
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

QUASI-MONTE CARLO METHODS FOR SIMULATION

Pierre L’Ecuyer
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ABSTRACT

Quasi-Monte Carlo (QMC) methods are numerical
techniques for estimating large-dimensional integrals,
usually over the unit hypercube. They can be applied,
at least in principle, to any simulation whose aim is
to estimate a mathematical expectation. This covers a
very wide range of applications.

In this paper, we review some of the key ideas of
quasi-Monte Carlo methods from a broad perspective,
with emphasis on some recent results. We visit lattice
rules in different types of spaces and make the connec-
tions between these rules and digital nets, thus covering
the two most widely used QMC methods.

1 INTRODUCTION

When running a stochastic simulation on a computer,
the required (pseudo)randomness is usually produced
by a random number generator (RNG), whose output
is a sequence (or stream) of real numbers between 0 and
1. This sequence is supposed to imitate a typical real-
ization of a sequence of independent and identically dis-
tributed (i.i.d.) random variables uniformly distributed
over the interval (0, 1). The simulation program can
then be viewed as a complicated function f that trans-
forms this stream of real numbers u = (u0, u1, u2, . . . )
into an output value f(u). Frequently, the goal of the
simulation is to estimate a mathematical expectation
that can be written as

µ =
∫

[0,1)s

f(u)du (1)

where s is an integer that represents the number of calls
to the RNG required by the simulation. In the case
where this number of calls is random and unbounded,
we can simply view s as infinite, and assume that the
number of uniforms that are actually used by the sim-
ulation is finite with probability one.

If n independent simulation runs are performed, with
run i using the random stream ui ∈ [0, 1)s, for i =

0, . . . , n− 1, the Monte Carlo (MC) estimator of µ is

Qn =
1
n

n−1∑
i=0

f(ui). (2)

This estimator is unbiased, has variance σ2/n where

σ2 =
∫

[0,1)s

f2(u)du− µ2 (3)

is assumed finite throughout this paper, and obeys the
central-limit theorem

√
n(Qn − µ)/σ ⇒ N(0, 1). The

error Qn − µ thus converges at rate Op(σ/
√

n).
The idea of Quasi-Monte Carlo (QMC) methods is

to replace the random points ui by a set of points
Pn = {u0, . . . ,un−1} ⊂ [0, 1)s that cover the unit hy-
percube [0, 1)s more uniformly than typical random
points. The two main classes of methods for construct-
ing such point sets are digital nets and integration lat-
tices (Niederreiter 1992b, Sloan and Joe 1994, L’Ecuyer
and Lemieux 2002). We will explain how they work in
Section 3.

Can these methods beat the Op(1/
√

n) convergence
rate? The short theoretical answer is yes. A stan-
dard way to bound the integration error and obtain
its convergence rate is via the Koksma-Hlawka inequal-
ity and its generalizations (Niederreiter 1992b, Hicker-
nell 1998a). The idea is to consider a Banach space
F of functions with norm ‖ · ‖, where ‖f − µ‖ mea-
sures the variability of f , and a measure D(Pn) of
the discrepancy (or non-uniformity) of Pn, chosen in
a way that the worst-case deterministic error bound
|Qn − µ| ≤ ‖f − µ‖D(Pn) holds for all f ∈ F . Then,
for functions f with bounded variability the error is
guaranteed to converge at least as fast (asymptoti-
cally) as D(Pn). It is known that there are point
sets Pn (constructed via lattice rules and digital nets)
for which O(D(Pn)) = O(n−1(lnn)s−1) (Niederreiter
1992b). If we impose the additional condition that
Pm ⊆ Pn whenever m < n, so that limn→∞ Pn repre-
sents an infinite sequence of points whose first n points
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are Pn for each n, then the best known rate becomes
O(D(Pn)) = O(n−1(lnn)s). In both cases, this rate
beats O(n−1/2) asymptotically. But for practical val-
ues of n (say, n ≤ 109), O(n−1(lnn)s−1) wins only if
the dimension s does not exceed 7 or 8. QMC meth-
ods have been shown to beat standard MC for certain
problems in up to 1000 dimensions or more. However,
the O(n−1(lnn)s−1) convergence rate implied by the
Koksma-Hlawka inequality does not suffice to explain
this success. A key additional explanation will be given
in Section 2: roughly, QMC can still work nicely if f
can be approximated by a sum of low-dimensional func-
tions.

