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Monte Carlo (MC) integration

A simulation model produces a random output X. We want to estimate
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where 7 :(0,1)°* - R and U = (Us, ..., Us) is a uniform r.v. over (0,1)".

(Crude) Monte Carlo method:
1. Generate n independent copies of U ~ U(0,1)°, say U;, ..., Up;
2. Estimate p by i, = 1 327 f(U)).
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Monte Carlo (MC) integration

A simulation model produces a random output X. We want to estimate
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where 7 :(0,1)°* - R and U = (Us, ..., Us) is a uniform r.v. over (0,1)".

(Crude) Monte Carlo method:
1. Generate n independent copies of U ~ U(0,1)°, say U;, ..., Up;
2. Estimate p by i, = 1 327 f(U)).

Almost sure convergence as n — oo (strong law of large numbers).
Can use central limit theorem to compute a confidence interval on u:

A~ CSn . CaSh
Plpe Nn_ﬁv Mn'f'ﬁ ~1-a,

where S? is any consistent estimator of o> = Var[f(U)]. Converges at slow rate: O(n'/?).




Quasi-Monte Carlo (QMC)

Replace the independent random points U; by a set of deterministic points
P, ={uo,...,u,_1} that cover (0,1)° more evenly . Approximate

n—1
1
u:,uf:/ f(u\du by [i,=-— f(u;).
()=, @ 2 2 ()



Quasi-Monte Carlo (QMC)

Replace the independent random points U; by a set of deterministic points
P, ={uo,...,u,_1} that cover (0,1)° more evenly . Approximate
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For various spaces # of functions f, one has
|En| := |tn — p| < Dp(Pn) - V(F)
for all f € H, where V(f) is the variation of f in H and D(P,) measures the discrepancy

between the empirical distribution of P, and the uniform distribution over (0, 1)°.

Both depend on H. Typically, we know how to construct P, such that
Dy(P,) = O(n~%(log n)*~1) for some o > 1/2 (low discrepancy points).
When V(f) < oo, |E,| also converges at this rate, which beats the MC rate.

Difficulty: very hard to estimate V(f) and the error E, in practice.



Randomized quasi-Monte Carlo (RQMC)

We randomize P, into P, = {U1,...,U,} C (0,1)° such that
(1) the uniformity of P, as a whole is preserved,;
(2) each point U; has the uniform distribution over (0,1)°.
n—1

. . . 1
Unbiased RQMC estimator of p: (i rqme = — Z f(U)).
’ n
i=0
Variance estimation: Make r independent replicates of the RQMC estimator fiprqme, then
estimate 4 and Var[finrqme] by their sample mean and sample variance.

Variance of sample average is often O(r—1n=20+¢)

Confidence interval on p: Cls based on the Student t distribution are usually reliable.



Lattice rule of rank 1
Select integer n and a = (a1,...,as) € {0,1,
Let u; = (i/n)amod 1 for i =0,...,n—1.

Example with s =2, n =101, a = (1,12):

...,n—1}%, with pged(n, aj) =1

l—/—— A
U,'72 .'..:.'....-
a/nr..'_'.:..-_
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Randomly-Shifted Lattice

Random shift modulo 1: Replace P, by (P, + U) mod 1 where U ~ U0, 1)".
This preserves the lattice structure and satisfies the RQMC conditions.

Example: lattice with s =2, n =101, a = (1,12)
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Variance in a space of one-periodic smooth functions

We consider one-periodic smooth functions f with Fourier expansion

f(u)= > F(h)e™ M forue[0,1).
hezs

For a randomly shifted lattice, Var[/i, rqme] = Z |F(h))?, with L the dual lattice.
0hel:



Variance in a space of one-periodic smooth functions

We consider one-periodic smooth functions f with Fourier expansion

f(u)= > F(h)e™ M forue[0,1).
hezs

For a randomly shifted lattice, Var[/i, rqme] = Z |F(h))?, with L the dual lattice.
0+£helLs

