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ABSTRACT

We show via concrete illustrations how the variance can be
reduced in the simulation of a telephone call center to esti-
mate the fraction of calls answered within a given time limit.
We examine the combination of a control variate and strati-
fication with respect to a continuous input variable, and find
that combining them requires care, because the optimal con-
trol variate coefficient is a function of the variable on which
we stratify. In a setting where we compare two similar con-
figurations of the center, we examine the combination of
stratification with common random numbers. We show that
proper use of common random numbers reduces the conver-
gence rate of the variance of the difference of performance
measures across the two systems.

1 INTRODUCTION

Telephone call centers, and more generally contact centers
where mail, fax, e-mail, and Internet contacts are handled
in addition to telephone calls, are important components of
large organizations (Gans, Koole, and Mandelbaum 2003).
One of the main problems in managing these centers is to
optimize the number of agents who talk with customers over
the phone, and the working schedules of these agents, un-
der constraints on the quality of service and on admissible
schedules. Large call centers are complex stochastic sys-
tems that can be analyzed realistically only by simulation;
tractable queueing models oversimplify reality and are not
very reliable. When simulation is combined with an op-
timization algorithm, its efficiency is a key issue, because
optimization often requires thousands of simulation runs at
different parameter settings (Cez̧ik and L’Ecuyer 2006). In
this paper, we take a simulation model of a (simplified) call
center inspired from real life and we experiment with dif-
ferent ways of reducing the variance without significantly
increasing the computing cost.

The basic model is described in Section 2. In Section 3,
we study the combination of stratification with a control
variate (CV) for this model. The stratification is with re-

spect to a uniform random number that drives the simula-
tion. The optimal CV coefficient depends on the realization
of this uniform and there is also an interdependence between
the CV coefficients and the optimal allocation in strata. This
type of combination is non-standard and requires some care.
In Section 4, we study the efficiency of using common ran-
dom numbers to estimate the sensitivity with respect to a
parameter of the service time distribution. This is nontriv-
ial mainly because the sample performance is discontinuous
with respect to this parameter. Most examples are adapted
from the future book of L’Ecuyer (2006). The simulations
were all made with ContactCenters, a specialized simulation
tool for contact centers (Buist and L’Ecuyer 2005) developed
in Java with the SSJ library (L’Ecuyer and Buist 2005).

2 A SMALL MODEL OF A CALL CENTER

We consider a (simple) model of a telephone call center
where agents answer incoming calls. Real-life call centers
often have separate groups of agents having different com-
binations of skills that enable them to handle only a subset
of the different types of calls. Here, to simplify the presen-
tation, we assume a single type of agent and a single type of
call. Otherwise, the model is strongly inspired by a real-life
center in Canada. The techniques that we discuss also apply
to more complex centers and other similar types of queueing
systems.

Each day, the center operates for m hours. The number
of agents answering calls and the arrival rate of calls vary
during the day; we shall assume that they are constant within
each hour of operation but depend on the hour. Let n j be
the number of agents in the center during hour j, for j =
0, . . . ,m−1. For example, if the center operates from 8 AM
to 9 PM, then m = 13 and hour j starts at ( j + 8) o’clock.
All agents are assumed identical. If more than n j+1 agents
are busy at the end of hour j, calls in progress are completed
but new calls are answered only when there are fewer than
n j+1 agents busy. After the center closes, ongoing calls are
completed and calls already in the queue are answered, but
no additional incoming call is taken.
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The calls arrive according to a Poisson process with piece-
wise constant rate, equal to R j = Bλ j during hour j, where
the λ j are constants and B is a random variable with mean 1
that represents the busyness factor of the day. We suppose
that B has the gamma distribution with parameters (α0,α0),
i.e., with mean E[B] = 1 and Var[B] = 1/α0. The Poisson
process assumption means that conditional on B, the number
of incoming calls during any subinterval (t1, t2] of hour j is a
Poisson random variable with mean (t2− t1)R j and that the
arrival counts in any disjoint time intervals are independent.
This type of arrival process model is motivated and studied
by Whitt (1999) and Avramidis, Deslauriers, and L’Ecuyer
(2004).

Incoming calls form a FIFO queue for the agents. A call
abandons (and is lost) when its waiting time exceeds its pa-
tience time. The patience times of calls are assumed to be
i.i.d. random variables with the following distribution: with
probability p the patience time is 0 (so the person hangs up
if no agent is available immediately), and with probability
1− p it is exponential with mean 1/ν . The service times are
i.i.d. gamma random variables with parameters (α,γ), i.e.,
with mean α/γ and variance α/γ2.