In classical QMC methods, Pn is a purely determin-
istic point set, so the estimator Qn has zero variance
and the error (or bias) Qn − µ is hard to estimate.
In randomized QMC methods, Pn is randomized in a
way that it retains its high uniformity over [0, 1)s when
taken as a set, while each of its points has the uni-
form distribution over [0, 1)s when taken individually.
Then, Qn becomes an unbiased estimator of µ, hope-
fully with smaller variance than the standard MC esti-
mator. To estimate the variance and perhaps compute
a confidence interval on µ, one can apply m indepen-
dent randomizations to the same Pn, and compute X̄
and S2

x, the sample mean and sample variance of the
m corresponding (independent) values of Qn. Then,
E[X̄] = µ and E[S2

x] = Var[Qn] = mVar[X̄] (L’Ecuyer
and Lemieux 2000).

One simple example of such a randomization is a ran-
dom shift modulo 1, proposed by Cranley and Patterson
(1976): generate a single point u uniformly distributed
over [0, 1)s and add it to each point of Pn, coordinate-
wise, modulo 1. Since all points of Pn are shifted by the
same amount, the set retains most of its structure and
uniformity. Another example is a random digital shift
in base b: generate again a single u = (u1, . . . , us) uni-
formly over [0, 1)s, write the digital expansion in base b
of each of its coordinates, say uj =

∑∞
`=1 dj,`b

−`, then
add dj,` modulo b to the `th digit of the digital ex-
pansion in base b of the jth coordinate of each point
ui ∈ Pn. For b = 2, the digitwise addition modulo
b becomes a bitwise exclusive-or, which is fast to per-
form on a computer. An interesting property of this
randomization is that if the hypercube [0, 1)s is par-
titioned into bq1+···+qs rectangular boxes of the same
size by partitioning the jth axis into bqj equal parts
for each j, for some integers qj ≥ 0 (such a partition
is called a q-equidissection in base b of the unit hy-
percube, where q = (q1, . . . , qs)), then the number of
boxes that contain m points, for each integer m, is un-
changed by the randomization. In particular, if each
box contains the same number of point of Pn before
the randomization, then it also does after the random-

ization. In this case, we say that Pn is q-equidistributed
in base b. Several other randomization methods exist
and most are adapted to special types of point sets; see,
e.g., L’Ecuyer and Lemieux (2002) and Owen (2003).

For randomized QMC point sets, the convergence
rate of the variance E[(Qn − µ)2] can easily beat that
of standard MC, especially if the function f is smooth.
For example, if F be the Sobolev class of functions
on [0, 1)s whose mixed partial derivatives Dif of or-
der |i| ≤ k all have Euclidean norm ‖Dif‖2 ≤ 1, then
infPn supf∈F (E[(Qn − µ)2])1/2 = O(n−k/s−1/2) where
the infimum is taken over all randomized point sets Pn

(Bakhvalov 1962, Heinrich and Nowak 2002). When
k/s is large, this is much better than O(n−1/2). On the
other hand, concrete constructions giving this conver-
gence rate for any k and s are not available, and the
hidden constant could be large.

The remainder of this paper is organized as follows.
In Section 2, we recall the functional ANOVA decom-
position of a function f and discuss the importance
of looking at the lower-dimensional projections when
studying the uniformity of a point set Pn. In section 3,
we give the definitions and outline some basic proper-
ties of lattice rules and digital nets. Randomized ver-
sions of these point sets, and corresponding variance
expressions and bounds, are also examined. A short
conclusion completes the paper.

2 ANOVA DECOMPOSITION

The functional ANOVA decomposition (Hoeffding 1948,
Owen 1998, Liu and Owen 2003) writes f as f(u) =
µ +

∑
I⊆{1,...,s}, I 6=φ fI(u) where each fI depends only

on {ui, i ∈ I}, the fI ’s integrate to zero and are
orthogonal, and the variance decomposes as σ2 =∑

I⊆{1,...,s} σ2
I where σ2

I = Var[fI(U)] for U uniformly
distributed over [0, 1)s. See the references for explicit
definitions of these fI and additional properties.

For each set of coordinates I, let Pn(I) denote the
projection of Pn over the subspace determined by I. If
there is a set J of subsets of {1, . . . , s} of cardinality
much smaller than 2s and such that

∑
I∈J σ2

I ≈ σ2,
then it suffices to construct Pn so that the projections
Pn(I) are highly uniform for all I ∈ J , in order to
reduce the important variance terms σ2

I . This is gener-
ally easier to achieve than having all projections Pn(I)
highly uniform. The set J of important projections
depends of course on the function f .