For an integer o > 0, we consider a class of functions f with smoothness «, i.e., with

square-integrable mixed partial derivatives up to order «, and for which the periodic

continuation of its derivatives up to order o« — 1 is continuous across the unit cube

boundaries. For such functions, we know how to construct a sequence of rank-1 lattices (a
vector @ = a(n) for each n) for which QMC Error = O(P,) and

Var[finrqme] = O(P2a) where P, = Z H hj_"‘ = O(n ") for any € > 0.
0£heLy jihi£0



Weighted P, , with projection-dependent weights ,
Denote u(h) = u(hy, ..., hs) the set of indices j for which h; # 0.

P",’,(\ = Z Yu(h) H hjia~

0#£helx jeu(h)
For o integer > 0, with u; = (uj1,...,ujs) = a/nmod 1, we have a finite sum:
_ —47T2 a7l 1 n—1
7)"/,20(, - Z Yu g _ Z H B2a(ui,j),
(2a)! n &
0#uC{1,...,s} i=0 jeu
and the corresponding variation is
1 ool 2
V2 () = 7/ —fu(u)| du,
() Z Yu(4m2)ell Jio qpiur | Ou> u(v)

D4uC{L,....s}

for f :[0,1)°* — R smooth enough. Then, we have the variance bound

Var[finrqme] = > Varlfinrgme(f)] < V24(F) Praa -
uC{1,...,s}



We also know how to construct lattices for which P 2o = O(n™2%T€) for any € > 0.



We also know how to construct lattices for which P 2o = O(n™2%T€) for any € > 0.

But how do we find appropriate weights ~,,?
This Py 24 is the RQMC variance for the worst-case function with V2 (f) < 1:

. (2m)«
F*(u) = Z \/%HWBOC(UJ)-
uC{1,...,s} jeu ’
For this worst-case function, we have

(47%)
(()1)?

For a = 1, we should take ~, = (3/72)02 ~ (0.30396)"02.
For a = 2, we should take 7, = [45/7%]"l02 ~ (0.46197) /52,
For a — oo, we have 7y, — (0.5)"g2.

(4772)@} e

o2 = {Var[Ba(U)] ] — [Bza(o)l 20

If we have estimates of the variance components 02, we can compute and use the
corresponding weights =,. But this is often costly to compute in practice!



Random generating vectors

What if we just pick a at random instead of optimizing it?

Main advantage: No need to estimate variance components and select the weights.
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Random generating vectors

What if we just pick a at random instead of optimizing it?
Main advantage: No need to estimate variance components and select the weights.

Algorithm:
Repeat r times:
Draw random a uniformly in {a:1 < a; < n and gcd(aj, n) =1 for all j}.
Compute QMC or RQMC estimator with corresponding lattice rule.
Return average or median of these r estimators.
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Random generating vectors

What if we just pick a at random instead of optimizing it?
Main advantage: No need to estimate variance components and select the weights.

Algorithm:
Repeat r times:
Draw random a uniformly in {a:1 < a; < n and gcd(aj, n) =1 for all j}.
Compute QMC or RQMC estimator with corresponding lattice rule.
Return average or median of these r estimators.

It turns out that most choices of a are pretty good.

Very few are very bad and yield a huge variance.

By taking the median instead of the mean, we can essentially remove their impact.

Proven results: With the median, the QMC error is O(n~“*€) with probability > 1 — p where
p decreases exponentially in r.
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Goda and L (2022): For a deterministic lattice rule with random generating vector, for any
e > 0,0 < p <1, smoothness «, and choice of weights «y (to define the function space),
there is a constant ¢; for which

r+1)/2

Pl s u(F) = Quea(F)] > ——| <2
— Wmed >~
fFer, |fl<1 (np)o—¢ 4

where Qued(f) is the median estimator.

Similar result for polynomial lattice rules.



