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The effect of an incremental tax incentive on optimal R and D spending of a profit maximizing firm is investigated. A dynamic 
programming approach permits the complete characterization of an optimal policy for a one-period-memory piecewise linear 
incentive scheme, and efficient computation of an c-optimal policy in the more general case. 
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1. Introduction 

In an effort to stimulate innovation in the U.S. 
economy, the Economic Recovery Act instituted a 
tax credit for incremental R and D spending. It  
provides for a 25% tax credit on R and D expendi- 
tures (RDE) incurred between June 30, 1981 and 
December 31, 1985, which exceed the average RDE 
during the three previous fiscal years. A similar 
provision, enacted in Canada in 1977, remained in 
force until 1983. 

The purpose of this paper is to investigate the 
effect of such incremental incentive schemes on 
the RDE pattern of a profit maximizing firm. The 
fundamental result, from a practical point of view, 
is that such incentives may induce a cyclical pat- 
tern in the RDE. This is basically due to the 
conjunction of a hereditary dynamical structure 
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and a nonconcave pay-off function. In Section 2 
the determination of an optimal RDE policy un- 
der incentive is posed as a deterministic optimal 
control problem in a discrete time setting. A solu- 
tion to the problem is looked for, using recent 
developments in dynamic programming. Section 3 
studies in depth a piecewise linear incentive scheme 
with a one period memory. The cyclical pattern of 
optimal RDE is established and a surrogate static 
optimization problem is proposed for the compu- 
tation of the optimal policy. The more general 
problem corresponding to the actual incentives (3 
period memory) is approached numerically in Sec- 
tion 4. A successive approximation algorithm, with 
approximate computation of the transform of the 
value function by the dynamic programming oper- 
ator, is implemented. The pattern of an optimal 
R D E  policy is then exhibited, and an optimal 
cyclical RDE is obtained. 

For the sake of simplicity of exposition, it has 
been assumed that except for the incentive, R D E  
has an immediate effect on profits. The model 
could be straightforwardly extended to the case 
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where there is a multi-period effect of RDE in 
addition to that of the incentive. 

2. Optimal RDE under incentive: A dynamic pro- 
gramming approach 

The firm we consider picks a level a t of RDE 
within a compact interval A & [0, b], at each period 
t belonging to an infinite sequence T --a 
{0, 1, 2 . . . .  } of periods. We assume that the net 
expected profit associated with a, is concentrated 
in period t and given by a bounded upper semi- 
continuous real function f :  A ~ R. 

In the absence of incentive the firm seeks to 
maximize the net discounted sum of profits (a  
(0, 1) is the discount factor): 

o o  

Z a t / ( a t )  • (1) 
t - - 0  

The obvious optimal RDE sequence is given by 
a, -- a with t~ = arg max{f (a ) :  a ~A} .  

Consider now the effects of a tax incentive 
scheme which is a function of present RDE a, and 
the string x t & ( a  t . . . .  a t .... +l . . . . .  a t_l)  or RDE 
chosen in the past m periods. The incentive scheme 
is defined as a bounded upper semi-continuous 
(u.s.c.) function h : X x  A ~ R where X ~= A" .  

Given the initial string x o, the firm seeks to 
maximize 

o o  

~ ( { a t ) t ~ ,  Xo)= Z -'~(x,, at) 
t - - 0  

o o  

Z - t ( / ( a t ) + h ( x t ,  at)) (2) 
t - - 0  

subject to 

x t = ( a ,  . . . .  a ,_ , ,+,  . . . . .  a ,_ , ) ,  t ~ T ,  (3) 

x o = (a  . . . .  a_ . ,+ ,  . . . . .  a_ ,  ) ~ X given. (4) 

Clearly the incentive scheme complicates the 
optimization which is now akin to a discrete time 
optimal control problem, with x t and a t being 
respectively the state and control variables at t. 
We shall review the dynamic programming ap- 
proach for the solution of this problem. 

Let constants go and g~ be respectively lower 
and upper bounds for g ( x ,  a), x ~ X,  a ~ A (such 
bounds exist), and let B be the class of u.s.c. 
functions 

V: X ~  [ g o / ( 1  - (~), g , / ( 1  - (~)]. 