We want to estimate g(s0), the fraction of calls whose
waiting time is less than s0 seconds (including those who
abandoned before s0 seconds), for a given threshold s0, over
infinite time horizon (i.e., an infinite number of days). This
g(s0) is called the service level and is by far the most widely
used measure of quality of service in call centers. In many
cases, it is even regulated by law. Let A be the number
of arriving calls during the day and X = G(s0) the num-
ber of those calls waiting less than s0 seconds. The ex-
pected number of arrivals is a = E[A] = ∑

m−1
j=0 λ j and we

have g(s0) = E[G(s0)]/a. Since a is known, here we will
estimate µ = a ·g(s0) = E[G(s0)].

We simulate the model for n days. For each day i, let
Ai be the number of arrivals and Xi = Gi(s0) the number of
calls who waited less than s0 seconds. A straightforward (or
crude) unbiased estimator of µ is

X̄n =
1
n

n

∑
i=1

Xi,

with variance Var[X̄n] = Var[Xi]/n. We can estimate Var[Xi]
by the empirical variance and a confidence interval can be
computed as usual, using the normal approximation.

For our numerical illustration, we use the following pa-
rameters, where the time is measured in seconds: α0 = 10,
p = 0.1, ν = 0.001, α = 1.0, γ = 0.01 (so the mean service
time is 100 seconds), and s0 = 20. The center starts empty
and operates for 13 one-hour periods. The number of agents
and the arrival rate in each period are given in Table 1.

We ran a simulation experiment with n = 10000. The
sample mean and sample variance of the Xi’s were X̄n =
1418.0 and S2

n = 77418, respectively. The estimated vari-

ance of X̄n is thus 7.74. Next, we show how to reduce this
variance.

3 COMBINING STRATIFICATION WITH A CON-
TROL VARIATE

3.1 Stratification on B

Noting that the value of B is obviously an important source
of variance for X = G(s0), a first idea would be to strat-
ify on B. We can partition the set of all possible values of
B in k strata with an average of m = n/k observations per
strata. Assume that B is generated by inversion from a sin-
gle U(0,1) random variate U , that is, B = F−1

B (U) where
FB is the distribution function of the busyness factor and U
is uniformly distributed over the interval (0,1). We stratify
on U instead of B. For this, we simply partition (0,1) into
k subintervals of length 1/k. These intervals determine k
strata. To generate an observation (i.e., simulate one day)
in stratum s, for s = 1, . . . ,k, we simply generate U uni-
formly in [(s− 1)/k, s/k) and put B = F−1

B (U). Suppose
we generate ns observations in stratum s for each s, where
the ns’s are positive integers such that n = n1 + · · ·+nk. Let
Xs,1, . . . ,Xs,ns denote the ns i.i.d. observations X in stratum
s. The (unbiased) stratified estimator of µ in this case is
(Cochran 1977):

X̄s,n =
1
k

k

∑
s=1

µ̂s where µ̂s =
1
ns

ns

∑
i=1

Xs,i (1)

is the sample mean within stratum s. Let σ2
s = Var[X | S = s],

the conditional variance of X given that we are in stratum s.
Then,

Var[X̄s,n] =
1
k2

k

∑
s=1

σ
2
s /ns (2)

and an unbiased estimator of this variance is

S2
s,n =

1
k2

k

∑
s=1

σ̂
2
s /ns, (3)

where σ̂2
s is the sample variance of Xs,1, . . . ,Xs,ns , assuming

that ns ≥ 2.
Stratification with proportional allocation takes ns = n/k

for all s. Then, (2) simplifies to

Var[X̄sp,n] =
1
nk

k

∑
s=1

σ
2
s (4)

where X̄sp,n denotes the corresponding version of (1). The
optimal allocation, which minimizes the variance (2) with
respect to n1, . . . ,nk under the constraints that ns > 0 for each
s and n1 + · · ·+ nk = n for a given n, is easily found by us-
ing a Lagrange multiplier; we must take ns proportional to
psσs: n∗s = nσs/σ̄k where σ̄ = ∑

k
s=1 σs/k. (We neglect the
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Table 1: Number of Agents n j and Arrival Rate λ j (per hour) for 13 one-hour Periods in the Call Center

j 0 1 2 3 4 5 6 7 8 9 10 11 12
n j 4 6 8 8 8 7 8 8 6 6 4 4 4
λ j 100 150 150 180 200 150 150 150 120 100 80 70 60

rounding of n∗s to an integer and assume that ns ≥ 2.) If
X̄so,n denotes the estimator with optimal allocation, we have
Var[X̄so,n] = σ̄2/n. Putting these pieces together, the vari-
ance can be decomposed as follows (Cochran 1977):

Var[X̄n]

= Var[X̄sp,n]+
1
nk

k

∑
s=1

(µs−µ)2

= Var[X̄so,n]+
1
nk

k

∑
s=1

(σs− σ̄)2 +
1
nk

k

∑
s=1

(µs−µ)2.