In this context, a function f is said to have effec-
tive dimension d in proportion ρ in the superposition
sense if

∑
|I|≤d σ2

I ≥ ρσ2 (Owen 1998). If ρ is close
to 1, this means that f is well approximated by a sum
of d-dimensional (or less) functions. For example, a
multivariate polynomial of degree d has effective di-
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mension d in proportion 1 in the superposition sense
(d = 1 for a linear function, d = 2 for a quadratic
function, etc.). Real-life simulations often involve high-
dimensional functions with low effective dimension in
proportion ρ close to 1. Special techniques can also be
used to change f in order to reduce the effective di-
mension, without changing µ (Spanier and Maize 1994,
Morokoff 1998, Owen 1998, Fox 1999). Nevertheless,
for large s and moderate d, the number of projections
Pn(I) for which |I| ≤ d, which equals

∑d
k=1

(
s
k

)
, be-

comes so large that it may be too hard or impossible to
construct point sets for which all these projections are
very uniform.

Sometimes,
∑

I∈J σ2
I is close to σ2 if J contains all

the sets I formed by indices that are not too far apart,
and it suffices to have good uniformity for the corre-
sponding projections. For example, if one wishes to esti-
mate the average waiting time per customer in a queue-
ing system, the result will typically depend strongly
on the interaction between the interarrival and ser-
vice times of customers that are close to each other in
time, and very little on the interaction between cus-
tomers that are far from each other in time. This
leads to the following definition: f has effective di-
mension d in proportion ρ in the successive-dimensions
sense if

∑
I⊆{i,...,i+d−1}, 0≤i≤s−d σ2

I ≥ ρσ2 (L’Ecuyer
and Lemieux 2000). The following third definition fur-
ther reduces the number of projections considered: f
has effective dimension d in proportion ρ in the trun-
cation sense (Caflisch, Morokoff, and Owen 1997) if∑

I⊆{1,...,d} σ2
I ≥ ρσ2. Low effective dimension in the

truncation sense can sometimes be achieved by setting
the simulation experiment (or program) in a way that
the first few random variables that are generated ac-
count for most of the variance in f (Caflisch, Morokoff,
and Owen 1997, Fox 1999, L’Ecuyer and Lemieux 2000).

Point sets should thus be constructed by consider-
ing the uniformity of certain sets of projections. It is
natural to ask that all projections contain as many dis-
tinct points as the original point set, i.e., points should
not be superposed in projections. Adopting construc-
tions for which several projections are identical can also
make the analysis easier. A point set Pn in [0, 1)s

is called fully projection-regular (Sloan and Joe 1994,
L’Ecuyer and Lemieux 2000) if for each non-empty
I ⊆ {1, . . . , s}, Pn(I) has n distinct points. It is called
dimension-stationary (Lemieux and L’Ecuyer 2001) if
whenever 1 ≤ i1 < . . . < iη < s and 1 ≤ j ≤ s − iη,
Pn({i1, . . . , iη}) = Pn({i1 + j, . . . , iη + j}). This means
that Pn(I) depends only on the spacings between the in-
dices in I. Note that näıve rectangular grids in s ≥ 2 are
not projection-regular, because their projections have
several points superposed on each other. In this sense,
they are bad QMC point sets.

3 LATTICE RULES AND DIGITAL NETS

3.1 Ordinary Lattice Rules

We now summarize the main types of construction
methods for QMC point sets, and some of their ba-
sic properties. An integration lattice is a vector space
of the form

Ls =

v =
s∑

j=1

hjvj such that each hj ∈ Z

 ,

where v1, . . . ,vs ∈ Rs are linearly independent over R
and Zs ⊆ Ls. The approximation of µ by Qn with
the node set Pn = Ls ∩ [0, 1)s is a called a lattice rule
(Korobov 1959, Sloan and Joe 1994). The condition
Zs ⊆ Ls implies that Ls is periodic with period 1 along
each of the s coordinates.

Let V be the matrix whose rows are the basis vec-
tors v1, · · · ,vs and V−1 its inverse. The columns
hT

1 , . . . ,hT
s of V−1 form a basis of the dual lattice, de-

fined as L∗s = {h ∈ Rs : h ·v ∈ Z for all v ∈ Ls}, where
· denotes the scalar product. One has Zs ⊆ Ls iff (if
and only if) L∗s ⊆ Zs iff all entries of V−1 are integer.
When this holds, n = det(V−1) and all entries of V are
multiples of 1/n.

The rank of the lattice is the smallest r such that
one can find a basis of the form v1, . . . ,vr, er+1, · · · , es,
where ej is the jth unit vector in s-dimensions. In
particular, a lattice rule of rank 1 has a basis of the
form v1 = (a1, . . . , as)/n and vj = ej for j > 1, where
aj ∈ Zn for each j. It is a Korobov rule if v1 has the spe-
cial form v1 = (1, a, a2 mod n, . . . , as−1 mod n)/n
for some a ∈ Zn. The point set Pn of a Korobov lattice
rule can also be written as Pn = {(x1, . . . , xs)/n such
that x1 ∈ Zn and xj = axj−1 mod n for all j > 1}.
This is the set of all vectors of successive values pro-
duced by a linear congruential generator (LCG) with
modulus n and multiplier a, from all possible initial
states (including 0). In this case, the points are easy to
enumerate by using the recurrence.

