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Pierre L’Ecuyer

seed x0,
transition xn = f (xn−1),
output un = g(xn)
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We want sequences of numbers that look random

Example: Bit sequence (head or tail):

011110100110110101001101100101000111?...

01111?100110?1?101001101100101000111...

Uniformity: each bit is 1 with probability 1/2.

Uniformity and independence:
Example: 8 possibilities for the 3 bits ? ? ?:

000, 001, 010, 011, 100, 101, 110, 111

Want a probability of 1/8 for each, independently of everything else.

For s bits, probability of 1/2s for each of the 2s possibilities.
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Uniform distribution over the interval (0, 1)
We want (to imitate) a sequence U0,U1,U2, . . . of independent random variables uniformly
distributed over (0, 1). We want P[a ≤ Uj ≤ b] = b − a.

0 1a b

Independence: For a random vector U = (U1, . . . ,Us), we want

P[aj ≤ Uj ≤ bj for j = 1, . . . , s] = (b1 − a1) · · · (bs − as).

0 1

1
U2

U1a1 b1

a2
b2

From independent random bits, one can easily approximate indep. U(0, 1) random variables.
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This notion of independent uniform random variables is only a mathematical abstraction.
Perhaps it does not exist in the real world! We only wish to imitate it (approximately).

Non-uniform variates:
To generate X such that P[X ≤ x ] = F (x):

X = F−1(Uj) = inf{x : F (x) ≥ Uj}.

This is inversion.

Example: If F (x) = 1− e−λx , take X = [− ln(1− Uj)]/λ.

Also other methods such as rejection, etc., when F−1 is costly to compute.
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Physical devices for computers

Photon trajectories (sold by id-Quantique):
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Thermal noise in resistances of electronic circuits

time

0 1 0 1 0 0 1 1 1 0 0 1

The signal is sampled periodically.
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Several commercial devices on the market (and hundreds of patents!).

None is perfect.

Can reduce the bias and dependence by combining bits. E.g., with a XOR:

0 1︸︷︷︸
1

1 0︸︷︷︸
1

0 0︸︷︷︸
0

1 0︸︷︷︸
1

0 1︸︷︷︸
1

1 0︸︷︷︸
1

1 1︸︷︷︸
0

0 1︸︷︷︸
1

0 0︸︷︷︸
0

or (this eliminates the bias):

0 1︸︷︷︸
0

1 0︸︷︷︸
1

0 0︸︷︷︸ 1 0︸︷︷︸
1

0 1︸︷︷︸
0

1 0︸︷︷︸
1

1 1︸︷︷︸ 0 1︸︷︷︸
0

0 0︸︷︷︸
Physical devices are essential for cryptology, lotteries, etc.
But for simulation, it is inconvenient, not always reliable, and benefits from no (or little)
mathematical analysis.

A much more important drawback: it is not reproducible.
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Reproducibility

Simulations are often required to be exactly replicable, and to always produce exactly the
same results on different computers and architectures, sequential or parallel. Important for
debugging and to replay exceptional events in more details, for better understanding.

Also essential when comparing systems with slightly different configurations or
decision-making rules, by simulating them with common random numbers (CRNs). That is,
to reduce the variance in comparisons, use the same random numbers at exactly the same
places in all configurations of the system, as much as possible. Important for sensitivity
analysis, derivative estimation, and effective stochastic optimization.

Algorithmic RNGs permit one to replicate without storing the random numbers, which would
be required for physical devices.

We will examine three types of algorithmic RNGs:
(1) Recurrence-Based, (2) Counter-Based, and (3) Splittable.
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Recurrence-based algorithmic generator
S, finite state space;
f : S → S, transition function;
g : S → [0, 1] [or g : S → Zm], output function;
s0, seed (initial state);

· · · f−−−−→ sρ−1
f−−−−→

s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ sn+1
f−−−−→ · · ·

g

y g

y g

y g

y g

y
· · · uρ−1 u0 u1 · · · un un+1 · · ·

Period of {sn, n ≥ 0}: ρ ≤ cardinality of S.

Classical setting: f does a lot of work and g does very little.
But it can be the opposite! For instance, g can incorporate a hash function.
One could also have two (or more) transition functions f1 and f2, leading to a tree structure.
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· · · f−−−−→ sρ−1
f−−−−→ s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ sn+1
f−−−−→ · · ·

g

y g

y g

y g

y g

y
· · · uρ−1 u0 u1 · · · un un+1 · · ·

Goal: if we observe only (u0, u1, . . .), difficult to distinguish from a sequence of independent
random variables over (0, 1).

Utopia: passes all statistical tests. Impossible!

Compromise between speed / good statistical behavior / predictability.

With random seed s0, an RNG is a gigantic roulette wheel.
Selecting s0 at random and generating s random numbers means spinning the wheel and
taking u = (u0, . . . , us−1).
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Uniform distribution over [0, 1]s .

