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Monte Carlo for Markov Chains

Setting: A Markov chain with state space X' C R, evolves as
Xo=x0,  Xj=i(Xi-1,U)), j > 1,
where the U; are i.i.d. uniform r.v.'s over (0,1)?. Want to estimate
pw=E[Y] where Y = Zg_,(XJ)
j=1

for some fixed time horizon .



Monte Carlo for Markov Chains
Setting: A Markov chain with state space X' C R, evolves as
Xo = xo, X; = j(Xj—1,U;), j > 1,

where the U; are i.i.d. uniform r.v.'s over (0,1)?. Want to estimate

pw=E[Y] where Y = Zg-/(XJ)
j=1
for some fixed time horizon 7

Ordinary MC: For i =0,...,n— 1, generate X;; = ¢;(X; j_1,U;}),
j=1,...,7, where the U;'s are i.i.d. U(0,1)9. Estimate p by
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Example: Asian Call Option

Given observation times t, to, ..., t. suppose

S(t7) = S(tj-1) expl(r — 0?/2)(t; — tj-1) + o(tj — t;-1) /201 (U))],

where U; ~ U[0,1) and S(to) = sp is fixed.

Running average: S5; = 1Y S(t)).
State: X; = (5(t), S )
Transition:

X5 = ((5).5) = #1(S(5-).5-1.U) =  S(g), U =22 2200,

Payoff at step j =7 is ¥ = g-(X;) = max [0, 5: — K].



Plenty of other applications:

Finance

Queueing systems

Inventory, distribution, logistic systems
Reliability models

MCMC in Bayesian statistics

Etc.



Classical RQMC for Markov Chains

Put V; = (U;1,...,U;,) € (0,1)° = (0,1)77. Estimate u by

n T

1
ﬁ‘rqmc,n = E Z ZgJ(X:,J)

i=1 j=1

where P, = {Vo,...,Vp_1} C (0,1)* satisfies:
(a) each point V; has the uniform distribution over (0,1)°;
(b) Pn covers (0,1)° very evenly (i.e., has low discrepancy).

The dimension s is often very large!



Array-RQMC for Markov Chains

L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]

Simulate an “array” of n chains in “parallel.”

At each step, use an RQMC point set P, to advance all the chains by one
step, while inducing global negative dependence across the chains.

Goal: Want a small discrepancy (or “distance”) between the empirical
distribution of S, ; = {Xo, ..., Xp—1,} and the theoretical distribution of

Xj, for each j.

If we succeed, these (unbiased) estimators will have small variance:

n—1 n—1
1 1
i =Elg(X)~ — > g(Xiy) and p=E[Y]~ —3 V.
i=0 i=0



Array-RQMC for Markov Chains

L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]

Simulate an “array” of n chains in “parallel.”

At each step, use an RQMC point set P, to advance all the chains by one
step, while inducing global negative dependence across the chains.

Goal: Want a small discrepancy (or “distance”) between the empirical
distribution of S, ; = {Xo, ..., Xp—1,} and the theoretical distribution of
Xj, for each j.

If we succeed, these (unbiased) estimators will have small variance:

n—1 n—1
1 1
= Elg(X)]~ > gi(Xij) and p=E[Y]~ - > Y.
i=0 i=0

How can we preserve low-discrepancy of S, as j increases?
Can we quantify the variance improvement? Convergence rate in n?



Some generalizations

L., Lécot, and Tuffin [2008]: 7 can be a random stopping time w.r.t. the
filtration F{(j, X;), j > 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting
techniques (multilevel and without levels), combination with importance

sampling and weight windows. Covers particle filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact
sampling.

Dion and L. [2010]: Combination with approximate dynamic programming
and for optimal stopping problems.

Gerber and Chopin [2014]: Sequential QMC (yesterday's talk).



Convergence results and applications

L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate,
one-dimensional, stratification, etc.

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.
El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification,
Sudoku sampling, ...

Wachter and Keller [2008]: Applications in computer graphics.



Other QMC methods for Markov chains

Interested in steady-state distribution. Introduce dependence between the
steps j; a single chain visit the state space very uniformly.

Owen, Tribble, Chen, Dick, Matsumoto, Nishimura, .... [2004-2010]:
Markov chain quasi-Monte Carlo.

Propp [2012] and earlier: Rotor-router sampling.