The projection Ls(I) of Ls over the subspace de-
termined by I = {i1, . . . , iη} is also a lattice, with
point set Pn(I). A rule of rank 1 is fully projection-
regular iff gcd(n, aj) = 1 for all j, and a Korobov rule
is fully projection-regular and dimension-stationary iff
gcd(n, a) = 1 (L’Ecuyer and Lemieux 2000).

Figure 1 illustrates the point set Pn in s = 2 di-
mensions for a Korobov lattice rule with n = 1021
and a = 90. The vectors v1 = (1/1021, 90/1021) and
v2 = (0, 1) are a basis of the lattice. This rule is both
fully projection-regular and dimension-stationary. The
high regularity and uniformity of the points over the
unit square is apparent. The projection of Pn on each
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Figure 1: The 1021 points of the Korobov lattice rule
with n = 1021 and a = 90 in two dimensions.

of the two coordinates gives the set of equidistant points
Pn({1}) = Pn({2}) = {0, 1/n, . . . , (n− 1)/n}.

It is possible to construct sequences of lattices L1
s ⊂

L2
s ⊂ L3

s ⊂ . . . , so that each lattice contains the pre-
vious one (Cranley and Patterson 1976, Joe and Sloan
1992, Hickernell, Hong, L’Ecuyer, and Lemieux 2001).
Such sequences permit one to increase the cardinality
of Pn sequentially, without throwing away the points
already considered. If the point set Lξ

s∩ [0, 1)s contains
nξ points, then nξ−1 must divide nξ, for each ξ. For
example, if the ξth rule is a Korobov rule with nξ = 2ξ

points and multiplier aξ, then one must have aξ = aξ−1

or aξ = aξ−1 +nξ−1 for each ξ. That is, when doubling
the number of points, there are only two possibilities
for the new lattice in this case.

The lattice structure of Pn and each of its projec-
tions Pn(I) implies that their points belong to a limited
number of equidistant parallel hyperplanes. In two di-
mensions, these hyperplanes are lines, as illustrated in
Figure 1. We want the distance between these hyper-
planes to be small, in order to avoid large slices of space
that contain no point. This distance for Pn(I) happens
to equal one over the Euclidean length of a shortest
nonzero vector in the dual lattice L∗s(I). Computing
it is often called the spectral test (Knuth 1998). It is
commonly used to assess the quality of LCGs, and can
be used in exactly the same way for integration lattices.
For example, for each I in some arbitrarily selected class
J of subsets of {0, . . . , s − 1}, one could compute the
length `(I) of the shortest nonzero vector in L∗s(I), di-
vide it by an upper bound on the best possible value

that can be achieved for an arbitrary lattice with n
points per unit of volume in |I| dimensions, in order
to obtain a normalized value between 0 and 1 for any
I, say, S(I), and then take the worst case minI∈J S(I)
as a figure of merit for the lattice. Ideally, this fig-
ure of merit should be as close to 1 as possible. For
the lattice of Figure 1, one has S({1, 2}) = 0.958 and
S({1}) = S({2}) = 1. L’Ecuyer and Lemieux (2000)
provide further details and explicit Korobov rules se-
lected via this type of criterion in more than two dimen-
sions. Another possibility could be to take a weighted
average of the S(I). Several other measures of unifor-
mity have been proposed and used for selecting integra-
tion lattices; see, e.g., (Sloan and Joe 1994, Hellekalek
1998, Hickernell 1998b, Lemieux and L’Ecuyer 2001).

3.2 Fourier expansion of f and variance for
randomly-shifted lattice rules

A randomly-shifted lattice retains its lattice structure.
For this reason, applying a random shift modulo 1 to an
integration lattice provides a randomized point set with
a nice structure that facilitates mathematical analysis
of the error and variance. More precisely, let us write
the Fourier expansion of f as

f(u) =
∑
h∈Zs

f̂(h) exp(2π
√
−1h · u), (4)

with Fourier coefficients

f̂(h) =
∫

[0,1)s

f(u) exp(−2π
√
−1h · u)du.