We define, for any V in B, 

H(V)(x, a)"=g(x, a) +.V(a_,,,+, .. . . .  a_,, a), 

x = ( a  ......... a_ , )~  X, a e A ,  (5) 
T ( V ) ( x ) = s u p  H ( V ) ( x , a ) ,  x e X ,  (6) 

a E A  

and for any function it: X--)A, called a policy, 

r.(V)(x)=H(V)(x, ~(x)),  x~X. (7) 

Since A is compact and V is u.s.c., the supre- 
mum is always attained in (6). The operators T~ : B 
--* B and T: B =-)B are the usual dynamic pro- 
gramming operators. We now can state the follow- 
ing well known results. 

Proposition 1. For any fimction it : X ~ A,  define 
oo 

v,,(Xo) = Z . '~(x,,  a,) (8) 
t = O  

s.t. (3), (4) and 

a, = i t (x , ) ,  t ~ r .  (9) 

AIso define 

V.(xo) = sup V.(xo). (10) 
l.t 

Then the following hoM: 
(i) V .  is in B and is the unique solution to 

r ( z ) = v ,  V ~ B .  (11) 

(ii) V~ is in B and is the unique solution to 

T.(V)= V, VeB. (12) 

(iii) I f  T n denotes the n-fold composition of  T, 

limp s u p [ T ' ( V ) ( x ) - V . ( x ) l = 0  V V ~ B .  
n " ~  o o  ): ¢~ X 

(13) 

(iv) V~ = V .  i l l  T ~ ( V . ) =  V .  and il l  T(V~)= 
V~ ~ B .  

(v) For a given V in B, there exists a sequence 
of  policies it1, It,. . . . .  such that 

T " ( V )  = T , . ( T " - I ( V ) ) ,  n ~ N, (14) 

and 

lim sup [V~. (x) -  V . ( x ) [ = O .  
n ==') oo .~EX 

Proof: see [1-6]. 
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3. Optimal RDE under a piecewise linear incentive 
with one period-memory 

We characterize in this section an optimal RDE 
policy when the incentive scheme has a one-period 
memory (m = 1, x t = a ,_ l )  and is defined by 
h(x ,  a ) = 8  rain(0, a - x ) + y  max(0, a - x ) .  

(15) 
With parameters 8 and y representing respec- 

tively the penalty per unit of RDE decrease below 
the previous level and the premium (or tax credit) 
per unit of RDE increase above the previous level. 

A related model was studied in [8], but with the 
important restriction ), = 8, under which h is lin- 
ear. 

According to (5) and (6) we have 

{f(a) + ocV(a) + 8 ( a  - x) 

if a ~< x ,  (16) 
H(V)(x, a) = if(a ) + aV(a) + T(a - x) 

ifa>~x. 

r(V)(x) 

= max( max ( f ( a )  + a V ( a )  +Sa)  - S x ,  
~O<~a<~x 

max ( f ( a ) + a V ( a ) + T a ) - v x } .  (17) 
x ~ a ~ b  

The two propositions that follow state that the 
optimal policy dictates a constant RDE sequence 
when 8 >/"t and that, when 8 < "t, the optimal 
RDE sequence is either constant or periodic with 
period 2. Notice that no special assumption is 
made on f other than boundedness and upper 
semi-continuity. 

Proposition 2. I f  8 >I 7, then a constant RDE se- 
quence a, - a , ,  V t ~ T ( a ,  may depend on Xo) 
maximizes (2) subject to (3, 4, 15), and 

[ max ( 8 ( a - x ) + f ( a ) / ( 1 - a ) ) ,  I 
V , ( x )  = I o ~ . ~ . ~  

max~.~o~bmax (YCa-x)+f(a)/(1 ~)) J" 

(18) 
Proof: By Proposition l(i) we know that V.  exists. 
For a given x o in X, let 

a .  = arg max H ( V . ) ( x  o, a).  
a E A  

Two cases are possible: If  a .  ~< x o, then 
jr(a.) + a V . (  a , )  + a( a. - %) 

>~ f (  a)  + ctV.( a) 

8 ( a - - X o )  i f0~<a~<x  o, 

+ y ( a _  Xo ) ifxo<~a<~b, 

from which we obtain 

/(,.) +~v.(,.) 