Example: Error for a periodic integrand '

S

Flu) =T [1+/72(30u7(1 — uj)® - 1)]

j=1

On the left, we compare the median rule with r = 11 vs CBC with proper weights.
On the right, the coordinates of u were reversed, so CBC had wrong weights.
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Digital net in base 2

Gives n = 2K QMC points in s dimensions.

Select two integers w > k > 0, and s generating matrices Cy,- - - , Cs of dimensions w X k,
with binary entries, and whose first k rows are linearly independent. For i =0,...,bK —1
and j=1,...,s5, let:
I = ajo+ag2+---+ a,-7k_12k_1 (k input digits in base 2)
Ujj1 3i,0
: = G : mod 2, (w output digits in base 2)

Ui jw aj k—1

w
U,'_J' = Z u,"j7g2_Z, u; = (u,-yl, ey U,‘,S) S [0, ].)S
/=1

Random digital shift
Generate U ~ U(0,1)® and XOR it bitwise with each u;. Sufficient for RQMC.

13
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Additional randomization _ _
Most common: left matrix srambling (LMS): For Sobol’ upper-triangular matrices C;

(b = 2), generate random lower-triangular matrices L;, usually with w > k, to obtain the new
generating matrices C; = L;C;. These C; inherit the equidistribution properties of the C;.

1 0 0 ... 0
62’1 1 0 .. 0 1 Vig ... Vik
. . 0 0 1 N N
Lj = ék,l ékg 1 and C, = . 0 .
liy11 lryr2 Lry1,k
: 1
EW 1 EW 2 eW k

This only changes the C;'s. After that, we must apply a random digital shift to get RQMC.
Adding LMS provably reduces the variance to O(n~3(log n)®) when f is sufficiently smooth,
compared with O(n~?(log n)*) for Sobol’ points with a random digital shift alone.

In a way, LMS is similar to randomizing the generating vector a in lattice rules. We could
also try to “optimize” the L;'s instead of taking them at random; see L'Ecuyer et al. (2024).



Median estimator for LMS + digital shift

Pan and Owen (2023, 2024) show that for the average of r RQMC replicates with LMS for
Sobol’ points, the MSE cannot converge faster than O(n=3r~1).
This is because some rare realizations of L; are very bad (e.g., row k + 1 is all zero).
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Median estimator for LMS + digital shift

Pan and Owen (2023, 2024) show that for the average of r RQMC replicates with LMS for
Sobol’ points, the MSE cannot converge faster than O(n=3r~1).
This is because some rare realizations of L; are very bad (e.g., row k + 1 is all zero).

By taking the median, the probability that such realizations have an impact is negligible.

For the median of r RQMC replicates, for analytic f, if w > )\k2/s and r = Q(k2), we get
super-polynomial convergence:

MSE(median) = O(n~2¢98(")/5) for ¢ ~ 0.21.

The median is better in this case because the RQMC estimator has a very large kurtosis.



When is the median better than the mean?
We tried 600 test cases (different f, s, n, RQMC method), with r = 11 and 31.

orange when ratio MSE(mean)/ MSE(median) is > 1, blue otherwise.
Size of point is proportional to |log(ratio)|. The largest ratio is near 8,000.
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One specific case: MC2 function, Sobol + LMS

kurtosis
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SumUeU function, Sobol + LMS, s =8, n = 212, 10* obs. of RQMC estimator
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SumUeU function, Sobol 4+ LMS
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SumUeU function, Sobol 4+ LMS
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Conclusions

» We can avoid searching for good QMC parameters based on weights that depend on the
sensitivities of projections, just by sampling the parameters randomly.

» This may lead to an RQMC estimator with high kurtosis, in which case it is safer to take
the median instead of the mean.

» Very simple to implement, no need to estimate proper weights, but more difficult to
estimate the error and compute a confidence interval.

» On the other hand, when we can compute good QMC parameters, it is usually better to
take the mean, not the median.

Thank you!
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