Then, for the Monte Carlo method,

nVar[Qn] = σ2 =
∑

0 6=h∈Zs

|f̂(h)|2, (5)

whereas for a randomly-shifted lattice rule,

Var[Qn] =
∑

0 6=h∈L∗s

|f̂(h)|2 (6)

(Tuffin 1998, L’Ecuyer and Lemieux 2000). Note that
the terms in (4) that corresponds to small vectors h rep-
resent the main trends (low-frequency components) of
the function f and are usually more important than the
high-frequency ones (large h). Note that the decompo-
sition (5) is finer than the one given in Section 2, in the
sense that each σ2

I corresponds to the sum of terms in
(5) for the h whose nonzero coordinates are those with
indices in I. Expression (6) suggests measures of dis-
crepancy of the form

∑
0 6=h∈L∗s

w(h) or sup0 6=h∈L∗s
w(h)

for the integration lattice Ls, where the weights w(h)
could (ideally) be chosen to decrease with the norm of h
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proportionally with the anticipated values of |f̂(h)|2. In
practice, these weights are chosen somewhat arbitrarily,
because the Fourier coefficients are hard to anticipate,
but perhaps more work is needed in that direction. If
we take w(h) equal to 1/‖h‖2 multiplied by an appro-
priate normalization constant that depends on the set
I of nonzero coordinates of h, then

∑
0 6=h∈L∗s

w(h) be-
comes equivalent to (is the inverse of) the spectral test
figure of merit minI∈J S(I) discussed earlier. This type
of figure of merit is thus justified both by a geomet-
ric argument (distance between hyperplanes) and by a
variance expression in terms of Fourier coefficients for
randomly-shifted lattice rules.

3.3 Lattice Rules in Formal Series

In the lattice Ls defined above, the vector coordinates
are in R and the linear combinations of the basis vec-
tors are over Z. But integration lattices can also be
defined in different spaces. For example, we can re-
place R and Z by the ring L b of formal Laurent series
with coefficients in Zb and by the ring Zb[z] of poly-
nomials with coefficients in Zb, respectively, where b is
an arbitrary integer larger than 1 and Zb is the residue
ring of integers modulo b (Niederreiter 1992b, L’Ecuyer
2003, Lemieux and L’Ecuyer 2003). The lattice

Ls =

v(z) =
s∑

j=1

qj(z)vj(z) : each qj(z) ∈ Zb[z]

 ,

(7)
thus obtained, where v1(z), . . . ,vs(z) are in (L b)s is
called a polynomial integration lattice under the addi-
tional condition that (Zb[z])s ⊆ Ls.

An output mapping ϕ : L b → R can be defined by

ϕ

( ∞∑
`=ω

x`z
−`

)
=

∞∑
`=ω

x`b
−`.

The polynomial lattice rule (PLR) uses the node set
Pn = ϕ(Ls) ∩ [0, 1)s = ϕ(Ls ∩ L b,0), where L b,0 = L b

mod Zb[z]. Most of the properties of ordinary lattice
rules have counterparts in the context of PLRs.

The basis vectors form a matrix V with rows
v1(z), . . . ,vs(z), whose inverse V−1 has columns
h1(z)T , . . . ,hs(z)T that form a basis of the dual lattice

L∗s = {h(z) ∈ (L b)s : h(z)·v(z) ∈ Zb[z] for all v(z) ∈ Ls},

where h(z) · v(z) =
∑s

j=1 hj(z)vj(z). The determi-
nants det(Ls) = det(V) and det(L∗s) = det(V−1) =
1/ det(Ls) do not depend on the choice of basis. The
condition (Zb[z])s ⊆ Ls is crucial to guarantee that all
the inverses defined above do exist even when b is not
a prime (i.e., when Zb is not a field). This condition

holds iff V−1 exist and all its entries are polynomi-
als. Then, det(L∗s) is a polynomial P (z), the number
of points is n = bk where k is the degree of P (z), and
each coordinate of any vector v(z) ∈ Ls has the form
v(z) = p(z)/P (z) for some polynomial p(z).

The rank of the rule is the smallest r such that there
is a basis of the form v1(z), . . . ,vr(z), er+1, · · · , es. A
Korobov PLR is a rule of rank 1 with P (z)v1(z) =
(1, a(z), a2(z) mod P (z), . . . , as−1(z) mod P (z)),
where P (z) is a polynomial of degree k over Zb,
having a multiplicative inverse 1/P (z) in L b, and
a(z) ∈ Zb[z]/(P ) (the polynomials with degree less than
k). Such a rule is equivalent to using the point set
Pn = {ϕ((p0(z), . . . , ps−1(z))/P (z)) such that p0(z) ∈
Zb[z]/(P )} where pj(z) = a(z)pj−1(z) mod P (z) for all
j, i.e., the image by ϕ of all vectors of successive values
produced by a polynomial LCG with modulus P (z) and
multiplier a(z), from all initial states p0(z). For the spe-
cial case where b = 2 (the most interesting case), this
corresponds to using all cycles of a linear feedback shift
register (LFSR) or Tausworthe generator with charac-
teristic polynomial P (z) (Tezuka 1995, Lemieux and
L’Ecuyer 2003).

