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function approximation Q̂0(X0, v) as a function of the trading

decision v, for a call option under the GBM model (s0 = 10, σ =

40%, b = 2%, γ = 5 and K = 8) and a stochastic mesh with N =

1024 paths. The product E0[g1(X0, v, Y1)]E0[Ĵ1(ψ(X0, v, Y1))] is
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CHAPTER 1

INTRODUCTION

1.1 General overview

In finance, hedging refers to a trading activity that aims to reduce the fluctuations

in the market value of some asset or portfolio. These fluctuations will stem from the

evolution of factors such as stock prices, interest rates and volatility levels. To the

layman, it may seem strange to want to hedge an investment; when investing money

in a stock, for example, we hope for a (positive) return, so why cancel this out by

hedging? But hedging can be a very useful tool for reducing risk that we do not want

to take and is linked to an asset that is difficult or otherwise undesirable to trade.

An important practical application is to manage the risk of trading financial

derivative instruments, such as stock options. In the case of stock options, the

typical hedging decision rule, or hedging policy, involves trading the underlying stock

in order to reduce the portfolio sensitivity to the stock price. This price sensitivity,

or “delta”, can be seen as a local measure of risk and the associated policy, “delta

hedging”, requires frequent trading (typically daily) to keep the delta close to zero.

However, the presence of transaction costs, such as broker fees or bid-ask spreads in

prices, could make the cumulative cost of delta hedging quite large. So it is natural

to compare the performance of hedging policies based on a global measure of risk,

i.e., which involves the total performance of the portfolio over a given time horizon.

Finding a policy which reduces such a risk measure is what we refer to generally as

hedging policies, and is the focus of this thesis.

In the case of hedging a stock option in a continuous time setting where the un-

derlying price follows a basic one-dimensional geometric Brownian motion (GBM)

process (see the example in section 1.2), policies which minimize a global risk measure



including costs have already been found. They can be computed explicitly as nu-

merical solutions to a partial differential equation (PDE), as in the works of Hodges

and Neuberger [71] and Clewlow and Hodges [40]. This is computationally intensive,

but there exists simple approximations in the case of low transaction costs, as well

as other heuristics, which will be discussed later in section 4.2.

It is also well-known that models using more general processes than the GBM

process, such as stochastic volatility (SV) processes, can better reproduce various

features of the option market, such volatility smirks and term structures (see for

example Christoffersen, Heston and Jacobs [39]). Thus it is of practical interest to

find methods to compute optimal policies using SV models including costs, in order

to determine whether or not currently known heuristic policies could significantly be

improved, depending on the context. But as more flexible market models (such as

SV processes) are considered, the PDE approach becomes harder to apply, due to

the increased dimensionality of the market state (stock price and volatility).

In order to try to bridge the gap between SV models and the practical compu-

tation of optimal hedging with costs, we consider a particular version of the global

hedging problem in discrete time, including transaction costs, and measuring risk as

the expectation of a loss function on the terminal portfolio value. We aim to

• provide a fairly general computational method to closely approximate the op-

timal solution to this class of problems,

• assess the magnitude of the resulting approximation error,

• compute solutions in an efficient manner, so that it could be used in practice.

As we will show, these three objectives can be attained by extending the use of

the Stochastic Mesh method, originally introduced by Broadie and Glasserman [35],

[36] for American option pricing. It involves generating market states by Monte Carlo

simulation, and computing relevant conditional expectations via weighted averages

2



over these states. We extend its application to hedging by computing at each state

of the mesh a one dimensional approximation of the optimal risk function, instead

of a single number (i.e., the option value), as usually done in the case of American

option pricing. Because of the various possible implementations of this general idea,

we will usually refer to stochastic mesh methods in the plural.

Focusing on the case of the negative exponential loss function, the specific approx-

imation used in experiments is motivated by the analysis of some general properties

of the solutions. Furthermore, we provide new techniques to improve the efficiency

of using stochastic mesh methods, so that the resulting solutions can be computed

fast enough to be useful in practice. Important additional sources of inspiration for

these techniques are the works by Rust [117] and Boyle, Kolkiewiecz and Tan [30].

As will be seen in section 2.1, the problem of finding an optimal hedging policy

can be framed as a discrete time stochastic dynamic program (SDP). So in theory,

assuming the specific details of the problem are “nice” enough, a straightforward so-

lution is known through the Dynamic Programming (DP) Algorithm. In practice,

this solution can be calculated provided the value function or the policies can be

well-approximated by some set of functions, but good approximating functions may

not be so easy to find. This may depend on the details of the specific instance con-

sidered, such as the risk measure used or the specification of transaction costs. The

challenge here is to make the method work using a reasonable amount of computa-

tional resources. Note that current theoretical developments use a more technical

formulation of the hedging problem involving concepts such as convex duality and

equivalent martingale measures, but we will not discuss these further here (see for

example Cvitanić and Karatzas [43], Kramkov and Schachermayer [81], [82], and for

a possible Monte Carlo implementation, Grasselli and Hurd [64]).

As we will explain in more detail in section 1.4, the hedging problem has already

been addressed under many conditions. Solutions in continuous time related to our
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setup include that of Hodges and Neuberger [71], Clewlow and Hodges [40], as well as

the approximate solutions by Whalley and Wilmott [136] and Zakamouline [138]. But

the use of stochastic mesh methods gives us flexibility in the choice of the (possibly

multi-dimensional) stock price dynamics, while staying computationally tractable.

Furthermore, it comes with a built-in low biased estimate of the optimal risk, which

is typically not known for a heuristic policy. This can be compared to the high biased

estimate provided by a Monte Carlo sample average of the loss function, to obtain a

measure of the accuracy of the solution.

To summarize, there is a need for hedging methodologies that take costs into

account and that can be applied to large classes of derivative payoffs and stock

price dynamics, which is what motivates our use of stochastic mesh methods for

computing solutions. For definiteness, we will restrict our numerical experiments to

the so-called exponential Ornstein-Uhlenbeck model (or expOU, for short), which is

described in some detail in section 4.1. Modeling assumptions will be explained in

more detail in the next sections. The general methods we study here do not depend

on a specific price model, but our examples do make use of the existence of a non-

singular transition density between each pair of consecutive states of the stochastic

mesh, which allows simple definitions for weights between these states.

1.2 A basic example of dynamic hedging with costs

We start by illustrating some important concepts and questions related to dy-

namic hedging with costs by looking at a simple concrete example, that of delta

hedging a standard option, which was mentioned in section 1.1.

Consider a standard European call option, which is a contract that gives its owner

the right to buy the stock at a predetermined price X and time T (the option’s expiry
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date). Its payoff is given by

h(s(T )) = max(s(T )−X, 0), (1.1)

where s(T ) is the stock price at time T . The term “European” means that the option

can only be exercised at expiry. This is in contrast to an “American” option, which

can be exercised at any time during its life, i.e., for t ∈ [0, T ].

Assume that you are a trader for a bank which bought this option from a client

for a price (or premium) α0. There could be many reasons the client wanted to sell

this option, such as implementing a so called “covered call” strategy, for example.

At the time of buying this option, you could not locate another counterparty on the

market willing to take the opposite side of the transaction (i.e., buying from you the

same option) for a premium α1 > α0, which would have allowed you to remove all of

the risk associated to the option and secure a profit equal to α1 − α0. So now you

wish to hedge this option until some future time, perhaps until its expiry.

For definiteness, let {tk : k = 0, 1, . . . , K} be the trading dates, expressed in

years, and let {sk : k = 0, 1, . . . , K} denote the stock prices at those dates. The

exposure at time tk of the option to the stock price sk is characterized to first order

by the delta, or first derivative of the option value hk(sk) with respect to sk, which

we denote as

∆k(sk) =
∂hk
∂sk

(sk). (1.2)

The specific formula depends on the pricing model used, so assume that we are

working under the Black-Scholes [22] and Merton [104] framework (hereafter, BSM).

Hence, the stock price dynamics is represented by a geometric Brownian motion

process with a drift equal to the risk-free interest rate r, so that the log returns are
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given by

ln(sk+1/sk) = r(tk+1 − tk) + σ
√
tk+1 − tkZk, Zk ∼ N(0, 1), (1.3)

where σ is the volatility parameter and each Zk are independent. For simplicity, we

assume there are no dividends. Some sample paths for this process are represented

in figure 1.1. The top part of figure 1.2 illustrates the derivative price hk(sk) as a

function of sk, for an option with strike price X = 10, maturity T = 3 months,

interest rate and dividend yield both equal to zero (r = q = 0), and volatility

parameters σ = 16%. Under the BSM model, the delta is given by

∆k(sk) = Φ(d1(sk)), (1.4)

d1(sk) =
ln(sk/X)− (r − σ2/2)(T − tk)

σ
√
T − tk

, (1.5)

where Φ(·) is the cumulative density function of the normal distribution with mean

0 and variance 1. The bottom part of figure 1.2 illustrates the delta as a function of

the underlying price sk, based on equations (1.4) and (1.5).

Policies will be defined more formally in section 2.1.1, but for now they should be

understood as decision rules that take market information (such as the stock price)

as input and returns the quantity of stock to hold in the portfolio. If we follow a

policy that requires holding a quantity of stock uk = −∆k(sk) at each step k, then

the total value of the portfolio (including a cash amount ck) is given by

Vk(ck, uk, sk) = ck + uksk + hk(sk) = ck −∆k(sk)sk + hk(sk) (1.6)

and has an overall delta ∂Vk/∂sk equal to zero at each step k. This policy is called

(dynamic) delta hedging. Allowing for continuous time trading and some suitable

conditions, dynamic delta hedging in the BSM framework will keep the portfolio
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Figure 1.2: Top : Initial value and payoff of a standard call option expiring in 3
months with strike X = 10, under the BSM model with r = q = 0 and σ = 16%.
Bottom : Delta of the option (same parameters).
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value constant at all times, thus removing all the risk (see again [22] and [104]).

But in practice, it is not possible to trade continuously and, in any case, cumulative

transaction costs (if non-zero) will tend to infinity as the time steps ∆t = tk+1 − tk
tend to 0, as pointed out first by Leland [94].

The effect of costs is visible in figure 1.3. It shows sample paths for both the

policy decisions uk and the portfolio value V π
k for two different policies π. The

first policy is delta hedging under the BSM model, which we described above. This

policy reduces the variance of the final portfolio value (as viewed at the terminal step

k = K), by trading at each step to bring the portfolio delta back to zero. But this

leads to a noticeable negative drift in the portfolio value, as can be seen in the top

left chart, due to transaction costs. The second policy is the hedging policy from

Zakamouline [138]. As described in section 4.2.2, it is a close approximation to a

policy which minimizes a particular measure of risk on the terminal portfolio value.

This measure of risk, negative exponential risk, will be seen again in section 2.1.3 and

will be used throughout this thesis. We denote the Zakamouline policy here by Z(1),

where the number 1 refers to the value used for a risk aversion parameter γ (i.e.,

here γ = 1). This policy makes less frequent hedging adjustments than the BSM

policy (compare the two charts at the bottom of figure 1.3), depending on the value

of various parameters such as risk aversion, volatility and transaction costs. Hedging

less reduces the magnitude of the negative drift coming from transaction costs, but

can also lead to a higher variance of the final portfolio value, as can be seen in the

top right chart of figure 1.3. Typically, we cannot reduce both the transaction costs

and portfolio value variance, so the optimal tradeoff we are aiming for is defined by

the risk measure we choose.

9



0 8 16 24 32 40 48 56 64
−0.4

−0.2

0

0.2

0.4

0.6

k

V
B
S
M

k

Portfolio value paths under the BSM policy

0 8 16 24 32 40 48 56 64
−1

−0.8

−0.6

−0.4

−0.2

0

k

u
k

BSM policy decision paths

0 8 16 24 32 40 48 56 64
−0.4

−0.2

0

0.2

0.4

0.6

k
V
Z
(1

)
k

Portfolio value paths under the Z(1) policy

0 8 16 24 32 40 48 56 64
−1

−0.8

−0.6

−0.4

−0.2

0

k

u
k

Z(1) policy decision paths
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1.3 Dynamic Programming on a Stochastic Mesh : main ideas

As stated before, the problem we are trying to solve is to minimize a global risk

measure. This risk measure is defined at the last step k = K of the discrete time

horizon we are considering. Such a problem, where we are looking for an optimal

decision policy over many steps, falls within the scope of the well-established field

of discrete time DP. The general solution method is given the DP Algorithm, which

proceeds by backward induction : one starts with a risk function Jk(Xk), assumed

known for any given state Xk at the last step k = K (at time tK), and uses this

information to calculate the optimal risk at the previous step k = K − 1. This still

requires optimization, but it simpler to tackle than the full problem, since it involves

only one step at a time. The process is then repeated until we reach step k = 0.

Note that in DP, the functions Jk(Xk) are usually referred to as cost functions, but

we use the term risk function to avoid any confusion with transaction costs.

Here the number of possible states Xk of the system at each step k is in fact

infinite. Each state depends on a vector Yk of market information (parameters) such

as the stock price and volatility, which are both defined over a continuum of possible

values. They also depend on the stock quantity uk held in the portfolio as a hedge,

as well as the amount of cash ck (although this last variable may be ignored in some

formulations, depending on the specific objective function used).

A straightforward approximation method is to focus on a finite subset of states

{X i
k : k = 0, . . . , K, i = 1, . . . , N}, and compute a solution based on those states

only. In our setting, the market information vector Yk is a stochastic process, so it

makes sense to simulate Yk to help generate states Xk. Indeed, the DP Algorithm will

then be applied to states that are more likely to be relevant. This idea was already

used in the Stochastic Mesh method mentioned in section 1.1 for the problem of

pricing American options.

In the case of the hedging problem, there is at least one extra dimension involved
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in the state space, due to the need to keep track of the stock quantity uk (the

cash account ck also may be required as a state variable, depending on the risk

measure used). This is where our implementation differs from the original setup

underlying the Stochastic Mesh method as applied to American options, since for

American option pricing the states can then be fully generated independently from

the (early-exercise) decisions. A straightforward extension could be to define a finite

set {uj : j = 1, . . . ,M} ⊂ R of stock quantities to consider, perhaps forming a

regular grid. But as we will discuss later in chapter 2, specific details of the hedging

problem can lead to some simplifications, where only a few points are required to

define a good estimate over all possible values of uk.

The two main motivations for using the Stochastic Mesh method is that 1) it does

not suffer from typical curses of dimensionality when the dimension of the market

vector state is increased, i.e. the exponential increase in the number of states (see

section 3.1.1) and 2) it is applicable for any (sufficiently integrable) payoff, including

path-dependent and discontinuous payoffs. This is in contrast with PDE methods,

which require deterministic grids which grow exponentially in size as a function of the

dimension, and may further require some regularity conditions on the payoff. Another

useful benefit is that the method yields a confidence interval for the optimal risk,

through one low biased and one high biased estimate. In our case, in contrast to the

basic Stochastic Mesh algorithm, we need to also take into account the approximation

error coming from keeping track of the effect of the stock quantity on the optimal

risk function.

But the use of a stochastic mesh in its basic form still comes with a signifi-

cant computational cost, both in terms of time and memory, because the number of

weights to consider grows like O(KN2). For example, using N = 211 = 2048 mesh

points over K = 8 time steps leads to over 32 million weights. So the use of efficiency

improvement techniques becomes necessary for practical implementations. This will
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be adressed further in chapter 6.

1.4 Related works

This section surveys some of the existing literature on hedging problems with

various levels of complexity, to help put in context the hedging problem from this

thesis. We start by highlighting a few important theoretical works, which should by

no means be considered an exhaustive survey. We then provide some references to

works which specifically involve Monte Carlo simulation.

1.4.1 Some important works on the hedging problem with costs

For the case where transaction costs are present, the first results were published

by Leland [94], who proposed to modify the implied volatility parameter in the

Black-Scholes hedging policy to account for the effect of costs on the buy and sell

price for stocks. However, this did not involve explicitly minimizing a risk measure.

Ideally, one would like a policy that guarantees the terminal liquidation value of

the hedged portfolio, so that it effectively becomes riskless (which is the case of the

BSM model without costs [22]). In discrete time, Boyle and Vorst [29] showed how

this can be done using a binomial lattice model, but this is a restrictive price model

and futhermore it does not generalize well in multiple dimensions (see also Bensäıd,

Lesne, Pagès and Scheinkman [14]). And in continuous time, Soner, Shreve and

Cvitanić [127] proved a negative result, which is that if one seeks to super-replicate

a standard call option, that is, have a policy such that the terminal payoff is never

strictly negative, then the cheapest policy is to buy one share of the underlying stock

and hold it to maturity. Thus any policy that replicates perfectly a standard call

option will cost at least as much as buying the actual stock, which is uninteresting

in practice.

This then leads naturally to looking for policies which are optimal in some sense,
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such as trying to maximize a given utility function (equivalently, minimize a risk func-

tion). For the so-called negative exponential risk function and proportional transac-

tion costs (the setup which we consider in chapter 2), the optimal policy was first

analyzed by Hodges and Neuberger [71]. They derive a differential equation for the

optimal solution, which can be shown to be characterized by a no-transaction region

where it is optimal not to trade when the stock quantity uk is within the region.

When uk is outside the region, the optimal policy is to trade just enough to go back

on the boundary. However, the resulting partial differential equation for the bound-

ary is required to be solved numerically. Subsequent works by Edirisinghe, Naik

and Uppal [53], Davis, Panas and Zariphopoulou [47] and Clewlow and Hodges [40]

improved on numerical aspects, but computational complexity still remains an issue

for this approach. As will be described in section 4.2, closed analytical formulas that

approximate the optimal policy for this case are given by Whalley and Wilmott [135]

and Zakamouline [138]. Although the original analysis was for the case of exponen-

tial utility, Andersen and Damgaard [4] showed that Hodges and Neuberger’s result

is somewhat independent of the specific utility function used, as was conjectured by

Davis, Panas and Zariphopoulou [47].

Another objective function which has been studied extensively is quadratic risk.

For the case without costs, see for example Schweizer [122], Schweizer [121], Grünewald

and Trautmann [65], C̆erný [131], Bobrovnytska and Schweizer [24], Heath, Platen

and Schweizer [69], C̆erný and Kallsen [132] and the references therein. Although

not necessary an optimal solution to the global quadratic hedging problem, Schweizer

[120] introduced a convenient local hedging approach (local risk minimization) for

the case without costs. This was then extended by Lamberton, Pham and Schweizer

[83] to the case with costs.
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1.4.2 Monte Carlo based algorithms for derivative hedging

It is sometimes possible to calculate the optimal hedge by Monte Carlo simula-

tion without bias, assuming there are no transaction costs and that the markets are

complete (i.e. that derivative payoffs can be replicated by only trading the underly-

ing asset). See for example the two different approaches by Detemple, Garcia and

Rindisbacher [50], and Cvitanić, Goukasian and Zapatero [44], [45]. See also Boyle,

Imai and Tan [28] for the application of quasi-Monte Carlo methods to the latter ap-

proach. To address the case of incomplete markets without costs, Grasselli and Hurd

[64] provide a Monte Carlo based solution method for pricing and hedging an option

under the exponential risk measure. It uses a dual formulation of the hedging prob-

lem and solves it by estimating hedging policies via linear regression, similarly to the

Longstaff and Schwarz method for American options [98]. In numerical experiments,

the results for pricing appear more stable than for the hedging policies.

When costs are included, there are a variety of methods proposed in the litera-

ture, but they can be difficult to compare due to the differences in setups and the

various approximations introduced. Gondzio, Kouwenberg and Vorst [63] provide

methods to compute optimal policies when the volatility is stochastic. However,

these results are only applicable to a restricted number of time steps (up to 3 or

4), as the complexity of their algorithm grows exponentially in the number of steps.

For the same reasons, their algorithm does not generalize well for higher dimensional

state spaces. Kennedy, Forsyth and Vetzal [78] study optimal hedging for one dimen-

sional jump-diffusion, combining delta-hedging with the selection of a set of options

that minimizes the jump risk in stock prices using a quadratic risk measure. Boyle,

Coleman and Li [27] investigate the problem of minimizing (centered) quadratic risk

for a portfolio of derivatives by trading other more liquid derivatives (which could

include stocks). They show through experiments that taking costs into account and

adding trading restrictions helps in obtaining more stable solutions, but the hedging
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strategies they consider are static, i.e., they do not take into account possible future

trading decisions. Keppo and Peura [79] start with a general problem similar to

equation (2.3), and replace it by a simplified problem involving a non-linear program

to be solved, with coefficients depending on the first two moments of the price dy-

namics. This approach is interesting as it allows to tackle problems with many assets,

but it is not clear how close the resulting approximation is to the original problem

or how well its solution would behave under various conditions (for example, as the

number of periods or number assets grows, or for complex price dynamics and risk

measures).

1.5 Plan of the thesis and main contributions

We conclude this introduction by giving a quick outline of the chapters of this the-

sis, each of which considers a different aspect of the hedging problem and stochastic

mesh methods. We also indicate specific contributions associated with each chapter.

In chapter 2, we recall some basic theory for discrete time DP problems following

Bertsekas and Shreve [18], as applicable to the hedging problem. We then analyze

the structure of solutions in terms of transaction boundaries for the case of a general

convex loss function and for the particular case of the negative exponential loss

function.

Main contribution 1 : Simple theoretical framework for hedging in discrete

time when costs are present, applicable to a large class of market models and options

payoffs, including a characterization of the no-transaction region and of the optimal

risk function.

In chapter 3, we show how an approximation to the optimal risk function can be

implemented using stochastic mesh methods. A central point is that the mesh allows

to compute a confidence interval for the optimal risk function value. Using this, we

provide some first computational results which illustrate the behavior of the mesh
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based solutions and compare them to other heuristics for various setups.

Main contribution 2 : Applying stochastic mesh methods to the optimal hedg-

ing problem, where the optimization step is based on a one-dimensional function of

the stock quantity.

Secondary contribution 1 : A recursive error bound formula for the approx-

imation error at the various steps of the Dynamic Program and its use with the

stochastic mesh estimator of the risk to obtain a low biased estimator of the optimal

risk.

Secondary contribution 2 : Linear-quadratic approximation for the function

ln J∗k in the case of the negative exponential loss function.

In chapter 4, we start by giving details on the exponential Ornstein-Uhlenbeck

(expOU) model used throughout our experiments. We also provide an extension to

the model to test the possible impact of including additional information on optimal

hedging decisions. We then describe some important heuristics and use them to relate

our work to the existing literature on hedging, as well as to serve as benchmarks

against which to compare empirical results for stochastic mesh based policies.

Secondary contribution 3 : Estimates of the expOU model parameters for

various market environments (to provide realistic parameter ranges for experiments).

Secondary contribution 4 : Introduction of an extension of the expOU model

including additional information variables, and its use in the context of stochastic

mesh hedging.

In chapter 5, we present the MeshHedging Java library which was developped in

the context of this thesis to implement the computation of hedging policies using

stochastic mesh methods. We also provide details about the algorithm used to com-

pare the risk of various hedging policies throughout our experiments. Some results

are then presented to illustrate the performance of the basic mesh construction.

Main contribution 3 : The MeshHedging Java library and its application to
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computing hedging policies.

In chapter 6, we will propose efficiency improvements for computing hedging

policies using a stochastic mesh, so that the method be even more useful in practice.

If the derivative price hk(Yk) must be estimated along the mesh nodes, then using

control variates to reduce the variance of these estimates ĥk(Yk) is of paramount

importance. Computation time is also an important element to account for, for

example when computing the weights used in the weighted averages that approximate

the cost functions at every state. This can take a long time because weights must

be defined over all consecutive pairs of market states (Y i
k , Y

j
k+1), which means a total

number of weights in the order of O(KN2). To improve on this aspect, we try using

a single grid of states for all the stages of the DP Algorithm, instead of a full mesh,

to reduce by a factor of K the number of weights that need to be computed. This

is partially related to methods introduced by Rust [117] and Boyle, Kolkiewicz and

Tan [30]. Additionally, pairs of states (Y i
k , Y

j
k+1) that have very low weights are

removed using a Russian roulette technique, to reduce the computation time while

not introducing bias in the stochastic mesh based conditional expectations.

Main contribution 4 : Benefits of combining the single grid and Russian

roulette techniques, which is new in the context of stochastic mesh methods.

Secondary contribution 5 : New applications of control variate techniques

for the stochastic mesh : efficient method for reducing the variance of the in-mesh

derivative value estimates, and some preliminary results involving biased controls

(with expectation unknown, but close to zero).

Finally, chapter 7 applies the stochastic mesh hedging methodology developed

in this thesis to investigate the properties of the optimal solution for the problem

of hedging either a long call or long put option position when the market dynamics

follows an expOU process. In particular, the behavior of the optimal risk function and

policies is examined as a function of the various model parameters, and compared to
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the associated results for various heuristic hedging policies. This allows to highlight

in which setups do the heuristics and the mesh-based policy do best and in which

setups they struggle.

Main contribution 5 : Detailed empirical results for the optimal policy under

the expOU model with costs under various settings, including an in-depth comparison

of various hedging heuristics and their relative performance in various environments.
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CHAPTER 2

STRUCTURE OF SOLUTIONS

This chapter makes the hedging problem more precise, starting with a formal defi-

nition in section 2.1. We review in section 2.2 some fundamental results from discrete

time Dynamic Programming, considering more specifically the problem of optimal

dynamic hedging. Section 2.3 then provides some useful results on the structure of

solutions to the class of problems of section 2.1. We then show in section 2.4 that

for the particular case of the exponential loss function, the optimal policy and the

optimal risk function have a relatively simple piecewise characterization. This will

be used in chapter 3 to motivate a particular risk function approximation. Finally,

in section 2.5, we cover some technical points regarding the measurability of the risk

function and the validity of the DP algorithm in our context.

2.1 Problem definition

We now describe the hedging problem more formally as a discrete time dynamic

program. This will allow us to establish some notation for the rest of the thesis.

2.1.1 Formulation as a Dynamic Program

We work in a discrete time setting, where trading decisions can only be made

at the times t0 < t1 < . . . < tK < ∞, expressed in years. In particular, we set

the initial time to t0 = 0 and the horizon of the hedge is tK = T years, where

T ∈ [0,∞). The state of the system at step k, corresponding to time tk, can be

completely described by an element Xk from the set X = {Xk = (c, u, Y ) : k =

0, . . . , K, c ∈ R, u ∈ [umin, umax] ⊂ R, Y ∈ [0,∞)d}, where c is the value of the

cash account, u is the amount of shares of stock (possibly fractional) held in the



portfolio and Y = (Y1, . . . , Yd) is the market state vector, i.e., a vector of variables

governing the dynamics of the stock (such as price and volatility). Note that negative

quantities are allowed for the cash and stock positions, which represent respectively

an amount of money borrowed and a short position in the stock (i.e., the stock has

been borrowed to be sold, so that the exposure to stock prices is negative). The

interval U := [umin, umax] ⊂ R constrains the allowable stock quantities. But this

does not restrict the applicability of the formulation since, for example, one could

not buy or sell more stocks than have been issued on the market at a given time.

Uncertainty is represented over a probability space (Ω,F , P ) and the market dy-

namics is described by a discrete time Markov process {Yk ∈ [0,∞)d : k = 0, . . . , K},
adapted to a filtration {Fk : k = 0, . . . , K}, F0 ⊆ . . . ⊆ FK = F . This filtration rep-

resents the information available about the market at each time tk. All expectations

E[·] in the following are understood to be taken with respect to the measure P and

we will denote expectations conditional on Fk (the time tk information) as Ek[·].
The portfolio contains the derivative to hedge, as well as cash and some given

amount of the stock. Its value at time tk is given by

Vk(Xk) = ck + uksk + hk(Yk), (2.1)

where Xk = (ck, uk, Yk) ∈ X , and hk(Yk) is the time tk value of the derivative to

hedge, as a function of the market information vector Yk, i.e., hk : [0,∞)d → R.

There may in fact be more than one derivative to be hedged in the portfolio, in

which case we can always take hk(Yk) as their total value.

We define a trading policy π to be a K-tuple of functions π = (µ1, µ2, . . . , µK)

where each decision uk+1 = µk+1(Xk) represents the stock quantity to be held in

the portfolio during the period (tk, tk+1], depending on the state Xk ∈ X of the

system at instant k. That is, µk+1 : X → U ⊆ R for k = 0, . . . , K − 1, where U
is the space of admissible decisions (i.e., the decision space). Note that the decision
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uk+1 is then a part of the next state Xk+1 = (ck+1, uk+1, Yk+1), as it is the stock

quantity held at time tk+1. We denote the set of all admissible trading policies by

A = {π = (µ1, . . . , µK), where µk : X → U , ∀k = 1, . . . , K}.
Finally, to succinctly describe the evolution of the states Xk, we define a transition

function ψ at each step k

Xk+1 = ψ(Xk, v, Yk+1). (2.2)

Here, Xk+1 = (ck+1, uk+1, Yk+1), where ck+1 is given by the financing equation (2.4),

v is the stock quantity to be held at the next period (so that uk+1 = v), and Yk+1 =

Yk+1(Yk, ω), where ω ∈ Fk+1. The function ψ does not depend on any particular

policy π, nor does it depend on time either, which is why we write ψ and not ψk.

Given a trading policy π and a state Xk at some step k and the transition equation

(2.2), the portfolio values {V π
j (Xk) : j ≥ k} at steps j ≥ k form a stochastic process,

i.e. a set of random variables indexed by time (see Billingsley [19]). The superscript

π emphasizes that the value of the portfolio is a random variable that depends on

the policy π, and the state Xk is a known state from which the policy is applied. For

ease of notation, we will always write V π
j (without specifying the starting state) to

mean V π
j (X0), unless otherwise specified.

We are now ready to define the hedging problem formally : We are interested

in trading policies that aim to reduce some measure of risk, i.e. hedging policies.

Risk is represented here by the expectation of a loss function L : R→ [0,∞) applied

to the value V π
K of the portfolio at time tK , the last observation time. An optimal

hedging policy is then a trading policy π that minimizes the risk, i.e., a policy π that

solves

inf
π∈A

E0[L(V π
K − V0)]. (2.3)

To conclude the section, we note that dynamic programming is not the only possi-

bility to formulate discrete time hedging problems. For example, Gondzio, Kouwen-
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berg and Vorst [63] apply stochastic programming to solve a hedging problem under

stochastic volatility and costs. Their approach involves using aggregated states and

only a few time steps, in order to reduce the computational cost of the method. Other

approaches such as multistage stochastic programming could also be considered (see

for example the book by Birge and Louveaux [21] or the the survey by Yu, Ji and

Wang [137]), but we do not study these further here.

2.1.2 State transition function

Before we go on, let us take a look at the details of the transition function ψ

from equation (2.2). The amount of cash ck+1 held in the portfolio at step k + 1

is completely defined by the policy π and the stock price sk through the financing

equation

ck+1 = (ck −∆uk+1sk − φ(sk)|∆uk+1|) (1 + r∆tk+1), (2.4)

where ∆uk+1 = uk+1 − uk is the amount of stock traded at time tk, φ(sk) := a+ bsk

is the transaction cost per unit stock traded (depending on the constant parameters

a, b ≥ 0) and r is a constant interest rate. For simplicity, we omit possible dividend

payments from our discussion, but they could of course be included in equation

(2.4). Throughout the remainder of the thesis, we will assume that the numéraire

(i.e., the reference asset used to quantify the value of other assets) is taken to be a

unit of the cash account, instead of a unit of a currency (see for example Delbaen and

Schachermayer [49], section 2.1). Thus without loss of generality, we can effectively

remove the interest rate variable r (i.e., set r = 0), which helps clarify the notation.

The transaction risk function φ(sk) described above is an idealization, but nev-

ertheless covers typical trading costs. Indeed, the constants a and b in equation

(2.4) could respectively represent a brokerage cost per quantity of stock traded and

a bid-offer spread on the value of the stock, for example. At the time of writing,

US stock transactions for institutional investors could cost about a = 0.005$ per
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share whereas European stock transactions could cost about b = 0.1% of the traded

amount (source: http://www.interactivebrokers.com/en/p.php?f=commission, as of

august 2012). Bid-offer spreads vary from stock to stock, but the associated cost

would be about a = 0.01$ for large capitalization US stocks such as IBM. However,

it may not be possible to execute a large transaction (say 20000 shares) at the quoted

price, since that price may only be available for a small amount of stocks (say 500

shares). In that case, the market impact of the transaction could impact the stock

price in a way that amounts to an indirect cost, which is not explicitly modeled

here. Note also that brokerage costs could be much higher for ordinary investors and

bid-offer spreads could be wider for less liquidly traded stocks. In all such cases with

extra costs, a simple approximation could be to use higher values for a and b.