The first sum in the last line represents the variability due to
the different standard deviations among strata and the sec-
ond sum represents the variability due to the differences be-
tween stratum means. Proportional allocation eliminates the
last sum while optimal allocation also eliminates the first.

Note that for a given n, we could take a larger k together
with a smaller m = n/k, or a smaller k together with a larger
m. (We assume that both m and k are positive integers.)
A larger k gives more variance reduction, because there are
more strata. But the marginal gain converges to zero when k
increases, because when the number of strata becomes very
large, the variation of B becomes a negligible source of vari-
ance relative to the overall variance. On the other hand, with
a larger m, we have a more accurate estimator of the variance
of the stratified estimator.

3.2 Combining with a Control Variate

Control variates (CVs) for simulation are studied, e.g., by
Lavenberg and Welch (1981) and Glynn and Szechtman
(2002). The way we combine a CV with stratification here
seems novel. A simple CV that quickly comes to mind here
is A, the number of arrivals in the day. A standard (naive)
way of using this CV (without the stratification) is by sub-
tracting A−E[A] = A−a multiplied by a constant coefficient
β :

Xc = X −β [A−a].

The optimal coefficient β is β ∗ = Cov[A,X ]/Var[A]. We
tried this CV estimator with n = 104 simulation runs, esti-
mating β ∗ by computing the empirical covariance and vari-
ance from the same runs (this gives a slightly biased esti-
mator, but the bias is negligible here with this large n). We
obtained a mean of 1418 with a variance of 36230 (empiri-
cal). This improves over the original variance of 77418 by a
factor of 2.13.

To use the control variate jointly with stratification as we
propose in this paper, we must be careful, because the ex-
pectation of Ai depends on B so it changes between strata,
and the optimal CV coefficient also differs across strata. Let
C = A−E[A | B] be the centered CV. The CV estimator con-
ditional on U = u is then

Xc(u) = X −β (u)[A−E[A |U = u]].

The optimal CV coefficient β (u) as a function of U =
FB(B) = u, is

β
∗(u) =

Cov[C,X |U = u]
Var[C|U = u]

=
E[C ·X |U = u]
E[C2 |U = u]

. (5)

This function can be approximated by approximating the
two functions q1(u) = E[C ·X |U = u] and q2(u) = E[C2 |
U = u]. These functions can be estimated from a sample
{(Ui,Ci,Xi), i = 1, . . . ,n} of n realizations of (U,C,X), e.g.,
by fitting a curve q̂1 to the points (Ui,CiXi) and another curve
q̂2 to the points (Ui,C2

i ). Note that a β that depends on u can
do much better than a fixed β (the same for all values of u)
when β ∗(u) is far from being a constant.

The variance of the controlled estimator, conditional on
U = u, is σ2

c (u) = Var[Xc(u)] = Var[X − β ∗(u)C | U = u].
The variance in stratum s is

σ
2
s = Var[Xc(U (s))]

= E[Var[Xc(U (s))]]+Var[E[Xc(U (s))]]

=
∫ s/k

(s−1)/k
Var[X −β

∗(u)C |U = u]du

where U (s) is uniformly distributed over [(s− 1)/k, s/k).
The optimal allocation takes ns proportional to this σs.

To approximate β ∗ and σ2
c as functions of u, a simple idea

is to use (rather crude) quadratic approximations of the form
β (u) = β0 + β1u + β2u2 and σ̃c(u) = σ0 + σ1u + σ2u2, as
follows. We first estimate β ∗(u) and σ2

c (u) at u = u1 = 0.2,
u2 = 0.5 and u3 = 0.8, from n0 (pilot) simulation runs at
each of those values of u (i.e., with B fixed at F−1

B (u j)).
Let b j and v j denote the corresponding estimates of β ∗(u j)
and σc(u j), respectively. We can then compute (β0,β1,β2)
so that the quadratic function interpolates the three points
(u j,b j). Similarly, we compute (σ0,σ1,σ2) for which the
function σ̃c interpolates the points (u j,v j). We then stan-
dardize this function σ̃c(u), by dividing it by

σ̄c =
∫ 1

0
σ̃c(u)du = σ0 +σ1/2+σ2/3,
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Table 2: Interpolations and Least Squares Quadratic Ap-
proximations Obtained for β ∗(u), σ(u), and σc(u)

β ∗(u), 3 pts 0.9+0.271u−1.44u2

σc(u), CV 8.457−0.69u+67.894u2

σ(u), no CV 37.644−44.806u+78.582u2

β ∗(u), 50 pts 0.921+0.197u−1.527u2

σc CV, 50 pts 8.47−28.164u+113.89u2

σ no CV, 50 pts 35.023−67.468u+128.637u2

so that it gives a quadratic approximation of
σc(u)/

∫ 1
0 σc(u)du. The optimal allocation to any stra-

tum is easy to obtain after this standardization: it is the
average of the standardized function over the stratum,
multiplied by m = n/k.