The projection of Ls over the subspace deter-
mined by I = {i1, . . . , iη} ⊂ {1, . . . , s} is a polyno-
mial integration lattice Ls(I) with dual lattice L∗s(I)
and point set Pn(I). For prime b, one can show
(Lemieux and L’Ecuyer 2003) that a rule of rank
1 with v1(z) = (g1(z), g2(z), . . . , gs(z))/P (z) is fully
projection-regular iff gcd(gj(z), P (z)) = 1 for all j, and
that a Korobov rule, with gj(z) = aj−1(z) mod P (z),
is fully projection-regular and dimension-stationary iff
gcd(a(z), P (z)) = 1.

PLRs of rank 1 were introduced by Niederreiter
(1992a), and by Tezuka (1990) for b = 2 and the
special case of an irreducible P (z); see also Nieder-
reiter (1992b), Section 4.4. They were generalized to
PLRs of arbitrary rank over a finite field by Lemieux
and L’Ecuyer (2003) and over the ring Zb by L’Ecuyer
(2003).

3.4 Equidistribution and Measures of Unifor-
mity for Polynomial Lattice Rules

Recall that Pn is called q-equidistributed in base b, for
an integer vector q = (q1, . . . , qs) ≥ 0, if each box of the
q-equidissection of [0, 1)s contains the same number of
points from Pn, namely bt points where t = k − q1 −
· · · − qs if n = bk. If this holds for q1 = · · · = qs = `
for some ` ≥ 1, we have s-distribution with ` digits of
accuracy (Tezuka 1995), and the largest such ` is called
the s-dimensional resolution of Pn. This value cannot
exceed bk/sc.

These definitions also apply to projections: For I =
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{i1, . . . , iη} ⊂ {1, . . . , s}, the set Pn(I) is (qi1 , . . . , qiη )-
equidistributed if each box of the (qi1 , . . . , qiη )-
equidissection of [0, 1)η contains 2t(I) points of Pn(I),
where k − t(I) = qi1 + . . . + qiη

. The resolution gap of
Pn(I) is δI = bk/ηc − `I , where `I is the η-dimensional
resolution of Pn(I).

For n = bk, Pn is called a (t, k, s)-net in base b if it is
(q1, . . . , qs)-equidistributed for all non-negative integers
q1, . . . , qs summing to k − t (Niederreiter 1992b). We
call the smallest such t the t-value of the net.

For ordinary lattice rules, measures of uniformity
such as the distance between hyperplanes are obtained
by computing a shortest vector in the dual lattice. In-
terestingly, this is also true for PLRs: The equidistribu-
tion and (t, k, s)-net properties can be verified by com-
puting the length of a shortest nonzero vector in the
dual lattice L∗s, with an appropriate choice of norm.

For each integer vector q = (q1, . . . , qs), define a
length (or distance function) ‖ · ‖−q on (Zb[z])s by

logb ‖h(z)‖−q = max
1≤j≤s

(deg(hj)− qj), (8)

for h(z) = (h1(z), . . . , hs(z)) ∈ Zb[z], where deg(hj) is
the degree of the polynomial hj(z) and deg(0) = −∞
by convention. Let σ∗1 = min0 6=h(z)∈L∗s ‖h(z)‖−q, the
length of the shortest nonzero vector in the dual lattice.
Under the assumption that b is prime, it is proved in
L’Ecuyer (2003) that Pn is q-equidistributed iff σ∗1 ≥ 1.
In particular, the s-dimensional resolution of Pn is equal
to logb min0 6=h(z)∈L∗s ‖h(z)‖0. This shortest vector with
respect to the distance function ‖h(z)‖0 is relatively
easy to compute (Tezuka 1995, Couture and L’Ecuyer
2000).

The t-value of Pn can also be obtained by com-
puting the length of a shortest nonzero vector in the
dual lattice, with a different definition of length. For
h(z) ∈ Zb[z], define ‖h(z)‖π by

logb ‖h(z)‖π =
s∑

j=1

deg(hj)

and let τ∗1 = min0 6=h(z)∈L∗s ‖h(z)‖π. Then the t-value
of Pn is equal to k − s + 1 − logb τ∗1 (Niederreiter and
Pirsic 2001, L’Ecuyer 2003).

Following the discussion in Section 2 and similar
to what we suggested for ordinary lattice rules, one
can consider for PLRs uniformity criteria of the form
∆J = maxI∈J δI (worst-case resolution gap) or
maxI∈J t∗|I|/tI or maxI∈J (tI − t∗|I|), where J is a
selected class of sets I, tI is the t-value for Pn(I), t∗|I|
a lower bound on the best possible t-value in |I| di-
mensions, and with the convention that 0/0 = 1. The
choice of J is again arbitrary and a matter of com-
promise. If J contains too many sets, not only the

selection criterion will be more costly to compute, but
the best value that it can achieve will be larger, and
therefore the criterion will become less demanding for
the equidistribution of the more important projections.
Other types of uniformity criteria are discussed, e.g., in
L’Ecuyer and Lemieux (2002).

