second proposition.
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An intuitive argument to justify these central limit theorems is that al-
though the particles have dependent trajectories to a certain extent, the
amount of dependence remains bounded, in some sense, when N →∞. The
idea (roughly) is that the trajectories that start from the same initial state
in stage 0 have some dependence, but those that start from different initial
states are essentially independent (in fixed splitting they are totally indepen-
dent whereas in fixed effort they are almost independent when N is large).
When N → ∞ while everything else is fixed, the number of initial states
giving rise to one or more successful trajectories eventually increases approx-
imately linearly with N , while the average number of successful trajectories
per successful initial state converges to a constant. So the amount of inde-
pendence increases (asymptotically) linearly with N , and this explains why
these central limit theorems hold.

In what follows, we derive expressions for the asymptotic variance Vn,
for selected splitting implementations. Straightforward modifications can
provide expressions for Vk, for 0 ≤ k < n. One may also rightfully argue
that instead of normalizing by

√
N in the central-limit theorem, we should

normalize by CN =
∑n

k=0Nk, the total number of particle-levels simulated,
which could be seen as the total amount of computational work if we assume
that simulating one particle for one level represents one unit of work. This
makes sense if we assume that the expected work is the same at each level.
If CN/N → C in probability as N → ∞, which is typically the case (in
particular, CN/N = C = n + 1 exactly in the fixed effort implementations),
then using Slutsty’s lemma yields√

CN (p̂0 · · · p̂n/γ − 1) =⇒ N (0, C Vn)

in distribution as N →∞. So normalizing by CN instead of N only changes
the variance by the constant factor C.

Define the function hB by

hB(x) = P[TB ≤ T | X(t) = x],

for x ∈ E. This function turns out to be an optimal choice of importance
function when we want to estimate γ. We also define

νk =
var[hB(X(Tk)) | Tk ≤ T ]

E2[φ(X(Tk)) | Tk ≤ T ]
=

∫
E
h2B(x)dµk(x)(∫

E
hB(x)dµk(x)

)2 − 1,
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the relative variance of the random variable hB(X(Tk)) conditional on Tk ≤ T
(i.e., when X(Tk) is generated from µk). These νk depend only on the original
model, and not on the splitting implementation.

In the fixed splitting implementation, we have

Vn =
n∑
k=0

1− pk
mk

+
n−1∑
k=0

νk
mk

(
1− 1

Ok

)
,

where mk is defined recursively by m0 = p0 and mk = mk−1Ok−1 pk for
k = 1, · · · , n. This coincides for n = 1 with equation (2.21) in [15]. We also
have

CN
N

=
n∑
k=0

Nk

N
−→ C =

n∑
k=0

mk

pk
,

in probability as N →∞.
In the fixed effort implementation with random assignment using multi-

nomial resampling , it is shown in [7] that

Vn =
n∑
k=0

(
1

pk
− 1

)
+

n−1∑
k=0

νk
pk
.

In the fixed effort implementation with fixed assignment using residual

resampling, if 1/pk is not an integer, for any k = 0, 1, · · · , n, then 1

Vn =
n∑
k=0

(
1

pk
− 1

)
+

n−1∑
k=0

νk
pk

(1− pk (1− rk)) .

If 1
2
< pk < 1 then rk = 1− pk and it is shown in [7] that

Vn =
n∑
k=0

(
1

pk
− 1

)
+

n−1∑
k=0

νk
pk

(1− p2k).

In each of the three cases considered above, the asymptotic variance splits
as the sum of two terms, a first term that depends on the transition proba-
bilities only, i.e., indirectly on the thresholds only, and a second term that
depends on the entrance distributions also, i.e., indirectly on the importance

1De Pierre: What if it is an integer, for example pk = 1/5?