In case where we use stratification without the CV, the
optimal allocation to strata can be estimated in the same way,
except that there is no β (u). The function σ2

c (u) is replaced
by σ2(u) = Var[X | U = u]. Note that this function σ(u)
differs from σc(u), so it must be approximated separately
and the optimal allocation is different.

Based on pilot runs with n0 = 200 per testing point, we
obtained the quadratic approximations for β , σc, σ given in
Table 2. We ran a simulation experiment with n = 104 and
k = 100 strata. Our estimates of the terms Var[X̄n], Var[X̄so,n],
(1/nk)∑

k
s=1(σs− σ̄)2, and (1/nk)∑

k
s=1(µs−µ)2 in the vari-

ance decomposition (the first term is the sum of the three
other) are given in Table 3. In comparison with standard
Monte Carlo, the variance is reduced by a factor of

28.1 for proportional allocation without CV;
35.4 for with optimal allocation without CV;
35.8 for with proportional allocation with CV;
60.4 for with optimal allocation with CV.

Another (simpler) option that bypasses all functional esti-
mations is to use stratification with proportional allocation,
combined with the CV with a constant coefficient β . For
this case, we find that the optimal β is approximately 0.45.
This is labeled “CV, β const” in the table. The variance is
reduced by a factor of 30.6.

We made further experiments to see if we could improve
the quality of approximation of the functions β (u), σc(u),
and σ(u). We tried the following alternatives: (a) we fit-
ted an interpolating quadratic polynomial to three points, at
0.005, 0.5, 0.995; (b) we fitted an interpolating cubic poly-
nomial to four points, at 0.005, 0.335, 0.665, 0.995; (c) in-
stead of interpolating, we used least squares to fit a quadratic
curve on 100 points at ui = (i + 0.5)/100, for i = 0, . . . ,99
(the function values were estimated from 100 simulation
runs at each of these points); (d) we fitted a cubic polynomial
by least squares to the same 100 points; (e) we fitted a cubic
spline to these 100 points; (f) we fitted a smoothing cubic
spline to 50 points. With the latter method, a constraint is

imposed on the root mean square error at the selected points
(this is called the smoothing factor) and the algorithm find
the smoothest possible spline that satisfies the constraint.

Figure 1 shows the quadratic and cubic interpolations (a)
and (b), for the three functions, with black points represent-
ing results of pilot runs. Figure 2 gives the quadratic and
cubic polynomial least-squares fits (c) and (d). The cubic
polynomial least-squares fit (d) and the splines (e) and (f)
(not shown due to lack of space) match the points a bit bet-
ter and are about equally good between themselves. The
plots give an idea of how β ∗(u), σc(u), and σ(u) behave
as functions of u. The optimal CV coefficient β ∗(u), which
has the same sign as Cov[C,X |U = u], is positive for small
u and negative for large u. This can be explained intuitively
as follows: when u is small, the load on the system is small
and the agents are not very busy, so a small increase in the
number of arrivals tends to increase G(s0). If u is large, on
the other hand, the agents are occupied most of the time, so a
few more arrivals increases the waiting time of several calls
and tends to decrease the number of calls answered with s0
seconds. The functions σc and σ , on the other hand, increase
sharply when u approaches 1, which means that the estima-
tors have much more variance when the arrival rate is very
large (the system is highly loaded).

Table 3 presents the results of a simulation experiment
with n = 104 replications divided into 100 strata. We com-
pare the empirical variances with the following three meth-
ods for estimating the functions: a quadratic fit with three
points, a quadratic least squares approximation with 50
points, and a cubic smoothing spline with 50 points. The
smoothing splines are not really doing better for this exam-
ple and they require more overhead to estimate the function
with pilot runs. Selection of the smoothing factor is also not
automatic.

4 COMPARING SYSTEMS WITH COMMON RAN-
DOM NUMBERS

We now examine a situation where we want to compare two
very similar configurations of the call center. This is often
required in optimization settings and for sensitivity analy-
sis. Configuration 1 (the base configuration) is the same as
in the previous section. In Configuration 2, we may have a
slightly different number of agents in one or more periods,
or slightly different parameter values for one of the distrib-
utions (e.g., service times, patience times, arrival process).
Here, we consider a small change in a parameter of the ser-
vice time distribution. We have selected a continuous para-
meter, because we want to analyze what happens when the
size of the change converges to zero.
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Figure 1: The Functions β ∗(u), σc(u), and σ(u) Approximated by Polynomial Interpolation
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Figure 2: The Functions β ∗(u), σc(u), and σ(u) Approximated by Least Squares on 100 Points

4.1 Sensitivity to the Mean Service Time

The service times in our model are i.i.d. gamma(α,γ), with
mean α/γ and variance α/γ2. In the base configuration, we
have α = 1 and γ = γ1 = 1/100. (With α = 1, the service
times are exponential.) We want to study the effect of chang-
ing slightly the second parameter to γ = γ2 = γ1/(1−δ ) for
a small δ . The effect of this is to multiply the mean ser-
vice time by 1−δ while keeping the coefficient of variation
unchanged. The distribution of X = G(s0) and its expecta-
tion, µ(γ) = Eγ [X ], now depend on γ . Suppose we want to
estimate µ(γ2)−µ(γ1).