3.5 Lattice Rules in Formal Series Over Zb

We now consider a lattice of the form

Cs =

{
v(z) =

k∑
i=1

yici(z) such that yi ∈ Zb for each i

}
,

(9)
where c1(z), . . . , ck(z) are k vectors of L s

b,0 independent
over Zb, and let Pn = ϕ(Cs) ⊂ [0, 1)s, where ϕ is defined
as before. Here, the lattice is defined over Zb instead of
over Zb[z] as in (7). The set Pn contains exactly n = bk

distinct points, because Cs ⊂ L s
b,0.

To define the dual lattice, we first define a (non-
commutative) product � in L b by(

w2∑
`=−∞

x`z
`

)
�

( ∞∑
`=w1

y`z
−`

)
=

w2∑
`=w1−1

x`y`+1

where the last sum is in Zb. For x(z) =
(x1(z), . . . , xs(z)) and y(z) = (y1(z), . . . , ys(s)) in L s

b,
we define x(z) � y(z) =

∑s
j=1 xj(z) � yj(z). The dual

lattice is then defined as

C⊥s = {h(z) ∈ (Zb[z])s such that
h(z)� v(z) = 0 for all v(z) ∈ Cs}.

This is a lattice over Zb, i.e., can be written as C⊥s =
{h(z) =

∑ν
j=1 xihj(z) such that xi ∈ Zb for each i}

for some basis h1(z), . . . ,hν(z), where ν is the dimen-
sion of C⊥s over Zb.

Equidistribution properties can be determined by
computing the lengths of shortest vectors in this dual
lattice, just as for PLRs (L’Ecuyer 2003). Specifi-
cally, at least for prime b, Pn is q-equidistributed iff
min0 6=h∈C⊥s ‖h‖−q ≥ 1, the resolution of Pn is equal
to logb min0 6=h∈C⊥s ‖h‖0, and its t-value is equal to
k − s + 1− logb min0 6=h∈C⊥s ‖h‖π.

3.6 Digital Nets and Sequences

The lattice rules over Zb defined in the previous section
turn out to be equivalent to another very well-known
class of QMC methods: the digital nets, introduced
by Sobol’ (1967) in base 2, later generalized by Faure
(1982), Niederreiter (1987), and Tezuka (1995), and de-
fined as follows (Niederreiter 1992b). Let C(1), . . . ,C(s)

be matrices of dimension ∞×k with elements in Zb, for
some integer k ≥ 1. They are the generating matrices of
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the net. For i = 0, . . . , bk−1, write i =
∑k−1

`=0 ai,`b
` and

define ui = (ui,1, . . . , ui,s) where ui,j =
∑∞

`=1 ui,j,`b
−`

and (ui,j,1, ui,j,2, . . .)T = C(j)(ai,0, ai,1, . . . , ai,k−1)T .
The point set Pn = {u0, . . . ,un−1} thus obtained, with
n = bk, is a digital net over Zb. These n points are dis-
tinct in their first ` digits iff the `s × k matrix formed
by taking the first ` rows of each C(j) has rank k. The
matrices C(j) can also be defined with an infinite num-
ber of columns: we then have an infinite sequence of
points, called a digital sequence, whose first bk points
form a digital net for each integer k. In concrete imple-
mentations, it is worth considering only a finite number
of rows of each C(j), because of the finite precision of
computers.

Digital nets and sequences can in fact be defined over
an arbitrary commutative ring R of cardinality b, with
an identity element. It suffices to define bijections be-
tween R and Zb to map the digits of the b-ary expansion
of i to elements of R and to recover the b-ary digits of
ui,j from elements of R (Niederreiter 1992b, L’Ecuyer
and Lemieux 2002). A similar generalization also ap-
plies to lattices rules in formal series by incorporating
the bijections from R to Zb into ϕ. However, the result
is no longer a lattice over Zb or Zb[z]. Here, we assume
that R = Zb and that all bijections are the identity,
which is usually the case in practice.

For the lattice Cs defined in (9), if we write the ba-
sis vectors ci(z) = (ci,1(z), . . . , ci,s(z)) where ci,j(z) =∑∞

`=1 c
(j)
`,i z

−`, and let C(j) be the ∞ × k matrix with

elements c
(j)
`,i then it turns out that this methods yields

exactly the same point set as the digital net in base b
with generating matrices C(1), . . . ,C(s) (L’Ecuyer and
Lemieux 2002, L’Ecuyer 2003). In other words, a lat-
tice rule in formal series over Zb is just an alternative
definition of a digital net over Zb, with identity bijec-
tions. These digital nets are thus lattice rules in an
appropriate space.