If we choose s0 randomly in S and we generate s numbers, this corresponds to choosing a
random point in the finite set

Ψs = {u = (u0, . . . , us−1) = (g(s0), . . . , g(ss−1)), s0 ∈ S}.

We want to approximate “u has the uniform distribution over [0, 1]s .”

Ψs must cover [0, 1]s very evenly.
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Example: Tiny Linear Congruential Generator (LCG) with s = 2:
xn = 51 xn−1 mod 101; un = xn/101. All numbers from 1 to 100 appear once in a cycle.

0 1

1

un

un−1

Ψ2 contains the 101 black dots. Good uniformity in one dimension, but not in two!
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Tiny LCG with s = 2: xn = 12 xn−1 mod 101; un = xn/101.
All numbers from 1 to 100 appear exactly once in a cycle.

0 1

1

un

un−1

Here, Ψ2 covers the space much more evenly in two dimensions.



14
Another LCG example: xn = 4809922 xn−1 mod 60466169, un = xn/60466169

0 0.005

0.005

un

un−1

With more points, we can do much better!
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Uniform distribution over [0, 1]s .

If we choose s0 randomly in S and we generate s numbers, this corresponds to choosing a
random point in the finite set

Ψs = {u = (u0, . . . , us−1) = (g(s0), . . . , g(ss−1)), s0 ∈ S}.
We want to approximate “u has the uniform distribution over [0, 1]s .”

Measure of quality: Ψs must cover [0, 1]s very evenly.

Design and analysis:
1. Define a uniformity measure for Ψs , computable

without generating the points explicitly. Linear RNGs.
2. Choose a parameterized family (fast, long period, etc.)

and search for parameters that “optimize” this measure.

More general: can also consider non-successive (lacunary) indices I = {i1, . . . , is}:
ΨI = {u = (ui1 , . . . , uis ) = (g(si1), . . . , g(sis )), s0 ∈ S}.



15
Uniform distribution over [0, 1]s .

If we choose s0 randomly in S and we generate s numbers, this corresponds to choosing a
random point in the finite set

Ψs = {u = (u0, . . . , us−1) = (g(s0), . . . , g(ss−1)), s0 ∈ S}.
We want to approximate “u has the uniform distribution over [0, 1]s .”

Measure of quality: Ψs must cover [0, 1]s very evenly.

Design and analysis:
1. Define a uniformity measure for Ψs , computable

without generating the points explicitly. Linear RNGs.
2. Choose a parameterized family (fast, long period, etc.)

and search for parameters that “optimize” this measure.

More general: can also consider non-successive (lacunary) indices I = {i1, . . . , is}:
ΨI = {u = (ui1 , . . . , uis ) = (g(si1), . . . , g(sis )), s0 ∈ S}.



16

Myth 1. After over 70 years of study and thousands of articles, this problem is certainly
solved and RNGs available in popular software must be reliable.

No.

Myth 2. I use a fast RNG with period length > 21000, so it is certainly excellent!

No.

Example: un = (n/21000) mod 1 for n = 0, 1, 2, ....

Other examples: Subtract-with-borrow, lagged-Fibonacci, xorwow, etc.
Were designed to be very fast: simple with very few operations.
They have bad uniformity in higher dimensions.
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RNGs based on a linear recurrence
For most classical RNGs, the state follows a linear recurrence of the form

xn = (a1xn−1 + · · ·+ akxn−k) mod m,

or more generally the state is xn ∈ Zk
m and

xn = Axn−1 mod m,

for some integer m (usually m = 2 or a large prime). Output at step n:

un = g(xn).

When g has the same form of linearity, the sets Ψs have a linear structure whose uniformity
can be assessed mathematically by computable quantities (e.g., the spectral test, measures of
equidistribution, etc.). Computing these theoretical measures (when we can) is more
important than empirical statistical testing.

There are also constructions for which g is nonlinear or has a different form of linearity than f .
For those, measuring the uniformity before the application of g is also relevant.
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Linear multiple recursive generator (MRG)

xn = (a1xn−1 + · · ·+ akxn−k) mod m, un = xn/m.

State: sn = (xn−k+1, . . . , xn). Max. period: ρ = mk − 1 if m is prime.

Numerous variants and implementations.

For k = 1: classical linear congruential generator (LCG).

Structure of the points Ψs :

x0, . . . , xk−1 can take any value from 0 to m − 1, then xk , xk+1, . . . are determined by the
linear recurrence. Thus, (x0, . . . , xk−1) 7→ (x0, . . . , xk−1, xk , . . . , xs−1) is a linear mapping.

It follows that Ψs is a linear space; it is the intersection of a lattice with the unit cube.
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Linear multiple recursive generator (MRG)

xn = (a1xn−1 + · · ·+ akxn−k) mod m, un = xn/m.
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RNGs based on linear recurrences modulo 2

xn = Axn−1 mod 2 = (xn,0, . . . , xn,k−1)
t, (state, k bits)

yn = Bxn mod 2 = (yn,0, . . . , yn,w−1)
t, (w bits)

un =
∑w

j=1 yn,j−12
−j = .yn,0 yn,1 yn,2 · · · , (output)

Clever choice of A: transition via shifts, XOR, AND, masks, etc., on blocks of bits. Very fast.