In principle, unlimited losses are possible for the portfolio if, for example, the

stock quantity uk held in the portfolio is negative and the stock price sk is not

bounded above. This can be a problem because the expected loss function may no

longer be well defined, depending on the specific model used for the price process. In

our setup, however, we assume that the stock price is bounded above by some value

smax (and also below by 0). In numerical experiments, this can be guaranteed by

using a truncated distribution for the stock price dynamics, with a bounded right tail

for the stock price increments sk+1−sk (k = 0, . . . , K−1). That is, one can simulate

the price increments sk+1 − sk = eZ as lognormal variates based on a truncated

normal distribution for Z (see Law and Kelton [84], for example).

Note that different formulations could be used to limit loses more directly. For

example, putting a lower limit on the total portfolio value V π
k itself, so that it remains

above some value Vmin ≥ 0,∀k, or putting a lower limit on the portfolio variations

V π
k+1 − V π

k . However, such constraints make it harder to analyze the resulting risk

function. In particular, even if the loss function L is convex, the resulting risk

function may no longer be convex. We will not consider these constraints further in
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this thesis.

2.1.3 Risk measures

In a market where trading can occur only in discrete time and/or where some risks

cannot be fully hedged (such as in stochastic volatility models), pricing and hedging

depend on the preferences of investors (see for example Karatzas and Shreve [77]).

This can be done by specifying a risk measure to minimize, as in section 2.1.1 where

we consider the expectation of a loss function L applied to the portfolio performance

V π
K − V0.

Throughout this thesis, we will focus on negative exponential risk. It is defined

by the loss function

L(V π
K − V0) =

1

γ

(
e−γ(V πK−V0) − 1

)
, (2.5)

where γ > 0 is a parameter characterizing risk aversion. Minimizing the function

L(x) from equation (2.5) corresponds to maximizing U(x) := −L(x), which is known

as the exponential utility function.

In order to get a better intuition for the associated objective function for the

hedging problem defined by equation (2.3), we would like to consider the first few

terms of a series expansion for E0[L(V π
K − V0)]. To this end, we will need to use a

stochastic version of Taylor’s theorem.

Theorem 2.1.1 (Stochastic Taylor’s Theorem) Let L : [a, b] → R be a function

with continuous nth-order derivative on [a, b]. Let r be a random variable defined on

the probability space (Ω,F , P ), and assume that r(ω) ∈ [a, b],∀ω ∈ Ω. Then there

is a measurable function ξ : Ω → R such that ξ(ω) lies in the closed interval with

endpoints 0 and r(ω) for each ω ∈ Ω, and

L(r(ω)) = L(0) +
n−1∑
k=1

1

k!
L(k)(0)rk(ω) +

1

n!
L(n)(ξ(ω))rn(ω). (2.6)
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Proof: See theorem 18.18 from Aliprantis and Border [3]. �

We now look at the first three terms of the (stochastic) Taylor series expansion

of the loss function (2.5), and then take their expectation. That is, setting r =

V π
K − V0, L(x) = e−γx and n = 3 in equation (2.6), and assuming the random

variable r describing the portfolio performance must be constrained to lie in some

closed interval, we have

e−γ(V πK−V0) = 1− γ (V π
K − V0) +

γ2

2
(V π

K − V0)2 − γ3

3!
e−γξ(V π

K − V0)3,

for some measurable function ξ. Hence the objective function can be expressed as

E0[L(V π
K − V0)] = −E0[V π

K − V0] +
γ

2
E0[(V π

K − V0)2]− γ2

3!
E0[e−γξ(V π

K − V0)3]. (2.7)

For low values of γ, the term E0[V π
K−V0] will dominate. If there are no transaction

costs and the portfolio value process {V π
k : k = 0, . . . , K} is a martingale, then

E0[V π
K − V0] = 0. So in that case, again for low γ, the second term in equation

(2.7) will dominate. Note that this will then be proportional to the variance of the

terminal portfolio value V π
K .

Negative exponential risk is often used in theoretical works on hedging (see

Hodges and Neuberger [71], Clewlow and Hodges [40], Grasselli and Hurd [64]).

As pointed out by previous authors (for example in [71]), this risk measure has many

advantages:

• It is simple to define.

• It penalizes losses, but not gains (as opposed to the quadratic risk measure

where L(x) = x2, for example).

• As we will see in section 2.4, the optimal decision at any given step k does not

depend on the cash amount ck. Thus the state space can effectively be reduced
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by one dimension.

However, the risk aversion parameter γ is not known a priori, and must be chosen

by the hedger. This is not a real problem, since various values of γ will yield different

risk/reward profiles (this can be observed by simulation, for example), from which

the hedger can choose a suitable γ. See for example Zakamouline [138], Sinclair [125]

(pages 66-68). A study by Bliss and Panigirtzoglou [23] found possible values of γ that

were coherent with observed option prices on the FTSE and S&P500 stock indices

during periods covering the years 1983 to 2001, and concluded that they depended

on many factors, including the time horizon and the option volatility levels.

Another potential problem is that the expectation of the loss function (2.5) may

not even be defined in some basic settings. As an example, consider a stock price that

follows a lognormal distribution and a portfolio that has a negative exposure (or a

short position, in financial jargon) to the stock price as the price goes to infinity (i.e.,

the portfolio value Vk(Xk) goes to negative infinity as the stock price sk goes up). The

latter will happen for example if we sold n call options and hedge them by holding

less than n units of the underlying stock. Thus the optimal solution will always

involve holding at least n units of the stock, irrespective of the risk aversion level.

But in practice, there is of course a limit to the amount one can lose. Furthermore,

this can be addressed by truncating the stock price distribution, for example (see

section 2.1.2).

There are other, more general formulations to the hedging problem. For exam-

ple, Schachermayer [119] rigorously shows the existence of an optimal solution for

a large class of utility functions (including exponential utility), even when allowing

the portfolio value to take any value on the real line R. The idea is to start by

considering portfolio processes that are uniformly bounded from below, so that the

utility function values can be defined, and then taking an appropriate limit to define

a larger set of processes over which the utility function is to be maximized.
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Other risk measures could of course be used, such as quadratic risk (see Schweizer

[121] and C̆erný [131]) or conditional Value-at-Risk (see Rockafellar and Uryasev

[113], [112], for example). These are all examples of convex risk measures, which

are usually preferred, as the theory for solving convex optimization problems is well

understood. For a more detailed discussion of other possible risk measures for use

in portfolio optimization problems, we refer the reader to Prigent [110], Rockafellar

and Uryasev [113], [112], Rockafellar, Uryasev and Zabarankin [114] and Ortobelli,

Rachev, Stoyanov, Fabozzi and Biglova [106].

2.1.4 Derivative pricing

To simulate portfolio value paths (V0, V
π

1 , . . . , V
π
K), we need to know the value

hk(Yk) of the derivative to hedge at each step k. The basic requirement from financial

theory is that this pricing should not lead to arbitrage opportunities, i.e., setting up

a portfolio which is guaranteed to have strictly positive return. Various versions of

the Fundamental Theorem of Asset Pricing (FTAP) gives conditions for this to be

true, which essentially say that a market model is arbitrage free if and only if there

exists an equivalent martingale measure. See Delbaen and Schachermayer [49] for a

very detailed account of this theory, at various levels of generality. In our setting

(finite discrete time), a relevant version of the FTAP which applies was provided by

Dalang, Morton and Willinger [46]. Under a martingale measure Q, the price hk(Yk)

of any (sufficiently integrable) derivative is given by the expectation of its payoff at

expiry :

hk(Yk) = EQk [hK(YK)]. (2.8)

For models more general than the Black-Scholes-Merton model mentioned earlier,

some option pricing formulas do exist (see for example Hull and White [73], for a

standard call option under a particular stochastic volatility process where the volatil-

ity and stock price processes are uncorrelated). But in general, no exact formula is
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known for the expectation given by equation (2.8). This will be addressed later in

section 3.2.4, using the stochastic mesh construction to estimate derivative prices.

2.2 Dynamic Programming algorithm

The theoretical solution to problem (2.3) is well understood in terms of the DP

algorithm. This section presents briefly how this algorithm can be applied in theory

and sets some associated notation. See Bertsekas and Shreve [18], for example, for

a rigourous treatment of the subject. We will discuss in chapter 3 some numerical

aspects of DP relevant to our problem.

Recall from section 2.1.1 that given a policy π, we write the step k portfolio

value as V π
k (X0), which is a random variable determined by starting at state X0 =

(c0, u0, Y0) and applying the policy π and the transition functions ψ from equation

(2.2), from step l = 0 until step l = k.

At each step k, the risk function Jπk is defined as the expected loss on the terminal

value V π
K(Xk) of the portfolio when the policy π is applied at steps k, . . . , K − 1,

starting from state Xk. We write

Jπk (Xk) = Ek[L(V π
K(Xk)− V0)], (2.9)

and the problem is then to minimize Jπ0 (X0) over a given space A of admissible

policies, i.e., to compute

J∗0 (X0) = min
π∈A

Jπ0 (X0). (2.10)

The solution to this problem can be obtained in principle by the DP algorithm,

shown in algorithm 1. Given an initial state X0, the DP algorithm computes J∗0 (X0),

the optimal risk at step k = 0, and the associated optimal policy π∗ by backward

recursion. This assumes that the risk functions J∗k can be defined exactly for any

state Xk ∈ X , even if the state space X is infinite. Approximate versions of this
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algorithm (e.g. based on a finite subset of states) will be discussed later in chapter

3.

Algorithm 1 Dynamic Programming

1 Let k = K. For any XK ∈ X , define

J∗K(XK) := L(VK(XK)− V0). (2.11)

2 For k = k − 1 to 0. For any Xk ∈ X , let

J∗k (Xk) := min
v∈U

Qk(Xk, v), (2.12)

where
Qk(Xk, v) := Ek[J

∗
k+1(ψ(Xk, v, Yk+1))], (2.13)

for v the decision at stage k, and let

µ∗k+1(Xk) := arg min
v∈U

Qk(Xk, v) (2.14)

We now introduce some additional definitions that will be used only in the re-

mainder of this section, to relate our problem explicitly to an important result from

the classic text by Bertsekas and Shreve [18]. Let H : X × U × F → R be given by

H(Xk, v, J) = Ek [J(ψ(Xk, v, Yk+1))] (2.15)

and where F is the set of all extended real value functions J : X → R ∪ {−∞,∞}.
Furthermore, let T : F → F be defined by

T (J)(Xk) := min
v∈U

H(Xk, v, J). (2.16)

The following proposition confirms that the DP algorithm is indeed valid.

Proposition 2.2.1 (Bertsekas and Shreve [18], proposition 3.4) Assume that the

function H is monotone, in the sense that H(Xk, v, J) ≤ H(Xk, v, J
′), ∀Xk ∈ X , v ∈
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U , J, J ′ ∈ F s.t. J ≤ J ′. Let the control space U be a Haudsdorff space and assume

that for each Xk ∈ X , λ ∈ R, and k = 0, 1, . . . , K − 1, the set

Uk(Xk, λ) = {u ∈ U : H[Xk, u, T
k(J0)] ≤ λ} (2.17)

is compact. Then

J∗K = TK(J0), (2.18)

and there exists a uniformly K-stage optimal policy, i.e. a policy π∗ = (µ∗1, . . . , µ
∗
K)

such that the sub-policies π(k) = (µ∗k+1, . . . , µ
∗
K) are all k-stage optimal, that is,

Jπ
(k)

k (Xk) = J∗k (Xk) for all Xk ∈ X and for all k = 0, . . . , K − 1.

One important technical point for algorithm 1 to be defined is to make sure that

the risk functions J∗k (Xk) are integrable with respect to the measure P , so that the

expectations (2.13) can be defined. This is not obvious in general because of the

minimization step involved in defining the J∗k (Xk). We give more details about this

in section 2.5.

2.3 General form of solutions

Under some convexity conditions for the function J∗k , we will see below that the

optimal policies can be characterized in terms of a no-trading interval [b−k , b
+
k ], such

that the optimal decision is

1. trade to the boundary if uk is outside of [b−k , b
+
k ], and

2. do nothing if uk ∈ [b−k , b
+
k ].

As we will discuss later, the bounds b+
k and b−k may possibly be functions of the state

Xk, but this will depend on the specific loss function L used in the objective. We

show in two ways that the optimal decision rule behaves as described above : one
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way is via an explicit characterization of the no-transaction boundary, and the other

is by applying the well-known Karush-Kuhn-Tucker conditions. These results hold

for a general convex loss function L. More details will later be given in section 2.4

for the particular case of the negative exponential loss function.

2.3.1 A direct approach

To obtain the bounds b+
k and b−k , there is a complication that arises when com-

puting the minimum of Qk as a function of v, for a fixed state Xk. Ideally, we would

like the function Qk(Xk, ·) to be strictly convex for any given Xk, as this would sim-

plify the analysis of the solutions. But here, the transition function ψ(Xk, v, Yk+1)

of equation (2.2) is not linear in the decision v (because of an absolute value due to

the presence of transaction costs), which prevents the function Qk(Xk, ·) from being

convex in v in general. So instead of using ψ(Xk, v, Yk+1) directly, we first define

two new linear transition functions ψ+ and ψ− as ψ±(Xk, v, Yk+1) = (c±k+1, v, Yk+1),

where

c±k+1 = ck − (v − uk)sk ± (a+ bsk)(v − uk), (2.19)

i.e., we remove the absolute values on v−uk in the transaction cost term (a+bsk)|v−
uk| and add a plus or a minus sign in front.

We then define

Q−k (Xk, v) := Ek[J
∗
k+1(ψ−(Xk, v, Yk+1))] (2.20)

and

Q+
k (Xk, v) := Ek[J

∗
k+1(ψ+(Xk, v, Yk+1))]. (2.21)

Thus Q−k (Xk, v) will be the same as Qk(Xk, v) when v ≥ uk and Q+
k (Xk, v) will be
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the same as Q(Xk, v) when v ≤ uk. And finally, let

b−k (Xk) := arg min
v∈U

Q−k (Xk, v), (2.22)

b+
k (Xk) := arg min

v∈U
Q+
k (Xk, v). (2.23)

Throughout this thesis, we will work with functions Q±k (Xk, ·) that are strictly con-

vex, from which it follows that the values b±k (Xk) are uniquely defined, since we

originally fixed U to be a closed interval (hence a compact set). More generally, if

the functions Q±k (Xk, ·) were allowed to be convex (but not strictly convex), then

they could have more than one minimum.

The following proposition describes the optimal policy in terms of b+
k (Xk) and

b−k (Xk), which turn out to define the boundary of a no-transaction region :

Proposition 2.3.1 Assume that the k+1 stage risk function J∗k+1(·, Yk+1) is strictly

convex as a function of (ck+1, uk+1), for Yk+1 fixed. Then for a given state Xk =

(ck, uk, Yk), either 1) the boundaries are equal, i.e., b−k (Xk) = b+
k (Xk), in which case

the the optimal stock quantity v∗ at stage k is given by

v∗ = b−k (Xk) = b+
k (Xk), (2.24)

or 2) b−k (Xk) 6= b+
k (Xk) and the optimal stock quantity v∗ at stage k is given by

v∗ = b−k (Xk) for uk ≤ b−k (Xk), (2.25)

v∗ = b+
k (Xk) for uk ≥ b+

k (Xk) (2.26)

and

v∗ = uk for uk ∈ [b−k (Xk), b
+
k (Xk)], (2.27)

and for any fixed Yk the optimal risk function J∗k (·, Yk) at stage k is strictly convex
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in (ck, uk), for all ck ∈ R, uk ∈ U .

Proof :

The case with equal boundaries is trivial, so we consider the second case, whereb−k (Xk) 6=
b+
k (Xk). For the first part (i.e., the value v∗ of the optimal decision), we consider a

fixed state Xk = (ck, uk, Yk), so as a shorthand, we write Qk(v) and Q±k (v) instead of

Qk(Xk, v) and Q±k (Xk, v). We will prove the result by comparing the values Q+
k (v)

and Q−k (v) to Qk(v) over different subintervals for v. The convexity of J∗k (·, Yk) will

be shown aftwerwards.

Assume first that v∗ ≥ uk and consider the following two possibilities for b−k (Xk):

1. b−k (Xk) ≥ uk, and

2. b−k (Xk) < uk.

For the first possibility, Qk(v) = Q−k (v) for v ≥ uk, so v∗ = b−k (Xk). For the second

possibility, we must have v∗ = uk. Otherwise v∗ > uk (by our initial assumption),

and as we will show below, this would imply that there exists a quantity v such

that Q−k (v) < Q−k (b−k (Xk)), which would be a contradiction, since b−k (Xk) minimizes

Q−k by definition. To see this, choose an α ∈ (0, 1) such that the quantity v :=

αb−k (Xk) + (1 − α)v∗ satisfies v > uk. Then, using the fact that Qk(v) = Q−k (v) for

v ≥ uk, we have

Q−k (v∗) = Qk(v
∗) ≤ Qk(v) = Q−k (v) (2.28)

Now note that Q−k is strictly convex as a function of ck, uk and v, since it is defined as

the expectation of the composition of the strictly convex function J∗k+1(·, Yk+1) with

the linear mapping ψ−(Xk, v, Yk+1). This implies that

Q−k (v) < αQ−k (b−k (Xk)) + (1− α)Q−k (v∗) ≤ αQ−k (b−k (Xk)) + (1− α)Q−k (v), (2.29)

where the first inequality uses the strict convexity of Q−k (·) in v and the second
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inequality follows from Q−k (v∗) ≤ Q−k (v). Thus Q−k (v) < Q−k (b−k ), which is what we

needed to prove.

For the case v∗ ≤ uk, we can use a similar argument to show that we have

v∗ = b+
k (Xk) if b+

k (Xk) ≤ uk and v∗ = uk if b+
k (Xk) > uk.

To conclude the proof, we need to show the strict convexity of J∗k (·, Yk) as a

function of (ck, uk) ∈ R × U , for any given Yk, where J∗k (Xk) = Qk(Xk, v
∗). Note

that for uk ≤ b+
k (Xk), we have Qk(Xk, v

∗) = Q−k (Xk, v
∗) since v∗ = uk in the range

[b−k (Xk), b
+
k (Xk)], in which case there are no transaction costs. Since Q−k ((·, Yk), v) is

a strictly convex function of (ck, uk) for any v, then Qk((·, Yk), v∗) is strictly convex

for (ck, uk) ∈ A1 := {(ck, uk) : uk ≤ b+
k (Xk)}. By symmetry, we also see that

Qk((·, Yk), v∗) is strictly convex in (ck, uk) ∈ A2 := {(ck, uk) : uk ≥ b−k (Xk)}. Note

that A1∪A2 = R×U is also a convex set and that A1 and A2 have disjoint boundaries,

o Qk((·, Yk), v∗) must also be strictly convex on R × U . To see this more explicitly,

suppose that Qk((·, Yk), v∗) is not strictly convex on this domain. Then there must

exist some points x ∈ A1, y ∈ A2, z ∈ A1 ∪A2 and a real number λ ∈ (0, 1) such that

Qk((z, Yk), v
∗) ≥ λQk((x, Yk), v

∗) + (1− λ)Qk((y, Yk), v
∗). (2.30)

Here we assume without loss of generality that x and y are not both in A1 or A2,

because otherwise we would have a contradiction since Qk((·, Yk), v) is already known

to be convex over these two sets. But then we can simply take two other points x′
and y′ along the line segment xy such that 1

2
x′ + 1

2
x′ = z and both x′, y′ ∈ A1 or

x′, y′ ∈ A2, which again yields a contradiction. �

In proposition 2.3.1, nothing was said about the ordering of the bounds b−k (Xk)

and b+
k (Xk), other than implicitly considering the case b−k (Xk) ≤ b+

k (Xk) in equation

(2.27). The following simple corollary restricts the possible orderings :

Corollary 2.3.2 1) Let Xk = (ck, uk, Yk) ∈ X for some k. Then it is not possible to
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have b−k (Xk) > uk > b+
k (Xk). 2) In particular, if b−k (Xk) and b+

k (Xk) are independent

of uk, then we must have b−k (Xk) ≤ b+
k (Xk).

Proof : For the first part, assume that b−k (Xk) > uk > b+
k (Xk). By proposition 2.3.1,

we must have that the optimal decision v∗ is given by v∗ = b−k (Xk), since b−k (Xk) > uk.

But by the same proposition, we must also have v∗ = b+
k (Xk), since b+

k (Xk) < uk

Thus this implies b−k (Xk) = b+
k (Xk), which is a contradiction. For the second part,

assume that b−k (Xk) > b+
k (Xk). So there exists a u such that b−k (Xk) > u > b+

k (Xk).

Hence if we set uk = u and consider the first result, we reach a contradiction. �

2.3.2 The Karush-Kuhn-Tucker conditions

It is also possible to characterize the optimal solution of a convex program via

the Karush-Kuhn-Tucker conditions. For a classic reference, see for example the text

by Rockafellar [115], section 28. As mentioned earlier in this section, the objective

function Qk(Xk, ·) in equation (2.12) will not generally be convex in v due to the

presence of the absolute value term |uk− v| for the transaction costs in the financing

equation (2.4). But we can recast the problem as a convex program with linear

inequality constraints by introducing two non-negative variables l,m ≥ 0 and make

the following substitutions :

• v − uk → l −m,

• |v − uk| → l +m, and

• Qk(Xk, v)→ QL
k (Xk, l,m),

where

QL
k (Xk, l,m) := Ek

[
J∗k+1(ψL(Xk, l,m, Yk+1))

]
, (2.31)

ψL(Xk, l,m, Yk+1) := (cLk+1, uk + (l −m), Yk+1), (2.32)

cLk+1 := ck − (l −m)sk − (l +m)(a+ bsk). (2.33)
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Assuming for simplicity that there are no constraints on admissible decisions (i.e.

U = R), the step k program to solve then becomes

min
l,m≥0

QL
k (Xk, l,m), (2.34)

and, introducing the dual variables λ and µ, the KKT conditions can be written as

1. (Stationarity)

∂QL
k

∂l
(Xk, l,m) + λ = 0, (2.35)

∂QL
k

∂m
(Xk, l,m) + µ = 0, (2.36)

2. (Primal feasibility)

l,m ≥ 0, (2.37)

3. (Dual feasibility)

λ, µ unconstrained (2.38)

4. (Complementary slackness)

l · λ = 0,m · µ = 0. (2.39)

The two variables l and m can be interpreted as the step k quantity of stock

bought, or sold, respectively. Note that it is possible to add a positive constant

C > 0 to both l and m, to obtain the modified quantities l′ = l+C,m′ = m+C, in

which case the net transaction will be the same, i.e.

v − uk = l′ −m′ = (l + C)− (m+ C) = l −m, (2.40)
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but with higher transaction costs, given by

φ(sk)(l
′ +m′) = φ(sk)(l +m+ 2C) > φ(sk)(l +m), (2.41)

assuming non-zero unit costs φ(sk). But if the loss function L(x) is monotone de-

creasing, so that x > y ⇒ L(x) < L(y), these higher cost solutions can never be

optimal, and so will simply be discarded. Thus we have shown the following :

Proposition 2.3.3 Assume that the loss function L(x) is monotone decreasing and

that the optima of the programs defined by equations (2.12) and (2.34), are attained

respectively at the points v∗ and (l∗,m∗). Then Qk(Xk, v
∗) = QL

k (Xk, l
∗,m∗), with

v∗ = l∗ −m∗.

Let us now consider the various possibilities for the optimal values of l and m,

to link these to the no-transaction region [b−k (Xk), b
+
k (Xk)] described in section 2.3.1.

The case of inactive constraints (with both l > 0 and m > 0) can never correspond

to an optimum, as explained above. The three cases for active constraints (i.e., 1.

l = 0, m > 0, 2. l ≥ 0, m = 0 and 3. l = m = 0) correspond either to trading (cases

1 and 2) or not trading (case 3). Assume a fixed cash level ck and market vector Yk at

step k. Write l∗(u) and m∗(u) for the optimal solution to program (2.34) when uk = u

and define U0(ck, Yk) as the set of stock quantities uk at step k such that the optimal

solution for problem (2.34) is not to trade. Now assume u1 is another stock quantity,

such that if uk = u1, then the optimal solution is given by (l∗(u1),m∗(u1)) = (l1, 0).

And clearly, we must have u1 + l1 ∈ U0(ck, Yk), i.e. if uk = u1 + l1 to begin with,

we attain the same stock position, but without any trading costs, so it must be

optimal not to trade. Write the set of all such stock quantities A−, i.e. let A− =

{u : for uk = u, the optimal solution is given by l∗(u) > 0 and m∗(u) = 0}. For

a− = supA−, we must then have u + l∗(u) = a−,∀u ∈ A−. Similarly, we can define

A+ = {u : for uk = u, the optimal solution is given by l∗(u) = 0 and m∗(u) > 0}
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and a+ = inf A+, for which we must then have u −m∗(u) = a+,∀u ∈ A+. Thus we

reobtain the no-transaction boundaries as b−k (ck, Yk) = a− and b+
k (ck, Yk) = a+, which

shows again that the optimal policy can be separated into trading and no-trading

regions, as in equations (2.25)-(2.27).

2.4 Results specific to the negative exponential loss function

For the remainder of this thesis, we will focus on the case of the negative expo-

nential loss function.

To simplify the notation, we will slightly redefine the step k risk function Jπk

associated to the policy π as the function Gπ
k , given by

Gπ
k(Xk) := Ek[e

−γ(V πK(Xk)−Vk(Xk))],∀Xk ∈ X . (2.42)

The difference with the previous definition Jπk (Xk) is a factor e−γ(Vk(Xk)−V0) ∈ Fk,
which is known at every step k. That is,

Jπk (Xk) = e−γ(Vk(Xk)−V0)Gπ
k(Xk). (2.43)

In particular, we have Gπ
0 (X0) = Jπ0 (X0) and Gπ

K(XK) = 1. The function Qk in

equation (2.13) can then conveniently be replaced by the function Rk defined by

Rk(Xk, v) := Ek[g(Xk, v, Yk+1)G∗k+1(Xk+1)],∀Xk ∈ X , v ∈ U , (2.44)

using the one-stage risk functions

g(Xk, v, Yk+1) := e−γ(Vk+1(Xk+1)−Vk(Xk)) (2.45)

and where Xk+1 = ψ(Xk, v, Yk+1).
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Using this notation, we have the following :

Proposition 2.4.1 Let L(x) = exp(−γx). Then for any k = 0, . . . , K − 1 and

Xk = (ck, uk, Yk), we have that a) the transaction boundaries b−k (Xk) and b+
k (Xk)

are only functions of Yk, and are independent of uk and ck, and b) the optimal risk

function G∗k is independent of ck and its logarithm lnG∗k takes the following form

lnG∗k(Xk) = β1(sk)uk + η1(Yk), for uk ≤ b−k (2.46)

lnG∗k(Xk) = β2(sk)uk + η2(Yk), for uk ≥ b+
k (2.47)

lnG∗k(Xk) = αk(Yk, uk), for uk ∈ [b−k , b
+
k ], (2.48)

where β1(sk) = −γφ(sk), β2(sk) = +γφ(sk), ηj(Yk) ∈ R, j = 1, 2, are independent

of uk and ck and αk : Y × U → [0,∞) is a function such that αk(Yk, ·) is strictly

convex, ∀Yk ∈ Y.

Proof : We will prove the result by backward induction on k. For k = K, we have

G∗K(XK) = 1. Now assume the proposition holds for some k + 1.

To prove a), start by noting that we can always write

R±k (Xk, v) = e∓γφ(sk)(v−uk)Ek[e
−γ(v∆sk+1+∆hk+1)G∗k+1(ck+1, v, Yk+1)],

where ck+1 is given by equation (2.4), and depends on ck and uk. But by hypothesis

G∗k+1(Xk+1) is independent of ck+1. Furthermore, uk plays no role when optimizing

R±k (Xk, ·) as a function of v, since it appears only through a multiplicative factor.

Thus we must have that the boundaries b±k (Xk) are independent of both ck and uk.

For the proof of b) we consider proposition 2.3.1, in which we have the following

three cases:

1. If uk ≤ b−k , then v∗ = b−k , so that G∗k(Xk) = Rk(Xk, v
∗) = R−k (Xk, b

−
k ). More
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explicitly, we can write

R−k (Xk, b
−
k ) = Ek[e

−γ(b−k ∆sk+1−φ(sk)(b−k −uk)+∆hk+1)]

= f(b−k )e−γφ(sk)uk ,

where

f(b−k ) = Ek[e
−γ(b−k (∆sk+1−φ(sk))+∆hk+1)]

is independent of uk. Thus we can write lnG∗k(Xk) = β1(sk)uk + η1(Yk), with

β1(sk) = −γφ(sk).

2. Similarly, if uk ≥ b+
k , we have that lnG∗k(Xk) = β2(sk)uk+η2(Yk), with β2(sk) =

+γφ(sk).

3. For the case with uk ∈ [b−k , b
+
k ], it is optimal not to trade, so Gk(Xk) =

Rk(Xk, uk), which implies that

Gk(Xk) = Ek[e
−γ(v∆sk+1+∆hk+1)G∗k+1(ck+1, v, Yk+1)]. (2.49)

Thus Gk(Xk) does not depend on ck in this case either. And finally, the strict

convexity of αk(Yk, ·) := lnGk(ck, ·, Yk) in uk, restricted to uk ∈ [b−k , b
+
k ], follows

from proposition 2.3.1. �

Proposition 2.4.1 will be used in numerical experiments to define approximations

for the optimal risk function (see section 3.3.1). Note that these solutions still have

parameters that depend on the state Yk of the market at the given step k. This

dependence could be complicated and related to other factors such as the specific

derivative being hedged. Note also that proposition 2.3.1 is more general and applies,

for example, in the case where L(x) = x2, i.e. the loss function is quadratic. In that

case, however, the boundaries b±k (Xk) may depend on the values ck and uk.
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2.5 Existence of solutions : measurability conditions

As mentioned earlier, an important theoretical issue associated with stochastic

DP is that the policies and risk functions obtained at each step of the DP algo-

rithm remain measurable in some sense. So in this section, we provide some explicit

conditions for our problem to be well-defined.

The general theory is very technical (see Bertsekas and Shreve [18], chapters 7 and

8), and we do not attempt to cover it here. Instead, we simply show in proposition

2.5.4 below that our hedging problem using the negative exponential loss function

does indeed meet the conditions given in section 11.3 of Bertsekas and Shreve [18]

for a Borel model with multiplicative costs. Then, in corollary 2.5.5, the validity of

the DP algorithm in our setting will follow from a result in [18].

But first let us recall some definitions from descriptive set theory.

Definition 2.5.1 (Bertsekas and Shreve [18], definition 7.7) A topological space X

is said to be a Borel space if there exists a complete separable metric space Y and

a Borel subset B ∈ BY (where BY is the Borel σ-algebra of Y ) such that X is

homeomorphic to B. The empty set is also regarded as a Borel space.

Definition 2.5.2 (Bertsekas and Shreve [18], definition 7.8) Let X and Y be topo-

logical spaces. A function f : X → Y is Borel-measurable if f−1(B) ∈ BX for every

B ∈ BY .

Definition 2.5.3 (Bertsekas and Shreve [18], definition 7.16) Let X be a Borel space

and denote by FX the collection of closed subsets of X. The analytic subsets of X

are the members of S(FX), the set of all nuclei of Suslin schemes for FX (see [18],

definition 7.15).

We can now state the following :
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Proposition 2.5.4 Suppose that we are using the negative exponential risk function

as described in section 2.4 and that the densities fk(Yk, Yk+1) are Borel-measurable

functions, for all k = 0, . . . , K − 1. Then the hedging problem defined in section 2.1

meets the following conditions :

1. The state space X , the control space U and the market vector space Y (called

the disturbance space in [18]) are Borel spaces.

2. The set Γ = {(Xk, v)|Xk ∈ X , v ∈ U} is analytic.

3. The density fk(Yk, Yk+1) and the the transition function ψ(Xk, v, Yk+1) are

Borel-measurable, for Xk ∈ X and Yk+1 ∈ Y.