I(,) + =v.(,) + a(, - ,.) 
if a<a., 

f ( a )  + a V . ( a )  + 8(a - a . )  

>~f(a) + e tV.(a)  + y ( a  - a . )  

>1 if a . <~ a <~ xo, 

f (  a ) + etV.( a ) + y ( a  - Xo) 

+ 8 ( % - . . )  

>~f(,)  + ~ v . ( , )  + ~ ( ,  - , . )  
if x o ~< a. 

(19) 

If  a .  > Xo, then 

/ ( . . )  + , ~ v . ( . . )  + ~,( . .  - Xo) 

a(a-xo) 
i f0~<a~<x  o, 

>~f(a) + aZ.(a) +, 
"¢(. - X o )  

if xo < a <~ b, 

and 

/ ( , . )  + ~ v . ( , . )  

/ ( , )  + ~ v . ( , )  + a ( ,  - Xo) 

- v ( ' .  -Xo)  

>~f(.)  + ~ v . ( , )  + a ( .  - , . )  
if a ~< x o, 

>1 f C a ) + e t V . C a ) + y ( a - a . )  

>~f(,)  + ~ v . ( , )  + a ( ,  - , . )  
if xo <~ a <~ a . ,  

/ ( , )  + .~v . ( , )  + v ( ,  - - . )  
if a . ~ < a .  

(20) 

Since for x = a = a . ,  g ( a . ,  a . )  = f ( a . ) ,  (19) and 
(20) establish that 

V,(a,) = f ( , , )  = ~V,(a,). 
Therefore, by Proposition l(ii), (iv), the optimal 

policy calls for a o = t t ( X o ) = a . ,  a , = t t ( a . ) = a . ,  
Vt >~ 1. Notice that the optimal investment se- 
quence, albeit constant, depends on the initial 
state x o. 

Since the R D E  level a o chosen at t = 0  is 
maintained forever, we have h(x, ,  a , )=  0 for all 
t > 0, and the total discounted profit is thus given 
by one of the two expressions in the RHS of (18). 
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P r o p o s i t i o n  3. / f  3 < y in (15), then there exist 
three constants a , ,  a** and x ,  in A, with a ,  <~ x ,  
<~ a**, such that the optimal RDE policy g ,  is 
defined by 

g . ( x )  = { a ,  i f x > x . ,  (21) 
a** if x ~ x . ,  

where 

x ,  ~ ( o ,  - u , ) / ( y  - 3 ) ,  ( 2 2 )  

v .  & f ( a * * )  + a V . ( a * * )  + ya**, (23) 

u .  & f ( a . )  + a V , ( a , )  + 3 a . .  (24) 

Proof. In that case (17) can be rewritten as 

T ( V ) ( x )  = max(u - 3x, v - yx)  

with 

u = max ( f ( a )  + aV(a )  + 3a),  (25) 
O~a,~x 

v =  max ( f ( a ) + a V ( a ) + y a ) .  (26) 
x~a*~b 

When V=  V,, we denote by u ,  and v ,  the 
respective values of u and o, and by a ,  and a** 
the largest maximizing values of a for a given 
value of x in (25) and (26) respectively. An opti- 
mal RDE policy is then to spend a ,  if u ,  - 3x > 
v ,  - 3'x, and a** otherwise. This leads to (21-22). 

It remains to prove that a ,  ~< x ,  ~< a**. From 
(22-24) and the definition of a ,  and a**, we have 

( y -  3 ) ( x ,  - a , )  

= v ,  - u , -  y a ,  + 3a ,  

-- f ( a * * )  + a V , ( a * * )  + ya** - f ( a , )  
- c ~ V , ( a , )  - ya, 

>10, 

and 

( v  - 3 ) ( a * *  - x , )  = u ,  - o ,  + y a * *  - 3 a * *  

= f ( a , )  + a V , (  a , )  + 3 a ,  - f (  a**) - a V . (  a**) 

- 3 a * *  ~ O. 

This establishes the desired inequalities. Notice 
that the optimal RDE sequence is constant when 
a * *  ~ x , .  

The following corollary provides a simple mean 
to compute the optimal policy when 3 < y. 