Examples: Tausworthe, LFSR, GFSR, twisted GFSR, Mersenne twister, WELL, xorshift, . . .

Each coordinate of xn and of yn follows the linear recurrence

xn,j = (α1xn−1,j + · · ·+ αkxn−k,j) mod 2,

with characteristic polynomial

P(z) = zk − α1z
k−1 − · · · − αk−1z − αk = det(A− zI).

Max. period: ρ = 2k − 1 reached iff P(z) is primitive.
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Example of fast RNG: operations on blocks of bits.
Mini-Example: Choose x0 ∈ {2, . . . , 232 − 1} (32 bits). Evolution:

B = (

(xn−1 ≪ 6) XOR xn−1

) ≫ 13

xn = (((xn−1 with last bit at 0) ≪ 18) XOR B).

xn−1 = 00010100101001101100110110100101

10010100101001101100110110100101

00111101000101011010010011100101

B = 00111101000101011010010011100101

xn−1 00010100101001101100110110100100

00010100101001101100110110100100

xn = 00110110100100011110100010101101

This implements xn = Axn−1 mod 2 for a certain A.
The first k = 31 bits of x1, x2, x3, . . . , visit all integers from 1 to 2147483647 (= 231 − 1)
exactly once before returning to x0. Output in (0, 1): un = xn × 2−31.
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Measures of uniformity. Example: k = 10, 210 = 1024 points
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Uniformity measures based on equidistribution.

For each n ≥ 0, we have yn = BAnx0 mod 2.

Suppose we partition [0, 1)s in 2ℓ equal intervals.
Gives 2sℓ cubic boxes.

For each s and ℓ, the sℓ bits that determine the box are the first ℓ bits of y0, y1, . . . , ys−1.
These bits can be written as Mx0 mod 2.

Each box contains exactly 2k−sℓ points of Ψs iff M has (full) rank sℓ. This is possible only if
sℓ ≤ k. We then say that those points are equidistributed for ℓ bits in s dimensions.

If this holds for all s and ℓ such that sℓ ≤ k , the RNG is called maximally equidistributed.

Can be generalized to rectangular boxes: take ℓj bits for coordinate j , with
ℓ0 + · · ·+ ℓs−1 ≤ k .
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A single RNG does not suffice.

One often needs several independent streams of random numbers, for example:

1. To run simulations on parallel processors.

2. To compare systems with well synchronized common random numbers (CRNs). Can be
complicated to implement and manage when different configurations do not need the
same number of Uj ’s.
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RNG with multiple streams

From a single RNG, one can create multiple “random stream” objects that behave as
“independent” virtual RNGs (or streams of random numbers).

Simple approach: partition the entire sequence into disjoint segments (streams) of length ν.

stream 1 stream 2 stream 3 stream 4 stream 5
. . .

s0 sν s2ν s3ν s4ν s5ν

Jumping ahead by ν steps is easy when f is linear:

xn+1 = f (xn) = Axn mod m

where the state xn is a vector and A a matrix. Then

xn+ν = (Aν mod m)xn mod m

with the matrix (Aν mod m) precomputed once for all.
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RNG with multiple streams and substreams

The RngStreams software (L et al. 2000) offers an implementation with multiple streams
and substreams. The streams are further partitioned in substreams (which are not objects).

One stream:

Current
state
⇓. . . . . . . .

start start next
stream substream substream

RngStreams is based on the MRG32k3a generator, with period ≈ 2191.
Streams start ν = 2127 values apart and substreams have length 276.
It has been implemented in C, C++, FORTRAN, Java, R, Cuda, etc. In C:

RngStream stream1 = createStream ();
double u = randU01 (stream1); int i = randInt (stream1, 1, 6);

ResetStartSubstream (stream1);
ResetNextSubstream (stream1);
ResetStartStream (stream1);
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Comparing systems with common random numbers:
a simple inventory example
Xj = inventory level in morning of day j ;

Dj = demand (random) on day j , uniform over {0, 1, . . . , L};
min(Dj ,Xj) sales on day j ;
Yj = max(0,Xj − Dj) inventory at end of day j ;

Orders follow a (s, S) policy : If Yj < s, order S − Yj items.

Each order arrives (random) for next morning with probability p.

Revenue for day j : sales − inventory costs − order costs
= c ·min(Dj ,Xj)− h · Yj − (K + k · (S − Yj)) · I[an order arrives].

Goal: Simulate n times m days for several choices of (s, S) to find the best one.
Number of calls to RNG for order arrivals is random!