4. The one stage risk function g(Xk, u, Yk+1) is Borel-measurable and bounded,

in the sense that there exists a constant b such that 0 ≤ g(Xk, u, Yk+1) ≤ b

∀Xk ∈ X , u ∈ U , Yk+1 ∈ Y.

Proof:

1. We can take Y = Rd+2 in definition (2.5.1). Then U = [umin, umax], Y = [0,∞)d

and X = R× U × Y are all Borel subsets of Y .

2. Here, we simply have Γ = X×U , which is a product of Borel sets, and thus itself

a Borel set (see Bertsekas and Shreve [18], proposition 7.13). And every Borel

subset of a Borel space is analytic (see Bertsekas and Shreve [18], proposition

7.36).

3. The function ψ(Xk, u, Yk+1) is a continuous functions, and thus Borel-measurable.

4. The function g(Xk, u, Yk+1) is continuous, and thus Borel-measurable. Fur-

thermore, note that the portfolio variations are assumed bounded (see section

2.1.2). Thus g(Xk, u, Yk+1) must also be bounded. �
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We then have the following result, which directly follows from Bertsekas and

Shreve [18], proposition 11.7, and from the definitions from section 2.2 :

Corollary 2.5.5 The DP algorithm is valid for the hedging problem, in the sense

that

J∗0 = TK(JK). (2.50)

Furthermore, there exists a uniformly K-stage optimal policy π∗.

2.6 Conclusion

In this chapter, we made our hedging problem explicit, framing it as a discrete

time stochastic dynamic program. We also specified two important elements of the

problem : the state transition function (including linear transaction costs) and the

negative exponential loss function. Using a more general convexity hypothesis on the

loss function, we showed in proposition 2.3.1 how the optimal decisions at each step

k are related to the two trading boundaries b−k (Xk) and b+
k (Xk). For the particular

case of the negative exponential loss function, we then provided two useful results

in proposition 2.4.1. First, we showed that the trading boundaries were in fact only

dependent on the market information vector Yk, and not on the cash account ck or

the stock quantity held uk. Second, we characterized the associated optimal risk

function within the three regions delimited by the boundaries. These results will

be exploited when constructing the stochastic mesh approximation described next

in chapter 3. More precisely, for a fixed Yk defining a mesh node, the optimal risk

function J∗k can then be well approximated by a simple piecewise quadratic function

of the stock quantity uk (see section 3.3.1). Finally, we verified that our formulation of

the hedging problem was indeed well-defined, based on classical results by Bertsekas

and Shreve [18].
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CHAPTER 3

APPROXIMATE DYNAMIC PROGRAMMING WITH A

STOCHASTIC MESH

It is usually not possible to obtain an exact solution to a dynamic program unless

the problem has a special structure. As a basic example, if there is a finite (and

relatively small) state space, a solution can be computed by brute force, i.e., by going

through all the states. However, the state space described in section 2.1 is infinite,

since states Xk = (ck, uk, Yk) include the quantity of stock held uk, the corresponding

market parameters Yk (such as the price), as well as the amount of cash ck in the

portfolio, all of which are considered here as continuous variables. Obviously, one

cannot evaluate explicitly the risk function J∗k over all states Xk ∈ Xk. So unless we

impose additional structure on the problem, the solution must be approximated.

This chapter describes the use of stochastic mesh methods to compute approxi-

mate solutions to the hedging problem. This class of methods was originally devel-

oped for the problem of pricing American options (see Broadie and Glasserman [36]

and Glasserman [59], chapter 8), in particular for multi-dimensional state spaces (for

example, when pricing options involving five underlying assets or more). But this is

the first time it is applied to the hedging problem.

One advantage of using a stochastic mesh is that it yields an (in-sample) esti-

mator Ĵ0(X0) of the optimal risk J∗0 (X0) that is low biased. This is in contrast

with some generic Approximate Dynamic Programming (ADP) methodologies, such

as approximating the optimal policy or risk function using a regression over a linear

combination of predefined (“basis”) functions, where in general there is no simple way

to analyze the bias. In the context of American option pricing, well-known regres-

sion methods include the least-squares Monte Carlo method (LSM) of Longstaff and



Schwartz [98], and the method of Tsitsiklis and Van Roy (TvR) [130]. As pointed out

in Dion and L’Ecuyer [51], the bias of the in-sample price estimates can have either

sign for both methods, although the bias from the LSM method is usually positive,

and that of the TvR method is usually negative.

But for any policy π, we do know that computing a standard Monte Carlo es-

timate Ĵπ0 (X0) of the risk (out-of-sample) will be a high biased estimator of the

(optimal) minimum risk. That is, simulate N independent paths of the market vec-

tor process, apply the hedging policy to these paths to obtain the terminal portfolio

values V π,i
K (X0), i = 1, . . . , N , and compute a sample average of the portfolio loss

function

Ĵπ0 (X0) =
1

N

N∑
i=1

L
(
V π,i
K (X0)− V0

)
. (3.1)

Combining these low and high biased estimators, stochastic mesh methods thus allow

us to derive confidence intervals for the value of the optimal risk function (as was

done by Broadie and Glasserman [36] for the price of American options).

We start by discussing basic elements of the field of ADP in section 3.1 to provide

some context. See the books by Bertsekas [16], [17], and the lecture notes by L’Ecuyer

[87] for a much broader overview. Applications of ADP methods can also be found,

for example, in Haurie and L’Ecuyer [68], Ben Ameur, Breton and L’Ecuyer [12] and

Ben Ameur, Breton, Karoui and L’Ecuyer [13]. Next, in section 3.2, we discuss the

stochastic mesh methods, both in general and in the context of the hedging problem.

In section 3.3, we introduce a simple linear-quadratic approximation that is meant to

be used in conjunction with a stochastic mesh, and also provide some general error

bounds for the risk function approximations at each stage. Section 3.4 provides more

details on the low and high biased estimates derived from the stochastic mesh, and

how they can used to determine a confidence interval for the minimum of the risk

function. Finally, the convergence of the mesh estimator is discussed in section 3.5.

46



3.1 Approximate Dynamic Programming

A central idea of ADP which we will use here is to apply the DP algorithm to

an approximation Ĵk of the risk function, defined for a finite subset of N states

XN
k ⊂ Xk. More precisely, for k = K to 0, we apply algorithm 2 below. But which

states should be used to define an approximation?

Algorithm 2 Approximate Dynamic Programming

1 Assume we know approximate values Ĵ ik ≈ J∗k (X i
k), i = 1, . . . , N of J∗k over some

finite subset of states XN
k = {X i

k : i = 1, . . . , N} ⊂ Xk.

2 Use the values Ĵ ik to define an approximation Ĵk of J∗k over all of Xk. Note that

this approximation may not necessarily go through the points (X i
k, Ĵ

i
k), i.e., it is

possible that Ĵk(X
i
k) 6= Ĵ ik for some or all i.

3 Use the approximation Ĵk to calculate approximate risk function values Ĵ ik−1 ≈
J∗k−1(X i

k−1), i = 1, . . . , N in the next step k − 1 of the DP algorithm, for some
X i
k−1, i = 1, . . . , N , using equations (2.12) and (2.13) (or some approximate

version thereof).

3.1.1 Simulating states

Assuming the state space Xk has dimension d, a straightforward discretization

into L points of each of the d components of the space involves approximating each

function J∗k over Ld states X i
k ∈ Xk, i = 1, . . . , Ld, for k = 1, . . . , K. The problem

with this approach is that the number of states considered grows exponentially with

d. This is an example of a curse of dimensionality, a term which was coined by

Bellman [10]. This expression highlights the fact that approximating the solution of

a high-dimensional dynamic program typically runs into some limitations in memory

space and in computing time, unless the problem has some special structure (for

example, sufficiently smooth functions J∗k ). See Powell [109] for other types of curses

of dimensionality affecting ADP.
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For some high dimensional DP problems, defining an approximate objective func-

tion over states sampled by Monte Carlo simulation can help overcome the “state

space” curse of dimensionality described above. Intuitively, this works by ensuring

that computational resources are spent on states that are more likely to be visited,

instead of trying to cover the state space uniformly. For example, one could simulate

N independent paths {(Y i
0 , . . . , Y

i
K) : i = 1, . . . , N} of the market vector process

to obtain a set of states GNk = {Y i
k : i = 1, . . . , N} at each step k over which we

can then apply the DP algorithm. The Stochastic Mesh, LSM and TvR methods

mentioned at the beginning of this chapter all use this idea of defining the states

for the approximate DP recursion (algorithm 2) by Monte Carlo simulations, in the

context of American option pricing.

Another class of DP problems that can be solved using simulated states is dis-

cussed by Rust [117] (see also section 6.2). There, a state Xk is taken to be an

element of the unit hypercube [0, 1)d, with a transition density between any two

states depending on an action with values taken from a finite set. This is somewhat

similar to the American option pricing problem, where there is at every step a bi-

nary decision to be made (whether to exercise the option or not). However, a more

precise correspondence between the two classes of problems remains to be done, and

is beyond the scope of this research.

For the hedging problem, an added difficulty is that the evolution of the state

Xk partly depends on the policy, e.g. the stock quantity uk and the cash account ck.

But we can define states for the DP Algorithm by simulating market vector paths

{(Y i
0 , . . . , Y

i
K) : i = 1, . . . , N}, which are independent of the policy used, and combine

them with a (deterministic) grid for (ck, uk), i.e., let the states for the approximation

be given by the set XNM
k := {(Y i

k , c
j
k, u

j
k), i = 1, . . . , N, j = 1, . . . ,M}.
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3.1.2 Approximating J∗k

Once we have determined over which states the risk function J∗k will be approxi-

mated, we still need to decide what kind of approximation to use.

Given an approximate risk function Ĵk at stage k, we can use it to define an

approximation Ĵk−1 of the optimal risk function J∗k−1 at the previous stage k − 1.

In equation (2.12), the DP algorithm computes the value of J∗k−1(Xk−1) through

minimizing the function Qk−1(Xk−1, ·). So we can compute

Ĵ ik−1 := inf
v∈U

Q̂k−1(X i
k−1, v), (3.2)

where

Q̂k−1(X i
k−1, v) = Ek−1[Ĵk(ψk−1(X i

k−1, v, Yk))], (3.3)

for all the states X i
k−1 ∈ XN . Then we can define an approximate risk function Ĵk−1

over all of X as a function such that the pairs {(X i
k−1, Ĵk−1(X i

k−1)) : i = 1, . . . , N}
pass through or near {(X i

k−1, Ĵ
i
k−1) : i = 1, . . . , N}. This can be done based on

theoretical considerations (as we will do later in section 3.3) or by some numerical

procedure, e.g., by defining the approximation function as a linear combination of

basis functions, with coefficients determined by linear regression.

Note however that the conditional expectation in equation (3.3) may not have an

analytical solution in general. So a second approximation could be required, but this

time for the function Q̂k−1. As we will see in section 3.2, one possibility is to define

such an approximation using a stochastic mesh.

It is also possible to use basis functions to approximate the function Qk instead of

J∗k . In the context of American option pricing, this type of approach was used for ex-

ample by Tsitsiklis and Van Roy [130], and more recently by Dion and L’Ecuyer [51].

More generally, see also L’Ecuyer, Haurie and Hollander [91], Haurie and L’Ecuyer

[68], L’Ecuyer [85], Ben Ameur, Breton and L’Ecuyer [12] and Ben Ameur, Breton,
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Karoui and L’Ecuyer [13].

As discussed in section 4.2, one can also approximate directly the optimal poli-

cies instead of the functions J∗k or Qk. For applications of policy approximation to

portfolio optimization problems, see for example Brandt, Goyal, Santa-Clara and

Stroud [33] and Bolder-Rubin [25]. As pointed out in van Binsbergen and Brandt

[133], approximating the optimal policy instead of the optimal risk function can yield

better results. See also the analysis by Stentoft [128] for the problem of American

option pricing.

3.2 Stochastic mesh methods

We now turn to the definition of stochastic mesh methods as class of approxima-

tions. As for other Monte Carlo-based ADP methods, it applies the DP algorithm

on a set of states XN
k from k = K to k = 0.

3.2.1 Basic construction

The basic construction of a stochastic mesh starts by defining nodes Y j
k using

a set of N independent paths {(Y j
0 , . . . , Y

j
K) : j = 1, . . . , N} of the market vector

process. More generally, for each step k = 0, . . . , K, one could also define the mesh

nodes as a set of points GNk := {Y i
k : i = 1, . . . , N}, sampled according to some

density gk(Yk). This density could be the unconditional density at step k of the

process {Yk : k = 0, . . . , K}, but not necessarily.

The key element is that at a given time step k, the expectation of a function

Φk+1(Yk+1), conditional on Yk, is approximated using a weighted average over the

simulated states GNk+1 := {Y j
k+1 : j = 1, . . . , N} at the next step k + 1. That is,

Ek[Φk+1(Yk+1)] ≈ 1

N

N∑
j=1

wk,jΦk+1(Y j
k+1), (3.4)
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where the wk,j are weights. The weights account for the fact that the points (vectors)

Y = Y j
k+1 at which the function Φk+1(Y ) is evaluated may be sampled from a different

probability distribution than that used by the expectation operator Ek[·].
More generally, we assume that there is a weight function wk(Yk, Yk+1) (possibly

dependent on the step k) linking two consecutive market vectors Yk and Yk+1. For

simulated market vectors Y i
k and Y j

k+1, we then define

wk,i,j := wk(Y
i
k , Y

j
k+1) (3.5)

and, in the case where the starting state vector Yk is fixed and arbitrary, as in

equation (3.4), we drop the index i to write

wk,j := wk(Yk, Y
j
k+1). (3.6)

Assuming that Ek[wk(Yk, Yk+1)] = 1, the weight function wk(Yk, Yk+1) acts as a

change of measure. Different possibilities for the choice of the weights will be dis-

cussed in section 3.2.3.

Having defined how conditional expectations are computed on the mesh nodes,

we now give a general description of the ADP algorithm using a stochastic mesh :

As mentioned earlier, Broadie and Glasserman [35], [36] originally proposed this

method to evaluate American options by simulation, in which case the function

Φk+1(Yk) would be the option price at step k + 1 (see also Glasserman’s book [59],

section 8.5).

3.2.2 Application to the hedging problem

The original application of the stochastic mesh method (American option pricing)

involves a pointwise estimate of the option value at every node of the mesh. Here

we describe how this approach can be adapted to the hedging problem under the
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Algorithm 3 ADP on a stochastic mesh

1 Generate sets of N market vectors GNk := {Y i
k ∈ [0,∞)d : i = 1, . . . , N}, for each

step k = 0, . . . , K.

2 If the state vectors Xk have more elements than the market vectors Yk (e.g. uk
and ck), pick M possible values from these other elements of Xk and combine
them to the N points in GNk to define NM points XNM

k ⊂ X . Otherwise, set
M = 1.

3 Compute weights wk,i,j for all pair of states (Y i
k , Y

j
k+1), i, j = 1, . . . , N, k =

0, . . . , K − 1, Y i
k ∈ GNk , Y

j
k+1 ∈ GNk+1.

4 Apply the ADP algorithm (see algorithm 2) on the states Xk ∈ XNM , replacing
the functions J∗k and Qk by their corresponding stochastic mesh approximations

Ĵk and Q̂k (as defined in section 3.2.2, for example).

assumption of a negative exponential loss function. In essence, the risk function

approximation will be defined as a 1-dimensional function of the stock quantity at

every node, i.e. Ĵk : U × Y :→ [0,∞). This is possible because by section 2.4 the

optimal risk function does not depend on the cash account ck.

First suppose that we are given some risk function approximation Ĵk+1(ck+1, uk+1, Yk)

at step k + 1 defined ∀uk+1 ∈ U and for Y j
k+1 ∈ GNk+1, j = 1, . . . , N , i.e. sim-

ulated market information vectors defining the mesh points. For a general state

Xk = (ck, uk, Yk), we approximate Qk(Xk, v) using the stochastic mesh as

Q̂k(Xk, v) :=
1

N

N∑
j=1

wk,je
−γ(Vk+1(ψ(Xk,v,Y

j
k+1))−Vk)Ĵk+1(v, Y j

k+1), (3.7)

for given weight functions wk,j = wk(Yk, Y
j
k+1), j = 1, . . . , N , taking as input consec-

utive pairs of market states. These will be discussed in more detail in section 3.2.3.

52



The associated optimal risk function approximation at step k is then defined as

Ĵk(uk, Yk) := inf
v∈U

Q̂k(Xk, v). (3.8)

This is a sample average approximation (SAA) (see for example Shapiro [124] and the

references therein) of the “exact” version of the one-step problem (2.12) of chapter 2.

When computing Ĵk(uk, Y
i) for a market state vector Y i

k on the stochastic mesh

itself, we are considering transitions to other market states Y j
k+1 (j = 1, . . . , N), so

we label the corresponding weights wk,i,j and write

Q̂k(ck, uk, Y
i
k , v) :=

1

N

N∑
j=1

wk,i,je
−γ(Vk+1(ψ(ck,uk,Y

i
k ,v,Y

j
k+1))−Vk)Ĵk+1(v, Y j

k+1), (3.9)

and

Ĵk(uk, Y
i
k ) := inf

v∈U
Q̂k(ck, uk, Y

i
k , v). (3.10)

3.2.3 Choice of mesh density

We now turn to the question of how the mesh states Y i
k and associated weights

wk,i,j can be determined. Of course, this will affect the statistical properties of the

estimators Q̂k(Xk, v) and Ĵk(Xk). We outline here some possibilities which have

already been proposed in the literature. New proposals for mesh constructions will

be given in chapter 6.

A useful requirement for the weights is that the weighted sum in (3.4) approx-

imates the expectation (conditional on information at step k) in an unbiased way.

This can be guaranteed using likelihood ratio (LR) weights, under some assump-

tions. For example, suppose that the vectors in the grid GNk+1 were sampled such

that we know their unconditional density, which we denote gk+1(Yk+1), and that we

also know the density of any Y j
k+1 ∈ GNk+1 conditional on any Y i

k ∈ GNk , which we
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denote fk(Y
i
k , Y

j
k+1). The LR weights are then defined as

wk,i,j =
fk(Y

i
k , Y

j
k+1)

gk+1(Y j
k+1)

, for i 6= j (3.11)

and wk,i,j = 1 for i = j.

However, Broadie and Glasserman [36] point out that using LR weights over many

stepsK may lead the variance of the mesh estimates to grow exponentially withK, by

analyzing an example where a mesh is used to price a standard European option. A

better alternative, which avoids this phenomenon, is to use so-called average density

(AD) weights, defined by

wk,i,j =
fk(Y

i
k , Y

j
k+1)

1
N

∑N
l=1 fk(Y

l
k , Y

j
k+1)

. (3.12)

The average density in the denominator can be interpreted as the density for the set

of mesh points GNk+1 at step k+1 obtained by first drawing uniformly (i.e., with equal

probability 1/N) a point from the set GNk and then generating a transition using the

conditional density fk(Y
l
k , Y

j
k+1) for l = 1, . . . , N .

Liu and Hong [97] obtain both LR weights and AD weights through a conditioning

procedure. More specifically, they start by rewriting the mesh based conditional

expectation given by equation (3.4) as a limit

Ek[Φk+1(Yk+1)|Yk = y] = lim
ε→0

E[Φk+1(Yk+1)1y−ε≤Yk≤y+ε]

E[1y−ε≤Yk≤y+ε]
. (3.13)

They then introduce some conditioning with respect to Yk+1, from which they obtain

the weights

wk(y, Yk+1) = lim
ε→0

E[1y−ε≤Yk≤y+ε|Yk+1]

E[1y−ε≤Yk≤y+ε]
. (3.14)

Using a similar idea, but conditioning on both Yk−1 and Yk+1, they obtain another

54



expression for weights, which they call binocular weights. These new weights can be

computed in terms of a conditional density obtained by a bridge sampling technique.

The authors also provide numerical evidence that in the context of estimating Amer-

ican option prices, the binocular weights lead to smaller bias whereas the average

density weights lead to smaller variance.

Note that if the transition densities fk(Yk, Yk+1) are unknown, then we cannot

use either the LR weights or the AD weights. To overcome the need for a transition

density, Broadie, Glasserman and Ha [37] suggest to choose weights so that they

minimize a measure of dispersion, given a set of linear constraints. When considered

for only one step, this is called weighted Monte Carlo (see for example Avellaneda

and Jäckel [6] and Glasserman and Yu [60]). As constraints, one could require that

some low-order moments of the stock price distribution match their theoretical value,

for example, which should help reduce bias in the optimization steps. However, this

does not guarantee that the stochastic mesh estimator will be unbiased for every

function Φk(Yk) in equation (3.4).

Glasserman [59] (section 8.6.2) shows that approximating the optimal risk func-

tion via linear regression on a set of basis functions amounts to using mesh weights

with a specific form (dependent on the choice of basis functions). However, the

resulting mesh based estimates may also be biased.

3.2.4 Using simulated derivative values

An important difficulty when trying to apply stochastic mesh methods to the

hedging problem is that the derivative price may not be known as an analytic function

of market variables such as the underlying price or volatility level. In some cases,

such as for the stochastic volatility model of section 4.1, option prices can only be

obtained through numerical integration or simulation.

The stochastic mesh itself can be reused to obtain an unbiased estimate of the
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derivative price, instead of simulating new independent paths at each state. For

example, we can estimate the derivative price hik = hk(Y
i
k ) for the market state Y i

k

as

ĥik =
1

N

N∑
j=1

wk,i,jĥ
j
k+1. (3.15)

But in any case, estimating ĥik by simulation adds noise to the estimator Q̂k(Xk, v)

from equations (3.7) and (3.9), which is used to estimate optimal risk function values

Ĵk(Xk) in equation (3.8). More precisely, assuming the error Zk+1 := ĥk+1(Yk+1) −
hk+1(Yk+1) from the derivative value hk+1 has an expected value of 0 and is indepen-

dent of the market vector Yk+1, the estimate Q̂k(Xk, v) of Qk(Xk, v) is upward biased

since we have

Ek
[
e−γ(v∆sk+1+∆ĥk+1)Jk+1(Xk+1)

]
= Ek[e

−γZk+1 ]Ek
[
e−γ(v∆sk+1+∆hk+1)Jk+1(Xk+1)

]
(3.16)

for any cost function Jk+1(Xk+1), with Xk+1 = ψ(Xk, v, Yk+1) and with Ek[e
−γZk+1 ] ≥

1. To see this last inequality, note that the function e−γx is convex in x, so by

Jensen’s inequality we have Ek[e
−γZk+1 ] ≥ e−γEk[Zk+1]. Furthermore, by assumption

Ek[Zk+1] = 0, so the right-hand side of the inequality equals 1. The resulting bias

can be interpreted intuitively in the following way : evaluating the derivative on

the mesh adds portfolio noise which is independent from the stock price variation

∆sk+1, and thus cannot be hedged by trading the underlying stock, which increases

the portfolio risk.

In chapter 6, we will see that some variance reduction techniques (such as con-

trol variates) allow to reduce significantly the error Zk+1 and the associated bias of

Q̂k(Xk).
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3.3 Approximation of the risk function dependence on the stock quantity

Because we focus on the negative exponential loss function, the cash account

variable ck does not affect the risk function value J∗k (Xk) (see section 2.1.3), so it is

omitted in the following discussion. However, in the case where costs are non-zero,

the optimal risk function J∗k may depend on uk (see section 2.4). So for a given Yk,

we need to keep track of J∗k as a function of uk and not just a single point. We will

start by looking at a specific approximation that can be used in this case and will

then give a bound on the approximation error.

3.3.1 A linear-quadratic approximation

In our numerical experiments, we use the following approximation for the optimal

risk function J∗k , based on proposition 2.4.1. The general idea is to estimate the

values of the two points b−k and b+
k delimiting the no-transaction boundary, and then

approximate the risk function piecewise on the three sub-intervals (−∞, b−k ], [b−k , b
+
k ]

and [b+
k ,+∞).

Approximation 3.3.1 Linear-quadratic approximation ln Ĵk(·, Yk) for ln J∗k (·, Yk),

assuming the market vector Yk is fixed.

1. Compute approximate values b̂+
k and b̂−k for b+

k and b−k using equations (2.22),

(2.23) and (3.4).

2. For a given tolerance δ, if |̂b+
k − b̂−k | < δ, then we assume that the boundary

values are equal (i.e., b−k = b+
k ) and that the risk is a constant as a function of

uk, approximated as Ĵk(uk, Yk) = 1
2
(Q̂+

k (Xk, b̂
+
k ) + Q̂−k (Xk, b̂

−
k )).

3. Otherwise, |̂b+
k − b̂

−
k | ≥ δ, and we solve for η1 and η2 in equations (2.46) and

(2.47), via η̂1 = ln Ĵk (̂b
−
k , Yk)− β1b̂

−
k and η̂2 = ln Ĵk (̂b

+
k , Yk)− β2b̂

+
k .
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4. Let η̂3 = ln Ĵk(û
0
k, Yk), for û0

k := 1
2
(̂b+
k + b̂−k ).

5. Approximate the (strictly convex) function αk(Yk, ·) in equation (2.48) by the

quadratic approximation gk(uk) = Au2
k + Buk + Ck, where the parameters

A,B,C are determined algebraically so the function goes through the three

points (̂b−k , η̂1), (̂b+
k , η̂2) and (û0

k, η̂3).

Note that the linear part (step 3) of the above approximation is exact, in the sense

that it corresponds to equations (2.46) and (2.47) in Proposition 2.4.1. But of course,

some error can be introduced by the approximation of the parameters η1 and η2. As

for the quadratic part in step 5, for uk ∈ [b−k , b
+
k ], it is indeed an approximation. It

is justified because proposition 2.4.1 shows that this part of the function is known to

be (strictly) convex.

Overall, this construction ensures the strict convexity of the risk function ap-

proximation, while only requiring simple algebra to estimate and evaluate. Thus it

avoids potential difficulties when using non-convex approximations (for example, a

general polynomial function) in the optimization steps. It is possible to have more

sophisticated approximations, such as cubic splines with constraints guaranteeing

convexity. But this comes at the cost of 1) a larger parameter estimation time (since

the parameters must optimized in the cubic spline approach) and 2) a larger func-

tion evaluation time, which is a problem since the approximation must be evaluated

repeatedly. For more about convex spline approximations, see for example Russell

[116], or the classic text by De Boor [48] for splines in general.

Figure 3.1 shows a function Q̂0(X0, ·) resulting from applying the linear-quadratic

approximation to estimate the function Qk(Xk, ·) at step k = 0, over K = 8

steps. For comparison, the sample average estimates of the expected one-step risk

E0[g1(X0, v, Y1)] and the expected risk E0[Ĵ1(ψ(X0, v, Y1))] are shown, as well as their

product E0[g1(X0, v, Y1)]E0[Ĵ1(ψ(X0, v, Y1))]. The two expectations E0[g1(X0, v, Y1)]

and E0[Ĵ1(ψ(X0, v, Y1))] can be loosely interpreted as the building blocks ofQ0(X0, v),
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based on the definition from equation (2.44). But of course their product may not

necessarily equal to Q0(X0, v), as can be seen in the figure, since the random vari-

ables Ĵ1(ψ(X0, v, Y1)) and g1(X0, v, Y1) may be correlated. All of these estimates are

given as functions of v, and their convexity in v is apparent. The error bars represent

one standard deviation of the sample average.

3.3.2 A bound on the approximation error

There are different possibilities to measure the error of the approximation Ĵk

compared to the optimal risk function J∗k . Proposition 3.3.2 below gives a basic

result involving the sup norm, where the aim is only to bound the error coming from

the “deterministic” part of the risk function (involving the decision variable u), while

assuming that the “stochastic” part (involving expectations of functions of Yk) can

be computed exactly.

At step k of the DP backward recursion (i.e., after going from k = K − 1 to

l = k), we have defined a sequence of approximate risk functions (ĴK−1, . . . , Ĵk).

The following proposition gives a bound on the error from calculating Ĵk(Xk) over

the different possible values uk ∈ U of the stock quantity in the state Xk = (uk, Yk).

Proposition 3.3.2 For any Yk,

sup
uk∈U
|Ĵk(uk, Yk)− J∗k (uk, Yk)| ≤ εk(Yk), (3.17)

where

εk(Yk) = Ek[εk+1(Yk+1)] + sup
uk∈U

∣∣∣∣Ĵk(uk, Yk)− inf
v∈U

Ek
[
Ĵk+1 (ψk((uk, Yk), v, Yk+1))

]∣∣∣∣ .
(3.18)

Proof : We prove the result by induction on k. For k = K − 1, the result is trivial,

since by definition Ĵk+1(Xk+1) = J∗K(XK) = L(VK(XK)− V0). Note that we assume
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Figure 3.1: Estimates of the expected one step risk E0[g1(X0, v, Y1)], expected risk

function approximation E0[Ĵ1(ψ(X0, v, Y1))] and Q-function approximation Q̂0(X0, v)
as a function of the trading decision v, for a call option under the GBM model
(s0 = 10, σ = 40%, b = 2%, γ = 5 and K = 8) and a stochastic mesh with

N = 1024 paths. The product E0[g1(X0, v, Y1)]E0[Ĵ1(ψ(X0, v, Y1))] is also indicated

in comparison to Q̂0(X0, v).
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that Yk is fixed, so we will write below Xk(u) := (u, Yk) when we need to specify the

u dependence of the state Xk.

Now assume the result is true for k+ 1. To prove the result for k, we will use the

following two basic inequalities

sup
u∈U

(f(u) + g(u)) ≤ sup
u∈U

f(u) + sup
u∈U

g(u) (3.19)

inf
u∈U

(f(u)− g(u)) ≥ inf
u∈U

f(u)− inf
u∈U

g(u), (3.20)

for f and g any two bounded functions and U ⊆ R. First, by (3.19), we have

sup
u∈U
|Ĵk(Xk(u))− J∗k (Xk(u))| ≤ sup

u∈U

∣∣∣∣Ĵk(Xk(u))− inf
v∈U

Ek[Ĵk+1(ψk(Xk(u), v, Yk+1))]

∣∣∣∣
+ sup

u∈U

∣∣∣∣J∗k (Xk(u))− inf
v∈U

Ek[Ĵk+1(ψk(Xk(u), v, Yk+1))]

∣∣∣∣ .
So the result will follow if we can show that

sup
u∈U

∣∣∣∣J∗k (Xk(u))− inf
v∈U

Ek[Ĵk+1(ψk(Xk(u), v, Yk+1))]

∣∣∣∣ ≤ Ek[εk+1(Yk+1)].

To obtain this inequality, note that by using the induction hypothesis and the ex-

pectation operator,

∣∣∣Ek[Ĵk+1(ψk(Xk, v, Yk+1))]− Ek[J
∗
k+1(ψk(Xk, v, Yk+1))]

∣∣∣ ≤ Ek[εk+1(Yk+1)]. (3.21)

Furthermore, by applying inequality (3.20), we have

inf
v∈U

∣∣∣Ek[Ĵk+1(ψk(Xk, v, Yk+1))]
∣∣∣− inf

v∈U

∣∣∣Ek[J∗k+1(ψk(Xk, v, Yk+1))]
∣∣∣

≤ inf
v∈U

∣∣∣Ek[Ĵk+1(ψk(Xk, v, Yk+1))]− Ek[J
∗
k+1(ψk(Xk, v, Yk+1))]

∣∣∣
The result then follows by combining this with (3.21) and applying the sup operator
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on both sides of the resulting inequality. �

In practice, it may be quite hard to compute the bound εk(Yk) on the right-hand

side of the inequality (3.17). A first obstacle is the evaluation of the expectation

operators Ek[·] in equation (3.18). This can be addressed by approximating the

expectations using the mesh, as in equation (3.4). The results should then hold

assuming that the number of paths N used to construct the mesh (or, more generally,

the number of points N in each mesh grid GNk ) is high enough.

Perhaps more problematic is the computation of the supremum in equation (3.18),

which is applied to a function which is costly to evaluate and may have many local

maxima. As a rough proxy for the global supremum, one possibility is to measure

the maximum error on a small subset of values {umk ∈ U : m = 1, . . . ,M}. These

ideas will be used later in section 3.4 and in numerical experiments, to help define

confidence intervals for the values of the optimal risk function.

Figure 3.2 shows the behavior of an estimate of the approximation error bound

from equation (3.17) as a function of the number of mesh nodes N , for various

number M of values for the discretization of uk. The estimates were computed using

nR = 1000 replications of a stochastic mesh for the problem of hedging a call option

under the GBM model with parameters s0 = 10, σ = 20%, T = 6 months and K = 8.

