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Monte Carlo (MC) integration
A simulation model produces a random output X . We want to estimate

µ = E[X ] = E[f (U)] =

∫
(0,1)s

f (u) du =

∫ 1

0
· · ·

∫ 1

0
f (u1, . . . , us) du1 · · · dus

where f : (0, 1)s → R and U = (U1, . . . ,Us) is a uniform r.v. over (0, 1)s .

(Crude) Monte Carlo method:
1. Generate n independent copies of U ∼ U(0, 1)s , say U1, . . . ,Un;
2. Estimate µ by µ̂n = 1

n

∑n
i=1 f (Ui ).

Almost sure convergence as n → ∞ (strong law of large numbers).
Can use central limit theorem to compute a confidence interval on µ:

P
[
µ ∈

(
µ̂n −

cαSn√
n
, µ̂n +

cαSn√
n

)]
≈ 1− α,

where S2
n is any consistent estimator of σ2 = Var[f (U)]. Converges at slow rate: O(n−1/2).
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Quasi-Monte Carlo (QMC)
Replace the independent random points Ui by a set of deterministic points

Pn = {u0, . . . ,un−1} that cover (0, 1)s more evenly . Approximate

µ = µ(f ) =

∫
(0,1)s

f (u)du by µ̄n =
1

n

n−1∑
i=0

f (ui ).

For various spaces H of functions f , one has

|En| := |µ̄n − µ| ≤ Dn(Pn) · V(f ) (worst-case error bound)

for all f ∈ H, where V(f ) is the variation of f in H and D(Pn) measures the discrepancy
between the empirical distribution of Pn and the uniform distribution over (0, 1)s .

Both depend on H. Typically, we know how to construct Pn such that

Dn(Pn) = O(n−α(log n)s−1) for some α > 1/2 (low discrepancy points).

When V(f ) < ∞, |En| also converges at this rate, which beats the MC rate.

Difficulty: very hard to estimate V(f ) and the error En in practice.
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Randomized quasi-Monte Carlo (RQMC)

We randomize Pn into P̃n = {U1, . . . ,Un} ⊂ (0, 1)s such that
(1) the uniformity of Pn as a whole is preserved;
(2) each point Ui has the uniform distribution over (0, 1)s .

Unbiased RQMC estimator of µ: µ̂n,rqmc =
1

n

n−1∑
i=0

f (Ui ).

Variance estimation: Make r independent replicates of the RQMC estimator µ̂n,rqmc, then
estimate µ and Var[µ̂n,rqmc] by their sample mean and sample variance.

Variance of sample average is often O(r−1n−2α+ϵ) .

Confidence interval on µ: CIs based on the Student t distribution are usually reliable.
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Lattice rule of rank 1
Select integer n and a = (a1, . . . , as) ∈ {0, 1, . . . , n − 1}s , with pgcd(n, aj) = 1
Let ui = (i/n)a mod 1 for i = 0, . . . , n − 1.

Example with s = 2, n = 101, a = (1, 12):

0 1

1

ui ,2

ui ,1

a/n
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Randomly-Shifted Lattice

Random shift modulo 1: Replace Pn by (Pn + U) mod 1 where U ∼ U[0, 1)s .
This preserves the lattice structure and satisfies the RQMC conditions.

Example: lattice with s = 2, n = 101, a = (1, 12)

0 1

1

ui ,2

ui ,1

U
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Variance in a space of one-periodic smooth functions

We consider one-periodic smooth functions f with Fourier expansion

f (u) =
∑
h∈Zs

f̂ (h)e2πih
tu for u ∈ [0, 1)s .

For a randomly shifted lattice, Var[µ̂n,rqmc] =
∑

0̸=h∈L∗s

|f̂ (h)|2, with L∗s the dual lattice.