Want two streams of random numbers, one substream for each simulation run.
Want same streams and substreams for all policies (s,S).
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Inventory example: C code to simulate m days with two streams

double inventorySimulateOneRun (int m, int s, int S,

RngStream *stream_demand, RngStream *stream_order) {

// Simulates inventory model for m days, with the (s,S) policy.

int Xj = S, Yj; // Stock Xj in morning and Yj in evening.

double profit = 0.0; // Cumulated profit.

for (int j = 0; j < m; j++) {

// Generate and subtract the demand for the day.

Yj = Xj - RandInt (stream_demand, 0, L);

if (Yj < 0) Yj = 0; // Lost demand.

profit += c * (Xj - Yj) - h * Yj;

if ((Yj < s) && (RandU01 (stream_order) < p)) {

// We have a successful order, we pay for it.

profit -= K + k * (S - Yj);

Xj = S;

} else

Xj = Yj; // Order not received.

}

return profit / m; // Return average profit per day.

}
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Parameters for an experiment

Model parameters:

L = 100, c = 2, h = 0.1, K = 10, k = 1, and p = 0.95.

Experiment parameters:

m = 100 days per simulation run, n = 218 runs (or replications).

p = 144 different policies (s,S): 50 ≤ s ≤ 61 and 156 ≤ S ≤ 167.
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Comparison with independent random numbers

156 157 158 159 160 161 162 163 164 165 166 167

50 37.94537 37.94888 37.94736 37.95314 37.95718 37.97194 37.95955 37.95281 37.96711 37.95221 37.95325 37.92063

51 37.9574 37.9665 37.95732 37.97337 37.98137 37.94273 37.96965 37.97573 37.95425 37.96074 37.94185 37.93139

52 37.96725 37.96166 37.97192 37.99236 37.98856 37.98708 37.98266 37.94671 37.95961 37.97238 37.95982 37.94465

53 37.97356 37.96999 37.97977 37.97611 37.98929 37.99089 38.00219 37.97693 37.98191 37.97217 37.95713 37.95575

54 37.97593 37.9852 37.99233 38.00043 37.99056 37.9744 37.98008 37.98817 37.98168 37.97703 37.97145 37.96138

55 37.97865 37.9946 37.97297 37.98383 37.99527 38.00068 38.00826 37.99519 37.96897 37.96675 37.9577 37.95672

56 37.97871 37.9867 37.97672 37.9744 37.9955 37.9712 37.96967 37.99717 37.97736 37.97275 37.97968 37.96523

57 37.97414 37.97797 37.98816 37.99192 37.9678 37.98415 37.97774 37.97844 37.99203 37.96531 37.97226 37.93934

58 37.96869 37.97435 37.9625 37.96581 37.97331 37.95655 37.98382 37.97144 37.97409 37.96631 37.96764 37.94759

59 37.95772 37.94725 37.9711 37.97905 37.97504 37.96237 37.98182 37.97656 37.97212 37.96762 37.96429 37.93976

60 37.94434 37.95081 37.94275 37.95515 37.98134 37.95863 37.96581 37.95548 37.96573 37.93949 37.93839 37.9203

61 37.922 37.93006 37.92656 37.93281 37.94999 37.95799 37.96368 37.94849 37.954 37.92439 37.90535 37.93375

50

52

54

56

58

60

37.84

37.86

37.88

37.9

37.92

37.94

37.96

37.98

38

38.02

156 157 158 159 160 161 162 163 164 165
166

167

IRN

37.84-37.86 37.86-37.88 37.88-37.9 37.9-37.92 37.92-37.94 37.94-37.96 37.96-37.98 37.98-38 38-38.02 38.02-38.02
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Comparison with common random numbers

156 157 158 159 160 161 162 163 164 165 166 167

50 37.94537 37.94888 37.95166 37.95319 37.95274 37.95318 37.94887 37.94584 37.94361 37.94074 37.93335 37.92832

51 37.9574 37.96169 37.96379 37.96524 37.96546 37.96379 37.96293 37.95726 37.95295 37.94944 37.94536 37.93685

52 37.96725 37.97117 37.97402 37.97476 37.97492 37.97387 37.971 37.96879 37.96184 37.95627 37.95154 37.94626

53 37.97356 37.97852 37.98098 37.98243 37.98187 37.98079 37.97848 37.97436 37.97088 37.96268 37.95589 37.94995

54 37.97593 37.98241 37.98589 37.98692 37.98703 37.98522 37.9829 37.97931 37.97397 37.96925 37.95986 37.95186

55 37.97865 37.98235 37.9874 37.9894 37.98909 37.9879 37.98483 37.98125 37.97641 37.96992 37.96401 37.95343

56 37.97871 37.98269 37.98494 37.98857 37.98917 37.98757 37.98507 37.98073 37.97594 37.96989 37.96227 37.95519

57 37.97414 37.98035 37.98293 37.98377 37.98603 37.98528 37.98239 37.97858 37.97299 37.96703 37.95981 37.95107

58 37.96869 37.97207 37.97825 37.97944 37.97895 37.97987 37.97776 37.97358 37.96848 37.9617 37.95461 37.94622