Overall, the error bound estimates decrease with N , which is expected as the amount

of noise is reduced, although it would only go to 0 if the approximate risk function

Ĵk were actually the optimal risk function J∗k . Increasing M also increases the error

bound estimates ε̂0, as it should, but this effect becomes marginally smaller as M

increases.

Figure 3.3 shows the effect of increasing the number of time steps K on the error

bound estimate ε̂0 for the same setup as above, but with the number of mesh nodes

set at N = 256. As expected, ε̂0 grows with K, and this growth appears to be

exponential, as the relationship is roughly linear on a log-log scale. For the sake of
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Figure 3.2: Approximation error bound estimate ε̂0 as a function of N , for a call
option under the GBM model with s0 = 10, σ0 = 0.2, T = 6 months, K = 8, γ = 1
and b = 0.2%.
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Figure 3.3: Approximation error bound estimate ε̂0 as a function of K, for a call
option under the GBM model with s0 = 10, σ0 = 0.2, T = 6 months, N = 256, γ = 1
and b = 0.2%.
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illustration, fitting the model ε̂0 = αKβ algebraically using the values for K = 1 and

K = 16 with M = 20, one finds α = 0.000142 and β = 1.64.

3.4 Confidence interval for the optimal value

We now recall how one can use a stochastic mesh to obtain a confidence interval

for the optimal risk function value J∗0 (X0) via low and high biased estimators. This

was originally pointed out by Broadie and Glasserman [34] for the American option

pricing problem. Here however, the construction of the low and high biased estima-

tors are inverted, due to the fact that in the hedging problem we seek to minimize

an expected loss and not maximize an expected value.

First, note that any policy π is suboptimal, meaning that Jπ0 (X0) ≥ J∗0 (X0). So

computing a standard (unbiased) Monte Carlo estimate Ĵπ0 (X0) of Jπ0 (X0) will lead

to a high biased estimator ĴH0 (X0) of J∗0 (X0). That is, simulate N independent

paths {(Y i
k : k = 0, . . . , K) : i = 1, . . . , N} and apply the policy π to compute the

terminal portfolio value V π,i
K along each path, to obtain the unbiased estimator of

Jπ0 (X0) = E0[L(V π
K − V0)] given by

ĴH0 (X0) :=
1

N

N∑
i=1

L(V π,i
K − V0). (3.22)

Broadie and Glasserman [34] refer to this as the path estimator.

Furthermore, as we saw earlier in section 3.2.2, the stochastic mesh method ap-

plied to our hedging problem yields an estimator of the optimal risk function via

equations (3.9) and (3.10). This estimator is called the mesh estimator by Broadie

and Glasserman [34]), and is a low biased estimator of the optimal risk function :

Proposition 3.4.1 The mesh estimator Ĵk(Xk) is a low biased estimator of J∗k (Xk),

∀k = 0, . . . , K and ∀Xk ∈ X .
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Proof : For k = K and any XK ∈ X , the result is trivial since both ĴK(XK) and

J∗K(XK) are simply equal to the loss function L(V (XK) − V (X0)). To see the low

bias for a given step k < K, assume that the estimator is low biased for step k + 1,

i.e.

Ek+1

[
Ĵk+1(Xk+1)

]
≤ J∗k+1(Xk+1),∀Xk+1 ∈ X . (3.23)

Consider now the following obvious inequality

Ek

[
inf
v∈U

Q̂k(Xk, v)

]
≤ Ek

[
Q̂k(Xk, v)

]
,∀v ∈ U , (3.24)

and then minimize the right-hand side with respect to v, which yields

Ek
[
Ĵk(Xk)

]
= Ek

[
inf
v∈U

Q̂k(Xk, v)

]
≤ inf

v∈U
Ek
[
Q̂k(Xk, v)

]
, (3.25)

where the equality on the left-hand side comes from the definition of Ĵk(Xk). We will

show that the right-hand side of inequality (3.25) is bounded above by J∗k (Xk), ∀Xk ∈
X , which will complete the proof.

Using the definition of the function Q̂k from equation (3.9) and applying the

expectation and minimization operators, we see that

inf
v∈U

Ek
[
Q̂k(Xk, v)

]
= inf

v∈U
Ek

[
1

N

N∑
j=1

wk,je
−γ(Vk+1(ψ(Xk,v,Y

j
k+1))−Vk)Ĵk+1(v, Y j

k+1)

]
.

But now conditioning on Yk+1 and then using the hypothesis from equation (3.23)

to the right-hand-side, we obtain

inf
v∈U

Ek
[
Q̂k(Xk, v)

]
= inf

v∈U
Ek

[
1

N

N∑
j=1

wk,je
−γ(Vk+1(ψ(Xk,v,Y

j
k+1))−Vk)Ek+1

[
Ĵk+1(v, Y j

k+1)
]]

≤ inf
v∈U

Ek

[
1

N

N∑
j=1

wk,je
−γ(Vk+1(ψ(Xk,v,Y

j
k+1))−Vk)J∗k+1(v, Y j

k+1)

]
.
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The random variable inside this last expectation is the (unbiased) mesh estimator of

Qk(Xk, v), so we have

inf
v∈U

Ek
[
Q̂k(Xk, v)

]
≤ inf

v∈U
Qk(Xk, v) (3.26)

= J∗k (Xk), (3.27)

as required. �

By applying the DP algorithm recursively on the approximation functions Ĵk, it

follows that the mesh estimator Ĵk(Xk) is low biased for every stage k = 0, 1, . . . , K−
1. However, in the case of the hedging problem, there is an additional source of error

introduced by the risk function approximations Ĵk+1(v, Y i
k+1) used in equation (3.7).

As we saw in section 3.3.2, this error can be bounded above by some εk, but this

bound typically cannot be computed exactly.

Here, we define an approximation ε̂k(Y
i
k ) of εk(Y

i
k ) at each node Y i

k of the mesh

by computing

ε̂k(Y
i
k ) =

1

N

N∑
j=1

wk,i,j ε̂k+1(Y j
k+1) + max

um∈U ,m=1,...,M

∣∣∣∣Ĵk(um, Y i
k )−min

v∈U
Q̂k(u

m, Y i
k , v)

∣∣∣∣ .
(3.28)

The first term may be an unbiased estimate of Ek[εk+1(Yk+1)], depending on the

choice of weights (see section 3.2.3). The second term will introduce some bias, but

this should decrease as the number M of values for u is increased. So for N (number

of paths) and M high enough, we can regain an (approximately) low biased estimator

ĴLk (Xk) for J∗k by subtracting ε̂k from the risk function approximation, i.e., let

ĴLk (Xk) := Ĵk(Xk)− ε̂k(Xk). (3.29)

Now suppose we have done a numerical experiment where we computed nR inde-
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pendent replications of the estimates ĴL0 (X0) and ĴH0 (X0) of J∗0 (X0), and label their

sample averages as J
L

0 and J
H

0 , respectively. Assuming normality for the distribu-

tions of Ĵ0

L
and Ĵ0

H
, we can define a level 1 − α confidence interval on J∗0 (X0) in

the usual way as [
J
L

0 − zα/2
sL
√
nR
, J

H

0 + zα/2
sH
√
nR

]
, (3.30)

where zα/2 is the 1 − α/2 quantile of the normal distribution and sL and sH are

respectively the sample standard deviations of ĴL0 and ĴH0 .

3.5 Convergence of mesh estimators

In section 3.4, we discussed two possible (mesh and path) estimators of the op-

timal risk, one low and the other high biased. In the context of American option

pricing, the high and low biased stochastic mesh estimators were shown by Broadie

and Glasserman [35] to converge to the true option values. Avramidis and Matzinger

[8] provide further analysis that yields an asymptotic upper bound on the probability

of error of the mesh based estimate as a function of N , and show that it goes to 0

as N →∞.

In a different context, Rust [117] also showed the convergence of a stochastic mesh-

type algorithm (the random Bellman operator method). He showed that it allowed to

solve with polynomial computational complexity a particular class of Markov decision

problems, which uses a d-dimensional continuous state space but a finite action set

A. Explicitly, an upper bound on the worst-case complexity of the K-stage version

of the problem is given by

compwor−ran(ε, d) = O

(
Kd4|A|5

ε4

)
, (3.31)

where ε denotes the approximation error, and some additional constants are absorbed

in the O(·) notation.
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Here, we provide an informal argument applicable to our setting. Let m̂ =

1
N

∑N
i=1 Z

i, with the Zi i.i.d. samples from some random variable Z, be a standard

Monte Carlo estimator of the expectation E[Z]. First, taking the variance σ2
N(m̂)

shows that σ2
N(m̂) ∈ O(N−1). Thus the standard deviation σN(m̂) is in O(N−1/2).

Taking the approximation error ε to be given by the standard deviation, we then

have also ε ∈ O(N−1/2). And since the computational cost τ is proportional to the

number of paths N (again, for standard MC), we can write ε ∈ O(τ−1/2). However,

in the case of the stochastic mesh, computing the weights for each consecutive pairs

of states implies work τ of the order O(N2). So assuming that the standard deviation

of an estimator m̂ computed on a stochastic mesh is the same as for standard MC,

we should have that τ ∈ O(ε−4).

The convergence of the high and low biased mesh estimators for the hedging

problem is illustrated in section 5.3.

3.6 Conclusion

In this chapter, we showed how the existing stochastic mesh method for American

option pricing could be applied to our hedging problem from chapter 2. This was

done by associating a one dimensional function Ĵk(·, Y i
k ) at each mesh node, instead

of a single value (i.e. the option’s price), in order to account for the policy dependent

part of the state (the stock quantity). We made this construction explicit by propos-

ing a linear-quadratic approximation for the function ln Ĵk(·, Y i
k ). Furthermore, we

provided some bounds on the error coming from the deterministic part of the approx-

imation, assuming that there was no error from the stochastic part, i.e. supposing

that all expectations were known exactly. We then discussed how a confidence in-

terval can be constructed for the optimal risk, using a low biased mesh estimator

and a high biased path estimator, as is already known from the original Stochastic

Mesh method. Here, however, the fact that we require another approximation to in-
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clude the stock price dependence to the risk function could make the mesh estimator

no longer low biased, so we propose to regain the low bias property by subtracting

an estimate of the above mentioned error bound. Finally, we discussed briefly the

convergence of the mesh estimators.
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CHAPTER 4

PRICE DYNAMICS AND HEURISTIC POLICIES

In this chapter, we provide some details about two separate elements required to

construct the simulation experiments presented later in this thesis and to interpret

their results. Section 4.1 first defines a stochastic volatility model for the stock price

dynamics. Simulating paths from the model defines mesh states and the correspond-

ing probability density is used in computation of the mesh weights (see section 3.2.3).

Section 4.2 follows by describing various heuristic policies from the literature, which

will serve as benchmarks for the results for stochastic mesh based policies.

4.1 The exponential Ornstein-Uhlenbeck stochastic volatility model

This section describes a stochastic volatility model for the dynamics of stock

prices and the details of a discrete time sampling procedure, as well as some moti-

vation for these choices. We focus on the exponential Ornstein-Uhlenbeck (expOU)

stochastic volatility model, a model where the log of the volatility of returns follows

an Ornstein-Uhlenbeck (OU) process. This specific model has been studied for ex-

ample by Sandmann and Koopman [118], Jacquier, Polson and Rossi [74], Fouque,

Papanicolaou and Sircar [55], [56], Masoliver and Perelló [102]. Stochastic volatility

models where the log of the volatility follows an OU process can be traced back at

least to Scott [123]. The model is presented below in two forms: the first one is the

model itself (the basic form), and the second one introduces two additional variables

that are correlated to the price and volatility shocks at each step. All of these vari-

ables are assumed to be observable by the investor, so the second form represents a

model where more information is available when making decisions.



4.1.1 Basic form

In continuous time, the model is defined by the following stochastic differential

equations :

d ln s(t) =

(
r − q − 1

2
σ2(t)

)
dt+ σ(t)dB1(t), (4.1)

d lnσ(t) = κ (lnσ − lnσ(t)) dt+ σvdB2(t). (4.2)

Here, s(t) is the price, σ(t) is the (instantaneous) volatility of returns, r is the risk-free

rate, q is the dividend yield, the Bi(t), i = 1, 2 are Brownian motions with correlation

ρ, lnσ is the long term mean of the log-volatility, κ is a speed of adjustment parameter

and σv, the volatility of log-volatility.

In discrete time, we can integrate exactly the process for the log volatility and

obtain

lnσk+1 = e−κ∆t lnσk + lnσ(1− e−κ∆t) + σv

√
1− e−2κ∆t

2κ
z2,k, (4.3)

where z2,k is a N(0, 1) variate, and where sk = s(tk), σk := σ(tk). There is no known

exact formula for the transitions of the discrete time process (s0, s1, . . . , sK), so we

use the Euler discretization for ln s(t), given by

ln sk+1 = ln sk + (r − q − 1

2
σ2
k)∆tk+1 + σk

√
∆tk+1z1,k, (4.4)

where z1,k is a N(0, 1) variate, with correlation ρ with z2,k. The market information

vector Yk at step k then becomes Yk = (sk, σk)
T .

Equations (4.3) and (4.4) are used throughout this thesis to generate paths of

the underlying stock price. We set r = q = 0, so the only parameters of interest are

(κ, σv, σ, ρ), as well as the initial process values Y0 = (s0, σ0)t.

The estimation of the parameters of the above stochastic volatility model is not

a simple task and could be done in different ways. We estimate the parameters
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(κ, σv, σ, ρ) through a moment-based procedure described in Masoliver and Perelló

[102], section 4. We use as inputs the price series of the S&P 500 index from the 1950

to 2013 inclusively. The estimation results are given in table 4.I for the full 64 year

period, as well as for some 32, 16 and 8 year periods, in order to provide a sense of

the stability of the parameters through time. But also, the different sets of parameter

values indicate what ranges of values are reasonable to use for numerical experiments.

Note that two other quantities, E[σ] and β, are given in the rightmost columns of

table 4.I. They are used in the estimation procedure and represent respectively the

expectation of the stationary distribution of σ(t) and the quantity β := σ2
v/(2κ).

Table 4.I: Moment-based estimates of the parameters of the expOU model for various
historical periods.

Period T (years) κ σv σ ρ E[σ] β

1950-2013 64 2.7 176 % 8.7 % -45 % 15.5 % 0.581
1950-1981 32 7.8 191 % 9.6 % -50 % 12.1 % 0.234
1982-2013 32 2.9 183 % 10.3 % -51 % 18.3 % 0.578
1950-1965 16 12.2 292 % 7.8 % -19 % 11.1 % 0.35
1966-1981 16 8.8 151 % 11.4 % -56 % 13 % 0.13
1982-1997 16 3.5 240 % 6.7 % -24 % 15.5 % 0.834
1998-2013 16 4.6 169 % 15.2 % -83 % 20.7 % 0.308
1950-1957 8 9.9 245 % 8.8 % -22 % 12 % 0.305
1958-1965 8 11.1 299 % 6.7 % -60 % 10 % 0.404
1966-1973 8 19.7 244 % 9.9 % -78 % 11.5 % 0.151
1974-1981 8 6.5 116 % 13 % -39 % 14.4 % 0.103
1982-1989 8 3.4 240 % 7.7 % -36 % 18 % 0.853
1990-1997 8 2.3 110 % 9.6 % -31 % 12.5 % 0.26
1998-2005 8 10.5 175 % 16.4 % -54 % 19 % 0.146
2006-2013 8 4.1 171 % 15.5 % -82 % 22.2 % 0.357

Min 2.3 110 % 6.7 % -83 % 10 % 0.103
Max 19.7 299 % 16.4 % -19 % 22.2 % 0.853

In empirical works about stock price dynamics, it is more typical to see discrete

time models, because the parameters are then easier to estimate (see for example

Harvey and Shephard [66], Pastorello, Renault and Touzi [107]). On the other hand,
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continuous time models tend to be preferred in theoretical works regarding option

pricing, because they can yield formulas in closed form (e.g. the Heston model [70]),

although this is not necessarily the case. Ultimately, the intended application de-

termines what is an appropriate model. In our context, the model is useful because

it allows for a more realistic description of stock price dynamics than a simple geo-

metric Brownian motion. Yet it does not introduce additional complications when

applying stochastic mesh methods, because it has a well-defined transition density

(as discussed in section 3.2.3).

Indeed, the choice of modeling the log of the volatility instead of the volatility

itself ensures that there are no issues with negative values when sampling from the

process in discrete time. Here in fact, equation (4.3) yields values from the exact

distribution of σ(t) (with the association σ(tk) = σk). Negative values could oc-

cur for example for the Heston model [70] when discretizing using a Euler scheme.

Sampling schemes that are corrected to avoid negative values have been studied (see

for example Lord, Koekkoek and van Dijk [99] and Andersen [5]). But the result-

ing approximations typically involve singular transition densities, which make the

stochastic mesh method more complicated to use (see section 3.2.3). Note that other

well-known classes of models such as the discrete time GARCH family also have

singular transition densities.

It has been argued by many authors that stochastic volatility models alone do not

explain stock price patterns as well without jumps (see for example Cont and Tankov

[41] or Gatheral [58]). In the above model, we did not include a jump term because

it would require more parameters to include in the estimation process, and bring up

technical questions about the modeling and simulation of rare events (jumps) which

would bring us too far away from the focus of this thesis. Nevertheless, stochastic

volatility models without jumps are still relevant in practice, as they are appropriate

to model stock index returns (see Christoffersen, Heston and Jacobs [38]).
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4.1.2 An extension using additional information variables

Investors and traders are constantly looking to take into account available infor-

mation to help them improve their investment decisions. If some new information

variable qk were linked to the price variations sk+1 − sk or the volatility variations

vk+1− vk (e.g., if they are correlated), it could perhaps be exploited in the optimiza-

tion problem used to determine the hedging policy, in order to reduce risk further.

For example, one could consider links between macro-economic variables and stock

price and volatility (see for example Corradi, Distaso and Mele [42] or Engle, Ghysels

and Sohn [54]). With this in mind, we introduce below an extension to the expOU

model of section 4.1.1 that will allow us to test how including additional information

can impact optimal trading decisions. Furthermore, this will provide us with a higher

dimensional problem on which to test stochastic mesh methods.

Consider again the discrete model given by equations (4.3) and (4.4). The uncer-

tainty at each step k comes from the two standard normal random variables z1,k and

z2,k with correlation ρ. We introduce two additional random variables q1,k and q2,k,

assumed defined and observable for every step k = 0, . . . , K − 1, so that the mar-

ket information vector becomes the 4-dimensional vector Y I
k = (sk, σk, q1,k, q2,k)

T ,

instead of the 2-dimensional vector Yk = (sk, σk)
T . To relate q1,k and q2,k to the

expOU model, we start by rewriting z1,k and z2,k as

z1,k = W1,k (4.5)

z2,k = ρW1,k +
√

1− ρ2W2,k, (4.6)

where W1,k and W2,k are independent N(0, 1) variates. Assume now that q1,k ∼
N(0, 1) and q2,k ∼ N(0, 1) are independent and that we can decompose W1,k and
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W2,k as

W1,k = α1q1,k +
√

1− α2
1r1,k (4.7)

W2,k = α2q1,k +
√

1− α2
2r2,k (4.8)

where r1,k, r2,k are also N(0, 1) variates, independent with each other and with q1,k

and q2,k. The constants α1, α2 ∈ [0, 1] represent the loadings for the factors q1,k and

q2,k, for all k = 0, . . . , K − 1. From equations (4.7) and (4.8), we see that W1,k

and W2,k are linear combinations of normal variables, and thus are also normally

distributed. Furthermore, it is easy to check that W1,k and W2,k have expectation

0 and variance 1 (using the independence between qi,k and ri,k, for i = 1, 2), so the

W1,k,W2,k are indeed independent N(0, 1) variates, ∀k.

Let XI
k = (ck, uk, Y

I
k ) ∈ X I for

X I := {(ck, uk, Y I
k ) : ck ∈ R, uk ∈ U , Y I

k ∈ Y × R2}, (4.9)

the extended state space, and denote the corresponding optimal risk function J I,∗k :

X I → [0,∞). The following proposition shows that using the extended market

information vector Y I
k instead of Yk will not to increase the expected risk.

Proposition 4.1.1 For all XI
k ∈ X I , k = 0, . . . , K − 1, we have

Ek
[
J I,∗k (XI

k)
∣∣∣Yk] ≤ J∗k (Xk). (4.10)

Proof : Assume that the result is true for k + 1, i.e.,

Ek+1

[
J I,∗k+1(XI

k+1)
∣∣∣Yk+1

]
≤ J∗k+1(Xk+1), (4.11)
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where

XI
k+1 = ψ(XI

k , v, Y
I
k+1). (4.12)

We start by noting that by definition, we have

J I,∗k (XI
k) := min

v∈U
Ek
[
J I,∗k+1(XI

k+1)
∣∣∣Y I

k

]
. (4.13)

Hence, taking expectations conditional on Yk on both sides of equation (4.13),

Ek
[
J I,∗k (XI

k)
∣∣∣Yk] = Ek

[
min
v∈U

Ek
[
J I,∗k+1(XI

k+1)
∣∣∣Y I

k+1

] ∣∣∣∣Yk] . (4.14)

Now, it is clear that

min
v∈U

Ek
[
J I,∗k+1(XI

k+1)
∣∣∣Y I

k

]
≤ Ek

[
J I,∗k+1(XI

k+1)
∣∣∣Y I

k

]
, (4.15)

so taking expectations conditional on Yk on both sides and minimizing the right-hand

side with respect to v yields

Ek

[
min
v∈U

Ek
[
J I,∗k+1(XI

k+1)
∣∣∣Y I

k

] ∣∣∣∣Yk] ≤ min
v∈U

Ek
[
J I,∗k+1(XI

k+1)
∣∣∣Yk] , (4.16)

Then, combining equation (4.14) and inequality (4.16), we obtain

Ek
[
J Ik (XI,∗

k )
∣∣∣Yk] ≤ min

v∈U
Ek
[
J I,∗k+1(XI

k+1)
∣∣∣Yk] . (4.17)

But using the induction hypothesis from equation (4.11) and taking expectations

conditional on Yk, we see that

Ek
[
J I,∗k+1(XI

k+1)
∣∣∣Yk] ≤ Ek

[
J∗k+1(Xk+1)

∣∣Yk] . (4.18)
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So equation (4.17) becomes

Ek
[
J Ik (XI,∗

k )
∣∣∣Yk] ≤ min

v∈U
Ek
[
J∗k+1(Xk+1)

∣∣Yk] . (4.19)

Since the right-hand side equals J∗k (Xk) by definition, this proves the result. �.

4.2 Some heuristic policies

In practice, hedging policies are not necessarily based on some optimality crite-

rion. For example, option traders usually hedge their portfolio by using some in-house

modification of the Black-Scholes-Merton (BSM) delta hedging policy, such as using

the model with an implied volatility parameter that varies as a function of the stock

price or hedging more or less frequently when costs are higher (see for example Haugh

and Taleb [67]). Such policies are known as heuristics. That is, policies that are not

necessarily optimal, yet that can often provide acceptable results in practice and are

relatively fast to compute.

We already described BSM delta hedging in section 1.2. We will consider two

other analytical policies which takes costs into account: the Whalley-Wilmott asymp-

totic approximation [136] and the parametric approximation by Zakamouline [138].

These policies where developped in the (one-dimensional) geometric Brownian mo-

tion setting in continuous time, so it is not clear that they should always perform

well under different conditions, such as for the two-dimensional discrete time model

described later in section 4.1. With this in mind, we also consider local hedging,

which can take more general price dynamics into account, yet requires a simpler op-

timization procedure than full dynamic programming. This is in fact an application

of the one-step lookahead heuristic. See Bertsekas [15], sections 6.3 and 6.4, for gen-

eral background on one-step lookahead policies. For an application to hedging, see

Primbs [111], where the hedging problem under costs is formulated as a quadratic
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regulator problem with constraints.

4.2.1 Whalley-Wilmott hedging policy

Whalley and Wilmott [135], [136] do an asymptotic analysis of the hedging prob-

lem as defined in Hodges and Neuberger [71] and Davis, Panas and Zariphopoulou

[47]. This corresponds to our setting, including costs and using the exponential loss

function, but in continuous time and with a constant (non-stochastic) volatility. In

all of the below formulas, we use the indices k to denote the discrete time steps tk

used in our formulation of the hedging problem, but note that the original expressions

are valid in continuous time.

Using formal series expansions, they derive a simple approximate expression for

the hedging bandwidth defining the no-transaction region around the Black-Scholes

delta (see [136], section 4). In the case of small proportional costs equal to some

b > 0 in the financing equation (2.4), the no-transaction region is given by

−∆k(sk)− Zk(sk) ≤ uk ≤ −∆k(sk) + Zk(sk), (4.20)

where uk is the stock quantity held at time tk, ∆k(sk) is the Black-Scholes delta from

equation (1.2) and

Zk(sk) =

(
3b

2γ
er(T−tk)

)1/3

|Γ(tk, sk)|2/3, (4.21)

where Γ(tk, sk) = ∂2h(t, s)/∂s2 is the second derivative of the Black-Scholes price of

the option, with respect to the stock price s, evaluated at (tk, sk). Here again, γ is

the risk aversion parameter for the negative exponential loss function.

In the same context, Barles and Soner [9] apply a different asymptotic analysis,

but they do not provide an explicit form for the hedging bands, i.e. they are given
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as

Zk(sk) =

(
1

bskγ3/2

)
g
(
(bsk)

2γΓ(tk, sk)
)
, (4.22)

for some non-linear function g(x) and using a particular volatility adjustment for

computing the functions ∆k(sk) and Γk(sk). Kallsen and Muhle-Karbe [76] use a

formal series expansion as in [135], but use it to provide an approximation of the

optimal hedging bands as

Zk(sk) =

(
3bsk
2γ

d〈ϕ〉k
〈s〉k

)1/3

, (4.23)

where 〈ϕ〉k and 〈s〉k are the local quadratic variations of the “frictionless optimizer”

(i.e. the delta in the case without costs) and of the underlying process, respectively.

Albanese and Tompaidis [2] also use asymptotic analysis, but in their case the goal

is to derive approximate expressions for the optimal time between transactions and

the optimal volatility adjustment to make to account for transaction costs.

Simulation experiments by Mohamed [105] were the first to provide numerical

evidence that the Whalley-Wilmott policy works well in practice when compared to

some heuristic approaches to hedging with transaction costs. The problem consid-

ered was that of hedging a call option, using the 5th percentile of the profit and

loss distribution as a risk measure, for one particular specification of the option and

market parameters. Martinelli and Priaulet [101] undertook a more systematic em-

pirical testing of hedging policies under costs. They used a mean-variance framework,

focusing on the expected transaction costs and the standard-deviation of hedging er-

rors, and considered the effect of various problem parameters such the option strike

price and volatility level, as well as the effect of using a volatility level based on a

GARCH(1,1) process instead of a fixed volatility. One of the hedging methods they

consider is with a delta bandwidth, but this bandwidth is fixed, and not a function

of the underlying price as in the Whalley-Wilmott policy. Nevertheless, their results
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provide numerical evidence that hedging bands based on the option delta often pro-

vide better hedging than hedging bands around the underlying price or than using

various versions of fixed time hedging (including multi-time scale hedging, where

different fractions of the hedge are computed). Interestingly, the results showed that

the relative performance of the delta bandwidth method was not as good under the

GARCH(1,1) volatility setup in cases when a low hedging error is preferred.

4.2.2 Parametric approximation of Zakamouline

Within the negative exponential risk framework in continuous time, Zakamouline

[138] posits a general parametric form for the optimal policy, based on the functional

form of asymptotic solutions derived by Whalley and Wilmott [136] and Barles and

Soner [9]. That is, the policy is based on two hedging bands as in equation (4.20),

but with a delta ∆k(sk, σm) depending on a modified volatility parameter σm and

with the hedging band width Zk defined as a sum of two functions Zk = Hw + H0,

with all of σm, Hw and H0 also being functions of a set of unknown constants. For

example, the function H0 is defined by

H0(t, s, σ) = ασβ
1

bβ
2

(γs)β3(T − t)β4 , where βi ∈ R, i = 1, . . . , 4. (4.24)

The constants βi are specified through an optimization procedure based on linear

regression to yield a good fit to the optimal policy, as approximated by the numerical

solution of a PDE (see Clewlow and Hodges [40]). This was done over a wide range

of values for the various (known) parameters of the problem, such as the risk aversion

γ ∈ [0.05, 15], maturity T ∈ [0, 1.5], costs b ∈ [0.001, 0.02] and volatility σ ∈ [0.1, 0.4]

for the problem of hedging a call option under the BSM model (for s0 = 100).

Explicitly, the Zakamouline approximation, as defined by equations (10), (16),
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(17) and (18) in [138], uses a delta given by

∆k(sk, σm) =
∂hk(sk, σm)

∂sk
, (4.25)

with

σ2
m(tk, sk, σ) = σ2 (1 +Hσ(tk, sk, σ)) ,

Hσ(tk, sk, σ) = 4.76
b0.78

σ0.25

(
γs2

k|Γ(tk, sk, σ)|
)0.15

.

Furthermore, the hedging band size Zk from (4.20) is defined by

Zk(tk, sk, σ) = Hw(tk, sk, σ) +H0(tk, sk, σ) (4.26)

where

H0(tk, sk, σ) =
b

γskσ2(T − tk)
,

Hw(tk, sk, σ) = 1.12
b0.31

σ0.25

(
|Γk(sk, σ)|

γ

)0.5

.

The empirical performance is very good for the case of hedging a call option under

the BSM model (by construction), but it is not clear how well the policy should do

under other setups (i.e. different derivative to hedge or price dynamics).

4.2.3 One step lookahead and local hedging

We are also interested in heuristics that can take more complex (multi-dimensional)

price dynamics into account if necessary, but without trying to solve the full dynamic

program given by equation (2.3). One possibility, which we refer to as local hedging,
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is to consider only the one-step programs

min
v∈U

Ek[e
−γ(Vk+1(Xk+1)−Vk(Xk))], (4.27)

where Xk+1 = ψ(Xk, v, Yk+1), at each time step k = 0, . . . , K − 1. Then define a

policy π = (µ1, . . . , µK) with decisions µk+1(Xk) = v∗ given by the optimal solution

to equation (4.27). This strategy is simple to implement (as there is no optimal

risk function to keep track of at later steps), yet still takes into account the tradeoff

between reducing portfolio volatility and incurring transaction costs.

This policy has already been studied extensively in the quadratic risk setting

under the name local risk-minimization (see Lamberton, Pham and Schweizer [83],

Schweizer [122] and the references therein). Among other results, Schweizer [121]

showed that the local hedging policy is optimal for the global problem when the

objective is quadratic, there are no transaction costs and the price process is a mar-

tingale (but not if the process has a drift). The performance of this policy in the

case without costs was compared to that of a policy minimizing a global quadratic

objective by Heath, Platen and Schweizer [69].

Here we show a similar result applicable to the negative exponential risk function,

but with an added condition on the increments of the market process :

Proposition 4.2.1 Let the loss function be given by L(x) = e−γx. Assume that

there are no transaction costs and that the market process is a martingale. Assume

also that that the market process increments Yk+1 − Yk are independent. Finally, let

π be the local hedging policy, with decisions µk+1(Xk) at each step k = 0, . . . , K − 1

defined as the values v∗ that solve the one-step program (4.27). Then π is optimal

for the global hedging problem.

Proof : Here we use again the notation from section 2.4, specific to the case of

the negative exponential loss function. Assuming there are no costs, we have that
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the optimal transaction at stage k + 1 is v∗ = b+
k+1 = b−k+1. So there are no no-

transaction boundaries and the optimal risk function G∗k+1(Xk+1) only depends on

the market vector Yk+1. But if there are no costs and the market vector process

{Yk : k = 0, . . . , K} is a martingale with independent increments, then the portfolio

value process {V π
k : k = 0, . . . , K} is also a martingale with independent increments.

Now note that the risk function Gπ
k(Xk) from equation (2.42) can be expressed as

Gπ
k(Xk) = Ek[e

−γ
∑K−1
j=k (V πj+1−V πj )], (4.28)

for any policy π, and in particular for the optimal policy π∗. So by the independence

of the increments V π
k+1−V π

k , the expected risk function Rk from equation (2.44) can

be separated as the product

Rk(Xk, v) = Ek[e
−γ(V (ψ(Xk,v,Yk+1))−V (Xk))]× Ek[G

∗
k+1(ψ(Xk, v, Yk+1))], (4.29)

where the second term only depends on Yk and not on v. It follows that the decisions

for the local hedging policy are the same as those for the (global) optimal hedging

policy, which proves the result. �.