Several special cases of digital sequences (from which
digital nets can be extracted by taking the first n = bk

points for any k) have been proposed over the years.
The matrices C(j) are normally chosen on the basis of
some uniformity criterion, which is often the t-value.

In the original construction of Sobol’ (1967) each ma-
trix C(j) is filled up using a recurrence with primi-
tive characteristic polynomial fj over the finite field F2,
where the fj are all distinct and have small degree. The
initial states of these recurrences are called the direc-
tion numbers and their choice may have a significant
impact on the quality of the point set. Specific values
are suggested by Sobol’ and Levitan (1976) and used in
the implementation of Bratley and Fox (1988). These
values have been chosen so that Pn has s-distribution
with one bit of accuracy when n = 2s and two bits

of accuracy when n = 4s. Equidistribution for other
equidissections was not examined.

In the construction of Faure (1982) and its general-
izations, the basis b is the first prime larger or equal
to the dimension s and C(j) = AjPj−1 where P is
the transposed Pascal matrix, with element (i, j) equal
to
(
j−1
i−1

)
, and Aj is an arbitrary non-singular lower-

triangular matrix. The resulting point set has the re-
markable property of being a (0, k, s)-net (i.e., has the
best possible t-value) when n = bk for any k. Notic-
ing that Faure’s construction is not practical for large
s because it would require too many points, Niederre-
iter (1988) has proposed a construction where b is a
prime power, but can be smaller than s, and where the
t-value is reasonably small when n = bk. More recently,
Niederreiter and Xing (1997) proposed a new class of
digital net sequences with optimal asymptotic t-value
as a function of s and n, for a fixed b. These sequences
improve on the t-value of Sobol’s sequence for b = 2.

The Salzburg tables (Pirsic and Schmid 2001) list the
best parameters found for the special case where the
digital net is a Korobov PLR, in an attempt to optimize
its t-value. Other sets of parameters for PLRs, chosen
via a criterion of the form ∆J defined earlier, can be
found in Lemieux and L’Ecuyer (2001) and L’Ecuyer
and Panneton (2002).

3.7 Variance Expressions and Bounds for Ran-
domized Nets and Lattice Rules in Formal
Series

Randomly shifting a set in L b corresponds to adding a
random formal series to all series in the set, by adding
the corresponding coefficients in Zb. In the point set
Pn, this transposes to a random digital shift in base
b. As mentioned in the introduction, this type of shift
preserves the equidistribution of every q-equidissection
in base b.

A variance expression similar to (6) is available for
(randomly) digitally-shifted lattice rules in formal series
(Lemieux and L’Ecuyer 2003, L’Ecuyer and Lemieux
2002). The Fourier expansion and coefficients are re-
placed by Walsh expansion and coefficients. Just as for
ordinary lattice rules, these expressions suggest that the
integration lattices should be selected so that their dual
lattice does not contain short vectors.

Randomly shifting a point set provides an unbiased
estimator of µ with a minimal amount of randomization
and “perturbation” of the point set. However, more
randomization can in some cases reduce the variance.
Owen (1995) has proposed a randomization method
called nested uniform scrambling, for digital nets, which
randomly permutes the values {0, . . . , b−1} used for the
digits ui,j,`, independently for each coordinate j, as fol-
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lows. One uses a first permutation for ` = 1. For ` > 1,
one uses a different permutation for each possible value
of the preceding `−1 digits ui,j,1 · · ·ui,j,`−1. To scram-
ble the first ` digits thus requires (1+b+· · ·+b`−1)s per-
mutations, and all these permutations are independent.
Owen (1997) has shown that for smooth enough func-
tions (whose mixed partial derivatives satisfy a Lips-
chitz condition) the variance is in O(n−3(log n)s). With
a random digital shift, the bound is O(n−2(log n)s) in-
stead (L’Ecuyer and Lemieux 2002). However, nested
uniform scrambling is much more expensive to apply
than the digital shift. Several other less expensive
scramblings have been proposed whose amount of ran-
domization lie somewhere in between these two; see
Owen (2003) for an overview and a discussion.

4 CONCLUSION

We have reviewed the most common QMC methods and
their randomizations, in the framework of lattice rules
in different spaces. These methods can be used to im-
prove the efficiency of simulations. Numerical illustra-
tions of their application and effectiveness can be found
in several of the references given below. On-going work
on these methods includes, among other things, mak-
ing computer searches for good parameters in terms of
various selection criteria, developing extensive general-
purpose software tools for QMC, studying the effective-
ness of QMC methods and comparing them for specific
classes of applications, developing QMC rules that may
adapt to the integrand, and studying how the methods
can be made more effective for high-dimensional prob-
lems.
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