59 37.95772 37.96302 37.9663 37.97245 37.97234 37.97055 37.9701 37.96664 37.96122 37.95487 37.94695 37.93871

60 37.94434 37.94861 37.95371 37.95691 37.96309 37.96167 37.9586 37.95678 37.95202 37.9454 37.93785 37.92875

61 37.922 37.93169 37.93591 37.94085 37.94401 37.95021 37.94751 37.94312 37.94 37.93398 37.92621 37.91742

50

52

54

56

58

60

37.88

37.9

37.92

37.94

37.96

37.98

38

156 157 158 159 160 161 162 163 164 165 166 167

CRN

37.88-37.9 37.9-37.92 37.92-37.94 37.94-37.96 37.96-37.98 37.98-38
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Comparing p policies with CRNs (using a single processor)

// Simulate n runs with CRNs for p policies (s[k], S[k]), k=0,...,p-1.

RngStream* stream_demand = CreateStream();

RngStream* stream_order = CreateStream();

for (int k = 0; k < p; k++) { // for each policy

for (int i = 0; i < n; i++) { // perform n runs

stat_profit[k, i] = inventorySimulateOneRun (m, s[k], S[k],

stream_demand, stream_order);

// Realign starting points so they are the same for all policies

ResetNextSubstream (stream_demand);

ResetNextSubstream (stream_order);

}

ResetStartStream (stream_demand);

ResetStartStream (stream_order);

}

// Print and plot results ...

...

Only two streams suffice for the entire simulation experiment. If we use different streams for
the n different runs, we would need 2n stream objects instead. Would be less efficient.
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Larger and more complicated systems

May require thousands of different streams, even for a simulation on a single CPU.

Substreams can be used for the independent replications, as we just saw. Very convenient.

My students have used that a lot for simulation and optimization of service systems such as
call centers, reliability models, and also financial contracts and systems.

One may also think of factories, transportation networks, logistic systems, supply chains, etc.
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Multiple streams for parallel processors
To run n replications using n threads (or work items) on parallel processors (e.g., on a GPU),
in our example we would need 2n stream objects (two per thread) to store the RNG states.

Since the substreams in RngStreams are not objects, we cannot use one substream per
thread, unless we transform them into objects to memorize the substream states.

Simple approach: create and use 2n distinct streams and use them in place of substreams.
Drawback: creating many more streams brings significant overhead. But if we really want n
parallel threads, we have no choice.

If the number n of replications is very large, it makes sense to use n1 ≪ n threads, and have
each thread run n2 independent replications, with n = n1n2. Then it suffices to create 2n1
stream objects, and let each thread use n2 substreams.

For the inventory example, we have observed a speedup factor around 3 or 4, compared to
creating 2n stream objects, by doing this with n1 = 216 and n2 = 64 for n = 222.
(This was on an oldish AMD Radeon HD 7900 Series GPU using clRNG in OpenCL.)
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thread, unless we transform them into objects to memorize the substream states.

Simple approach: create and use 2n distinct streams and use them in place of substreams.
Drawback: creating many more streams brings significant overhead. But if we really want n
parallel threads, we have no choice.

If the number n of replications is very large, it makes sense to use n1 ≪ n threads, and have
each thread run n2 independent replications, with n = n1n2. Then it suffices to create 2n1
stream objects, and let each thread use n2 substreams.

For the inventory example, we have observed a speedup factor around 3 or 4, compared to
creating 2n stream objects, by doing this with n1 = 216 and n2 = 64 for n = 222.
(This was on an oldish AMD Radeon HD 7900 Series GPU using clRNG in OpenCL.)
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How to use the multiple streams

Why not use a single stream of random numbers for all threads?
Very bad because (1) too much overhead for transfer and (2) non reproducible.

We need multiple streams.
One stream per processor? One per thread? One per subtask? No.

For reproducibility and effective use of CRNs, streams must be assigned at a logical level
(hardware-independent). It should be possible to have many streams in any given thread.

There are also simplified settings in which one stream per thread is enough; e.g., if the task is
just to fill up a large tensor or random numbers in a given order.
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How to define and construct the streams?
A different RNG (or parameters) for each stream?
Inconvenient and limited: would be hard to handle millions of streams.

Single RNG with equally-spaced starting points for streams and for substreams:
Recommended when possible. Streams can start ν steps apart, as we saw earlier.
Normally requires fast computing of sn+ν = f ν(sn) for large ν, and a single monitor to create
all the streams sequentially, one after the other.
Drawback: this creation process seems inherently sequential.

We would rather prefer being able to create many streams in parallel!

Can we compute all the starting points in parallel, efficiently?
For example, given sn, compute sn+jν for j = 1, . . . , 216 all in parallel on a GPU?
Yes. But requires additional storage for jump-ahead matrices, and more work per jump than
for a unique jump length ν. This is implemented in cuRand (Cuda), for instance.