In the case with costs, local hedging could still do well if costs are low relative to

the underlying asset’s volatility σ. More precisely, this should hold true especially

if transaction costs a + bsk are low relative to the variance of the price process over

one step (approximately s2
kσ

2
k∆tk). Thus we can expect that local hedging under

non-zero costs should be closest to the optimal solution as the size of the time steps

∆tk gets larger.

More generally, given an approximation Ĵk of the optimal risk function J∗k , we

can define decision functions µk+1 by

µk+1(Xk) = arg min
v∈U

Ek[e
−γ(Vk+1(Xk+1)−Vk(Xk))Ĵk+1(Xk+1)], ∀Xk ∈ X , (4.30)
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where Xk+1 = ψ(Xk, v, Yk+1), for k = 0, . . . , K−1. This yields the one-step lookahead

(1SL) policy π(1) = (µ1, . . . , µK) associated with Ĵk+1. Local hedging can thus be

interpreted as 1SL applied to a constant approximate risk function (say Ĵk+1(Xk+1) =

1,∀Xk+1 ∈ X ).

4.2.4 Local hedging approximation

To obtain a better intuitive sense about the local hedging policy, we would like

to consider the first few terms of a series expansion of the two boundary Q-functions

Q±k for the local hedging objective. For this, we first write Q±k (Xk, v) as Q±k (Xk, v) =

Ek [L(r±(ω))], for L(x) := e−γx and r±(ω) := v∆sk+1(ω) + ∆hk+1(ω)±φ(sk)(v−uk),
and ω ∈ Fk+1. We then apply the stochastic Taylor’s Theorem (see theorem 2.1.1)

to the functions L(r+(ω)) and L(r−(ω)), which yields

L(r±(ω)) = L(0)+L(1)(0)r±(ω)+
1

2
L(2)(0)(r±(ω))2 +

1

3!
L(3)(ξ±(ω))(r±(ω))3, (4.31)

for two measurable functions ξ+(ω) and ξ−(ω). Using the fact that L(0) = 1,

L(1)(0) = −γ, L(2)(0) = γ2 and L(3)(x) = −γ3e−γx, we can write more explicitly

L(r±(ω)) = 1− γr±(ω) +
γ2

2
(r±(ω))2 − γ3

3!
(e−γξ

±(ω))(r±(ω))3. (4.32)

And finally, after taking expectations, we see that the functions Q±k can be written

as

Q±k (Xk, v) = 1−γEk
[
r±(ω)

]
+
γ2

2
Ek
[
(r±(ω))2

]
− γ

3

3!
Ek
[
(e−γξ

±(ω))(r±(ω))3
]
. (4.33)
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Thus, ignoring the term in O(γ3), we have the approximation

Q±k (Xk, v) ≈ 1∓ γφ(sk)(v − uk)−
γ2

2
Ek
[(
v∆sk+1 + ∆hk+1 ± φ(sk)(v − uk)

)2
]
.

(4.34)

Recall from equations (2.22) and (2.23) that the transaction boundaries b−k (Xk)

and b+
k (Xk) minimize the functions Q+

k (Xk, ·) and Q−k (Xk, ·), respectively. Thus

assuming that b−k (Xk) and b+
k (Xk) both lie inside an open set U◦ ⊂ U , with U being

the set of admissible trading decisions, then the b±k (Xk) are given as the solutions of

the first order optimality condition ∂Q±k (Xk, v)/∂v = 0. It then follows easily from

approximation (4.34) that b−k (Xk) and b+
k (Xk) are given (again, approximately) by

b±k (Xk) ≈
1

Ek[∆s2
k+1] + φ(sk)2

(
−(Ek[∆sk+1∆hk+1]− φ2(sk)uk)±

φ(sk)

γ

)
. (4.35)

Note that β := Ek[∆sk+1∆hk+1]/Ek[∆s
2
k+1] corresponds to the linear regression co-

efficient of ∆hk+1 with respect to ∆sk+1 (known in finance as the beta). So making

the approximation β ≈ ∆BSM
k (the Black-Scholes-Merton delta), which is reasonable

if the time interval ∆t = tk+1 − tk is small, we can re-write equation (4.35) as

b±k (Xk) ≈
1

1 + Z

(
−∆BSM

k + ukZ ±
Z

φ(sk)γ

)
, (4.36)

where Z = φ(sk)
2/Ek[∆s

2
k+1].

The local hedging approximation policy should only do well in the restrictive case

where both unit costs φ(sk) and risk aversion γ are low. Nevertheless, we try it out

as a policy since it is even easier to compute than local hedging, as no numerical

optimization is involved. Furthermore, if the local hedging objective needs to be

estimated by Monte Carlo simulation, the policy will contain some noise, which is

not the case with the analytic approximation given by equation (4.36).
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4.3 Conclusion

In the first part of this chapter, we presented the exponential Ornstein-Uhlenbeck

model, which is an extension of the basic geometric Brownian motion model that

allows for a mean-reverting stochastic volatility. We also estimated the value of its

parameters for the S&P 500 index over various time periods, so that our simulation

experiments are based on realistic parameter values, though parameters chosen for

experiments may not necessarily correspond to a specific time period.

We further described one way in which this model could be extended by including

two additional variables, representing information available to the trader that is

correlated to the price and volatility movements. This extension has not been studied

previously in the litterature, and was introduced here to allow both to test the

possible impact of including extra information on the hedging solutions and to test

stochastic mesh methods on a higher dimensional problem, i.e. 4 dimensions for

the mesh states instead of 2. To our knowledge, the stochastic mesh method has

not yet been tested on models other than (possibly multi-dimensional) geometric

Browian motion. But for our hedging problem, we consider only one underlying

asset, because of the difficulty of modelling the risk as function of the stock quantity.

Hence a geometric Browian motion process with d > 1 dimensions is not a natural

example to use in this setting.

In the second part of the chapter, we described some well-known heuristics for

the problem of hedging under transaction costs. The heuristics presented all include

the notion of hedging bands and an associated no-transaction region. Two of them

are specifically designed for the context of negative exponential risk, namely the

Whalley-Wilmott and the Zakamouline approximations. We also considered local

hedging, which corresponds to the one-step lookahead policy applied to a constant

risk function. Similar to the results from Schweizer [121] for the quadratic risk case,

we showed in proposition 4.2.1 for the case of negative exponential risk that local
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hedging was optimal when there are no costs. Other application of the one-step looka-

head approach to more general risk function approximations were not considered due

to time constraints. Finally, we derived in section 4.2.4 an analytical approximation

to local hedging in terms of hedging bands.
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CHAPTER 5

NUMERICAL RESULTS FOR THE BASIC MESH CONSTRUCTION

In this chapter, we provide some numerical illustrations to the theory developed

so far and details as to how these numerical results are obtained. We start in section

5.1 by an overview of the MeshHedging Java library, which was developed specifically

to perform numerical experiments for this thesis. Section 5.2 then presents a general

algorithm used in the MeshHedging library for estimating the risk of various policies.

This includes both (low biased) estimates of the optimal risk obtained from the

stochastic mesh construction and (high biased) out-of-sample estimates of the risk

from heuristics and stochastic mesh based policies. Numerical results illustrating

the convergence of the high and low biased stochastic mesh estimators are then

presented in section 5.3. And finally, in section 5.4, we compare a basic stochastic

mesh based policy (using AD weights and a linear-quadratic approximation for the

cost function) to the heuristics from section 4.2 under different settings, involving

high or low costs, volatility, etc. This serves to highlight the cases for which the

stochastic mesh approximation can be expected to work well and the cases that

would require further improvements.

5.1 MeshHedging : a Java library for computing stochastic mesh based

hedging policies

In order to run numerical experiments in the context of the present thesis, a Java

language library, which we call the MeshHedging library, was developed. It is publicly

available on-line on the GitHub repository at https://github.com/average3101/

MeshHedging. This library makes use of external classes from existing libraries :

• The SSJ library [89, 92], for random number generation, basic probability

https://github.com/average3101/MeshHedging
https://github.com/average3101/MeshHedging


distributions and stochastic processes,

• The COLT library [72] for linear algebra,

• The FastMath class of the Commons Math library [1], for fast implementations

of some standard mathematical functions (such as the exponential function),

• The Fmin class [134], which is an implementation of Brent’s method for find-

ing the minimum of a 1-dimensional function. The code from this class was

included directly in the class BrentSolver of the MeshHedging library. It has

been modified to include a limit on the number of iterations.

The MeshHedging library itself is composed of various packages, each dealing with

a separate aspect of implementing stochastic mesh methods for hedging :

• derivatives : This package is used to define options and their associated prices.

Classes representing derivatives (such as CallOption and PutOption) are sub-

classes of the abstract class Derivative. By default, prices from CallOption

and PutOption are based on methods from the static class OptionPricing,

which provides standard option pricing methods based on the Black-Scholes-

Merton model. When pricing options on a stochastic mesh based on another

model than the BSM model, the class DerivativePricedOnMesh should be

used instead. Its constructor takes a Derivative object as its argument

• dynprog : This package contains classes defining the risk function approxima-

tions, which are classes extending the abstract class RiskFunctionApproxi-

mation. The Qk functions are represented by the class QFunction and the

linearized versions Q+
k and Q−k used in finding the no-transaction boundaries

are represented by the class QFunctionForTradeBoundaries. The abstract

class DynamicHedgingProgram and its extension DynamicHedgingProgramUs-

ingLQApproximation contain as members the various problem elements (loss
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function, risk function approximation, etc) and implement the risk estimation

algorithm from section 5.2.

• experiments : This package helps to set up simulation experiments regarding

the estimation of the expected risk of hedging policies. In particular, the class

HedgingComparisons was used as the entry point to generate many of the re-

sults presented in this thesis. It takes as input a file defining the experiment

parameters and interprets these values to construct an instance of the RiskMea-

sureEstimator class, which is used to compute sample path estimates of the

risk for hedging policies.

• meshmethods : The two most important classes of this package are Stochas-

ticMesh, which contains the market vector values used to define the mesh,

and Weights, which deals with storing the relevant information about weights,

including how they are computed. Subclasses of these two classes then give

the user the flexibility to implement the different mesh setups described in this

thesis (e.g. SingleGrid or MeshWeightsAverageDensity).

• numerics : This package is targeted at the optimization of 1-dimensional func-

tions. The abstract class OneDimSolver is designed to have as a member vari-

able a one-dimensional function, represented as an object that implements the

OneDimFunction interface. After calling the method evaluate from a OneD-

imSolver object, the information about the solution of the minimization are

returned as a OneDimSolverResults object.

• policies : Here, policies are defined as classes extending the abstract class Hedg-

ingPolicy. The class RiskFunctionBasedPolicy is a special case which com-

putes the hedging decisions through a DynamicHedgingProgram object from

the dynprog package (i.e. it computes the decision that minimizes the risk

associated to a given stochastic dynamic program, given the current state Xk
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and the risk function approximations Ĵk+1 for the next step). The class Hedg-

ingPortfolio is used to define the portfolio value path {V π
k : k = 0, . . . , K}

for a given path of the market information process {Yk : k = 0, . . . , K}.

• stochprocess : This package defines market vectors and market vector processes,

through extensions of the abstract classes MarketVector and MarketVector-

Process, respectively.

• tests : This packages contains various executables that allow to run validation

tests on other packages, such as meshmethods, stochprocess, dynprog. The tests

are basic, such as checking that the sum of stochastic mesh weights are equal

to one, or that the risk functions are convex (for a convex loss function). In the

cases where the values tested are estimates, thresholds are used to determine

whether or not the test passed or failed. For the package meshmethods, it is

expected that some tests will fail if the number of mesh points is too low (e.g.

for likelihood ratio weights).

5.2 Risk estimation algorithm

The comparison of the out-of-sample performance of mesh-based hedging policies

with the performance of heuristic policies is done using algorithm 4. Note that the

estimation of the risk is done in two steps. First, an estimate is computed at step

1.e as an average over n sample paths. This is repeated over nR replications, each

using an independent mesh, and combined in the average at step 3.

A more direct way of obtaining such results would be to look at the average over

the total number ntotal = nR × n of out-of-sample paths, each using an independent

mesh to define the mesh-based policy. But in the case of a stochastic mesh based

policy, a large amount of computation time is spent on evaluating the mesh weights.

Thus separating the experiment in two loops allows to cut on simulation time, while
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Algorithm 4 Policy comparison
1 For j = 1, . . . , nR replications :

a: Define a stochastic mesh using N independent sample paths of the market
vector process and using the AD weights from equation (3.12).

b: Apply the stochastic mesh DP algorithm (algorithm 3) from section 3.2.1 using

approximation 3.3.1 to obtain a low biased estimate ĴL,j0 (X0) of J0(X0).

c: Simulate n independent paths of the market vector process {Y i
k : k =

0, . . . , K, i = 1, . . . , n}.

d: Apply each policy πp (p = 1, . . . , nP ) to each i = 1, . . . , n path to obtain the

terminal portfolio values V
πp,i
K (X0)

e: Use these values to compute an estimate of the risk as the sample average

Ĵ
πp,j
0 (X0) =

1

n

n∑
i=1

L
(
V
πp,i
K (X0)− V0

)
. (5.1)

2 For each policy πp (p = 1, . . . , nP ), take an average of the estimators from step
1.e to obtain the high biased risk estimates

Ĵ
πp
0 (X0) =

1

nR

nR∑
j=1

Ĵ
πp,j
0 (X0). (5.2)

3 Compute the stochastic mesh low biased risk estimate as the average of the
estimates from step 1.b

ĴL0 (X0) =
1

nR

nR∑
j=1

ĴL,j0 (X0). (5.3)

93



still obtaining precise estimates Ĵ0 and ε̂0 for the risk function and associated error.

To be more explicit, we can write the total computation time as

C(total) = nR [C(mesh generation) + n× C(policy evaluation)] , (5.4)

where C(·) represents the computation time for the element (·). If

C(mesh generation)� C(policy evaluation) (5.5)

and ntotal := nR×n is fixed, then the total computation time is minimized by letting

nR = 1 and n = ntotal. But with nR = 1, we cannot estimate the error of the low

biased (in-sample) mesh estimate ĴL0 (X0) of J0(X0). So in order to balance these

considerations and have a good estimate of the error of ĴL0 (X0), we choose both

nR >> 1 and n >> 1.

5.3 Illustration of the convergence of mesh estimators

Figures 5.1 and 5.2 show approximate risk function values Ĵ0(X0) for the problem

of hedging a call option under the GBM model, and figures 5.3 and 5.4 show the same

under the expOU model. All are ginen as functions of the number of mesh paths N .

The point here is to compare the low biased (Mesh-LB) and high biased (Mesh-HB)

stochastic mesh based estimates, in order to observe evidence of their convergence as

N increases. For reference, we compare the mesh-based estimates to the (high biased)

risk estimates associated to the following policies: Black-Scholes-Merton (BSM),

Whalley-Wilmott (WW) and Zakamouline (Z) and local hedging (Local). In the

case of the high biased estimate for the stochastic mesh, the policy used is the one

described in proposition 2.3.1, using the linear-quadratic approximation from section

3.3.1 to define the no-transaction bounds b−k and b+
k . The details of the experiment,

including the mesh construction, are given in algorithm 4 of section 5.2.
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Figures 5.1 and 5.2 both use nR = 1 000 replications and n = 1 000 paths per

replication. The error bars correspond to the sample standard deviation of each

of these averages. And in all cases, the initial stock price is s0 = 10, the option’s

expiry is in T = 6 months, the number of time steps is K = 8 and the proportional

transaction costs are b = 2%.

In figures 5.1 and 5.2, the dashed red line (Mesh-LB) is a the stochastic mesh

based risk estimate (low-biased) and the full red line (Mesh-HB) is the out-of-sample

estimate using mesh policy (high-biased). The fact that they tend to get very close for

higher values of N shows that the optimum is nearly attained by the stochastic mesh

based policy. In the case with low volatility (σ = 20%) and low risk aversion (γ = 1),

the Whalley-Wilmot (WW), Zakamouline (Z), local hedging (Local) heuristics do

well and are close to the optimum. The Black-Scholes-Merton (BSM) delta hedging

policy does poorly, as it does not take costs into account. Its performance is in

fact worst than doing nothing (as the no-hedging policy NH) ! However, when the

volatility and risk aversion parameters are higher (σ = 40%, γ = 5), the BSM policy

does better than other heuristics. The local hedging policy risk estimate also tends

to be close to the BSM policy risk estimate for higher N , but this is not necessarily

observed in other setups. Here it could be explained by the fact that the price

uncertainty is then higher relative to the actual transaction costs, so that the local

hedging objective will favor trading over the “fear” of incurring transaction costs.

By price uncertainty, we mean that for T = 6 months and K = 8, we have time

steps of ∆t = 0.5/8 = 0.075 years, and thus a price standard deviation of about

s0 × σ ×
√

∆t = 10 × 40% ×
√

0.075 ≈ 1.1 at each step, compared to costs of the

order of s0 × b = 10× 2% = 0.2.

In figures 5.3 and 5.4, we show results of similar experiments, but for the case

of the expOU model of section 4.1. The model parameters are chosen to be κ =

2.6, σv = 0.6, σ0 = 40% and σ = 20% for both figures, the only difference being the
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value for γ (respectively, γ = 1 and γ = 5). First note that there is a (high) bias in

Ĵπ0 (X0) that is apparent for any policy π for lower values of N , in both figures, not

just the stochastic mesh based estimates. Indeed, the estimates of Ĵπ0 (X0) should

be independent of N for the heuristic policies BSM, WW, Z and NH, but observe

that they follow a curve instead of a staight line. This bias is caused by the use

of the stochastic mesh itself to approximate the value the call option, instead of

using an exact analytic formula, as is available for the GBM model. As explained

in section 3.2.4, such additional noise cannot be hedged, thus increasing the value

of the risk measure. An additional consequence is that the estimate Mesh-LB is no

longer low biased. More precisely, the low bias of the Mesh-LB estimator came from

the minimization step of the DP algorithm, assuming that all expectations where

unbiased. But again, as seen in section 3.2.4, the noise from the estimator ĥk of

hk(Yk) introduces a high bias in the estimator Q̂k(Xk, v), so that the overall bias not

necessarily low anymore (and indeed, it is clearly high in the case of figure 5.4).

These bias issues are not specific to the expOU model, as similar results are

obtained if simulating under the GBM model and evaluating a call option using the

mesh (not shown here). In the case of figure 5.4, the effect of the bias is magnified

by the higher value of γ in the exponential loss function (that is, γ = 5 instead of

γ = 1 in figure 5.3).

5.4 Global performance comparison of some heuristic policies using sim-

ulated data

In this section, we present some results from using stochastic mesh methods to

approximate solutions to the problem of hedging a call option under transaction costs

(see section 1.2). We compare the mesh based policy to the heuristics described in

section 4.2, for both the optimal decisions and risk functions, for a wide range of

experimental setups.
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Figure 5.1: Risk estimates Ĵ0(X0) as a function of N , for a call option under the
GBM model (σ0 = 20%, b = 2%, γ = 1, K = 8).
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Figure 5.2: Risk estimates Ĵ0(X0) as a function of N , for a call option under the
GBM model (σ0 = 40%, b = 2%, γ = 5, K = 8).
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Ĵ
0
(X

0
)

Mesh-LB Mesh-HB

BSM WW

Z Local

NH

Figure 5.3: Risk estimates Ĵ0(X0) as a function of N , for a call option under the
expOU model (σ0 = 40%, σ = 20%, σv = 1.2, ρ = 0.5, κ = 2.6, b = 2%, γ = 1,
K = 8).
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Figure 5.4: Risk estimates Ĵ0(X0) as a function of N , for a call option under the
expOU model (σ0 = 40%, σ = 20%, σv = 1.2, ρ = 0.5, κ = 2.6, b = 2%, γ = 5 and
K = 8).
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The experiments aim to highlight that :

1. There are some settings where known heuristics do not do well compared to

the optimal solution, which is known to lie between the low and high biased

mesh estimators. This shows that there is something to be gained by trying

to compute the optimal solution, i.e., there is room for improving the hedg-

ing policies compared to the heuristics, and that using a stochastic mesh is a

possible way to do it.

2. There are setups where convergence of the stochastic mesh is slower and/or not

attained in reasonable time. This shows the need for efficiency improvement

techniques, some of which will be introduced in chapter 6.

Table 5.I provides estimates of the portfolio risk when the stock price dynamics

is given by the discrete time GBM model. Overall, the experiments are constructed

as in section 5.3, using algorithm 4, unless specified otherwise below. We consider a

fixed expiry date T = 6 months, but various values for the number of time steps K,

the risk aversion parameter γ, the volatility σ, and the transaction cost parameter

b. For the low biased (Mesh-LB) and high biased (Mesh-HB) path estimates, we

use a stochastic mesh with average density weights, N = 512 nodes and the linear-

quadratic approximation of section 3.3.1 for the risk function. A rough estimate

ε̂0 of the approximation error bound from section 3.3.2 is provided using M = 11

points. The path estimators (out-of-sample, high biased) for Mesh-HB and the var-

ious heuristic policies, are computed using an average over nR = 1 000 independent

replications of n = 1 000 Monte Carlo estimates of the risk. In the case of the stochas-

tic mesh estimate Mesh-LB (in-sample, low biased), a new mesh is computed for each

of the nR replications. The heuristics considered are : Black-Scholes-Merton delta

hedging (BSM), Whalley-Wilmott (WW), Zakamouline (Z), local hedging (Local),

local hedging approximation (Local-A) and no hedging (NH).
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On the right-hand side of the table, each cell has two values: the sample average

estimate and the sample standard deviation of the average (i.e., s = s/
√
nR), which

are given above and below, respectively. The values for the high biased estimators

that are within δ = 0.05 of the lowest high biased estimate are highlighted in various

shades of green (the lower the value is, the darker the color). So if the lowest high

biased estimate is Ĵπ = 0.025, then this value will be dark green, and a value of

Ĵπ + δ = 0.075 will be white. However, if an estimate is above Ĵπ + δ, it is simply

highlighted in red, to indicate that it is somewhat poor compared to the best obtained

values. The value of the threshold of δ is arbitrary, but was chosen to help illustrate

the relative performance of each policy, for this particular experimental setup.

Similarly, the low biased estimator Ĵ (Mesh-LB) is colored with various shades of

green, depending on its distance with the smallest high biased estimate Ĵπ. Values

below Ĵπ − δ are colored red and values above Ĵπ − δ are colored with darker green

shades as they get closer to Ĵπ. It is important to note that if none of the values of the

high biased estimators are close to the low biased estimator, it does not necessarily

mean that they are all far from the actual optimum, as the low biased stochastic

mesh estimator could itself be far from the optimum.

Here are some observations on these results :

• The sample averages for the error bound estimates ε̂0 of the linear-quadratic

approximation are relatively small. Among the observed cases, they correspond

to at most 5% of the objective value (for the case σ = 20%, γ = 5, K = 8 and

b = 2%).

• The low biased mesh estimator (Mesh-LB) is always within δ = 0.05 of the

smallest high biased estimate of the risk function value. Visually, this can be

seen by the absence of red cells in the Mesh-LB column of the table, although

of course a different choice of threshold δ would change the overall picture.

For this estimator, the worst relative performances (when comparing with the
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Table 5.I: Estimates of the portfolio risk when hedging a call option under the ex-
ponential loss function and the discrete GBM model for various combinations of the
parameters γ, σ, K and b. Mesh based estimates using N = 512 points.

γ σ K b ε̂0 Mesh-LB Mesh-HB Local Local-A Z WW BSM NH

1 0.2 4 0 0 0.023 0.028 0.028 0.025 0.025 0.025 0.025 0.278
- - - - - - - - 0.001

1 0.2 4 0.01 0 0.107 0.111 0.115 0.112 0.123 0.115 0.135 0.278
- - - - - - - - 0.001

1 0.2 4 0.02 0.001 0.164 0.166 0.199 0.184 0.182 0.173 0.257 0.278
- - - 0.001 - - - - 0.001

1 0.2 8 0 0 0.007 0.02 0.019 0.014 0.014 0.014 0.014 0.279
- - - - - - - - 0.001

1 0.2 8 0.01 0.001 0.1 0.107 0.146 0.136 0.114 0.111 0.158 0.279
- - - 0.001 - - - - 0.001

1 0.2 8 0.02 0.004 0.157 0.163 0.257 0.253 0.173 0.178 0.324 0.279
- - - 0.001 0.001 - - - 0.001

1 0.4 4 0 0 0.096 0.102 0.102 0.101 0.101 0.101 0.101 1.064
- - - - - - - - 0.001

1 0.4 4 0.01 0 0.208 0.213 0.215 0.213 0.253 0.243 0.219 1.064
- - 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 0.4 4 0.02 0 0.31 0.315 0.321 0.317 0.356 0.338 0.351 1.064
- 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 0.4 8 0 0 0.046 0.061 0.059 0.054 0.054 0.054 0.054 1.066
- - - - - - - - 0.001

1 0.4 8 0.01 0 0.173 0.184 0.194 0.188 0.212 0.2 0.205 1.066
- - - 0.001 - 0.001 0.001 - 0.001

1 0.4 8 0.02 0.002 0.28 0.29 0.326 0.318 0.323 0.305 0.379 1.066
- 0.001 0.001 0.001 0.001 0.001 0.001 - 0.001

5 0.2 4 0 0 0.138 0.14 0.142 0.149 0.149 0.149 0.149 1.749
- - - - - - - - 0.002

5 0.2 4 0.01 0.001 0.332 0.335 0.344 0.348 0.409 0.396 0.36 1.749
- - 0.001 0.001 0.001 0.001 0.001 0.001 0.002

5 0.2 4 0.02 0.009 0.557 0.56 0.582 0.588 0.651 0.602 0.705 1.749
- 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002

5 0.2 8 0 0 0.069 0.073 0.074 0.075 0.075 0.075 0.075 1.752
- - - - - - - - 0.002

5 0.2 8 0.01 0.002 0.265 0.27 0.293 0.287 0.33 0.312 0.326 1.752
- - - 0.001 - 0.001 0.001 - 0.002

5 0.2 8 0.02 0.024 0.487 0.494 0.561 0.549 0.584 0.531 0.82 1.752
- 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002

5 0.4 4 0 0 0.945 0.953 1.024 1.193 1.193 1.193 1.193 32.066
- 0.002 0.003 0.003 0.004 0.004 0.004 0.004 0.027

5 0.4 4 0.01 0 1.662 1.674 1.818 2 2.616 2.629 1.983 32.066
- 0.003 0.004 0.005 0.005 0.007 0.007 0.005 0.027

5 0.4 4 0.02 0.005 2.678 2.694 2.965 3.175 4.205 3.933 3.24 32.066
- 0.005 0.006 0.007 0.008 0.011 0.01 0.008 0.027

5 0.4 8 0 0 0.384 0.395 0.434 0.476 0.476 0.476 0.476 32.115
- 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.026

5 0.4 8 0.01 0 0.887 0.905 1.028 1.067 1.477 1.472 1.072 32.115
- 0.001 0.002 0.003 0.003 0.004 0.004 0.003 0.026

5 0.4 8 0.02 0.008 1.653 1.68 1.984 2.001 2.761 2.49 2.221 32.115
- 0.002 0.004 0.005 0.005 0.007 0.007 0.005 0.026
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Mesh-HB estimator) seem to be associated with higher K values. This behavior

will be seen more clearly later in other results (see section 7.2.2).

• The high biased mesh estimator (Mesh-HB) is also within δ = 0.05 of the small-

est high biased estimate of the risk function value, for each setup considered.

In particular, the mesh based policy is the only one that performs well in the

in high risk aversion and high volatility case (γ = 5, σ = 40%). All the other

heuristics considered for that setup achieve a risk function value that is higher

than δ = 0.05 from the smallest high biased estimate.

• Local hedging (Local) and its approximation (Local-A) do very well overall

(except for γ = 5, σ = 40%), and are the most consistent performer among the

heuristics. As expected from the discussion in section 4.2.3, their performances

are better when costs are low and are poorer when costs are higher (b = 2%).

• As for the remaining heuristics (BSM, WW and Z), note first that they are

all the same, by definition, in the absence of costs (b = 0). The BSM policy

is nearly optimal when costs are low and risk aversion is low. When costs are

higher, it tends to do poorly, which is expected, especially for high numbers of

steps K. The WW and Z estimators do generally well when there are costs,

except for the high risk aversion case γ = 5. The performances of these policies

seem poor when both γ and the volatility level σ are higher.

Table 5.II provides results for the case of the expOU model, using a similar

methodology. Because it is a stochastic volatility model, we can expect the risk esti-

mates to be higher than for the GBM model. There is another important difference,

which is that the derivative (call option) values hk(Yk) are estimated using mesh-

based conditional expectations, instead of evaluated by an analytical formula. This

results in additional “risk” introduced in the derivative price as explained in section

3.2.4 and also contributes to higher risk estimates compared to those of table 5.I.
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A similar effect was observed in results (not shown here) for the GBM model using

such a mesh-based pricing for the derivative price. Finally, note that much higher

values of the approximation error bound estimates ε̂0 are observed, especially when

the risk aversion γ or the volatility σ are high.

5.5 Conclusion

In this chapter, we explained in some detail how the numerical experiments were

performed through the MeshHedging Java library and the risk estimation algorithm

from section 5.2. We also provided some numerical illustrations to the theory devel-

oped so far. Overall, numerical results indicate that approximate solutions to the

hedging problem based on stochastic methods does provide useful information about

the optimal risk associated with different setups via the Mesh-LB and Mesh-HB es-

timators. In particular, we noted some setups under which the performance of some

known heuristics can be improved upon. For example, the Z and WW heuristics

have a poorer performance when the risk aversion γ or the volatility σ are higher.

However, there are some setups that are more difficult for the stochastic mesh based

policy:

• Higher number of time steps K : all else being equal, when increasing K,

the risk estimates become lower, but the gap between Mesh-LB and Mesh-

HB becomes larger, indicating a larger bias of the Mesh-LB and/or Mesh-HB

estimators.

• Using derivative values estimated on the mesh adds noise, which introduces an

upward bias on risk estimates.

Increasing the number N of paths when building the mesh would reduce these bi-

ases, but would also lead to a steep increase in computation time, as discussed in
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Table 5.II: Estimates of the portfolio risk when hedging a call option under the
exponential loss function and the discrete expOU model for various combinations of
the parameters γ, κ, σv and ρ (with N = 512, K = 8, σ0 = 40%, σ = 20% and
b = 2%).