For an integer α > 0, we consider a class of functions f with smoothness α, i.e., with
square-integrable mixed partial derivatives up to order α, and for which the periodic
continuation of its derivatives up to order α− 1 is continuous across the unit cube
boundaries. For such functions, we know how to construct a sequence of rank-1 lattices (a
vector a = a(n) for each n) for which QMC Error = O(Pα) and

Var[µ̂n,rqmc] = O(P2α) where Pα :=
∑

0 ̸=h∈L∗s

∏
j :hj ̸=0

h−α
j = O(n−α+ϵ) for any ϵ > 0.
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Weighted Pγ,α with projection-dependent weights γu
Denote u(h) = u(h1, . . . , hs) the set of indices j for which hj ̸= 0.

Pγ,α =
∑

0 ̸=h∈L∗
s

γu(h)
∏

j∈u(h)

h−α
j .

For α integer > 0, with ui = (ui,1, . . . , ui,s) = a/n mod 1, we have a finite sum:

Pγ,2α =
∑

∅̸=u⊆{1,...,s}

γu

[
−(−4π2)α

(2α)!

]|u|
1

n

n−1∑
i=0

∏
j∈u

B2α(ui,j),

and the corresponding variation is

V2
γ,α(f ) =

∑
∅̸=u⊆{1,...,s}

1

γu(4π2)α|u|

∫
[0,1]|u|

∣∣∣∣∂α|u|

∂uα
fu(u)

∣∣∣∣2 du,

for f : [0, 1)s → R smooth enough. Then, we have the variance bound

Var[µ̂n,rqmc] =
∑

u⊆{1,...,s}

Var[µ̂n,rqmc(fu)] ≤ V2
γ,α(f ) · Pγ,2α .
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We also know how to construct lattices for which Pγ,2α = O(n−2α+ϵ) for any ϵ > 0.

But how do we find appropriate weights γu?
This Pγ,2α is the RQMC variance for the worst-case function with V2

γ,α(f ) ≤ 1:

f ∗(u) =
∑

u⊆{1,...,s}

√
γu

∏
j∈u

(2π)α

(α)!
Bα(uj).

For this worst-case function, we have

σ2
u = γu

[
Var[Bα(U)]

(4π2)α

((α)!)2

]|u|
= γu

[
|B2α(0)|

(4π2)α

(2α)!

]|u|
.

For α = 1, we should take γu = (3/π2)|u|σ2
u ≈ (0.30396)|u|σ2

u .
For α = 2, we should take γu = [45/π4]|u|σ2

u ≈ (0.46197)|u|σ2
u .

For α → ∞, we have γu → (0.5)|u|σ2
u .

If we have estimates of the variance components σ2
u , we can compute and use the

corresponding weights γu. But this is often costly to compute in practice!
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Random generating vectors

What if we just pick a at random instead of optimizing it?

Main advantage: No need to estimate variance components and select the weights.

Algorithm:
Repeat r times:

Draw random a uniformly in {a : 1 < aj < n and gcd(aj , n) = 1 for all j}.
Compute QMC or RQMC estimator with corresponding lattice rule.

Return average or median of these r estimators.

It turns out that most choices of a are pretty good.
Very few are very bad and yield a huge variance.
By taking the median instead of the mean, we can essentially remove their impact.

Proven results: With the median, the QMC error is O(n−α+ϵ) with probability > 1− p where
p decreases exponentially in r .
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Goda and L (2022): For a deterministic lattice rule with random generating vector, for any
ϵ > 0, 0 < ρ < 1, smoothness α, and choice of weights γ (to define the function space),
there is a constant c1 for which

P

[
sup

f ∈F , ∥f ∥≤1
|µ(f )− Qmed(f )| >

c1
(nρ)α−ϵ

]
≤ ρ(r+1)/2

4

where Qmed(f ) is the median estimator.

Similar result for polynomial lattice rules.
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Example: Error for a periodic integrand

f (u) =
s∏

j=1

[
1 + j−3

(
30u2j (1− uj)

2 − 1
)]

On the left, we compare the median rule with r = 11 vs CBC with proper weights.
On the right, the coordinates of u were reversed, so CBC had wrong weights.
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Digital net in base 2

Gives n = 2k QMC points in s dimensions.