Use a function that jumps ahead by 2kν for any k = 0, 1, 2, . . . , with a precomputed matrix
for each k . Decompose j into a sum of powers of 2, and jump ahead for each power.
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Streams with random starting points.
Can be used if jumping ahead is deemed too expensive.

For each stream, we draw a random seed uniformly over S, independently.
There is a risk of overlap between streams, but it can be made very small.

For period length ρ and s streams of length ℓ, P[overlap somewhere] = Po ≤ s2ℓ/ρ.

ρ s ℓ Po ≤
264 220 220 2−4

2128 220 220 2−68

2128 230 230 2−38

2256 230 230 2−166

Drawback: generating truly random and independent starting points is not cheap and easy.
It also makes the results not reproducible!
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Pseudorandom starting points
Use a second RNG (or similar mechanism) to provide the starting points for the streams.
This second RNG provides a sequence of states for the first RNG, which we call a seed
schedule. These are the seeds of the successive streams.

To cover all seed possibilities for the streams, the state of the second RNG must be at least
as large as the state of the first.

For example, if the first RNG has a 128-bit state and the second provides only 64 bits, then at
most 264 of the 2128 possible seeds can be reached. This increases the probability of having
identical streams! I have seen this often in popular software.

Chances of a collision: If we pick s seeds at random uniformly from a pool of size r , the
probability that the seeds are not all distinct is approximately s2/2r when this number is small.
For r = 264 and s = 230, this gives 1/32. This could be acceptable for some applications.

To reduce the chance of bad interactions, the structures of two RNGs should be different.
Otherwise, it could create detectable dependence between the streams.

If the second RNG is recurrence-based, then this approach remains inherently sequential.
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User provides explicit starting points

When creating new streams, the users can provide their starting points (seeds) as inputs.

Typically, a one-to-one hash function (or a simplified block cipher) would be applied
automatically to those inputs, to transform them.

If done right, the user may create 220 streams with “seeds” 1, 2, . . . , 220, for example, without
worrying about the dependence between those streams.

A variant: the user provides a single seed to create a large block of n streams. The system
may automatically combine a counter with this seed, then hash the values to obtain the seeds
of the n streams.

Advantage: a large block of streams can be created in parallel.
Drawback: The users must remember the seeds (for reproducibility), and make sure that the
blocks of streams created at different places all use different seeds!
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Example: Tensor Processing Units (TPUs) at Google use the xorshift128+ RNG from
Vigna (2016), based on a 128-bit F2-linear recurrence with an ordinary addition at the
output. Each TPU chip can run 64 copies in parallel, implemented in hardware.

Jumping ahead by ν steps could be done by multiplying the 128-bit state by an appropriate
128× 128 binary matrix modulo 2, but this is not implemented.

To determine the 64 initial states, the user provides two 64-bit integers which are used to
transform the 32-bit numbers 1, 2, . . . , 128 in some elaborate (deterministic) manner to
obtain the 64 128-bit seeds.

A naive idea could be to just apply one round of xorshift128+ to the successive integers,
but this bring insufficient dispersion. Google software does more, to be on the safe side.
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Counter-Based RNGs (CBRNGs)
In traditional RNGs, the transition function f does most of the transformation and the output
function g is very simple. CBRNGs do the opposite: f just increases a counter by 1 and g
does most of the work.

In most versions, the state is a pair of integers (key, counter) = (k , i) ∈ Zm+c
2 .

The key k is a m-bit integer and the counter i is a c-bit integer.
Transition function: f (k , i) = (k , i + 1 mod 2c). Jumping ahead is trivial.
Each value of k may correspond to a stream, starting at (k , 0).

The counter can also be multidimensional.
Can be seen as a huge direct-access table of random numbers!

The keys k for the successive streams can be defined in many ways:
(1) randomly (not reproducible);
(2) using a key schedule determined by a second RNG (inherently sequential);
(3) just use k = 0, 1, 2, . . . for the successive keys;
(4) let the user select the keys.
One can also use a second CBRNG to “hash” these keys into new keys (parallel-friendly).
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Collisions between keys

If s random keys are drawn uniformly and independently among the 2m possibilities, the
probability that they are not all distinct (at least one collision) is ≈ s2/2m+1.
For s = 220 and m = 64, this is approx. 2−25.

Dispersion requirement

In case (3), the output function g must apply enough transformation so that there is no easily
detectable similarity between g(k , i) and g(k , i + 1) or g(k + 1, i). This requirement could
make the CBRNG slower than a fast recurrence-based RNG.
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CBRNGs were introduced as one mode of operation (the counter mode) for block ciphers in
cryptography. They were included in the advanced encryption standard (AES) in 2001.

Hellekalek and Wegenkittl (2003) proposed and tested AES in counter mode for simulation.
They found no statistical weakness. But AES is slow, unless implemented in hardware.