We simulate n days at each server speed. Let X1,i and
X2,i be the realizations of G(s0) on day i, with γ = γ1
and γ = γ2, respectively. Define ∆i = X2,i − X1,i and let
∆̄n = (1/n)∑

n
i=1 ∆i be the (crude) estimator of the difference

µ(γ2)− µ(γ1). To compute X1,i and X2,i, we can use ei-

ther (i) independent random numbers (IRNs) or (ii) common
random numbers (CRNs), i.e., the same underlying uniform
random numbers for the two values of γ (Bratley, Fox, and
Schrage 1987, L’Ecuyer and Perron 1994). We have

Var[∆i] = Var[X1,i]+Var[X2,i]−2Cov[X1,i, X2,i].

With IRNs, the covariance term is zero. The aim of CRNs
is to make this covariance positive. By using the same ran-
dom numbers at the same places for both systems as far as
this is achievable, the responses X1,i and X2,i are expected
(intuitively, at least) to be strongly positively correlated, es-
pecially if γ1 and γ2 are close.

To see how the same random numbers can be used at ap-
proximately the same places in this example, we distinguish
four types of random numbers: Those used to generate (1)
the busyness factor in the morning; (2) the interarrival times;
(3) the service times; and (4) the patience times. To make
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Table 3: Stratification with a Control Variate: Variance Comparisons

Quadratic interpolation Least squares, 50 points Cubic spline
No CV CV, β const. CV, β (u) No CV CV, β (u) No CV CV, β (u)

X̄n 1419.48 1419.30 1418.59 1419.29 1418.88 1418.64 1419.08
nVar[X̄n] 77083 77158 76713 77556 76529 77312 76578

nVar[X̄sp,n] 2743 2515 2142 2720 2166 2754 2098
nVar[X̄so,n] 2178 — 1269 2193 1294 2181 1234

1
k ∑

k
s=1(σs− σ̄)2 565 — 873 527 872 573 864

1
k ∑

k
s=1(µs−µ)2 74341 74643 74571 74836 74363 74558 74481

sure that the same sequences of random numbers are em-
ployed within each category, we attach a different random
number stream to each category. We initialize these four
generators to the same seeds for both server speeds and we
generate all random variates by inversion.

Do we really need to use inversion to maintain the syn-
chronization for the CRNs? For this particular example, the
answer is no. The only place where this could make a dif-
ference is the generation of service times, because for the
other random variates, nothing is changed across the two
configurations. For a general gamma distribution, inversion
is quite time-consuming; much faster acceptance-rejection
methods are available. One such method, implemented in
SSJ, generates a gamma random variable of mean 1 with the
required shape parameter α , then multiplies the value by the
desired mean. In our example, since only the scale parame-
ter is changed, the acceptance-rejection part of the algorithm
does exactly the same thing for both configurations; only the
multiplication by the desired mean changes. For this reason,
acceptance-rejection here maintains synchronization exactly
as inversion. To check this, we actually tried replacing inver-
sion with acceptance-rejection in the experiments described
in what follows, and we found no significant difference.

In our attempt to use the same random numbers at exactly
the same places for both systems, we meet a difficulty with
the synchronization: Due to the different service times, the
abandonments will eventually not be the same for γ1 and γ2.
A given call may abandon in one system and not in the other.
For such a call, the service time must be generated in the first
case but does not have to be generated in the second case. In
this context, we can generate service times:

(a) for all calls (the abandoned calls will have unused ser-
vice times), or

(b) only for the calls that are actually answered.

The rationale for (a) is to make sure that the same calls have
the same service times in both configurations, regardless of
abandonments. The argument for (b) is for the sequence of
service times that are effectively employed to be the same for
both systems, even though these service times may belong to
different calls because of different abandonment decisions.

So if a call has a very long service time for parameter γ1, this
very long service time will also appear (perhaps for another
call) for γ2 under (b). Under (a), this long service time could
be unused for γ2.

Likewise, the patience time can be generated:

(c) for all arriving calls, to maintain synchronization, or

(d) only for the calls whose service does not start immedi-
ately upon arrival.

By combining these choices, we obtain four different pos-
sibilities for the synchronization strategy, and it is unclear a
priori which one is best.