10
To simplify, suppose each X is a uniform r.v. over (0, 1)~

Select a discrepancy measure D for the point set S, ; = {Xo,..., Xo—1}
over (0, l)e, and a corresponding measure of variation V/, such that

Var[ﬁrquJ,n] = E[(ﬁrqmc,j,n - :uj)2] < E[D2(Sn,j)] Vz(gj)-
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To simplify, suppose each X is a uniform r.v. over (0, 1)~

Select a discrepancy measure D for the point set S, ; = {Xo,..., Xo—1}
over (0, l)e, and a corresponding measure of variation V/, such that

Var[ﬁrquJ,n] = E[(ﬁrqmc,j,n - :uj)2] < E[D2(Sn,j)] Vz(gj)-

If D is defined via a reproducing kernel Hilbert space, then, for some
random ¢&; (that generally depends on S, ),

1 n
- > &%)
i=1

E[D)(@n)] - Vi3 (& 0 ¢;)

n

% Z(§J 0 @) (Xij-1,Ui;))

i=1

E[D*(S,))] = Var = Var

IN

for some other discrepancy D) over (0,1)"*9, where
Qn = {(Xoj-1,U0,), - (Xn—1j-1,Un-1) }.

Goal: Under appropriate conditions, to obtain V(z)(gj o pj) < oo and
E[D(22)(Qn)] = O(n=**¢) for some o > 1.



11

Discrepancy bounds by induction?

Let {=d =1, X =[0,1], and Xj ~ U(0,1). Lo-star discrepancy:

n—1

1 1
D*(X0s -y Xn_1) = o + n Z(Wi — x;)?
i=0

where w; = (i+1/2)/nand 0 < xo < x3 < -+ < xp—1. We have
1 n—1
G0 =~ S (YD) + Bal(x — Y7) mod 1) + By(x)Ba(Y,)].
i=1

where Bi(x) = x — 1/2 and By(x) = x> — x + 1/6.

Problem: the 2-dim function ; o ¢; has mixed derivative that is not
square integrable, so it has infinite variation, it seems. Otherwise, we
would have a proof that E[D?(S, )] = O(n~2). Help!
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In the points (X;j_1,U; ;) of Q,, the U;; can be defined via some RQMC
scheme, but the X;;_; cannot be chosen; they are determined by the
history of the chains.

The idea is to select a low-discrepancy point set

Q= {(wo,Uo), ..., (Wn_1,Us_1)},

where the w; € [0,1)¢ are fixed and the U; € (0,1)9 are randomized, and
then define a bijection between the states X; ;_; and the w; so that the
Xij—1 are “close” to the w; (small discrepancy between the two sets).

Example: If £ =1, can take w; = (i + 0.5)/n.

Bijection defined by a permutation 7; of S, ;.
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In the points (X;j_1,U; ;) of Q,, the U;; can be defined via some RQMC
scheme, but the X;;_; cannot be chosen; they are determined by the
history of the chains.

The idea is to select a low-discrepancy point set

Q= {(wo,Uo), ..., (Wn_1,Us_1)},

where the w; € [0,1)¢ are fixed and the U; € (0,1)9 are randomized, and
then define a bijection between the states X; ;_; and the w; so that the
Xij—1 are “close” to the w; (small discrepancy between the two sets).

Example: If £ =1, can take w; = (i + 0.5)/n.
Bijection defined by a permutation 7; of S, ;.

For state space in R’: same algorithm essentially.
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Array-RQMC algorithm

Xio4xg, fori=0,...,n-1,
for j=1,2,...,7do
Randomize afresh {Uqj,...,Un—1;} in Qn;
X/'J = (pj(Xﬂj(,')’J;l, U,"j), for i = 07 [ 1;
Compute the permutation 711 (sort the states);
end for
Estimate p by the average Y, = flrqme,n-



Array-RQMC algorithm

Xio4xg, fori=0,...,n-1,
for j=1,2,...,7do
Randomize afresh {Uqj,...,Un—1;} in Qn;
X/'J = (pj(Xﬂj(,')’J;l, U,"j), for i = 07 [ 1;
Compute the permutation 711 (sort the states);
end for
Estimate p by the average Y, = flrqme,n-

Theorem: The average Y, is an unbiased estimator of s.

Can estimate Var[Y,] by the empirical variance of m indep.

realizations.