γ κ σv ρ ε̂0 Mesh-LB Mesh-HB Local Z WW BSM NH

1 2.6 0.6 -0.5 0.1E+02 0.233 0.261 0.274 0.267 0.268 0.367 0.64
6.2E+00 0.002 0.003 0.002 0.003 0.003 0.003 0.003

1 2.6 0.6 0 0.9E+04 0.241 0.267 0.284 0.275 0.276 0.372 0.693
0.6E+04 0.002 0.003 0.003 0.003 0.003 0.003 0.004

1 2.6 0.6 0.5 0.3E+08 0.243 0.272 0.294 0.28 0.282 0.374 0.742
0.3E+08 0.003 0.003 0.003 0.003 0.003 0.003 0.004

1 2.6 1.2 -0.5 7.8E+16 0.262 0.316 0.319 0.3 0.307 0.413 0.697
7.8E+16 0.002 0.003 0.003 0.003 0.003 0.003 0.004

1 2.6 1.2 0 0.6E+54 0.287 0.322 0.337 0.324 0.331 0.431 0.824
0.6E+54 0.003 0.003 0.003 0.003 0.003 0.004 0.005

1 2.6 1.2 0.5 7.8E+34 0.293 0.335 0.367 0.337 0.347 0.436 0.932
7.8E+34 0.004 0.004 0.006 0.004 0.004 0.005 0.006

1 5.2 0.6 -0.5 0.8E+02 0.213 0.236 0.247 0.239 0.247 0.353 0.517
0.5E+02 0.002 0.002 0.002 0.002 0.002 0.002 0.003

1 5.2 0.6 0 5.7E+02 0.218 0.239 0.252 0.244 0.251 0.356 0.548
5.5E+02 0.002 0.002 0.002 0.002 0.002 0.003 0.003

1 5.2 0.6 0.5 0.4E+04 0.219 0.242 0.259 0.247 0.254 0.357 0.576
0.4E+04 0.002 0.002 0.002 0.003 0.003 0.003 0.003

1 5.2 1.2 -0.5 0.3E+02 0.225 0.252 0.261 0.254 0.265 0.375 0.542
0.2E+02 0.002 0.002 0.002 0.002 0.002 0.002 0.003

1 5.2 1.2 0 1.6E+02 0.237 0.259 0.273 0.265 0.275 0.383 0.611
1.4E+02 0.002 0.003 0.003 0.003 0.003 0.003 0.003

1 5.2 1.2 0.5 2.2E+10 0.24 0.266 0.289 0.271 0.283 0.385 0.67
2.0E+10 0.002 0.003 0.003 0.003 0.003 0.003 0.004

5 2.6 0.6 -0.5 3.6E+78 1.182 1.243 1.41 1.808 1.604 1.768 10.102
3.6E+78 0.014 0.016 0.017 0.022 0.019 0.021 0.112

5 2.6 0.6 0 8.0E+78 1.256 1.318 1.485 1.859 1.657 1.851 11.063
8.0E+78 0.016 0.018 0.02 0.025 0.022 0.025 0.135

5 2.6 0.6 0.5 7.8E+68 1.273 1.342 1.511 1.849 1.658 1.853 11.909
7.8E+68 0.018 0.02 0.023 0.027 0.025 0.027 0.162

5 2.6 1.2 -0.5 4.7E+80 1.693 1.818 2.391 2.573 2.341 2.736 13.174
4.7E+80 0.019 0.027 0.333 0.031 0.028 0.033 0.15

5 2.6 1.2 0 0.2E+184 2.025 2.12 2.332 2.878 2.637 3.174 16.424
NaN 0.029 0.033 0.036 0.043 0.04 0.047 0.237

5 2.6 1.2 0.5 0.5E+232 NaN 2.241 2.462 2.916 2.706 3.231 19.468
NaN NaN 0.051 0.052 0.061 0.057 0.067 0.389

5 5.2 0.6 -0.5 7.1E+62 0.935 0.978 1.074 1.354 1.201 1.43 6.12
7.1E+62 0.01 0.011 0.012 0.015 0.014 0.016 0.061

5 5.2 0.6 0 0.4E+56 0.964 1.005 1.099 1.365 1.213 1.462 6.474
0.4E+56 0.011 0.012 0.013 0.016 0.015 0.017 0.069

5 5.2 0.6 0.5 0.4E+50 0.971 1.017 1.11 1.357 1.21 1.466 6.782
0.4E+50 0.012 0.013 0.014 0.017 0.016 0.018 0.077

5 5.2 1.2 -0.5 0.1E+66 1.122 1.175 1.289 1.639 1.483 1.818 7.106
0.1E+66 0.012 0.013 0.014 0.018 0.016 0.02 0.071

5 5.2 1.2 0 0.5E+86 1.223 1.274 1.382 1.705 1.546 1.949 8.083
0.5E+86 0.015 0.016 0.018 0.021 0.02 0.024 0.093

5 5.2 1.2 0.5 0.2E+88 1.235 1.294 1.405 1.683 1.54 1.946 8.872
0.2E+88 0.017 0.019 0.021 0.025 0.023 0.028 0.12

104



section 3.5. With these issues in mind, we will examine some efficiency improvement

techniques in chapter 6.
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CHAPTER 6

EFFICIENCY IMPROVEMENTS

We have mentioned in section 1.3 that computational cost is an important practi-

cal problem when using stochastic mesh approximations. It may be difficult to reach

a desired level of accuracy ε, because of the O(ε1/4) convergence rate discussed in

section 3.5. As pointed out by Broadie and Glasserman [36], pages 44-45,

”... the stochastic mesh method leaves a lot of latitude in implemen-

tation. For the method to be practically viable, it is essential to exploit

efficiencies in the computation of the estimators wherever possible. This

requires, in particular, careful choice of the density used to generate the

mesh. It also motivates the use of control variates, ... ”.

Fu, Laprise, Madan, Su and Wu [57] and Avramidis and Matzinger [8] also indicate

that stochastic mesh estimators have large bias and likely requires variance reduction

techniques for practical applications.

This chapter investigates the effect of various efficiency improvement techniques

on the performance of stochastic mesh methods when applied to hedging problems.

We start in section 6.1 by applying control variates to the mesh estimates. To try

to address the problem of computational space and time constraints, we propose in

section 6.2 using a single grid instead of a full mesh. The idea is to recycle the

same set of weights at every step k = 1, . . . , K, so that the number of weights to

store and the number of associated computations is divided by a factor K. We

then describe possible applications of quasi-Monte Carlo (QMC) methods in section

6.3, including randomized quasi-Monte Carlo (RQMC). These can potentially speed

up the computation, as they have a theoretically faster rate of convergence than

standard Monte Carlo (see for example L’Ecuyer [86]).



To further reduce the computation time, we consider in section 6.4 a Russian

roulette technique that ignores weights that are too small to influence the result, in

a way that we make precise later. Small weights occur naturally on any stochastic

mesh, but even more so on a single grid implementation. The performance gains

from the single grid and Russian roulette techniques are somewhat complementary,

as we will see in section 6.5. This will allow us to compute results for high values of

the number of time steps K. Finally, in section 6.6, we briefly describe some other

variance reduction techniques that were not yet tested for our hedging problem, but

that could be useful to increase the computational efficiency.

6.1 Control variates

Control variates (CVs) are a well known tool to reduce the variance of a Monte

Carlo estimator. See for example L’Ecuyer [88], Law and Kelton [84], Glasserman [59]

or Szechtman [129] for an introduction, or, for more advanced applications, L’Ecuyer

and Buist [90], Lemieux and La [95] or Bolia and Juneja [26]. We consider here some

possible applications for the estimation of

• the risk function value Jπ0 (X0) associated to a policy π by (out-of-sample)

Monte Carlo simulations,

• the derivative values hk(Yk) on the stochastic mesh, and

• the expected risk Qk(Xk, v) via the weighted Monte Carlo average from equa-

tion (3.7), i.e.

Q̂k(Xk, v) =
1

N

N∑
j=1

wk,je
−γ(Vk+1(ψ(Xk,v,Y

j
k+1))−Vk)Ĵk+1(v, Y j

k+1). (6.1)
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6.1.1 Outer controls

When computing Jπ0 (X0) by Monte Carlo simulation for a given hedging policy

π using the sample average estimator

Ĵπ0 (X0) =
1

N

N∑
i=1

L(V π
K(X0)− V0), (6.2)

it is in principle straightforward to apply the control variates technique to reduce the

variance of Ĵπ0 (X0). One simply needs to find a vector C ∈ Rm of random variables

whose components are correlated with L(V π
K(X0)− V0) and then consider

Ĵπ,CV0 (X0) = Ĵπ0 (X0)− β∗T (C − E0[C]), (6.3)

where

β∗ = arg min
β

Var
[
Ĵπk (X0)− βT (C − E0[C])

]
. (6.4)

In the case of the negative exponential loss function, one potentially useful control

is simply

C = V 0,π
K (X0), (6.5)

which we define as the value of the portfolio at step K after applying the policy π,

but assuming that transaction costs are zero. It corresponds (up to a constant) to the

linear part of the Taylor series expansion of L(V 0,π
K (X0)−V0) = e−γ(V 0,π

K (X0)−V0), so it

should be well correlated with the function L(V π
K(X0)−V0), especially for small values

of γ and small transaction costs. Note that the expectation is known : as discussed

in section 2.1.3, if the market process is a martingale, then so is the portfolio value

process, and thus E0[V 0,π
K − V0] = 0, ∀π. For the present example, setting β = −γ

should always reduce the variance because the correlation between −γ(V π
K(X0)−V0)

and L(V π
K(X0)− V0) is non-negative, by the convexity of the function L.

108



Clewlow and Hodges [40] also make use of a Taylor series expansion of the expo-

nential function to improve computational efficiency, although their solution method

(a binomial tree) is different than that used here.

Table 6.I: Empirical variance reduction factors when estimating Ĵπ0 using the control
variate V 0,π

K with the coefficient β = −γ, under the exponential loss function and the
discrete GBM model, for various policies π (N = 256, n = nR = 100).

γ σ K b BSM WW Z Local Mesh-HB NH

1 0.2 4 0 28.4 28.4 28.4 5.4 3 1.7
1 0.2 4 0.01 35 27.9 19 10.5 7.5 2.2
1 0.2 4 0.02 17.3 16 8.7 5.3 7.1 2.4
1 0.2 8 0 53.3 53.3 53.3 8 3.8 2.1
1 0.2 8 0.01 17.8 29.5 22.7 10 7.7 1.9
1 0.2 8 0.02 6.8 19.1 11.2 6.3 5.3 2.1
1 0.4 4 0 11.1 11.1 11.1 7.4 5.1 1.7
1 0.4 4 0.01 8.3 6.7 7.1 5.6 4.9 1.1
1 0.4 4 0.02 8.5 8.9 9.3 8 6.8 1.8
1 0.4 8 0 13.1 13.1 13.1 7.9 3.8 1.8
1 0.4 8 0.01 14.1 11.6 11 5.4 3.9 1.3
1 0.4 8 0.02 9.7 10 8 7 6.1 1
5 0.2 4 0 1.2 1.2 1.2 1.2 1.2 1.2
5 0.2 4 0.01 1.1 1.1 1.1 1.1 1.1 1.2
5 0.2 4 0.02 1.1 1.1 1.1 1.1 1.1 1.2
5 0.2 8 0 1.3 1.3 1.3 1.3 1.3 1.2
5 0.2 8 0.01 1.1 1.1 1.1 1.2 1.2 1.2
5 0.2 8 0.02 1.1 1.1 1.1 1.1 1.1 1.2
5 0.4 4 0 1 1 1 1.1 1 1
5 0.4 4 0.01 1 1 1 1 1 1
5 0.4 4 0.02 1 1 1 1 1 1
5 0.4 8 0 1.1 1.1 1.1 1.1 1.1 1
5 0.4 8 0.01 1 1 1 1.1 1 1
5 0.4 8 0.02 1 1 1 1 1 1

Table 6.I shows some variance reduction factors (VRF) observed empirically when

applying this control variate for various parameter values for risk aversion γ, propor-

tional transaction costs b, volatility σ, and number of steps K. The results show the
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ratio F of the sample variances of the uncontrolled and the controlled estimators, i.e.

F = S2
nR

(
Ĵπ0

)
/S2

nR

(
Ĵπ0

CV
)
, (6.6)

where for a random variable X ∈ R with samples values {Xi : i = 1, . . . , nR}, we

write the sample variance as

S2
nR

(X) =
1

nR − 1

nR∑
i=1

(
Xi −

1

nR

nR∑
j=1

Xj

)
. (6.7)

The sample variances were based on nR = 100 independent estimates of the risk func-

tion. And these risk function estimates Ĵπ0 (X0) were computed as sample averages

of n = 100 independent simulations of values L(V π
K(X0) − V0) of the loss function

applied to the terminal portfolio performance, for various policies π. The stochas-

tic mesh policy (Mesh-HB) and the local hedging policy (Local) are both based on

a stochastic mesh constructed using N = 256 independent sample paths, and an

independent mesh was used for each of the nR replications.

We note that

• the observed VRFs are at least greater than or equal to 1 for each setting,

• the VRFs are (often) larger in the case without costs (b = 0),

• the VRFs are much smaller when the risk aversion parameter γ is larger.

These results are not surprising, given the discussion at the beginning of this section

about the definition of this control variate. We also observe that the VRFs are

larger for the policies BSM, WW and Z. This could be due to the lower variance

of the terminal portfolio value V π
K when applying these policies, compared to Local,

Mesh or NH. The Local and Mesh policies have some added noise due to their being

computed based on a stochastic mesh, and in the case of NH, there is no hedging at
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all, by definition. This is coherent with the poorer performance observed when the

volatility parameter σ is higher.

6.1.2 Inner controls

This section focuses on applying CV techniques specifically for reducing the vari-

ance of the mesh estimators. This is what Broadie and Glasserman [36] refer to as

inner controls.

6.1.2.1 Control for ĥk

Applying CV techniques to the estimates ĥk(Yk) of the derivative value evaluated

on the stochastic mesh can help to substantially reduce the bias in Q̂k(Xk, v), as

discussed in section 3.2.4. Following Broadie and Glasserman [36] (section 4.1), we

consider the controlled estimator

ĥCVk (Yk) =

1
N

∑N
j=1wk,j

(
ĥjk+1 − βTC

j
k+1

)
1
N

∑N
j=1wk,j

, (6.8)

where the ĥjk+1 := ĥk+1(Y j
k+1) are mesh based estimates of the derivative value and

the Cj
k+1 ∈ Rm are sample realizations of the control vector C, corresponding to the

market state Y j
k+1. The vector β ∈ Rm is then chosen to be the solution β̂N of the

weighted least-squares problem

min
α,β

N∑
j=1

wk,j

(
ĥjk+1 − (α + βTCj

k+1)
)2

, (6.9)

which is given by

β̂N =

(
1

N

N∑
j=1

wk,jC
j
k+1(Cj

k+1)T

)−1(
1

N

N∑
j=1

wk,jĥ
j
k+1C

j
k+1

)
. (6.10)
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The resulting controlled estimate ĥCVk (Yk) of hk(Yk) from equation (6.8) may have

some bias because β̂N may be correlated with the Cj
k+1. But the solution β̂N is known

to be an asymptotically consistent estimator of β∗ (see for example L’Ecuyer [88],

section 6.5.3). Therefore, the estimator ĥCVk will also be asymptotically consistent

(see Glynn and Szechtman [62], theorem 1).

However, the error on individual estimates of ĥk(Yk) gets magnified by the expo-

nential loss function, as seen in section 3.2.4. This can be particularly problematic

in cases where there are large outliers in the sampled β̂N values. In numerical exper-

iments not shown here, this affected the stochastic mesh estimates of the portfolio

risk J∗0 (X0) in the case of the expOU model, but not the GBM model (both using

the AD sampling procedure of section 3.2.3).

Fortunately, the theoretical solution β = β∗ may be known in some cases, thus

eliminating the problem of outliers in the estimator β̂N . For example, consider

Ek[hk+1(Yk+1)|Hk+1], the conditional expectation of the derivative value on some

sub-σ-algebra Hk+1 ⊂ Fk+1. We can take Ck+1 = hk+1(Yk+1)− Ek[hk+1(Yk+1)|Hk+1]

as a control variate. In that case, clearly Ek[Ck+1] = 0 and the optimal β coefficient

can be shown to be simply β∗ = 1 (see Theorem 2 of Glynn and Szechtman [62]).

When using the expOU model, where the σ-algebra Fk+1 is generated by the ran-

dom vector Yk+1(ω) = (sk+1(ω), σk+1(ω))T , one possibility is to take Hk+1 to be the

σ-algebra generated by the random variable σk+1(ω) (the value of the volatility pa-

rameter at step k+ 1). Since the coefficient β∗ is a constant, the resulting controlled

estimator ĥCVk of hk is clearly unbiased.

Table 6.II shows various estimates Ĵπ0 (X0) of the portfolio risk under the expOU

model, using the above control variate when estimating the derivative values hk(Yk)

over the mesh nodes. The setup is the same as for table 5.II seen in section 5.4,

which used only a sample average estimator for the derivative values hk(Yk). Overall,

the estimates Ĵπ0 (X0) have smaller (average) values and also have reduced sample
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standard deviation, as should be expected. The approximation error bound estimates

ε̂0 are now much smaller, which indicates that the previously high values observed

were due to the error in the hk(Yk) estimates. These improvements are more apparent

when the risk aversion parameter γ is higher (i.e., for γ = 5).

Note that using linear controls can be interpreted as modifying the weights of

the simulated paths in the standard Monte Carlo average estimator, as explained in

Glasserman [59] (section 4.2). In the case of the controlled estimator (6.8), it is not

hard to show that

ĥCVk (Yk) =
1

N

N∑
j=1

w̃k,jĥ
j
k+1, (6.11)

with

w̃k,j := wk,j

1−

(
1

N

N∑
i=1

Ci
k+1

)T (
1

N

N∑
i=1

Ci
k+1(Ci

k+1)T

)−1

Cj
k+1

 . (6.12)

In the context of a stochastic mesh, we could apply the method by modifying the

weights once (at each state) and then reuse the modified weights in future compu-

tations. The overall impact on other mesh estimators such as Q̂k(Xk, v) should be

positive, in the sense that the variance of the estimator should be reduced. Pre-

liminary experiments (not shown here) did not show a large improvement, but this

would deserve further study.

6.1.2.2 Control for Q̂k

We would also like to apply CV techniques when computing Q̂k(Xk, v) at each

step k = K − 1, . . . , 0 of the construction of the stochastic mesh based policy. The
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Table 6.II: Estimates Ĵπ0 (X0) of the portfolio risk when hedging a call option. The
setup is the same as for table 5.II, but this time using control variates for estimating
hk values.

γ κ σv ρ ε̂0 M-LB M-HB LOC LOC-A Z WW BSM NH

1 2.6 0.6 -0.5 0.002 0.236 0.253 0.278 0.282 0.265 0.266 0.364 0.637
- - - 0.001 0.001 0.001 0.001 - 0.001

1 2.6 0.6 0 0.002 0.242 0.258 0.274 0.282 0.272 0.272 0.368 0.689
- - - 0.001 0.001 0.001 0.001 - 0.001

1 2.6 0.6 0.5 0.003 0.244 0.262 0.271 0.28 0.276 0.277 0.369 0.736
- - - 0.001 0.001 0.001 0.001 - 0.001

1 2.6 1.2 -0.5 0.002 0.279 0.325 0.367 0.321 0.311 0.318 0.424 0.712
- 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 2.6 1.2 0 0.002 0.291 0.316 0.338 0.328 0.323 0.329 0.429 0.822
- 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 2.6 1.2 0.5 0.003 0.3 0.328 0.339 0.336 0.338 0.347 0.436 0.933
- 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

1 5.2 0.6 -0.5 0.003 0.216 0.23 0.249 0.259 0.238 0.245 0.351 0.516
- - - 0.001 0.001 0.001 - - 0.001

1 5.2 0.6 0 0.003 0.219 0.233 0.245 0.257 0.242 0.248 0.353 0.546
- - - 0.001 0.001 0.001 - - 0.001

1 5.2 0.6 0.5 0.003 0.22 0.236 0.242 0.255 0.244 0.251 0.354 0.573
- - - 0.001 0.001 0.001 - - 0.001

1 5.2 1.2 -0.5 0.003 0.232 0.249 0.271 0.271 0.256 0.266 0.376 0.544
- - - 0.001 0.001 0.001 - - 0.001

1 5.2 1.2 0 0.003 0.238 0.252 0.265 0.273 0.262 0.272 0.379 0.607
- - - 0.001 0.001 0.001 0.001 - 0.001

1 5.2 1.2 0.5 0.003 0.242 0.26 0.264 0.274 0.269 0.281 0.383 0.667
- - - 0.001 0.001 0.001 0.001 - 0.001

5 2.6 0.6 -0.5 0.011 1.125 1.151 1.278 1.381 1.689 1.498 1.655 9.519
- 0.001 0.002 0.003 0.003 0.004 0.003 0.003 0.009

5 2.6 0.6 0 0.012 1.181 1.206 1.334 1.426 1.717 1.529 1.712 10.305
- 0.002 0.002 0.003 0.003 0.004 0.003 0.003 0.01

5 2.6 0.6 0.5 0.012 1.18 1.209 1.363 1.408 1.683 1.508 1.689 10.944
- 0.002 0.002 0.003 0.003 0.004 0.003 0.003 0.01

5 2.6 1.2 -0.5 0.015 1.717 916.159 191.136 2.177 2.555 2.326 2.723 13.129
- 0.003 914.277 189.054 0.005 0.006 0.006 0.006 0.019

5 2.6 1.2 0 0.045 1.914 1.956 2.166 2.343 2.672 2.448 2.951 15.326
0.029 0.003 0.005 0.006 0.006 0.006 0.006 0.006 0.019

5 2.6 1.2 0.5 0.016 1.937 1.986 2.272 2.318 2.622 2.432 2.908 17.598
- 0.003 0.005 0.006 0.006 0.006 0.006 0.006 0.023

5 5.2 0.6 -0.5 0.014 0.897 0.916 1.006 1.099 1.279 1.134 1.353 5.825
- 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.006

5 5.2 0.6 0 0.014 0.918 0.936 1.026 1.113 1.281 1.138 1.375 6.126
- 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.006

5 5.2 0.6 0.5 0.014 0.919 0.939 1.043 1.106 1.263 1.126 1.369 6.375
- 0.001 0.002 0.002 0.002 0.003 0.002 0.002 0.006

5 5.2 1.2 -0.5 0.015 1.097 1.123 1.249 1.378 1.575 1.425 1.751 6.872
- 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.008

5 5.2 1.2 0 0.015 1.161 1.183 1.308 1.425 1.593 1.444 1.825 7.612
- 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.008

5 5.2 1.2 0.5 0.015 1.164 1.191 1.344 1.406 1.558 1.425 1.805 8.277
- 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.008
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usual controlled estimator Q̂CV
k (Xk, v) of Q̂k(Xk, v) would be

Q̂CV
k (Xk, v) =

(
1

N

N∑
j=1

wk,je
−γ(Vk+1(Xj

k+1)−Vk)Ĵk+1(v, Y j
k+1)

)
− βTC,

where Xj
k+1 = ψ(Xk, v, Y

j
k+1) and C ∈ Rm is a random vector, assumed without

loss of generality to have known expectation EPk [C] = (0, . . . , 0)T ∈ Rm (i.e., a zero

vector). However, it is not obvious in general to find a control C that is well correlated

to wk,je
−γ(Vk+1(Xj

k+1)−Vk)Ĵk+1(v, Y j
k+1). For the hedging problem, we have the added

difficulty that the Ĵk+1(v, Y j
k+1) depend on the stock quantity v. Thus computing an

optimal β for a fixed value v = v0 may reduce the variance around v0, but increase

it for other values.

For such a setup, where the estimator Q̂k(Xk, v) and the control C(v) are both

considered as functions of another variable v, the optimal β should also be a function

of v. As described in L’Ecuyer and Buist [90], the optimal value β∗(v) could be

approximated as the ratio q1(v)/q2(v), where q1, q2 are two functions, which in our

context would be given by q1(v) = E[C(v)Q̂k(Xk, v)] and q2(v) = E[C(v)2]. These

two functions could be obtained as approximations, based on sample realizations of

C(v) and Q̂k(Xk, v), for m values of the variable v, and using a fitting procedure,

such as smoothing splines (see de Boor [48]).

With these issues in mind, we now consider as a concrete example the following

controlled estimator

Q̂CV
k (Xk, v) =

1

N

N∑
j=1

wk,j

(
e−γ(Vk+1(Xj

k+1)−Vk) − βC(v)
)
Ĵk+1(v, Y j

k+1), (6.13)

with

C(v) = Vk+1(Xj
k+1)− Vk = v∆sk+1 −∆hk+1, (6.14)
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where v denotes the new stock quantity at step k + 1 (the decision). In numerical

experiments described below, we evaluate it for a fixed β = −γ. It corresponds to

the linear part of the Taylor series expansion of e−γ∆(Vk+1(v,Y jk+1)−V0), so it should be

well correlated to it, especially for small values of γ. Note that the expectation of

C(v) is known, with Ek[C(v)] = 0, ∀v, but that the resulting controlled estimator

Q̂CV
k may be biased, since C(v) could be correlated with Ĵk+1(v, Y j

k+1).

Figures 6.1 and 6.2 illustrate what can happen in practice using such a control

variate. Both use a similar setup involving the expOU model, the only difference

being in the value for the risk aversion parameter γ. The convergence of the controlled

estimators (AD-CV) is clearly faster as a function of the number of mesh nodes N ,

both in sample and out-of-sample. However, in figure 6.2 the controlled estimators

tend to a higher value than the standard estimators (for the values of N tested here).

Even worse, the inner mesh estimator (dashed red curve) crosses over the (always)

high biased outer mesh estimator (full red curve), which shows that the inner mesh

estimator is no longer low biased. This behavior is also apparent in the γ = 1 case,

but to a lesser extent.

We have not tried the more general approach described earlier, taking β∗(v) =

q1(v)/q2(v), but it would likely still suffer from the bias issue and from the fact that

C(v) should only be correlated to Ĵk+1(Xk+1) for low values of γ.

6.1.2.3 Concluding remarks on inner controls

As we have just seen, inner control variates can sometimes prove useful (e.g. to

estimate ĥk(Yk), as in section 6.1.2.1), but they can also have adverse effects (e.g., as

in section 6.1.2.2). When they can help reduce the variance of mesh based estimators

Q̂k(Xk, v) of the Qk(Xk, v) without introducing new bias, they help reduce the low

bias from the mesh estimator Ĵ0(X0) of the risk. This is because the optimization

step minimizes Q̂k(Xk, ·) for a finite number of states Xk, so the optimal decisions
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Figure 6.1: Inner and outer risk estimates Ĵ0(X0) as a function of N , using control
variates, for a call option under the expOU model (σ0 = 40%, σ = 20%, σv = 1.2,
κ = 2.6, ρ = −0.5, b = 2%, γ = 1, K = 8). Error bars indicate one standard
deviation.
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Figure 6.2: Inner and outer risk estimates Ĵ0 as a function of N , using control
variates, for a call option under the expOU model (σ0 = 40%, σ = 20%, σv = 1.2,
κ = 2.6, ρ = −0.5, b = 2%, γ = 5, K = 8). Error bars indicate one standard
deviation.
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focus on these states, at the expense of out-of-sample performance. Another way

to see this is that return expectations obtained when using mesh based weighted

averages are no longer zero, which can then be directly exploited if one is trying to

minimize a risk function. This was already pointed out in other contexts by Klaassen

[80] or Duan and Simonato [52], for example. For a severe example of this behavior

in high dimensions, see also Birge [20].

6.2 Using a single grid

When applying the stochastic mesh method, many similar computations must be

repeated, such as computing weights at every step k. Since this takes a lot of time, we

would like to reduce the number of such computations. Assuming that the transition

density fk(Yk, Yk+1) from Yk to Yk+1 is independent of the time step k, then we can

write fk(Yk, Yk+1) = f(Yk, Yk+1) for some fixed density function f : Y × Y → [0,∞).

This is the case for the discrete time version expOU model of section 4.1, using

constant time steps ∆tk+1 = ∆t = T/K, ∀k = 0, . . . , K−1. So it is possible to define

a mesh using only one set of states GN := {Y i : i = 1, . . . , N} for all time steps, i.e.

GN = GN , ∀k = 1, . . . , K, and to use step independent weights wk,i,j = wi,j,∀k.

This is similar to the stochastic mesh-type method introduced by Rust [117]

(independently from Broadie and Glasserman [35]) : the random Bellman operator

method. Rust showed that a randomized algorithm with polynomial computational

complexity can solve (within a given error ε) a class of Markov decision problems

called discrete decision processes. A precise definition can be found in [117], but

here we note that the term discrete refers to the decision space U being a finite set,

whereas the state space is assumed continuous. In the terminology of this thesis,

the stochastic mesh used is based on a single random grid, defined by N points

{Ui : i = 1, . . . , N} sampled uniformly from the unit hypercube [0, 1]d. The objective

function at every step is computed recursively over this grid, using the DP algorithm.
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The weights used to compute the conditional expectations are Markovian transition

densities p(Xk+1|Xk, v), which depend on the decision v ∈ U . For a given decision v,

these densities can be interpreted as likelihood ratio weights, since the unconditional

density used to generate the points of the grid GN is the uniform density, i.e. the

function gk+1(Y ) in equation (3.11) is a constant. For our hedging problem, the

setup is different, as we require the decision space U to be continuous. Furthermore,

we focus on a multiplicative risk function (exponential utility), whereas the risk

function in [117] is additive. So the conclusions about the polynomial computational

complexity do not carry over directly to our setting, and we do not attempt to adapt

the relevant proofs.

The downside to using a single grid is that only a small fraction of the grid points

are likely to be reached, especially for the early stages (i.e., for small k). Intuitively,

mesh weights wk,i,j will be very close to zero if and only if the corresponding market

vectors Y i
k and Y j

k+1 are far apart. More concretely, suppose the weights were either

LR or AD weights, as given by equations (3.11) and (3.12) respectively. Then, for

given destination market vectors Y j
k+1 (j = 1, . . . , N), the weights will be close to

zero only if the density fk(Y
i
k , Y

j
k+1) is close to zero. Now assume that the market

vector process {Yk : k = 0, . . . , K} is such that the random vector

r(Yk, Yk+1) := (ln(Yk+1,1/Yk,1), . . . , ln(Yk+1,d/Yk,d))

follows a d-dimensional normal distribution r(Yk, Yk+1) ∼ N(µ,Σ), for some µ ∈ Rd

and Σ ∈ Rd×Rd. Then, the sampled market vectors Y i
k and Y j

k+1 can be considered

far apart if and only if the distance δi,j defined by

δi,j := (Xi,j − µ)tΣ−1(Xi,j − µ), where Xi,j = r(Y i
k , Y

j
k+1),

is large, since the multinormal density function is then proportional to e−δi,j/2. The
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two dimensional expOU process described in section 4.1 has Y i
k = (sik, σ

i
k)
t and is

an example of such a process with lognormal increments. In the case of the GBM

process, we have simply Y i
k = sik and the distance δi,j can be written explicitly as

δi,j =

(
ln(sjk+1/s

i
k)− µ

)2

σ2(tk+1 − tk)
, where µ = (r − q − 1

2
σ2)(tk+1 − tk).

To apply the single grid idea to our problem, we use a modified version that aims

to increase the likelihood that the mesh points come from paths simulated from our

stock price model. It is defined by considering the unconditional distribution FK

of the market information vector Yk at time tK = T and defining the grid points

Y i ∈ GN by inversion. More explicitly, if Y i = g(Zi,1, . . . , Zi,d) for some function

g : Rd → R and independent N(0, 1) variates Zi,j, then we generate the Zi,j as

Zi,j = Φ−1(U i,j), where Φ is the standard normal cummulative distribution function

and U i,j ∼ U(0, 1), for i = 1, . . . , N and j = 1, . . . , d. The distribution for step

k = K is used instead of some other k < K since it guarantees that we will sample

points in a wide enough range to cover likely paths of the process. The weights are

defined using equation (3.11) with gk+1(Y ) = g(Y ) taken as the density associated to

the distribution FK(Y ). As we will discuss in section 6.3, this is also closely related

to the mesh generation method from Boyle, Kolkiewicz and Tan [31, 32].

The distribution function FK is known explicitly in some cases of interest, such

as for the lognormal distribution, but not for the expOU model of section 4.1, where

the market vector Yk = (sk, σk)
T is defined by equations (4.3) and (4.4) over many

steps. So as a crude approximation, we use the distribution corresponding to only

one step and apply it over the entire horizon ∆t = T , instead of ∆t = T/K (i.e., we

use the distribution for the case K = 1).

Thus by construction, Y i
k+1 = Y i

k , ∀i = 1, . . . , N and ∀k = 1, . . . , K−1, so clearly

those two vectors are not independent. This could lead the associated weight to
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dominate all other weights and introduce some bias in the mesh based estimates. To

avoid such problems, we set

wi,j = 0, if i = j. (6.15)

Finally, we normalize the weights as

wNi,j :=
wi,j

1
N

∑N
j=1wi,j

, (6.16)

so that the sum of weights starting from a given state Yi will always equal one. This

reduces the variance of the mesh based estimators, at the expense of introducing

some small bias.

6.3 Quasi-Monte Carlo methods

Recall that standard Monte Carlo (MC) is used to estimate d-dimensional inte-

grals of the form

I =

∫
[0,1]d

f(U)dU (6.17)

as

Î =
1

n

n−1∑
i=0

f(U i) (6.18)

using (pseudo-)random numbers, whereas quasi-Monte Carlo (QMC) replaces the

U i’s by the elements ui of a deterministic set Pn = {u0, . . . , un−1} which covers

the unit cube [0, 1)d more uniformly than would random points. See for example

L’Ecuyer [86] and the references therein. The performance of QMC depends on the

dimension d of the problem and the smoothness of the function f to be integrated,

but good results have been obtained in financial applications (see L’Ecuyer [86],

[88], Glasserman [59]). Therefore it is natural to try to use QMC methods instead

of standard MC when constructing a stochastic mesh to estimate solutions to our
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hedging problem.