Table 4 reports empirical results for δ = 0.1, 0.01, and
0.001, with n = 104. This corresponds to a reduction of
the mean service time by 10%, 1%, and 0.1%, respectively.
The table gives the sample mean and the sample variance
of the ∆i’s for simulations with independent random num-
bers (IRNs), simulations with CRNs without synchroniza-
tion, and simulations with CRNs with the different types
of synchronizations just described. For CRNs without syn-
chronization, we just took all the random numbers needed in
the simulation sequentially from a single stream instead of
from four different streams, and we generated random vari-
ates only when they were needed (strategy (b + d)). Thus,
for example, an inter-arrival time for one system configu-
ration could be generated from the same random number
as a service time for the other configuration. All the pairs
(∆̄n, V̂ar[∆i]) in the table were obtained by independent sim-
ulations.

With any of the four combinations of synchronization ap-
proaches, CRNs reduce the variance by a huge factor. The
smaller δ is, the more the variance is reduced. With IRNs,
we have Var[∆i] = Var[X1,i] + Var[X2,i] ≈ 2Var[Xi], so the
variance does not depend much on δ . (It is slightly larger
for δ = 0.1 because Var[X2,i] is significantly larger in that
case.) The difference between the four IRN results is just
noise. With CRNs, the variance diminishes rapidly when
δ → 0. A theoretical analysis of the convergence is pro-
vided in Section 4.2. When δ → 0, E[∆i] becomes closer
to 0 and thus harder to estimate. When δ is very small, the
finite-difference estimators with IRNs are practically useless
(too noisy), whereas those with CRNs remain viable.
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Table 4: Effect of Change in the Mean Service Time for the Call Center, with CRNs, for n = 104

Method δ = 0.1 δ = 0.01 δ = 0.001
∆̄n V̂ar[∆i] ∆̄n V̂ar[∆i] ∆̄n V̂ar[∆i]

IRN (a + c) 76.93 192680 7.48 160486 -0.135 157745
IRN (a + d) 76.57 192374 7.00 160168 -0.560 157592
IRN (b + c) 76.96 192034 7.16 159605 -0.216 156794
IRN (b + d) 77.14 192495 7.34 159970 -0.215 157136
CRN, no sync. (b + d) 76.08 11036 6.71 2417 0.203 1979
CRN (a + c) 78.75 9307 8.48 122 0.862 5
CRN (a + d) 78.78 9502 8.51 389 0.786 197
CRN (b + c) 78.73 9714 8.14 237 0.821 21
CRN (b + d) 78.90 9646 8.42 312 0.819 81

CRNs with (b + d) without synchronization reduces the
variance much less than the good synchronization schemes,
but nevertheless improves over IRNs by a significant factor.
Understanding exactly why it works would require further
investigation, but most of the explanation might be that (i)
it takes some time before the synchronization is lost and (ii)
the important variable Bi is always generated with the same
random number, and thus takes a common value for both
systems. With strategy (a + c), it turns out that for this
particular example, synchronization is maintained across the
two systems even with a single stream, because the two sys-
tems get a common value of Bi and the same sequence of
arrival events, each call requires exactly three random num-
bers upon arrival, and no random numbers are needed any-
where else. For this reason, CRNs with a single stream give
the same variance reduction as CRNs with the four different
streams as described earlier.

Between the synchronization strategies for the CRNs, the
(a + c) combination is the best performer, followed by (b +
c). So it is better in this example to generate service and pa-
tience times for all calls, and simply discard the values that
are not needed. The choice of strategy makes a significant
difference when δ is very small, but not much when δ is
larger (e.g., 0.1). We must underline that this observation
should not be taken as a general rule: there are similar situa-
tions where the best synchronization strategy would be (b +
d) instead. So in practice, it is worth trying and comparing.

To reduce the variance further, we can combine the use
of CRNs with stratification and a CV, as in Section 3. For
the CV, with CRNs, we use the number A of arrivals (not
the difference in number of arrivals between the two config-
urations, because the number of arrivals is the same for both
configurations). The functions β ∗, σc, and σ are estimated
in a similar way. Table 5 presents our results for this case, for
n = 104 replications with 100 strata, with (a + c) to synchro-
nize the random numbers. We used quadratic interpolation
to estimate the functions. The empirical results indicate

that combining CRNs with stratification provides an addi-
tional variance reduction by a significant factor. The CV, on
the other hand, does not bring additional gain. For δ = 0.1,
the variance goes down approximately from 192000 to 9300
with the CRNs and to 230 when the three methods are com-
bined. For δ = 0.001, it goes from about 157000 to 5 with
the CRNs (a + c) and to 2 with the stratification.