13
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Example: Asian Call Option

5(0) =100, K =100, r =0.05, 0 =0.15, t; = /52, j=0,...,7 = 13.
RQMC points: Sobol’ nets with a linear scrambling + random digital shift,
for all the results reported here.

Similar results for randomly-shifted lattice + baker’s transform.

log, Var[firquc,n]
_10 +
20l crude MC
RQMC sequential
30 +
array-RQMC, split sort
-40 T

% % % % % % —— logy n
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Mapping chains to points

One possibility: Multivariate sort:
Sort the states (chains) by first coordinate, in n; packets of size n/nj.

Sort each packet by second coordinate, in n, packets of size n/nin;.

At the last level, sort each packet of size ny by the last coordinate.

Choice of ny, np, ..., n?



15

Mapping chains to points
One possibility: Multivariate sort:
Sort the states (chains) by first coordinate, in n; packets of size n/nj.
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At the last level, sort each packet of size ny by the last coordinate.
Choice of ny, no, ..., ng?

For large /: Define a transformation v : X — [0,1)€ and do a
multivariate sort (in ¢ < £ dimensions) of the points v(X; ;).

Choice of v: states mapped to nearby values of v should be nearly
equivalent.



Mapping chains to points
One possibility: Multivariate sort:
Sort the states (chains) by first coordinate, in n; packets of size n/nj.

Sort each packet by second coordinate, in n, packets of size n/nin;.

At the last level, sort each packet of size ny by the last coordinate.
Choice of ny, no, ..., ng?

For large /: Define a transformation v : X — [0,1)€ and do a
multivariate sort (in ¢ < £ dimensions) of the points v(X; ;).

Choice of v: states mapped to nearby values of v should be nearly
equivalent.

For c =1, X is mapped to [0, 1), which leads to a one-dim sort.
The mapping v can be based on a space-filling curve: Z-curve, Hilbert
curve, etc. See Wachter and Keller [2008], Gerber and Chopin [2014].

15



A (4,4) mapping

States of the chains
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A (4,4) mapping
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A (4,4) mapping
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A (16,1) mapping, sorting along first coordinate
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A (8,2) mapping
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A (4,4) mapping
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A (2,8) mapping
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A (1,16) mapping, sorting along second coordinate
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Sorting strategies for array-RQMC.

24

State-point mapping via two-dimensional sort: sort in n; packets based on S(t;),
then sort the packets based on 3j. Split sort: ny = ny.

log, Var[firqumc,n]

10 +

-30 +

-40

array-RQMC, sort on S
array-RQMC, sort on S
zarray-RQMC, n; = n?/3

! array-RQMC, n; = nl/3
array-RQMC, split sort

i i i i i i i log, n



Artificial one-dim example: a simple put option
GBM {S5(t), t > 0} with drift = 0.05, volatility o = 0.08, S(0) = 100.
Generate X; = 5(t;j) for tj = j/16, j = 1,...,7 = 16, sequentially.
Payoff at t1g = 1: ¥ = g-(5(1)) = e %% max(0,101 — S(1)).

log, Var[firquc,n]

A

107 \‘\\‘\\‘\
crude MC

20+ L Sequential RQMC
-30

array-RQMC
-40 +

| | | | | 1n Vlogzn
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Histogram of states at step 16
States for array-RQMC with n = 214 in red and for MC in blue.
Theoretical dist.: black dots.
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Histogram after transformation to uniforms (applying the cdf).

States for array-RQMC with n = 2% in red and for MC in blue.
Theoretical dist. is uniform (black dots).
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Example

Let Y = 60U+ (1 —0)V, where U, V indep. U(0,1) and 6 € [0,1).
This Y has cdf Gy.

Markov chain is defined by
Xo = Uo; Xj = ¢j(Xj-1, Uj) = Go(6Xj—1 + (1 = 0)U)),j > 1

where Uj ~ U(0,1). Then, X; ~ (0,1).
Define gj(X;) = X;

28



29

log D; as a function of j, for n = 4093 ~ 212
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log, Var(fizqme,j,n] as a function of log, n

_25 o : : : log2(n)
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0 = 0.9, 100 steps
0 =0.9, 20 steps
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Convergence results and proofs

L., Lécot, Tuffin [2008] 4+ some extensions.