Salmon et al. (2011) proposed faster (simplified) block ciphers named ARS, Threefry, and
Philox, selected based on empirical statistical testing, to be used as CBRNGs.
Philox is fastest on GPUs while Threefry is fastest on CPUs.

On GPUs, Tensorflow uses Philox-4×32-10, with m = 64 and c = 128, implemented in
the C++ class PhiloxRandom. The function g makes 10 rounds of bijective transformations to
the counter i , parameterized by the key k, and returns four 32-bit integers as output.
For each k, each 128-bit output appears once when the counter goes from 0 to 2128 − 1.

One small weakness: The 10 rounds must be done sequentially (cannot be parallelized).
I believe that there are faster good alternatives, based on more standard RNGs.
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Stateless and stateful functions for PhiloxRandom in Tensorflow.

Stateless functions to generate n random numbers:
No memory. The user provides a pair of 32-bit or 64-bit integers as a seed.
These are transformed to get the 64-bit key and 64 most significant bits of the counter.
Then the low bits of the counter go from 0 to n − 1.
Further calls with the same seeds return the same random numbers.

Stateful functions: Provide multiple streams with their own states (memory).
A global seed set at the beginning affects all streams.
Then an operational seed given as a parameter acts as a stream identifier.
When a new one is used, it defines a new stream.
Whenever one is reused, the counter for that stream just continues to increase.
When no operational seed is given, the system uses a default one.
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Splittable RNGs

Sometimes, we want to be able to split dynamically (and unpredictably) any stream in two or
more streams during execution.
That is, we have a random tree of streams. Can also be a tree of states.

Example: in particle physics (or computer graphics), we would use one stream for each
particle (or ray of light). When a particle splits, we need to split the stream. Using a central
monitor for this is not acceptable: too slow and not fully reproducible, because the order in
which splits occur would depend on the relative speed of processors.

We want an efficient hardware-independent and fully reproducible solution.

An algorithmic RNG can cover this as follows. Instead of a single transition function f , define
two transitions functions f1 and f2 (or f1, . . . , fd if we allow d-fold splitting for d > 2).
When in state s, if we split the stream in two, the two new states will be f1(s) and f2(s).
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Claessen and Palka (2013) designed a splittable RNG defined by a binary tree. Any node at
level ℓ is identified by a ℓ-bit string that represents the path to that node: When going to the
next level, we add a 0 when going left and a 1 when going right. This gives an infinite binary
tree in which each node has a distinct label. See picture.

One problem: these labels can grow too long. Solution: hash (compress) them periodically
into shorter b-bit strings, e.g., each time the string reaches 2b bits, say for b = 64. For this,
they apply a block cipher that takes the first b bits as a key, the next b bits as input, and
outputs a new b-bit block which is the next key.
They also use the same block cipher as an output function.

In their design, a tree node can either produce an output or create a split, but not both.

This scheme is implemented in JAX, using Threefry-2×32-20 as a hash function, and
b = 64. For each node, one can either call the “split” function to make a split, or the
“rand” function to generate a (large) tensor of random numbers.
For a tensor of size n, the high 64 bits are used as the key and a counter goes from 0 to n− 1.
This is essentially as fast as using Threefry as an RNG.
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Empirical statistical Tests

Hypothesis H0: “{u0, u1, u2, . . . } are i.i.d. U(0, 1) r.v.’s”.
We know that H0 is false, but can we detect it ?

Test:
— Define a statistic T , function of the ui , whose distribution under H0 is known (or approx.).
— Reject H0 if value of T is too extreme. If suspect, can repeat.

Different tests detect different deficiencies.

Utopian ideal: T mimics the r.v. of practical interest. Not easy.

Ultimate dream: Build an algorithmic RNG that passes all the tests? Formally impossible.

Compromise: Build an RNG that passes most reasonable tests.
Tests that fail are hard to find.
Formalization: computational complexity framework.
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Example: the serial test

To challenge H0, we construct n disjoint vectors of t successive outputs:

(u0, . . . , ut−1), (ut , . . . , u2t−1), . . . , (u(n−1)t , . . . , unt−1).

Then partition the unit cube (0, 1)t into k rectangular boxes of equal size 1/k , count how
many points fall in each box, compute the value x of the corresponding chi-square test
statistic, and report its p-value

p(x) = P[χ2 > x | H0.]

We reject H0 if p(x) is too close to 0 (x is too large, lack of uniformity).
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Example: the serial test in t = 2 dimensions

0 1

1

un+1

un

Throw n = 1000 points in k = 100 boxes. Compute chi-square and p-value.
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Serial test: improvements
Overlapping test. To save work, we can construct the points with (circular) overlapping:

(u0, . . . , ut−1), (u1, . . . , ut), (u2, . . . , ut+1), . . . , (un−2, un−1, u0, . . . , ut−3), (un−1, u0, . . . , ut−2).

The statistic no longer has a chi-square distribution, but we can compute the p-value.

Collision test. Permits one to have much more boxes or fewer points. Test statistic:

C = number of collisions.