In the case of American option pricing, this has already been done by Boyle,

Kolkiewicz and Tan [31, 32], who described a way to generate a stochastic mesh using

a low-discrepancy mesh (LDM) method. As explained in more detail in an associated

research report [30], it involves fitting the parameters of a log-normal distribution

Fk at each step k = 1, . . . , K to match the mixture of log-normal distributions

that follows from the average density construction described in section 3.2.3. The

grid points Y i
k are then generated by inversion using elements of a low discrepancy

sequence for the ui instead of pseudo-random numbers.

Here we will test the application of QMC methods in a similar way, in that we

generate a single grid of points GN (as in section 6.2), using the inversion method on

a QMC point set Pn, where n = N , the number of points in the grid. However, our

implementation differs from [32] in that we use only one grid instead of K grids and

do not use a fitting procedure. Thus we take the dimension d of the QMC points

to be d = m, where m is the dimension of the space Y of market vectors, which is

much lower than the mK dimensions required if the mesh points were generated by

independent path simulations. However, as explained in section 6.2, using a single

grid implies that a relatively large proportion of grid points may be unreachable or

have a very small weight wk,j, especially for the early steps (i.e., for k � K). The

method is otherwise well defined and yields unbiased estimates, as before.

As opposed to standard MC, QMC estimates are deterministic, so it not possible

to measure the approximation error using the standard deviation of the estimates.

However, this can be addressed by using a randomized version of quasi-Monte Carlo

(RQMC), as explained in L’Ecuyer [86], for example. See also Ben Hameur, L’Ecuyer

and Lemieux [11], who give examples where combining RQMC, control variates and

other techniques can reduce the variance of basic MC estimators by large factors.

A general algorithm for applying RQMC to the single grid method is given by
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algorithm 5 below. In our experiments, we apply RQMC in the following way:

We choose the QMC point set Pn to be defined by the first n = N points of a

Sobol sequence [126] in dimension d. The explicit definition of the Sobol sequences

depends on a set of parameters called direction numbers (see for example L’Ecuyer

[88] for more details). In the Java programs used to compute the results, the point

set Pn is generated using the class SobolSequence from the SSJ Java library [89],

which in turn uses as default direction numbers the values given in Lemieux, Cieslak,

and Luttmer [96]. The randomization is provided by a random shift modulo 1 (see

L’Ecuyer [88]), where a single point U is generated uniformly over the unit hypercube

[0, 1)d and is added to each point of Pn coordinate-wise, modulo 1. That is, writing

U = (U0, . . . , Ud−1), the shifted version ũi of a point ui ∈ Pn is defined by

ũi = (ũi,0, . . . , ũi,d−1), where ũi,j = ui,j + Uj mod 1, for j = 0, . . . , d− 1. (6.19)

Algorithm 5 Single grid with RQMC

1 Generate a QMC point set Pn = {ui ∈ [0, 1)d, i = 0, . . . , n} in d dimensions.

2 For j = 1 to nR replications

a: Generate uniformly a random point U ∈ [0, 1)d and use it to randomize Pn as

P̃n ← Pn + U mod 1.

b: Use the (randomized) point set P̃n to generate the states Yi = F−1
K (ũi), with

ũi ∈ P̃n, for i = 1, . . . , N .

c: Compute associated mesh weights wi,j.

d: Apply the DP algorithm to estimate the optimal risk at k = 0 : Ĵ
(j)
0 (X0).

3 Using the estimates Ĵ
(j)
0 (X0), j = 1, . . . , nR, compute the desired statistics (e.g.

mean, standard deviation).

Figure 6.3 illustrates the convergence of various versions of the low biased (LB)
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and high biased (HB) of the mesh based estimators. AD is the average density weights

and ADN is as AD, but also including the normalization from equation (6.16). SGN is

the single grid implementation from section 6.2, including the normalization. SGNQ

is the same as SGN, but using the RQMC method as described above. Two setups

are used : K = 16 (above) and K = 64 (below). The SGNQ approximation appears

to do best when N is higher, especially for the HB version.

6.4 Removing small weights

To reduce waste of computational resources due to small weights, we can apply a

Russian roulette procedure, where a weight w less than some given threshold δ > 0

is set to 0 with probability 1−w/δ and is boosted as w = δ otherwise. This idea has

been commonly used for a long time to improve the effiency of MC simulations, for

example in radiation transport problems (see for example McGrath and Irving [103]),

and dates back at least to Kahn and Harris [75]. The roulette procedure may increase

the variance of the estimator 1
N

∑N
j=1 wk,jZ

j
k+1 of Ek[Zk+1], but for some values of δ,

the reduced computational effort may lead to an overall increased efficiency.

The roulette is often considered along with splitting, where destination states Y j
k+1

corresponding to large weights are resampled as two or more states to improve the

uniformity of the weights. See for example L’Ecuyer, Demers and Tuffin [93] and the

references given there. Introducing a new state Y j
k+1 on the mesh may correspond

to both small and large weights wk,i,j, depending on the starting point Y i
k , so the

possible gain from splitting is not obvious (compared to simply using more mesh

points, for example). However, we will not study the splitting technique further, and

focus only on the roulette.

Denote by w̃(δ) weights that go through the roulette procedure with a threshold
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Figure 6.3: Risk estimate Ĵ0(X0) as a function of N , for K = 16 (above) and K = 64
(below). Setup : call option under the expOU model, with σ0 = σ = 16%, ρ = −0.4,
κ = 2.5, σv = 1.25, T = 3 months, b = 1%, γ = 1 and n = nR = 100. Error bars
indicate one standard deviation of the sample averages.
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δ. More formally, we can write

w̃(δ) = w1{w≥δ} + δ1{u<w/δ}1{w<δ}, for u ∼ U(0, 1), independent of w and Z.

(6.20)

Now define G as the measure under which the points of the mesh are sampled, as

opposed to the measure P from section 2.1.1 used to define the expectation for the

problem (2.3). We usually suppose that the mesh based estimates of conditional

expectations are unbiased, in the sense that

EGk [Zw] = EPk [Z], for any (sufficiently integrable) Z ∈ Fk+1, (6.21)

and where w = w(Yk, Yk+1) ∈ Fk+1. The following proposition guarantees that the

roulette procedure does not introduce bias in the mesh based estimates:

Proposition 6.4.1 For any sufficiently integrable random variable Z ∈ Fk+1, we

have

EGk [Zw̃(δ)] = EGk [Zw]. (6.22)

Proof: The result can be derived easily by conditioning on w. That is, we first

consider Zw̃(δ) for a fixed w

Zw̃(δ) = Z(w1{w≥δ} + δ1{u<w/δ}1{w<δ}). (6.23)

Taking expectations on both sides, conditional on w, we have

EGk [Zw̃(δ)|w] = EGk [Z|w](w1{w≥δ} + δP [u < w/δ]1{w<δ}), (6.24)

where we have used the independence of the random variable u and the fact that

EGk [1{u<w/δ}] = P [u < w/δ]. Now note that P [u < w/δ] = w/δ if w/δ ≤ 1 (since
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w ≥ 0 and δ > 0), otherwise P [u < w/δ] = 1 for w/δ > 1. Hence

EGk [Zw̃(δ)|w] = EGk [Z|w](w1{w≥δ} + w1{w<δ}) = EGk [Z|w](w). (6.25)

Therefore, taking w inside the conditional expectation on the right-hand side,

EGk [Zw̃(δ)|w] = EGk [Zw|w] (6.26)

and taking unconditional expectations on both sides completes the proof. �

We now compare the variance of the stochastic mesh estimator, with and without

the roulette procedure. The variance under the measure G of the stochastic mesh

estimator of EPk [Z] can be written

VarGk

[
1

N

N∑
j=1

wk,jZ
j

]
=

1

N2

N∑
j=1

VarGk [wk,jZ
j] =

1

N
VarGk [wZ].

Roulette weights may lead to greater variance, but this can be controlled by the

choice of the threshold parameter δ :

Proposition 6.4.2 The increase of the variance can be bounded as

0 ≤ VarGk [Zw̃(δ)]− VarGk [Zw] ≤ δ2

4
EGk [Z21{w<δ}] ≤

δ2

4
EGk [Z2], (6.27)

and thus goes to zero at a rate of O(δ2).

Proof: To see this, note that because of (6.22), we have

VarGk [Zw̃(δ)]− VarGk [Zw] = EGk [Z2w̃(δ)2]− EGk [Z2w2]

= EGk
[
Z2(δ21{u<w/δ}1{w<δ} − w21{w<δ})

]
= EGk

[
Z2(δ − w)w1{w<δ}

]
.
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The expression (δ−w)w1{w<δ} in the last equation cannot be negative, thus the entire

expectation is bounded below by zero. Now the maximum of the same expression is

attained by w = δ/2, which yields the upper bound. �

In general the term EGk [Z21{w<δ}] shows that it also helps if events where Z2 is

high and w is small have low probability under the measure G (i.e., not too many“tail

events”). Note that when δ � 1, most points will go through the roulette procedure.

Since surviving weights all come out being equal to the constant δ, applying the

normalization procedure from equation (6.16) will turn them to 1, but if δ is too

large, then no points will survive.

6.5 Combining the single grid and Russian roulette methods

The computational cost of constructing a mesh is dominated by the computa-

tion of the weights, which requires O(KN2) operations in general (see section 1.3

or Glasserman [59]), absorbing the (polynomial) dependence on the dimension d of

the vector Yk in the O notation. For the SG method of section 6.2, this will re-

quire O(N2) operations as the relevant computations need only be done for one time

step. However, the DP recursion still requires summing over O(KN2) weights to

approximate the functions J∗k . Thus the time complexity of algorithm 3 remains in

O(KN2).

The combination of the SG method with roulette weights (SG+R) can neverthe-

less be useful in practice by reducing the computational cost by a large multiplicative

factor. To see this more precisely, we write the overall computational effort as the

sum of the computational efforts Cmesh for computing the mesh (states and weights),

and CDP for applying the DP Algorithm.

Computational effort = CmeshMN2 + CDPKN
2, (6.28)
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where M = 1 for the SG method and M = K for the AD method, and Cmesh and CDP

are interpreted as the average cost per weight for the mesh and the DP recursion,

respectively. Thus the SG method will reduce the overall effect of the mesh cost

Cmesh, without affecting CDP . Using the roulette weights will increase Cmesh slightly,

but reduce the total number of weights by a factor depending on δ, d and K, which

will reduce CDP accordingly.

Figure 6.4 shows an example of Ĵ0(X0) versus the base 2 logarithm of the total

policy computation time C, for various setups, all using a stochastic mesh with AD

weights, with and without the roulette procedure, for various threshold values (δ = 0,

10−1 and 10−4). For a given level of precision (horizontal line), the use of the base

2 logarithm implies that the distance between two points can be used to quickly

estimate the efficiency improvement factor. For example, at the bottom right of the

figure, both the basic estimator without roulette and the estimator with roulette

parameter δ = 10−1 have similar lowest values of Ĵ0(X0), but the roulette based

estimator shows a lower computational cost by a factor of approximately 22 = 4.

Overall, we see that this estimator (roulette with δ = 10−1) yields similar values for

the objective function Ĵ0(X0) as the alternative estimators considered, but at a lower

computational cost, and is thus more efficient.

Tables 6.III, 6.IV and 6.V show more detailed results for three models, respec-

tively the GBM model, the expOU model and the expOU model extended by infor-

mation variables (hereafter, expOU-I), as described in section 4.1.2 . Both versions of

the expOU model use the parameter values σ = 20%, κ = 2.6, σv = 60%, ρ = −50%,

and the expOU-I model uses the loadings α1 = α2 = 0.33. The results show, for

different mesh construction methods, the values of the low biased (M-LB) and high

biased (M-HB) mesh-based risk estimate, along with their difference (Gap). The

fraction of non-zero weights on the mesh is shown under fw, and CT-M, CT-DP,

CT-Tot correspond respectively to the computing times for the mesh, the DP recur-
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Figure 6.4: Sample average estimates of cost function approximations Ĵ0(X0) as a
function of the base-2 logarithm log2C of the total policy computation time. Error
bars indicate one standard deviation of the sample averages. The results are for a
call option under the GBM model with s0 = 10, σ0 = 20%, T = 6 months, K = 64,
b = 2% and γ = 1.
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sion for the risk estimation and their total. The last two columns show the computing

time improvement (CT Improv.), defined as the ratio of the total computing time

for the AD method divided by that of the method considered, and the efficiency

improvement (Eff. Improv.).

Following L’Ecuyer ??, we define the efficiency Eff(X) of an estimator X as the

inverse of the work-normalized mean-square error,

Eff(X) =
1

C(X) ·MSE(X)
, (6.29)

where MSE(X) = (X− µ)2, for µ the quantity to estimate. Here, µ = J∗0 (X0) and

we approximate the MSE as the square of the difference between the M-HB and

M-LB estimators, i.e., we set MSE ≈ Gap2. To compute a confidence interval for the

efficiency improvement ratio, we assume it follows an F -distribution, with parameters

d1 and d2 given by d1 = d2 = nR = 100.

Note that the high biased estimator M-HB was estimated for each of the nR

replications as an average over n = 1000 independent paths, using the outer control

variate described in section 6.1.1, using an optimal beta coefficient β = β∗ estimated

over np = 250 independent pilot runs. This reduced the variance of the estimator, but

it had the undesired effect of introducing a bias in the M-HB estimate for the expOU-

I model in table 6.V, because the control (the porfolio performance without costs)

no longer had an expectation equal to 0. So for that table, the indicated efficiency

improvement factors are unreliable. However, the computation time estimates are

unaffected.

The different components considered for the mesh generation method are :

• the independent path construction with average density weights (AD) or the

single grid construction with likelihood ratio weights (SG),

• the use of QMC point sets (Q), where a Brownian bridge is used to compute
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the sample paths in the case of the independent path construction with AD

weights,

• the use of the Russian roulette procedure (R), with R(1) indicating a threshold

of δ = 10−1 and R(3), a threshold of δ = 10−3.

The computing times are indicated in seconds per replication and the experiments

were executed on a server using x86-64 processors with a Fedora 14 operating system.

Overall, we see that the efficiency improvements are mostly explained by the

computation time improvements, as there is not much difference in the gap between

M-HB and M-LB for the various methods. Other results not shown here did highlight

a larger gap for a lower number of mesh paths N , because the SG method then shows

a higher bias. The best setup among those tested is the SG-Q-R(1) method, which

combines the various efficiency improvement techniques mentioned in this chapter.

Its performance is most noticeable for the expOU model with K = 64, where an

efficiency improvement factor within the interval (19, 37) is obtained, at the 95%-

confidence level. Note also that the efficiency gains observed are better for higher

K, as expected from the discussion at the beginning of this section. But these gains

are hindered by the relatively high computation times for the risk estimate (CT-

DP) compared to the mesh construction (CT-M), due to the cost of computing the

exponential function when constructing the risk function approximation at every

step.

6.6 Other relevant techniques not tested here

In the context of American option pricing, Avramidis and Hyden [7] describe

three relevant techniques neither analyzed nor tested in this thesis : 1) computing a

mesh based low-biased estimator, as opposed to the basic high-biased mesh estimator

described by Broadie and Glasserman [36], 2) using importance sampling and 3) using
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Table 6.III: Computing times (CT, in seconds per replication) and 95%-level con-
fidence interval for the efficiency improvement factor (using nR = 100 replications,
GBM model, N = 1024 mesh paths, σ = 20%, T = 6 months, γ = 1 and b = 2%).

K Method M-LB M-HB Gap fw CT-M CT-DP CT-Tot CT Imp. Eff. Imp.

16 AD 0.151 0.161 0.01 1 4.9 64.8 69.6 1
0.002 0.001 0.002

16 AD-Q 0.152 0.161 0.009 1 4.8 64.4 69.2 1 (0.8, 1.6)
0.002 0.001 0.002

16 AD-Q-R(1) 0.152 0.161 0.009 0.59 4.4 39.8 44.2 1.6 (1.3, 2.5)
0.002 0.001 0.002

16 AD-Q-R(3) 0.152 0.161 0.009 0.74 4.5 49.4 54 1.3 (1, 2)
0.002 0.001 0.002

16 SG 0.152 0.162 0.01 0.99 1.1 64.8 65.9 1.1 (0.7, 1.4)
0.004 0.001 0.004

16 SG-Q 0.152 0.163 0.011 0.99 1.1 64.8 65.9 1.1 (0.6, 1.2)
0.004 0.001 0.005

16 SG-Q-R(1) 0.152 0.163 0.011 0.42 0.8 27.5 28.3 2.5 (1.4, 2.7)
0.004 0.001 0.005

16 SG-Q-R(3) 0.152 0.163 0.011 0.56 0.9 37.6 38.5 1.8 (1, 2)
0.004 0.001 0.005

64 AD 0.141 0.163 0.022 0.91 21 253.4 274.4 1
0.002 0.001 0.002

64 AD-Q 0.144 0.163 0.019 0.91 19.4 252.3 271.7 1 (1, 1.9)
0.002 0.001 0.002

64 AD-Q-R(1) 0.144 0.163 0.019 0.37 18.9 99.5 118.3 2.3 (2.3, 4.4)
0.002 0.001 0.002

64 AD-Q-R(3) 0.144 0.163 0.019 0.48 18.4 133 151.3 1.8 (1.8, 3.5)
0.002 0.001 0.002

64 SG 0.144 0.164 0.021 0.79 2.7 222.9 225.6 1.2 (1, 2)
0.004 0.001 0.004

64 SG-Q 0.144 0.165 0.021 0.79 3 225 228.1 1.2 (0.9, 1.8)
0.005 0.001 0.005

64 SG-Q-R(1) 0.144 0.165 0.021 0.23 1.3 57.7 59 4.7 (3.7, 7.1)
0.005 0.001 0.005

64 SG-Q-R(3) 0.144 0.165 0.021 0.31 1.4 81.7 83.2 3.3 (2.6, 5)
0.005 0.001 0.005
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Table 6.IV: Computing times (CT, in seconds per replication) and 95%-level con-
fidence interval for the efficiency improvement factor (using nR = 100 replications,
N = 1024 mesh paths, expOU model with σ = 20%, T = 6 months, γ = 1 and
b = 2%).

K Method M-LB M-HB Gap fw CT-M CT-DP CT-Tot CT Imp. Eff. Imp.

16 AD 0.154 0.168 0.014 0.99 6.9 64.6 71.5 1
0.004 0.001 0.004

16 AD-Q 0.147 0.167 0.02 0.99 6.2 66 72.2 1 (0.3, 0.7)
0.004 0.001 0.004

16 AD-Q-R(1) 0.147 0.167 0.02 0.42 5.9 29.6 35.4 2 (0.7, 1.4)
0.004 0.001 0.004

16 AD-Q-R(3) 0.147 0.167 0.02 0.61 5.8 40.2 46 1.6 (0.5, 1.1)
0.004 0.001 0.004

16 SG 0.157 0.17 0.013 0.96 1.2 63.9 65.2 1.1 (0.9, 1.8)
0.004 0.001 0.004

16 SG-Q 0.155 0.17 0.015 0.96 1.3 62.4 63.7 1.1 (0.7, 1.3)
0.004 0.001 0.005

16 SG-Q-R(1) 0.155 0.17 0.015 0.27 0.8 17.3 18.2 3.9 (2.3, 4.4)
0.004 0.001 0.005

16 SG-Q-R(3) 0.155 0.17 0.015 0.42 1 28.1 29 2.5 (1.4, 2.8)
0.004 0.001 0.005

64 AD 0.13 0.21 0.08 0.85 29.1 242.7 271.7 1
0.004 0.003 0.005

64 AD-Q 0.129 0.209 0.08 0.85 26.5 240 266.5 1 (0.7, 1.4)
0.004 0.003 0.005

64 AD-Q-R(1) 0.129 0.209 0.08 0.19 23.7 49.4 73.1 3.7 (2.7, 5.2)
0.004 0.003 0.005

64 AD-Q-R(3) 0.129 0.209 0.08 0.29 24.1 75.8 99.9 2.7 (1.9, 3.8)
0.004 0.003 0.005

64 SG 0.15 0.208 0.057 0.7 2.7 198.5 201.2 1.4 (1.9, 3.7)
0.007 0.004 0.007

64 SG-Q 0.154 0.21 0.056 0.69 2.4 199.8 202.2 1.3 (2, 3.8)
0.006 0.004 0.007

64 SG-Q-R(1) 0.154 0.209 0.055 0.09 1 20.9 21.9 12.4 (19.1, 37.1)
0.006 0.004 0.007

64 SG-Q-R(3) 0.154 0.21 0.056 0.15 1.1 34.2 35.3 7.7 (11.4, 22.1)
0.006 0.004 0.007
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Table 6.V: Computing times (CT, in seconds per replication) and 95%-level confi-
dence interval for the efficiency improvement factor (using nR = 100 replications,
N = 512 mesh paths, expOU-I model with σ = 20%, T = 6 months, γ = 1 and
b = 2%).

K Method M-LB M-HB Gap fw CT-M CT-DP CT-Tot CT Imp. Eff. Imp.

16 AD 0.087 0.262 0.175 0.98 3.4 16 19.3 1
0.012 0.002 0.012

16 AD-Q 0.084 0.263 0.179 0.98 3.1 15.9 19 1 (0.7, 1.3)
0.011 0.002 0.011

16 AD-Q-R(1) 0.084 0.263 0.179 0.39 3.2 6.3 9.5 2 (1.4, 2.7)
0.011 0.002 0.011

16 AD-Q-R(3) 0.084 0.263 0.179 0.57 3.1 9.1 12.2 1.6 (1.1, 2.1)
0.011 0.002 0.011

16 SG 0.091 0.274 0.183 0.95 0.5 15.3 15.8 1.2 (0.8, 1.5)
0.01 0.004 0.011

16 SG-Q 0.102 0.277 0.175 0.95 0.5 14.2 14.7 1.3 (0.9, 1.8)
0.009 0.003 0.01

16 SG-Q-R(1) 0.102 0.277 0.175 0.25 0.4 3.3 3.7 5.3 (3.8, 7.3)
0.009 0.003 0.01

16 SG-Q-R(3) 0.102 0.277 0.175 0.39 0.4 5.7 6.1 3.1 (2.3, 4.4)
0.009 0.003 0.01

64 AD 0.071 0.301 0.23 0.83 13.4 56.4 69.8 1
0.011 0.006 0.013

64 AD-Q 0.069 0.303 0.234 0.83 14.5 56 70.5 1 (0.7, 1.3)
0.01 0.007 0.012

64 AD-Q-R(1) 0.069 0.303 0.234 0.17 13.6 10.6 24.2 2.9 (2, 3.9)
0.01 0.007 0.012

64 AD-Q-R(3) 0.069 0.303 0.234 0.26 12.9 16 28.9 2.4 (1.7, 3.2)
0.01 0.007 0.012

64 SG 0.091 0.379 0.288 0.66 0.8 44 44.9 1.6 (0.7, 1.4)
0.011 0.013 0.017

64 SG-Q 0.103 0.382 0.279 0.66 0.8 42.2 43 1.6 (0.8, 1.5)
0.011 0.011 0.016

64 SG-Q-R(1) 0.103 0.379 0.276 0.08 0.4 4.7 5.1 13.7 (6.8, 13.2)
0.011 0.011 0.016

64 SG-Q-R(3) 0.103 0.38 0.277 0.13 0.5 7.2 7.7 9.1 (4.5, 8.7)
0.011 0.011 0.016
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a variable number of mesh points at every stage.

To obtain the mesh based low-biased estimator, the idea is to split the mesh

points G into two sets, I ⊂ G and I ′ = I − G. The set I is used to compute the

continuation value of the American option (i.e. its value at the next stage k + 1

if not exercised at stage k), in order to test if it is optimal to exercise the option.

And the set I ′ is used to recompute the continuation value if it is not optimal to

exercise the option. These are then combined through an averaging procedure to

obtain an estimator with provably low bias. Intuitively, the original high bias is

turned into a low bias by estimating the option value using a suboptimal exercise

policy with Monte Carlo simulations independent from the ones used to estimate the

future value. This estimator has also been studied by Boyle, Kolkiewicz and Tan

[31, 32].

In the derivative hedging context of our thesis, this would correspond to comput-

ing the expected risk Q̂k(Xk, v) from equation (3.7) using the set I, and use this to

obtain the optimal decision v∗. Then, use the set I ′ to compute Ĵk(Xk) = Q̂k(Xk, v
∗).

This new estimator would have to be high biased (since using a suboptimal decision),

as opposed to low biased.

A related estimator suggested by Avramidis and Hyden [7] is to simply take

an average of both (in-sample) high and low biased mesh based estimators. Their

numerical results show that this average mesh estimator does reduce the bias. As

seen in the numerical results from earlier in this chapter, the bias from the mesh

based estimator is also a critical problem when applying stochastic mesh methods to

the hedging problem. So it would be worthwhile to test the impact on computational

efficiency of both the splitted mesh based estimator, and the associated average mesh

estimator.

The second technique discussed by Avramidis and Hyden [7] is to adapt some

importance sampling ideas from Glasserman, Heidelberger and Shahabuddin [61]
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to the stochastic mesh. This implies a modification for the weights used. Their

numerical results indicate that the technique works well for pricing smooth American

option with smooth payoffs (e.g. a geometric average option), but less so for non-

smooth payoffs (e.g. a max option).

The last technique discussed in [7] is to allow more flexibility on the number of

mesh points used, because having a fixed number of nodes per stage implies a lower

density of nodes at the later stages (for the independent path construction). For

example, by introducing a growth rate for the number of nodes at every stage. This

is more general than the stochastic tree based method from Broadie and Glasserman

[34], and various possible implementations are given in [7]. The idea is to allocate

the computational budget more efficiently, without having an exponential growth in

the number of mesh nodes like for the stochastic tree.

6.7 Conclusion

In this chapter we looked at different ways to improve on the computational

efficiency of the mesh based hedging policy. We first considered the control variates

technique, which is well-known for Monte Carlo simulations and was already applied

to stochastic mesh methods by Broadie and Glasserman [36]. Our contribution here

was to show how it can be adapted to the context of mesh hedging. More specifically,

for inner controls, we saw that it makes good sense to try to reduce the variance of

mesh based estimators ĥk(Yk) of the derivative price through control variates. In this

case, good controls are known (e.g. the derivative price under the BSM model), the

optimal coefficient β∗ is known, and the associated noise reduction makes a noticeable

difference in the optimization step. However, applying the control variates technique

to the estimator Q̂k(Xk, v) is more difficult, since it depends on the stock quantity

v.

We also discussed the idea of using a single grid instead of a stochastic mesh,
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which is already present in the random Bellman operator method described by Rust

[117]. Applying this here is not expected in itself to reduce the variance, and it can

in fact increase it. But it does reduce the time associated with the computation of

the weights over the entire mesh by a factor of K, the number of time steps. So the

overall effiency could be improved. We also saw that the quasi-Monte Carlo method

can naturally be used to generate states on a single grid. Then the dimension d of the

point set it then equal to m = dimY , the dimension of the market vectors, instead

of the dimension d = mK that would be required to generate one path (from step

k = 1 to K).

The single grid method can create many small weights between pairs of market

vectors. Since these weights may not contribute much to the approximation of con-

ditional expectations, we considered applying a Russian roulette technique to reduce

the number of such weights without introducing bias. As far as we known, it is the

first time that this technique has been used in the context of a stochastic mesh-type

approximation.

Finally, we discussed how the single grid and Russian roulette ideas could be com-

bined, and how these provide complementary computation time reductions. However,

the specific efficiency improvement results observed in practice depend on the vari-

ous details of the problem, such as the number of time steps K or the market vector

process used. Results not shown here indicated that the loss function used can also

have a large impact on the observed efficiency improvements, for example using a

quadratic loss function instead of the negative exponential, because of the associ-

ated computation time (i.e. the quadratic loss function is faster to compute, so the

dynamic programming part of the algorithm takes less time, whereas the stochastic

mesh construction itself is unaffected).
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CHAPTER 7

EMPIRICAL COMPARISON OF HEDGING POLICIES

Having established a methodology that allows us to approximate optimal poli-

cies relatively well under a stochastic volatility model (the exponential Ornstein-

Uhlenbeck model) and for many time steps (experimental results in the previous

chapters were up to K = 64 steps), we now apply it to investigate the empirical

performance of various hedging heuristics.

More specifically, we study the following questions for the case of the expOU

model :

1. What is the effect of varying the parameters of the model on the optimal risk

J∗0 (X0) and on the optimal decision µ∗1(X0) when hedging a simple call or put

option ?

2. How do the various heuristics perform under various setups compared to the

stochastic mesh based approximation (and vice versa) ?

The experimental setups are defined by many possible parameter values. So of

course it is not possible to map out all possibilities. To recall, the parameters we

consider for hedging under the expOU model and proportional transaction costs are

s0, u0, T,K, γ, b, σ0, σ, σv, ρ. Perelló, Sircar and Masoliver [108] also provide some

numerical results highlighting the impact of various combinations of parameters of

the expOU model. However the focus of their paper is option prices and not hedging

policies (with or without costs).

We start in section 7.1 by presenting a global overview of the effect on hedging

performance of various combinations of problem parameters. This is followed by sec-

tion 7.2, which presents more in depth results, where the value of only one parameter



at a time is changed while keeping the others fixed. Section 7.3 concludes.

7.1 Global performance comparison for various parameter combinations

Tables 7.I and 7.II show global results for hedging a call and a put option, respec-

tively. Simulations are under the expOU model, starting at-the-money (s0 = X =

10), for various values of the risk aversion γ, volatility σ, number of time steps K

and transaction costs b parameters. Derivative values hk(Yk) are estimated on the

mesh using control variates as described in section 6.1.2.1. The mesh is computed

using a single grid generated using uniform random numbers drawn from the Sobol

sequence and the roulette technique is applied with threshold δ = 10−7. See sections

6.2, 6.3 and 6.4 for more details.

Here are some observations on the results :

• The Mesh-LB estimates are not very close to the Mesh-HB estimates in general

(especially when there are no costs, i.e. for b = 0). This indicates that the

number of mesh points used here is too low for the mesh-based policy to be close

to being optimal. This is likely related to the number of steps K considered

being relatively high (K = 32 and K = 64).

• The policies BSM, WW, Z and Local-A are all equivalent when costs are 0, so

their results are the same.

• The NH policy is nearly optimal only in cases where costs are high (b = 2%),

volatility is low (σ = 8%) and risk aversion is low (γ = 1).

• The WW policy has poorer results when the costs b are higher, which is ex-

pected since this approximation is devised for a low b regime. Note also that

WW performs relatively poorly also here when γ is high.

• The BSM policy does well only in the case when costs are zero.
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• The Z policy is generally very good. There is a slight underperformance when

all of b, σ and γ are high.

• The Local policy is nearly optimal when the volatility is lower (σ = 8%) and

when there are no costs. Otherwise it tends to underperform.

• The policy approximation Local-A generally performs better than the policy

Local itself, perhaps because it is less noisy.

• The approximation error estimate ε̂0 is larger when the risk aversion parameter

γ is larger.

Table 7.III shows more global results for the call option hedging problem, but

with transaction costs and number of time steps fixed at b = 1% and K = 64

respectively, and with volatility parameters σ0 = σ = 16%. Instead, we test different

combinations of the parameters κ, σv and ρ. Generally, both the Mesh and Z policies

have a very good performance across the various setups. But the Mesh policy runs

into problems for κ = 10, σv = 10, ρ = −0.8. For the Z policy, there is a slight

underperformance for the lower κ cases. Note however that the NH policy also does

well for low γ. This indicates that the volatility stays low enough in the examples

that there is not much incentive to hedge for the given level of costs (b = 1%). The

number of mesh points used (N = 2048) is higher than for table 7.I and 7.II, so the

resulting values for the Mesh-LB and Mesh-HB estimators tend to be closer, even

though this is also for a high number of steps (K = 64).

7.2 Effect of various parameters on ε-optimal policies

We now look more precisely at the impact that various parameters can have on

the initial hedging decision µ1(X0) of various policies π, and the corresponding risk

estimate Ĵπ0 (X0) at step k = 0.
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Table 7.I: Estimates of the portfolio risk for hedging a call option under the negative
exponential loss function and the discrete expOU model. Setup : T = 3 months,
ρ = −0.4, κ = 2.5, σv = 2.5, σ0 = σ = σ, N = 1024 mesh points and n = nR = 100.