Simple case: suppose { =d =1, X =[0,1], and X; ~ U(0,1). Define

Aj = SUP |Fi(x) — Fj(x)] (discrepancy of states)
Vig) = / |dg;(x (variation of gj)

Theorem. D_’,,,j - E[gJ(XJ)” < AjV(g))-
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Convergence results and proofs
Assumption 1. ¢j(x, u) non-decreasing in u. That is, we use inversion to

generate next state from cdf Fi(z |- ) =P[X; <z | X1 =-].

Let A= sup V(Fi(z|-]).

0<z<1
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Convergence results and proofs

Assumption 1. ¢j(x, u) non-decreasing in u. That is, we use inversion to
generate next state from cdf Fi(z |- ) =P[X; <z | X1 =-].

Let A= sup V(Fi(z|-]).

0<z<1
Assumption 2. Each square of /n x y/n grid has one RQMC point.
Proposition. (Worst-case error.) Under Assumptions 1 and 2,

j j
A< Py N+ 1) T A
k=1 i

=k+1

Corollary. If A; < p <1 for all j, then



Let goj-()i, u) non-decreasing in x and u.

Fix z.

S

S

— Fi(z]x)
(j(x, 1) = 2)

Xji—1=x

Fi(z) = P[X; < z] = size of blue area.

33



Let goj-()i, u) non-decreasing in x and u. Fix z.

\\
\\
U Ty
=u
\\\ — FJ(Z | X)
S| (Blxu)=2)
+— states Xj_1;
0 1
Xji—1=x

Fi(z) = P[X; < z] = size of blue area.

33



33
Let gaj(? u) non-decreasing in x and u. Fix z.

Pl
U s
- Sl L Azl
S ain=2)
+— states Xj_1;
0 1

Xji—1=x

Fi(z) = P[X; < z] = size of blue area.
Fi(z) =P[X; < z | X;_1 ~ Fj_1] = area of histogram.



Let goj-()i, u) non-decreasing in x and u. Fix z.

(2

) =
j(2) =
(2) =

[> J‘P 771:f'|

33

[ ]
[ ]
Ny *
Ny .
° KK=
s [ TN L Fi(z | x)
* | (wilou)=2)
°
°
I l’ I I I I [ <— states )<j—1,l'
P IX!I1—X 1 +— points w; = (i +0.5)/n
(1=

j 5UP0<z<1|F( )

P[X; < z] = size of blue area.
P[X; < z| X;_1 ~ F;_1] = area of histogram.
= fraction of the points that fall in histogram.

Fi(2)].



2./n — 1 diagonal strings of squares.
The boundary crosses at most one square in each string.
At most 2/n — 1 squares out of n may contribute to |Fj(z) — Fj(z)|.

34
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Xj-1 = x

v/n x /n squares: 2\/n — 1 diagonal strings of squares.
The boundary crosses at most one square in each string.
So at most 24/n — 1 squares may contribute to the error (or variance), and

) B e n—3/2
varlFi(2) - Ba) < B < T
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Variance bound for stratified sampling

Assumption 3. Assump. 2 (one point per square) + second coordinate of
each point is uniformly dist. in square, and these are independent or have
negative covariance.

Proposition. Under Assump. 3,
1 )
v 2 ) V2(g\3/2
Var[ Y, ] < <4Z (Ax +1) H A ) V3( .
k=1 i=k+1

Corollary. If all A; < p < 1, then

v L+p o0\ 30
Var[Y,,;] < m\/ (gj)n %>,

Works also with RQMC if we can show that for any pair of small squares,
the indicators that the two RQMC point of those squares are in the
histogram do not have a positive covariance.
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In/=1and d > 1
RQMC points are now in d 4+ 1 dimensions. Unit cube partitioned in
n = k9! subcubes.

Assumption 4. Assump. 2 (one point per square) + the randomized
parts of the points are pairwise independent in their squares.

Proposition. Under Assump. 4, if ¢; is monotone non-decreasing,

Var[ Y, ] = O(n171/(0F0),

Consider diagonal string of squares from (0, ...,0) to (1,...,1) and all
parallel diagonal strings. There are less than (d + 1)k of those, and the
histogram boundary can cross at most one square in each. Then

(d+ Dk _d+1 4 g/

Var[Fi(z) — Fi(2)] < an? 4
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Conclusion

Empirically, the variance converges as O(n~2) for some examples, even for
a large number of steps.

We have convergence proofs for special cases, but not yet O(n~?2).