Corollary 1. Consider the constrained (static) opti- 
mization problem 

Max u +  v (27) 

s . t .  

u--  av = f ( a , )  + ( 3 -  a y ) a , ,  

o-- otu = f ( a 2 )  + ( y - -  a3)a2 ,  

o-u>~(v-3)a,, 
o -  u ~< ( v  - 3)a2, 

a I , a 2 E d ,  
u, o E R .  

(28) 
(29) 

( 3 0 )  

(31) 

Then the optimal policy defined by (21-24) pro- 
vides a solution to (27-31) when u= u, ,  v = v , ,  
a I = a , ,  a 2 = a**. Conversely, if (a o, aoo, u o, Oo) 
is a solution to (27-31), then the policy defined by 

g ° ( x ) =  { a°°aoo if X > Y¢, (32) 

2 = (v o -  Uo)/(  Y -  3) (33) 

is optimal 

Proof. The function V, associated with g ,  defined 
by (21-24) is given by 

V , ( x ) = ( u , - 3 x  for x > x , ,  (34) 
v ,  - yx for x < x , .  

From (23, 24, 34), we obtain (28, 29). The in- 
equalities (30, 31) are also implied by a ,  ~< x , <  
a** and (22). Therefore (u , ,  v , ,  a , ,  a**) is feasi- 
ble for the constrained optimization problem 
(27-31). 

Let (uo, v o, ao, aoo ) be any other feasible solu- 
tion to (28-31). Define a policy/% as in (32-33). 
By straightforward calculation, one obtains 

r.o(Vo)(x)=Vo(x) Vx~A ~"-(35) 
where 

V o ( x ) = [ U o - 3 X  ifYc < x < b ,  (36) 
[ V o - Y X  i f0  ~<x~<.~. 

Therefore V o = Wo by Proposition 1(i), and thus 
by construction V,(x)>~ Vo(x ) Vx ~ A .  If x ,  < b 
then 

u , =  V,(b)+3b>~. Vo(b)+3b>1u o. (37) 

If x ,  = b, then necessarily a ,  = x ,  = a * *  = b and 

u ,  = f ( b )  + a V . ( b )  + 3 b  = o .  - ( y -  3)b 

= V,(b)+3b>.. .  Vo(O)+3b>lu  o. (38) 

Finally 

v ,  = V , ( 0 )  >1 V o ( 0  ) = v o.  ( 3 9 )  

From (37-39) we conclude that u ,  + o ,  >1 u o + o o. 
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Further, if (u o, Vo, ao, a0o ) is a solution to the 
optimization problem (27-31), and if the policy/.t o 
defined by (32-33) is non optimal, then for some 
x in [0, b], V0(x)< V , (x )  and by (34-36), either 
u o < u ,  or v 0 < o, .  Since, by assumption, u o + o o 
> / u , + v , ,  one has either u o > u , ,  or o o > o , ,  

which contradicts (23, 24). Therefore ~o is an opti- 
mal policy. 

4. A computational approach for the general case 

The U.S. incentive program, as well as the 
Canadian one effective till 1983, uses a scheme 
with a 3 period memory (m = 3) and a function 
h(x,  a) defined by 

h(x ,  a ) = y  max(0, a - ( x  I + X 2  + X 3 ) / 3  ) (40) 

where x = (xl,  x2, x3). 
Even for such a simple piecewise linear incen- 

tive scheme, the only possible approach for de- 
termining an optimal RDE policy seems to be a 
direct numerical solution of the dynamic equation. 
The approach proposed in this section is a succes- 
sive approximation method based on Proposition 
l(v) but with an approximate computation of T(V)  
at each iteration. The algorithm proceeds as fol- 
lows. 

Step 1: Set _V: = 0, V: = gl/(1 - a), choose any 
V i n  B a n d ¢ > 0 .  

Step 2: 'Compute T(V)  at a finite number of 
points in X. Obtain a function W in B which 
approximates T(V)  on X (e.g. use finite element 
interpolation). This step can be repeated, resetting 
V: = IV, if one wishes. 

Step 3: Compute or estimate d->~0, d+>~0, 
c->~ 0, c+>~ 0 s.t. 

-d-<~ T ( V )  - W ~  d .+, (41) 

- c -~<  W -  V~< c +. (42) 

Redefine 

V: =max(V,  W - ( d - + c t c - ) / ( 1 - a ) ) ,  (43) 

V: = rain(V, W +  (d++  otc+)/(1 - a) ) . '  (44) 

Step 4: Find a policy # and c o > 0 s.t. 