Select two integers w ≥ k ≥ 0, and s generating matrices C1, · · · ,Cs of dimensions w × k ,
with binary entries, and whose first k rows are linearly independent. For i = 0, . . . , bk − 1
and j = 1, . . . , s, let:

i = ai ,0 + ai ,12 + · · ·+ ai ,k−12
k−1 (k input digits in base 2)ui ,j ,1

...
ui ,j ,w

 = Cj

 ai ,0
...

ai ,k−1

 mod 2, (w output digits in base 2)

ui ,j =
w∑
ℓ=1

ui ,j ,ℓ2
−ℓ, ui = (ui ,1, . . . , ui ,s) ∈ [0, 1)s .

Random digital shift
Generate U ∼ U(0, 1)s and XOR it bitwise with each ui . Sufficient for RQMC.
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Additional randomization
Most common: left matrix srambling (LMS): For Sobol’ upper-triangular matrices Cj

(b = 2), generate random lower-triangular matrices Lj , usually with w > k, to obtain the new

generating matrices C̃j = LjCj . These C̃j inherit the equidistribution properties of the Cj .

Lj =



1 0 0 . . . 0
ℓ2,1 1 0 . . . 0

...
. . . 0

ℓk,1 ℓk,2 1
ℓk+1,1 ℓk+1,2 ℓk+1,k

...
...

ℓw ,1 ℓw ,2 ℓw ,k


and Cj =


1 v1,2 . . . v1,k
0 1 . . . v2,k
... 0

. . .
...

... 1

 .

This only changes the Cj ’s. After that, we must apply a random digital shift to get RQMC.
Adding LMS provably reduces the variance to O(n−3(log n)s) when f is sufficiently smooth,
compared with O(n−2(log n)s) for Sobol’ points with a random digital shift alone.

In a way, LMS is similar to randomizing the generating vector a in lattice rules. We could
also try to “optimize” the Lj ’s instead of taking them at random; see L’Ecuyer et al. (2024).
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Median estimator for LMS + digital shift

Pan and Owen (2023, 2024) show that for the average of r RQMC replicates with LMS for
Sobol’ points, the MSE cannot converge faster than O(n−3r−1).
This is because some rare realizations of Lj are very bad (e.g., row k + 1 is all zero).

By taking the median, the probability that such realizations have an impact is negligible.

For the median of r RQMC replicates, for analytic f , if w ≥ λk2/s and r = Ω(k2), we get
super-polynomial convergence:

MSE(median) = O(n−2c log2(n)/s) for c ≈ 0.21.

The median is better in this case because the RQMC estimator has a very large kurtosis.



D
ra
ft

15

Median estimator for LMS + digital shift

Pan and Owen (2023, 2024) show that for the average of r RQMC replicates with LMS for
Sobol’ points, the MSE cannot converge faster than O(n−3r−1).
This is because some rare realizations of Lj are very bad (e.g., row k + 1 is all zero).

By taking the median, the probability that such realizations have an impact is negligible.

For the median of r RQMC replicates, for analytic f , if w ≥ λk2/s and r = Ω(k2), we get
super-polynomial convergence:

MSE(median) = O(n−2c log2(n)/s) for c ≈ 0.21.

The median is better in this case because the RQMC estimator has a very large kurtosis.



D
ra
ft

16

When is the median better than the mean?
We tried 600 test cases (different f , s, n, RQMC method), with r = 11 and 31.
orange when ratio MSE(mean)/ MSE(median) is > 1, blue otherwise.
Size of point is proportional to |log(ratio)|. The largest ratio is near 8,000.



D
ra
ft

17
One specific case: MC2 function, Sobol + LMS
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SumUeU function, Sobol + LMS, s = 8, n = 212, 104 obs. of RQMC estimator
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SumUeU function, Sobol + LMS
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SumUeU function, Sobol + LMS
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Conclusions

▶ We can avoid searching for good QMC parameters based on weights that depend on the
sensitivities of projections, just by sampling the parameters randomly.

▶ This may lead to an RQMC estimator with high kurtosis, in which case it is safer to take
the median instead of the mean.

▶ Very simple to implement, no need to estimate proper weights, but more difficult to
estimate the error and compute a confidence interval.

▶ On the other hand, when we can compute good QMC parameters, it is usually better to
take the mean, not the median.

Thank you!
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