Under H0, C ≈ Poisson of mean λ = n2/(2k), if k is large and λ is small.

If we observe c collisions, we compute the p-values:

p+(c) = P[X ≥ c | X ∼ Poisson(λ)], p−(c) = P[X ≤ c | X ∼ Poisson(λ)].

We reject H0 if p+(c) is near 0 or p−(c) is near 1.



50

Serial test: improvements
Overlapping test. To save work, we can construct the points with (circular) overlapping:

(u0, . . . , ut−1), (u1, . . . , ut), (u2, . . . , ut+1), . . . , (un−2, un−1, u0, . . . , ut−3), (un−1, u0, . . . , ut−2).

The statistic no longer has a chi-square distribution, but we can compute the p-value.

Collision test. Permits one to have much more boxes or fewer points. Test statistic:

C = number of collisions.

Under H0, C ≈ Poisson of mean λ = n2/(2k), if k is large and λ is small.

If we observe c collisions, we compute the p-values:

p+(c) = P[X ≥ c | X ∼ Poisson(λ)], p−(c) = P[X ≤ c | X ∼ Poisson(λ)].

We reject H0 if p+(c) is near 0 or p−(c) is near 1.



51

Example: A collision test
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•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•

•
•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•

•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•

•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



51

Example: A collision test

0 1

1

un+1

un

•

•

•
•

•

•

•
•

•
•

Throw n = 10 points in k = 100 boxes.

Here we observe 3 collisions. P[C ≥ 3 | H0] ≈ 0.144.



52
Example: LCG with m = 101 and a = 12:

0 1
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un+1

un

•

n λ C p−(C )
10 1/2 0 0.6281

20 2 0 0.1304
40 8 1 0.0015
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LCG with m = 101 and a = 51 (collisions are not in red):

0 1

1

un+1

un

•

••

• •
•

n λ C p+(C )
10 1/2 1 0.3718

20 2 5 0.0177
40 8 20 2.2× 10−9
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Subtract-with-borrow RNG in (older) Mathematica

For this RNG, there is a very strong dependence between the coordinates of the points
(Ui ,Ui+20,Ui+24). It turns out that all these points fall on only two planes in [0, 1]3! This
can be detected by the collision test, as follows.

For the unit cube [0, 1)3, divide each axis in d = 100 equal intervals.
This gives k = 1003 = 1 million boxes.

Generate n = 10 000 vectors in 25 dimensions: (U0, . . . ,U24).
For each, note the box where (U0,U20,U24) falls.
Here, λ = n2/(2k) = 50.

Results with SWB: C = 2070, 2137, 2100, 2104, 2127, ....

With MRG32k3a: C = 41, 66, 53, 50, 54, ....
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Other examples of tests

Nearest pairs of points in [0, 1)s .

Sorting card decks (poker, etc.).

Rank of random binary matrix.

Linear complexity of binary sequence.

Measures of entropy.

Complexity measures based on data compression.

Etc.

For a given class of applications, the most relevant tests would be those that mimic the
behavior of what we want to simulate.
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The TestU01 software

[L’Ecuyer et Simard, ACM Trans. on Math. Software, 2007].

▶ A library with a large variety of statistical tests.
For both algorithmic and physical RNGs.
Widely used. On my web page.

▶ Some predefined batteries of tests:
SmallCrush: quick check, 15 seconds;
Crush: 96 test statistics, 1 hour;
BigCrush: 144 test statistics, 6 hours;
Rabbit: for bit strings.

▶ Many widely-used generators fail these batteries unequivocally.

▶ A new 64-bit version is currently under development (on and off...).
Test batteries for multiple streams, for counter-based RNGs, etc.
Separate batteries for U(0, 1) and for binary sequences.
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Some fast recommendable RNGs

Good RNGs for 64-bit CPU
Good implementations exploit the fact that CPUs can perform some operations in parallel.
Combined MRG and combined LFSR generators: MRG32k3a, MRG31k3p, LFSR258 (L 1999)
xoshiro and xoroshiro generators (Blackman and Vigna 2021)

Good RNGs for 32-bit GPU
One processing element does not perform operations in parallel.
Simple 32-bit MRG and multiply-with-carry RNGs.
xoshiro-128+, xoshiro128++.
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Conclusion

▶ A flurry of computer applications require random numbers.

▶ Multiple streams of random numbers are required for parallel computing but also for
other settings, such as comparing systems and simulation-based optimization.
Efficiency and repeatability are important.

▶ Creating the streams in parallel is highly desirable when we need many.
This can be implemented in many ways, including jumping ahead, counter-based RNGs,
or just numbering the streams sequentially and hashing the numbers to get the seeds.

▶ Ongoing and future work:
Fast and reliable multi-streams packages for modern 64-bit CPUs in many languages.
Faster counter-based and splittable RNGs.
Improved 64-bit version of TestU01, with test batteries for multiple streams,
counter-based, and splittable RNGs.
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