23



function h that defines the shape of the intermediate regions. If for any given
k the function hB is constant on the support of the entrance distribution µk,
then νk = 0 and the second term vanishes, so only the first term remains and
we obtain

C Vn =

(
n∑
k=0

mk

pk

)
n∑
k=0

1− pk
mk

and C Vn = (n+ 1)
n∑
k=0

1− pk
pk

,

in the fixed splitting case and in the (two different implementations of the)
fixed effort case, respectively. Note that if the continuous-time Markov chain
has almost surely continuous trajectories, then the support of the entrance
distribution µk is {x ∈ E : h(x) = Lk}, and a sufficient condition for νk = 0
is to take h = hB as importance function. In this special case, the model
reduces to the coin-flipping model already studied in Section 1.3.

1.5 A numerical illustration

The example described in this section is simple, but it has been widely used,
because it provides a good illustration of the impact of the choice of im-
portance function [20, 15]. We consider an open tandem Jackson queueing
network with two queues. The arrival rate at the first queue is λ = 1 and
the mean service time is ρi = 1/µi at queue i, for i = 1, 2. The corre-
sponding discrete time Markov chain is given by X = {Xj, j ≥ 0}, where
Xj = (X1,j, X2,j) is the number of customers in each of the two queues im-
mediately after the jth event, where an event is an arrival or a service com-
pletion at a given queue. Our goal is to estimate the probability of reaching
B = {(x1, x2) : x2 ≥ L}, the set of states for which the second queue has
length at least L, before reaching A = {(0, 0)}. The final stopping time is
T = min(TA, TB).

To illustrate the impact and difficulty of the choice of the importance
function h, some choices are compared in [25, 26] for the case where ρ1 < ρ2,
and in [19, 17, 16] for ρ1 > ρ2. Consider the three choices

h1(x1, x2) = x2,

h2(x1, x2) = (x2 + min(0, x2 + x1 − L))/2,

h3(x1, x2) = x2 + min(x1, L− x2 − 1)× (1− x2/L).

The function h1 is the simplest choice and is motivated (naively) by the fact
that the set B is defined in terms of x2 only. The second choice h2 counts L
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minus half the minimal number of steps required to reach B from the current
state, because we need at least L −min(0, x2 + x1 − L) arrivals at the first
queue and L− x2 transfers to the second queue. The function h3 is inspired
by [30], who uses h(x1, x2) = x2 + x1 when ρ1 < ρ2. This h was modified
as follows. We have h3(x) = x1 + x2 when x1 + x2 ≤ L − 1 and h3(x) = L
when x2 ≥ L. In between, i.e., in the area where L − x1 − 1 ≤ x2 ≤ L, we
interpolate linearly in x2 for any fixed x1.

In [25, 26], the authors compare these functions in the fixed-effort case,
with several truncation implementations. For a numerical example with ρ1 =
1/4, ρ2 = 1/2, and L = 30, for instance, they estimate the constants Vn and
CVn defined in the previous section, and find that they are much higher for h1
than for h2 and h3. Using h3 yields just slightly better results than h2. The
truncation and resplit increases the variance slightly, but it also decreases the
computational time, and overall it improves the work-normalized variance
CVn roughly by a factor of 3. Detailed results can be found in [26].

When ρ1 > ρ2, the first queue is the bottleneck of the system, and the
most likely sample paths to B are those where the first queue builds up
first, and then there is a transfer of customers from the first to the second
queue. But h1 does not favor these types of paths. Instead, it favors the
paths where x1 remains small, because the customers in the first queue are
transfered quickly to the second queue. As a result, splitting with h1, can
give a variance that is even larger than with standard Monte Carlo in this
case [19]. This problem can be solved by a better choice of h [33].

Variants of this example with B = {(x1, x2) : x1 + x2 ≥ L} and B =
{(x1, x2) : min(x1, x2) ≥ L} are examined in [9], where the authors design
importance functions by finding subsolutions to the HJB equations associated
with a control problem. These importance functions perform extremely well
when γ is very small.
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