4.2 Bound on Convergence Rate When δ → 0

With CRNs, X = X(δ ) is a function of δ . If X(δ ) was a con-
tinuous function of δ with a denumerable number of non-
differentiability points with probability 1, then Var[(X(δ )−
X(0))/δ ] would be bounded by a constant when δ → 0 and
we would have

E
[

lim
δ→0

X(δ )−X(0)
δ

]
=

∂g(s0)
∂δ

∣∣∣∣
δ=0

where the pathwise limit inside the expectation is the infin-
itesimal perturbation analysis estimator of the derivative of
g(s0) with respect to δ (L’Ecuyer 1990, Glasserman 1991,
Glasserman and Yao 1992, L’Ecuyer and Perron 1994). In
that case, Var[X(δ )−X(0)] = O(δ 2) when δ → 0.

Here the service times change continuously with δ , but
X(δ ) is a piecewise constant function of δ that takes only
integer values, so it is definitely not continuous. The next
proposition states that under the CRN strategy (a + c),
Var[X(δ )−X(0)] = O(δ 1−ε) for any ε > 0 when δ → 0.
This is certainly not as good as O(δ 2), but much better than
the O(1) rate that we get with IRNs. Empirically, the rate
seems even better than O(δ ): the variance for CRN with (a
+ c) in Table 4 is divided by much more than 10 when δ is
divided by 10.

Proposition 1 We have Var[∆] = O(δ 1−ε) where the hidden
constant depends on ε but not on δ .

The main ingredient in our proof of this proposition is a
lemma that bounds the probability that X(δ ) 6= X(0), as a
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Table 5: Effect of Change in the Mean Service Time for the Call Center, with CRNs, Stratification, and CV, for n = 104 and
k = 100

δ = 0.1 δ = 0.01 δ = 0.001
No CV CV CV No CV CV CV No CV CV CV

β const β (u) β const β (u) β const β (u)
∆̄n, CRN 77.07 77.00 77.14 8.270 8.300 8.210 0.816 0.837 0.808

Var[∆̄n], CRN 9086 9061 9075 121 119 115 5.0 5.1 4.9
Var[∆̄sp,n], CRN 464 415 417 33 32 31 4.2 4.1 4.1
Var[∆̄so,n], CRN 267 — 230 18 — 18 2.0 — 1.9

1
k ∑

k
s=1(σs− σ̄)2, CRN 197 — 186 15 — 13 2.2 — 2.1

1
k ∑

k
s=1(µs−µ)2, CRN 8622 8646 8658 88 87 84 0.8 1.0 0.8

function of δ . For this, we need some notation. In the orig-
inal model (δ = 0), the service time of the jth call (by or-
der of arrival) is S j = G−1(U j) where G is the gamma(α,γ)
distribution function and the U j’s are i.i.d. U(0,1). Let Tj
denote the arrival time of call j, Pj its patience time, and
Wj the time at which it is answered. Multiplying the pa-
rameter γ by 1/(1− δ ) changes the service time from S j
to S j(δ ) = (1− δ )S j, and the answering time from Wj to
Wj(δ ). Let D j = |Wj −Wj(δ )|. This call has good ser-
vice in the original model if and only if Wj ≤ Vj, where
Vj = Tj + min(Pj,s0) is its virtual threshold time (VTT).
Note that the Vj’s are independent of the S j’s and of δ . Call
j switches from bad to good service when γ1 changes to
γ1/(1−δ ) if and only if

Wj(δ )≤Vj < Wj. (6)

Similarly, call j switches from good to bad service if and
only if

Wj ≤Vj < Wj(δ ). (7)

In general, the status of call j changes if and only if

min{Wj,Wj(δ )} ≤Vj < max{Wj,Wj(δ )}. (8)

Let λ̄ (u) be the maximum arrival rate during the day con-
ditional on B = b = F−1

B (u). Let Pu and Eu denote the cor-
responding conditional probability and conditional expecta-
tion.

Lemma 1 Conditional on B = b = F−1
B (u), we have

Pu[X(δ ) 6= X(0)]
≤ Eu[A2]αλ̄ (u)δ/γ +Eu[A3]O(δ 2)
= O(δb3).

Proof. Recall that the patience time is exponential with
parameter ν . For a small ε > 0, a given time interval [t, t +ε)
can contain one (or more) of the Vj’s only if a call arrives
in the time interval [t − s0, t − s0 + ε) and reaches its VTT
before abandoning, or if a call arrives at time x for t − s0 ≤

x ≤ t + ε and abandons during the interval [t, t + ε). The
probability that one of these two events occurs is bounded
by

λ (t− s0)ε e−νs0 +
∫ t

t−s0

λ (x)ενe−ν(t−x)dx+o(ε)

≤ ε λ̄ (u)+o(ε)

(where the function λ̄ depends on u). This gives an up-
per bound on the probability that [t, t + ε] contains Vj
for a fixed j. By integrating this with respect to t over
[min{Wj,Wj(δ )},max{Wj,Wj(δ )}], and taking ε → 0, we
find that the probability that (8) occurs cannot exceed
λ̄ (u)D j.