T~(V) ~< IV+ %. (45) 

Step 5: Compute q = (c o + d -+  a (c -+  c+))/  
(1 - a). If ( I  is smaller than (, then stop. Otherwise 
return to step 2. 

Proposition 4. (a) After each iteration (steps 2 to 
5), ._V and P satisfy 

V_(x) <~ V , ( x )  <~ V ( x )  Vx ~ X. (46) 

(b) The policy # obtained in step 4 is q-optimal, 
i.e. 

V ~ ( x ) > V , ( x ) - q  V x ~ X .  (47) 

(c) I f  the sequences of values d-,  d +, c o obtained 
at successive iterations converge to O, then V_- 
converges to 0, and, for any c >1 O, an c-optimal 
policy is obtained in a finite number of iterations. 

Proof. It follows from Theorem 3.3 in [7]. 

An interactive FORTRAN program was built to 
implement this algorithm, and used to solve the 
following numerical example. 

5. A numerical illustration 

Let "g = 0.5, t~ = 0.9, b = 4 and 

f ( a )  = 2 ln(1 + a ) - a .  

At each iteration, we partition X into rectangu- 
lar boxes, evaluate T(V) at the corner points of 
the boxes, and define W as the boxwise trilinear 
interpolating function. For instance, choosing a 
regular mesh of 5 points along each axis, X can be 
partitioned into 43= 64 identical cubes. After 60 
iterations with this partition, one may refine the 
grid to obtain 93 cubic boxes, perform another 20 
iterations, refine again into 15 boxes and perform 
5 more iterations. One then obtains c - =  0.00088, 

Table 1 

PERIOD RDE AMOUNT 

- 3 1 .000 

- 2 1 .000 

- I 1.000 
0 2.076 
I 3.000 
2 0.784 
3 0.593 
4 0.558 
5 2.078 
6 3.000 
7 0.784 
8 0.593 
9 0.558 

10 2.078 
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c ÷ =  0.00000, V-__V= 0.017, V(1, 1, 1 ) =  5.34 and 
c t-=-0.10. The values of  d -  and d + have been 
estimated by recomputing T ( V )  on a much finer 
grid, and compar ing  these values of  T(V)  with the 
actual values of  W. The retained po l i cy / t  is de- 
fined implicitly by 

# ( x )  = arg max H ( W ) ( x ,  a) .  
a E A  

Using th i s  policy, it is easy to compute  an 
investment schedule. If  e.g. the R D E  amounts  for 
the last 3 periods have been chosen to maximize 
f ( a ) ,  i.e. t~ = 1, we obtain Table 1. 

F rom period 2, this schedule exhibits a five 
period cycle for which h ( x ,  a) is positive for the 
last 2 periods of  the cycle. 

On the other hand, if one assumes a cyclic 
schedule of  period 5 where the firm takes ad- 
vantage of  the incentive only during the last 2 
periods, the total present value of  the schedule at 
the beginning of a cycle is 

J ( a l ,  a2, as ,  aa ,  as )  

= { f ( a ,  ) + e t f (a  2) + a 2 f ( a 3 )  

+ e t s ( f ( a 4 )  + 1,(a 4 - ( a ,  + a 2 + a 3 ) / 3 ) )  

+ a 4 ( f (  a5) + ~'( a5 - ( a . ,  + as + a 4 ) / 3 )  } 

X (1 - as)  I/2. 

This function of  five variables is maximized for 
a I = 0.7833, a 2 = 0.5917, a s = 0.5564, a 4 -- 2.0769 
and a s = 3.0. This is in very close agreement with 
the approximation obtained through the D.P. al- 
gorithm. 

6, Conclusion 

The cyclical pat tern of  R and D expenditures 
induced by an incremental tax incentive scheme 
should lead to further investigation of  the follow- 
ing topics: (1) the optimal design of  governmental  
incentive programs for which a balance has to be 
found between the cost of  the program and its 
pay-off;  (2) extension of  the approach to a con-  
t inuous-time optimal control  setting. The first 
question pertains to economics, the second is re- 
lated to the theory of  periodic control,  both topics 
pose interesting challenges as nons tandard  optimi- 
zat ion problems. 
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