Let J∗ be the smallest integer j > 0 for which (8) holds,
i.e, the index of the first call that switches status. If there is
none, put J∗ = ∞. For j ≤ J∗, we have

D j = |Wj −Wj(δ )| ≤
j−1

∑
`=1

(S`−S`(δ )) = δ

j−1

∑
`=1

S`
def= ξ j.

Combining the last two bounds, we obtain that

Pu[J∗ = j |Wj,Wj(δ )]
≤ Pu[min{Wj,Wj(δ )} ≤Vj < max{Wj,Wj(δ )} |Wj,Wj(δ )]

≤ λ̄ (u)D j

≤ 1− exp[−λ̄ (u)D j]

≤ 1− exp[−λ̄ (u)ξ j]

= 1−
j−1

∏
`=1

exp[−λ̄ (u)δS`].

Observe that the ξ j’s are independent of the Vj’s, because
the service times are independent of the arrival process. Re-
call also that S` has moment generating function M(t) =
E[exp[tS`]] = (1+t/γ)−α = 1−αt/γ +α(α +1)(t/γ)2/2+
o(t3) for t near 0. Putting these pieces together, and using
I to denote the indicator function, we obtain the following
upper bound on the probability of a change in the number of
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good services during the day:

Pu[X(δ ) 6= X(0)]
≤ Pu[J∗ < ∞]

=
∞

∑
j=1

Eu[I[ j ≤ A]Pu[J∗ = j |Wj,Wj(δ )]]

≤
∞

∑
j=1

Eu
[
I[ j ≤ A]

(
1− exp[−λ̄ (u)ξ j]

)]
=

∞

∑
j=1

Pu[ j ≤ A]Eu
[
1− exp[−λ̄ (u)ξ j]

]
=

∞

∑
j=1

Pu[ j ≤ A]

(
1−

j−1

∏
`=1

Eu[exp[−λ̄ (u)δS`]]

)

=
∞

∑
j=1

Pu[ j ≤ A]
(

1− (1+ λ̄ δ/γ)−( j−1)α
)

=
∞

∑
j=1

Pu[ j ≤ A]
[
( j−1)αλ̄ (u)δ/γ +O(δ 2 j2)

]
=

∞

∑
a=1

Pu[A = a]
a

∑
j=1

[
( j−1)αλ̄ (u)δ/γ +O(δ 2 j2)

]
=

∞

∑
a=1

Pu[A = a]
[
(a−1)a

2
αλ̄ (u)δ

γ
+O(δ 2a3)

]
≤ Eu[A2]αλ̄ (u)δ/γ +Eu[A3]O(δ 2)
= O(δb3).

The second equality holds because A and ξ j are independent.
This completes the proof of the lemma. 2

Proof of the Proposition 1. Using Holder’s inequality
with 1/p = 1−1/q for an arbitrary q > 1 and denoting ∆ =
X(δ )−X(0), we have

E[∆2 | B = b] ≤ Eu[∆2I[∆2 > 0]]

≤ (Eu[∆2q])1/q(Eu[Ip[∆2 > 0]])1/p

≤ (Eu[A2q])1/q(Pu[∆ 6= 0])(q−1)/q

= K0(q,u) ·O((δb3)(q−1)/q)

= O((a ·b)2(δb3)(q−1)/q)

where (K0(q,u))q = Eu[A2q] = O((a · b)2q) is a very loose
bound on E[∆2q] that does not depend on δ . By selecting
q = 1/ε , this gives

Var[∆ | B = b]≤ E[∆2 | B = b] = O((ab)2(δb3)1−ε).

On the other hand, since ∆ is an integer, we always have
∆ ≤ ∆2 and thus

E[∆ | B = b]≤ E[∆2 | B = b] = O((ab)2(δb3)1−ε).

Then,

Var[∆] = E[Var[∆ | B]]+Var[E[∆ | B]]
= O(a2E[B2(δB3)1−ε ])

+O(a4E[B4(δ 2B6)1−ε ]).

Since B has bounded moments of all orders, this gives
Var[∆] = O(δ 1−ε), which completes the proof. 2

The empirical results of the previous subsection indicate
that Var[∆] ∈ O(δ ), at least for the (a + c) and (b + c) syn-
chronization strategies and with the parameters values of our
numerical experiment. If ∆ was bounded by a constant K0,
then we would easily have Var[∆ | B = b] = K2

0 Pu[∆ 6= 0] =
K2

0 O(δb3) = O(δ ). Strictly speaking, ∆ is not bounded, but
when δ is small, the probability than ∆ exceeds a few units
is so small that ∆ can be considered as bounded from a prac-
tical viewpoint.
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