γ σ K b ε̂0 Mesh-LB Mesh-HB Local Local-A Z WW BSM NH

1 0.08 32 0 0 -0.021 0.018 0.018 0.011 0.011 0.011 0.011 0.047
- - - - - - - - -

1 0.08 32 0.01 0.003 0.027 0.047 0.052 0.045 0.039 0.08 0.28 0.047
- - - - - - - - -

1 0.08 32 0.02 0.001 0.038 0.052 0.053 0.047 0.044 0.136 0.627 0.047
- - - 0.001 - - - 0.001 -

1 0.08 64 0 0 -0.054 0.023 0.024 0.011 0.011 0.011 0.011 0.047
- - - - - - - - -

1 0.08 64 0.01 0.003 0.024 0.048 0.056 0.045 0.04 0.085 0.389 0.047
- - - 0.001 - - - - -

1 0.08 64 0.02 0.002 0.037 0.054 0.053 0.046 0.044 0.145 0.925 0.047
- - - - - - - 0.001 -

1 0.16 32 0 0 -0.006 0.049 0.05 0.04 0.04 0.04 0.04 0.165
- - 0.001 0.001 - - - - 0.001

1 0.16 32 0.01 0.006 0.074 0.11 0.155 0.137 0.101 0.131 0.315 0.165
- - 0.001 0.001 0.001 - - - 0.001

1 0.16 32 0.02 0.01 0.106 0.136 0.17 0.153 0.126 0.205 0.669 0.165
- - 0.001 0.001 0.001 0.001 - 0.001 0.001

1 0.16 64 0 0 -0.056 0.063 0.064 0.038 0.038 0.038 0.038 0.164
- - 0.001 0.001 - - - - 0.001

1 0.16 64 0.01 0.011 0.065 0.118 0.179 0.149 0.101 0.135 0.423 0.164
- - 0.001 0.001 0.001 - - 0.001 0.001

1 0.16 64 0.02 0.014 0.101 0.14 0.182 0.158 0.127 0.215 0.969 0.164
- - 0.001 0.002 0.001 - - 0.001 0.001

5 0.08 32 0 0 0.026 0.046 0.045 0.043 0.043 0.043 0.043 0.172
- - - - - - - - 0.001

5 0.08 32 0.01 0.036 0.106 0.116 0.161 0.149 0.12 0.165 0.61 0.172
- - - 0.001 0.001 - - 0.001 0.001

5 0.08 32 0.02 0.059 0.137 0.145 0.168 0.163 0.154 0.298 2.785 0.172
- - - 0.001 0.001 - - 0.007 0.001

5 0.08 64 0 0 0.006 0.053 0.053 0.042 0.042 0.042 0.042 0.172
- - 0.001 - - - - - 0.001

5 0.08 64 0.01 0.057 0.103 0.12 0.19 0.162 0.121 0.174 1.064 0.172
- - - 0.002 0.001 - - 0.003 0.001

5 0.08 64 0.02 0.084 0.136 0.149 0.192 0.169 0.158 0.323 7.932 0.172
- - - 0.005 0.001 - - 0.034 0.001

5 0.16 32 0 0 0.114 0.154 0.155 0.156 0.156 0.156 0.156 0.78
- - 0.001 0.001 0.001 0.001 0.001 0.001 0.002

5 0.16 32 0.01 0.035 0.295 0.326 0.549 0.51 0.354 0.392 0.97 0.78
- - 0.001 0.003 0.002 0.001 0.001 0.002 0.002

5 0.16 32 0.02 0.113 0.417 0.444 0.667 0.638 0.506 0.662 4.054 0.78
0.001 - 0.001 0.003 0.002 0.001 0.001 0.013 0.002

5 0.16 64 0 0 0.069 0.173 0.174 0.153 0.153 0.153 0.153 0.795
- - 0.001 0.001 0.001 0.001 0.001 0.001 0.002

5 0.16 64 0.01 0.072 0.281 0.333 0.699 0.61 0.351 0.403 1.608 0.795
- - 0.001 0.007 0.002 0.001 0.001 0.005 0.002

5 0.16 64 0.02 0.182 0.402 0.451 0.832 0.719 0.506 0.703 11.231 0.795
- - 0.001 0.011 0.003 0.002 0.001 0.057 0.002
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Table 7.II: Estimates of the portfolio risk for hedging a put option under the negative
exponential loss function and the discrete expOU model. Setup : T = 3 months,
ρ = −0.4, κ = 2.5, σv = 2.5, σ0 = σ = σ, N = 1024 mesh points and n = nR = 100.

γ σ K b ε̂0 Mesh-LB Mesh-HB Local Local-A Z WW BSM NH

1 0.08 32 0 0 -0.022 0.019 0.018 0.012 0.012 0.012 0.012 0.073
- - - - - - - - 0.001

1 0.08 32 0.01 0.003 0.038 0.058 0.067 0.066 0.054 0.074 0.278 0.072
- - - - 0.001 - - - 0.001

1 0.08 32 0.02 0.001 0.054 0.067 0.069 0.07 0.062 0.109 0.624 0.072
- - - 0.001 0.001 - - 0.001 0.001

1 0.08 64 0 0 -0.057 0.024 0.025 0.011 0.011 0.011 0.011 0.075
- - - - - - - - 0.001

1 0.08 64 0.01 0.003 0.033 0.058 0.07 0.069 0.053 0.077 0.385 0.072
- - - - 0.001 - - - 0.001

1 0.08 64 0.02 0.001 0.045 0.072 0.072 0.073 0.063 0.117 0.922 0.074
- - - 0.001 0.001 - - 0.001 0.001

1 0.16 32 0 0 -0.007 0.055 0.055 0.041 0.041 0.041 0.041 0.218
- - 0.001 0.001 - - - - 0.002

1 0.16 32 0.01 0.006 0.084 0.12 0.177 0.174 0.122 0.136 0.312 0.218
- - 0.001 0.001 0.001 0.001 - 0.001 0.001

1 0.16 32 0.02 0.009 0.125 0.155 0.199 0.193 0.152 0.193 0.66 0.218
- - 0.001 0.001 0.001 0.001 0.001 0.001 0.002

1 0.16 64 0 0 -0.06 0.065 0.065 0.039 0.039 0.039 0.039 0.221
- 0.001 0.001 0.001 - - - - 0.002

1 0.16 64 0.01 0.011 0.074 0.123 0.203 0.193 0.118 0.138 0.418 0.218
- - 0.001 0.001 0.001 - - - 0.002

1 0.16 64 0.02 0.014 0.115 0.158 0.211 0.211 0.152 0.202 0.961 0.224
- - 0.001 0.001 0.001 0.001 - 0.001 0.002

5 0.08 32 0 0 0.026 0.047 0.047 0.044 0.044 0.044 0.044 0.224
- - - - - - - - 0.001

5 0.08 32 0.01 0.036 0.119 0.133 0.189 0.185 0.135 0.168 0.599 0.224
- - - 0.001 0.001 - - 0.001 0.001

5 0.08 32 0.02 0.058 0.161 0.173 0.21 0.203 0.175 0.268 2.728 0.223
- - - 0.001 0.001 - - 0.007 0.001

5 0.08 64 0 0 0.005 0.055 0.054 0.043 0.043 0.043 0.043 0.227
- - 0.001 0.001 - - - - 0.001

5 0.08 64 0.01 0.057 0.113 0.133 0.211 0.202 0.134 0.175 1.044 0.224
- - - 0.001 0.001 - - 0.002 0.001

5 0.08 64 0.02 0.087 0.154 0.179 0.223 0.218 0.179 0.293 7.853 0.228
- - - 0.001 0.001 - - 0.029 0.001

5 0.16 32 0 0 0.113 0.161 0.16 0.156 0.156 0.156 0.156 0.941
- - 0.001 0.001 0.001 0.001 0.001 0.001 0.002

5 0.16 32 0.01 0.035 0.312 0.343 0.559 0.575 0.363 0.406 0.945 0.944
- - 0.001 0.002 0.001 0.001 0.001 0.002 0.002

5 0.16 32 0.02 0.11 0.448 0.483 0.869 0.722 0.512 0.648 3.895 0.944
- - 0.001 0.047 0.002 0.001 0.001 0.012 0.002

5 0.16 64 0 0 0.067 0.18 0.188 0.152 0.152 0.152 0.152 0.955
- - 0.003 0.005 0.001 0.001 0.001 0.001 0.002

5 0.16 64 0.01 0.073 0.297 0.35 0.7 0.692 0.361 0.415 1.566 0.952
- - 0.001 0.003 0.002 0.001 0.001 0.005 0.002

5 0.16 64 0.02 0.182 0.429 5.163 36.795 0.821 0.517 0.686 10.82 0.968
- - 1.478 10.008 0.002 0.001 0.001 0.046 0.003
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Table 7.III: Estimates of the portfolio risk when hedging a call option under the
negative exponential loss function and the discrete expOU model. Setup : T = 3
months, K = 64 σ0 = σ = 16%, b = 1%, N = 2048 mesh points, and n = nR = 100.

γ σv κ ρ ε̂0 Mesh-LB Mesh-HB Local Local-A Z WW BSM NH

1 1.25 2.5 -0.8 0.008 0.053 0.068 0.089 0.079 0.063 0.093 0.365 0.079
- - - - - - - - -

1 1.25 2.5 -0.4 0.008 0.059 0.073 0.108 0.101 0.07 0.096 0.369 0.101
- - - 0.001 0.001 - - - 0.001

1 1.25 2.5 0 0.008 0.063 0.077 0.124 0.121 0.076 0.098 0.372 0.122
- - - 0.001 0.001 - - - 0.001

1 1.25 10 -0.8 0.009 0.055 0.073 0.093 0.084 0.066 0.092 0.364 0.084
- - - - - - - - -

1 1.25 10 -0.4 0.008 0.059 0.068 0.1 0.096 0.069 0.092 0.367 0.096
- - - 0.001 0.001 - - - 0.001

1 1.25 10 0 0.008 0.06 0.07 0.11 0.108 0.071 0.092 0.369 0.108
- - - 0.001 0.001 - - - 0.001

1 2.5 2.5 -0.8 0.011 0.035 0.091 0.121 0.096 0.074 0.12 0.397 0.098
- - 0.001 0.001 - - - - 0.001

1 2.5 2.5 -0.4 0.009 0.074 0.113 0.175 0.152 0.103 0.137 0.423 0.169
- - 0.001 0.001 0.001 - - 0.001 0.001

1 2.5 2.5 0 0.008 0.094 0.131 0.208 0.193 0.122 0.149 0.437 0.23
- - 0.001 0.001 0.001 0.001 - 0.001 0.003

1 2.5 10 -0.8 0.011 0.053 0.08 0.104 0.087 0.067 0.104 0.383 0.087
- - - 0.001 - - - - -

1 2.5 10 -0.4 0.009 0.065 0.08 0.127 0.118 0.078 0.106 0.393 0.119
- - - 0.001 0.001 - - - 0.001

1 2.5 10 0 0.009 0.07 0.087 0.152 0.144 0.085 0.107 0.398 0.149
- - - 0.001 0.001 - - - 0.001

5 1.25 2.5 -0.8 0.057 0.124 0.149 0.434 0.384 0.159 0.179 0.894 0.386
- - 0.001 0.005 0.001 - - 0.002 0.001

5 1.25 2.5 -0.4 0.056 0.143 0.178 0.493 0.425 0.173 0.192 0.941 0.449
- - 0.004 0.011 0.001 - - 0.002 0.001

5 1.25 2.5 0 0.057 0.153 0.176 0.483 0.454 0.18 0.199 0.962 0.5
- - 0.001 0.003 0.001 - - 0.002 0.001

5 1.25 10 -0.8 0.061 0.122 0.166 0.565 0.388 0.151 0.167 0.866 0.388
- - 0.002 0.037 0.001 - - 0.002 0.001

5 1.25 10 -0.4 0.057 0.128 0.148 0.438 0.415 0.155 0.169 0.882 0.42
- - - 0.003 0.001 - - 0.002 0.001

5 1.25 10 0 0.057 0.131 0.149 0.453 0.433 0.157 0.171 0.891 0.449
- - - 0.004 0.001 - - 0.002 0.001

5 2.5 2.5 -0.8 0.067 0.167 0.231 0.6 0.472 0.251 0.306 1.23 0.519
- - 0.004 0.014 0.002 0.001 0.001 0.003 0.001

5 2.5 2.5 -0.4 0.076 0.289 0.326 0.681 0.603 0.35 0.401 1.583 0.792
0.003 - 0.001 0.008 0.002 0.001 0.001 0.005 0.002

5 2.5 2.5 0 0.069 0.351 0.398 0.793 0.713 0.4 0.453 1.749 1.007
- - 0.003 0.011 0.002 0.001 0.001 0.006 0.003

5 2.5 10 -0.8 0.065 0.138 0.264 0.57 0.427 0.187 0.223 1.035 0.447
- - 0.023 0.006 0.001 0.001 - 0.002 0.001

5 2.5 10 -0.4 0.059 0.17 0.197 0.572 0.463 0.209 0.236 1.13 0.548
- - 0.001 0.013 0.001 0.001 0.001 0.003 0.001

5 2.5 10 0 0.059 0.184 0.22 0.624 0.49 0.218 0.243 1.168 0.628
- - 0.003 0.02 0.001 0.001 0.001 0.003 0.002
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7.2.1 Transaction costs b

Figure 7.1 shows the effect of proportional transaction costs b on risk estimates

Ĵπ0 (X0) for various policies π. For the optimal policy (approximated on the stochastic

mesh), the optimal risk increases with b until reaching a ceiling, corresponding to the

no-hedging policy (NH), when costs are too high. Whether costs are “too high” or

not is relative, as it depends on the value of other parameters such as the volatility

level σ and the number of time steps K. The Z policy behaves very well for all

levels of costs tested here. The divergence of the BSM policy as b increases is not a

surprise, as mentioned in section 1.2. We see also see that the WW policy is nearly

optimal when b is low, which is expected since it should be optimal (at least for the

GBM model) in the limit of low transaction costs. However it seems to diverges

as b increases, even underperforming the NH policy. The Local hedging policy and

its approximation Local-A only do well in the very low and very high cost regimes,

significantly underperforming in between. For low costs, they both are similar to the

BSM policy, whereas for high costs, they quickly tend towards the NH policy.

7.2.2 Number of time steps K

We now consider the effect of increasing the number of time steps K for a fixed

option maturity T (so the time steps T/K become smaller). Obviously, this should

not impact the decisions of the policies NH, BSM, WW and Z since they are not

defined in terms of time steps. However, it will affect the associated risk estimate

Ĵπ0 (X0), since the policy decisions are then applied more often as K increases.

Figure 7.2 shows that the mesh based policy does well for low K. But the con-

vergence of the mesh based estimators is slower as K increases, as can be seen from

the growing gap between the high biased (Mesh-HB) and low biased (Mesh-LB) es-

timators. Perhaps surprisingly, the WW policy tends to diverge as K is increased.

The Z policy does not have this problem, and seems to go down with K, which is a
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Ĵ
π 0
(X

0
)

Mesh-LB Mesh-HB

BSM WW

Z NH

Local Local-A

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1

b(%)

µ
1
(X

0
)

Mesh BSM

WW Z

NH Local

Local-A

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

b(%)

Ĵ
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Figure 7.1: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies
π as a function of the transaction cost parameter b. Left-hand side : put option,
right-hand side : call option. Setup : s0 = 10, σ0 = σ = 16%, ρ = −0.4, κ = 2.5,
σv = 1.25, T = 3 months, K = 16, γ = 1, N = 1024 and n = 100, nR = 1000. Error
bars indicate one standard deviation of the sample averages.
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behavior one would expect from a policy that is close to the optimum in continuous

time.

The risk estimate for the Z policy decreases with K in figure 7.2. But for other

setups, the risk estimates may in fact increase with K (see figure 7.3, with b = 2%

and γ = 5).

7.2.3 Stock price s0

Figure 7.4 shows the effect of the initial stock price s0. For low values of s0

(s0 < X = 10), the call option is out-of-the-money and its price has a lower sensitivity

to the moves of the stock price. Hence there is less risk. However, for values of s0

near the strike price X = 10 and above, the call option is in the money and the

risk increases, As the stock price increases, so do the proportional transaction costs

bs0|v− u0| required for trading v shares, where u0 denotes the initial stock quantity.

This explains the rising trend on the right hand side of the graph for Ĵπ0 (X0) for the

call option (since in the example, the stock quantity is fixed at u0 = 0). There is a

growing gap between the low biased and high biased mesh estimators as s0 increases,

indicating that the optimization step is harder to solve.

For the put option, the behavior is reversed. The price sensitivity is high for low

values of s0, which is why the initial decisions µ1(X0) are closer to 1 than 0. The

downward trend of the graph for Ĵπ0 (X0) is due to the reduced transaction costs if

the stock price is lower. Interestingly, there is also a growing gap between the low

biased and high biased estimators, which increases with s0. At this point, the precise

cause of these two gaps (for the call and put option cases) is not clear.

Note that the policies Z and SM are very similar for all values of s0. The policy

WW is similar to Z and SM for s0 ≤ X = 10, but then tends to the BSM policy for

s0 > X.

Finally, figure 7.5 shows hedging bands for three policies : WW, Z and Mesh.
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Figure 7.2: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the number of time steps K. Left-hand side : put option, right-hand
side : call option. Setup : s0 = 10, σ0 = σ = 16%, ρ = −0.4, κ = 2.5, σv = 1.25,
T = 3 months, b = 1%, γ = 1, N = 2048 for the call and N = 4096 for the put, and
n = nR = 100. Error bars indicate one standard deviation of the sample averages.
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Figure 7.3: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the number of time steps K. The setup is similar as in figure 7.2,
but only for the call option, with the transaction costs and risk aversion increased
to b = 2% and γ = 5, respectively. Using N = 1024 and n = nR = 100. Error bars
indicate one standard deviation of the sample averages.
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Ĵ
π 0
(X

0
)

Mesh-LB

Mesh-HB

BSM

WW

Z

NH

Local

Local-A

5 6 7 8 9 10 11 12 13 14 15
−1

−0.8

−0.6

−0.4

−0.2

0

s0

µ
1
(X

0
)

Mesh

BSM

WW

Z

NH

Local

Local-A

Figure 7.4: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the stock price s0. Left-hand side : put option, right-hand side :
call option. Setup : σ0 = σ = 16%, ρ = −0.4, κ = 2.5, σv = 1.25, T = 3 months,
K = 16, b = 1%, γ = 1, N = 4096 and n = nR = 100. Error bars indicate one
standard deviation of the sample averages.
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Interestingly, the mesh based policy is closer to the WW policy when the stock price

s0 is closer to the strike price X, and closer to the Z policy when the stock price is

away from X.

7.2.4 Stock quantity u0

Figure 7.6 shows the effect of the initial stock quantity u0. The shape of the risk

estimate Ĵπ0 (X0) is convex as a function of u0 for the various policies π, and reflects

the fact that for more “extreme” values of u0 (i.e., close to 0 or -1), the portfolio is

not well hedged, which leads to more expected risk coming from price movements

(e.g. for the NH policy), some trading costs (e.g. for the BSM policy), or both.

Here the risk estimates Ĵπ0 (X0) look similar for Z and SM, but not the policies π

(for extreme values of u0). However, the Mesh and WW policies look very similar

as a function of u0, but the WW policy is clearly not optimal when we look at the

Ĵπ0 (X0) graph. This highlights a potential problem when comparing policies only

from the decisions at a given step. The difference between the Z and Mesh policies

is apparent for µ1(X0) (at k = 0) and indicates that Z could be be improved. Yet

overall the potential improvement on Z is relatively small, as can be seen from looking

at the small gap between Z and Mesh-LB. On the other hand, the initial decision

of the WW policy are similar to the Mesh policy at k = 0, but as time goes by the

difference between the two policies grows, which has an important effect on their

respective risk estimates. See also the discussion later in sections 7.2.5 and 7.2.6.

7.2.5 Initial volatility σ0, mean volatility level σ and volatility of log-

volatility σv

Figure 7.7 shows the effect of the initial volatility level σ0. Overall, the risk

estimate Ĵπ0 (X0) increases with σ0 for the various policies π. The mesh based estimate

performs better than the alternatives, especially in the case of the put option (left-

151



5 6 7 8 9 10 11 12 13 14 15
−1

−0.8

−0.6

−0.4

−0.2

0

s0

µ
1
(X

0
)

Mesh b+0

Mesh b−0

WW b+0

WW b−0

Z b+0

Z b−0
BSM

5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

s0

µ
1
(X

0
)

Mesh b−0

Mesh b+0

WW b−0

WW b+0

Z b−0

Z b+0
BSM

Figure 7.5: No hedging boundaries for the initial decision µ1(X0) for various policies
as a function of the stock price s0, for a call option (above) and a put option (below)
under the expOU model. Setup : σ0 = σ = 16%, ρ = −0.4, κ = 2.5, σv = 1.25,
T = 3 months, K = 16, b = 1%, γ = 1, N = 1024 and n = nR = 100.

152



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

u0

Ĵ
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Figure 7.6: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the stock quantity price u0. Left-hand side : put option, right-hand
side : call option. Setup : s0 = 10, σ0 = σ = 16%, ρ = −0.4, κ = 2.5, σv = 1.25,
T = 3 months, K = 16, b = 1%, γ = 1, N = 1024 and n = nR = 100. Error bars
indicate one standard deviation of the sample averages.
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hand side), and for higher σ0. The relatively small gap between the Mesh-LB and

Mesh-HB estimates indicates that the mesh based policy is indeed close to being

optimal.

Note that although the WW policy decisions µ1(X0) are closest to that of the mesh

based policy on the graphs, the Z policy tends to have a smaller risk, as measured

by Ĵπ0 (X0). This is not a contradiction since the decision functions illustrated by

the lower graphs are for the initial step only (k = 0) and for a fixed stock price s0,

so for other values of (k, sk) the Z policy could be closer to the mesh based policy

than the WW policy (as can be already seen in figure 7.4). Note also that there is a

noticeable “dip” in the Z policy around σ0 = 16%, when compared to the WW-policy.

This is not a statistical error and reflects the functional form of the policy, since the

policy decisions shown are exact for all except the Mesh-based policy. For larger σ0,

however, both the risk estimate and the policy decision for the WW and Z policy

tend to be closer.

As seen in figure 7.8, the effect of the long-term volatility parameter σ on the

risk estimates is similar to that of σ0, as Ĵπ0 (X0) increases with σ. The impact

of σ is however less pronounced, with an apparently smaller rate of increase. The

Mesh-based policy is again seen to outperform the heuristics, especially in the case

of the put option. But the gap between Mesh-LB and Mesh-HB is larger than in the

figures 7.7, and gets larger with σ. This indicates a stronger bias in the Mesh-based

estimates.

As in the case of the parameter σ0 seen above, the difference in performance

between WW and Z gets smaller for higher σ. The WW policy even does slightly

better in the case of the put option for σ = 0.40. The policy decisions for all heuristics

are constants as functions of the parameter σ, by definition. But interestingly, we

notice that σ does have an effect on the optimal decision estimate associated to the

mesh based policy. More specifically, one should hedge more (i.e. higher absolute
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Ĵ
π 0
(X

0
)

Mesh-LB Mesh-HB

BSM WW

Z NH

Local Local-A

0.08 0.16 0.24 0.32 0.4
0

0.2

0.4

0.6

0.8

1

σ0

µ
1
(X

0
)

Mesh BSM

WW Z

NH Local

Local-A

0.08 0.16 0.24 0.32 0.4
0

0.05

0.1

0.15

0.2

0.25

σ0

Ĵ
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Figure 7.7: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π as
a function of the initial volatility parameter σ0. Left-hand side : put option, right-
hand side : call option. Setup : s0 = 10, σ = 16%, ρ = −0.4, κ = 2.5, σv = 1.25,
T = 3 months, K = 16, b = 1%, γ = 1, N = 4096 and n = nR = 100. Error bars
indicate one standard deviation of the sample averages.
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value of the hedging decision) as σ is increased. The impact on the optimal decision

tends to level off for higher σ, but of course this behavior could depend on the values

of other model parameters.

Figure 7.9 shows that the risk estimate Ĵπ0 (X0) tends to increase with the volatility

of log-volatility parameter σv. The gap between the high and low biased stochastic

mesh estimates is smaller for small σv. For σv = 1, it is apparent that there is

clearly some (small) gain from using an optimal policy instead of the Z policy. For

σv = 2.5, a higher number of mesh points would be required to reach a conclusion, as

the out-of-sample estimates Mesh-HB and Z are quite close (especially in the case of

the call option), and the gap between the Mesh-HB and Mesh-LB estimates is large.

The mesh based policy decisions seems to increase slowly with σv (i.e., become less

negative) for both the call and the put example. Interestingly, in the case of the

call option, however, this is in the opposite direction to that of σ0 or σ (i.e. the

mesh based decision µ1(X0) tends to increase as function of σv, but decrease as a

function of σ0 or σ). As increases in either σ or σv can both be roughly interpreted

as increases in the volatility of the model, it is not intuitive that the (approximately

optimal) mesh based policy should behave qualitatively differently as a function of

σv. But here the results could also be influenced by the larger bias in the estimates

for higher σv (as indicated from the gap between Mesh-HB and Mesh-LB), so more

precise experiments would be required to clarify the situation.

7.2.6 Time horizon T

Figure 7.10 shows the behavior of the policy decisions and associated risk esti-

mates for different values of the time to expiry T for the options to hedge. As for

the volatility-related parameters σ0, σ and σv, there is a significant improvement (i.e.

reduction) in the risk associated with the mesh based policy compared to the other

heuristics tested. This is especially true in the case of the put option, whereas the
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Figure 7.8: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the mean volatility parameter σ. Left-hand side : put option, right-
hand side : call option. Setup : s0 = 10, σ = 16%, ρ = −0.4, κ = 2.5, σv = 1.25,
T = 3 months, K = 16, b = 1%, γ = 1, N = 1024 and n = nR = 100. Error bars
indicate one standard deviation of the sample averages.
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Figure 7.9: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the volatility of log-volatility parameter σv. Left-hand side : put
option, right-hand side : call option. Setup : s0 = 10, σ0 = σ = 16%, κ = 2.5,
σv = 1.25, ρ = −0.4, T = 3 months, K = 16, b = 1%, N = 1024 and n = nR = 100.
Error bars indicate one standard deviation of the sample averages.
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impact is less pronounced in the case of the call option.

Overall, the similarity between the effects of T and the volatility parameters

makes sense, since if we assume that for the model of section 4.1 (which we are using)

the volatility level σk is roughly equal to a constant σ, then we would have that the

variance of the (log-normal) distribution of prices at time tK = T is approximately

given by s2
0(eσ

2T − 1) ≈ s2
0σ

2T (assuming zero interest rates and dividends, i.e.

r = q = 0). Hence increasing the value of T for a fixed volatility σ can be interpreted

as increasing the volatility level σ for a fixed T .

As for the behavior of the heuristics, notice that WW does more poorly when T

is small. Since the NH policy is close to being optimal for small T , this indicates

that it is best to simply not hedge when close to the expiry, although the precise

time at which this starts to be true could depend on other parameters such as the

stock price sk, the stock quantity held uk or the proportional costs b.

7.2.7 Rate of log-volatility mean reversion κ

Figure 7.11 shows the effect of various values of the parameter κ, the rate of log-

volatility mean reversion. As for some other parameters such as σ or σv, the various

heuristics are independent of κ, by definition, so the associated decisions µ0 appear

as straight lines in the two lower charts. The mesh based policy does appear to have

a dependence on κ, but it is barely noticeable for the setup considered. One possible

reason is that the initial volatility σ0 is equal to the long-run volatility σ. Hence

the volatility level σk does not have a chance to deviate significantly enough from σ

for the mean-reversion to take effect. So either using σ0 � σ (say) or a higher level

for the volatility of log-volatility σv could reveal a stronger effect, but we have not

tested such setups in our experiments. Note that in table 7.III of section 7.1, we also

had σ0 = σ, but different combinations of (κ, σv) where shown. There was a poor

performance of the mesh method associated to high σv when κ was high (especially
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Figure 7.10: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the option’s time to expiry T . Left-hand side : put option, right-hand
side : call option. Setup : s0 = 10, σ0 = σ = 16%, ρ = −0.4, κ = 2.5, σv = 1.25,
T = 3 months, K = 16, b = 1%, γ = 1, N = 4096 and n = nR = 100. Error bars
indicate one standard deviation of the sample averages.
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for ρ = −0.8), and there was a good performance for high σv when κ was low.

7.2.8 Correlation ρ

Figure 7.12 shows the effect of the correlation parameter ρ between the price log-

returns and the volatility log-returns (see again the model definition in section 4.1).

Only negative correlations are considered here (i.e. a drop in prices is associated with

an increase in volatility). Note that the first data point on the left is for ρ = −0.99

and not ρ = −1, to avoid numerical difficulties. Still, there is a large bias in the

associated mesh based estimator for ρ = −0.99, as can be seen from the gap between

Mesh-LB and Mesh-HB risk estimates on the two upper graphs.

There is a noticeable impact from ρ on the performance of the mesh based policy

and the various heuristics. Overall, for ρ ∈ [−0.9, 0], we see that the mesh based

policy does improve on the heuristics, especially in the case in the case of the put

option, with high negative correlation parameter (e.g. ρ = −0.9). This makes sense

because a put option is mostly exposed to price movements when the stock price

sk goes below the option’s strike price X (i.e. becomes in-the-money, in financial

jargon). So this should be associated with an increase in the level of volatility, and

hence in an increase of the portfolio risk. In the case of the call option, the Z policy

performs nearly as well as the mesh based policy, which is also plausible because

then the negative correlation ρ has the opposite effect. That is, for the option to be

in-the-money, the stock price sk has to go above than the strike price X, so these

positive price movements will tend to be associated with a decrease in volatility.

7.2.9 Risk aversion γ

Figure 7.13 shows the effect of varying the risk aversion parameter γ. Note that

it is on a log-scale, to show various orders of magnitude of the parameter γ.

For low values of γ, the NH, Z and Local-A policies have similar risk estimates
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Figure 7.11: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the rate of log-volatility mean reversion parameter κ. Left-hand side
: put option, right-hand side : call option. Setup : s0 = 10, σ0 = σ = 16%, ρ = −0.4,
σv = 1.25, T = 3 months, K = 16, b = 1%, γ = 1, N = 4096 and n = nR = 100.
Error bars indicate one standard deviation of the sample averages.
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Figure 7.12: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π
as a function of the correlation parameter ρ. Left-hand side : put option, right-hand
side : call option. Setup : s0 = 10, σ0 = σ = 16%, κ = 2.5, σv = 1.25, T = 3 months,
K = 16, b = 1%, γ = 1, N = 4096 and n = nR = 100. Error bars indicate one
standard deviation of the sample averages.
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and dominate the alternative heuristics and the mesh based policy. This indicates

that the Z and Local-A policies mostly do not hedge in that case. The Mesh-HB and

Local risk estimates are very close for low γ, which in turn points to those two policies

being approximately equal. So even though the mesh based policy uses Dynamic

Programming over the full number of steps K, this becomes roughly equivalent to

the one-step Local hedging policy for small γ. In contrast, for high values of γ

(say γ ≥ 10), the mesh based policy clearly dominates the other heuristics, and in

particular Local hedging.

The WW policy is closer to the optimum when γ is higher, under-performing for

low γ. But recall that WW is a low cost approximation, not low γ. In contrast, the

best setup for the Local and Local-A policies is γ to be very low (even γ = 1 is still

too high), which is expected since they were defined as approximations for low γ.

Recall also that for low γ, equation (2.7) implies that the negative exponential

risk is approximately equal to :

E0[L(V π
K − V0)] ≈ −E0[V π

K − V0] +
γ

2
E0[(V π

K − V0)2], (7.1)

which can be interpreted as a tradeoff between the expectation and the second mo-

ment about 0 of the portfolio performance (or variance if E0[V π
K ] is not too far from

V0). This tradeoff can be seen in figure 7.14, which represents the sample meanm(V π
K)

and sample standard deviation s(V π
K) of the terminal portfolio value V π

K . Each curve

corresponds to a different policy π, and each point of a given curve corresponds to

a different value for the risk aversion parameter γ. The top graph shows the case

K = 16 for a call option, for which most curves appear similar (with the exception of

the WW policy), whereas the bottom graph shows the case K = 64 for a put option,

for which there is much more differentiation between results for the various policies.

In the mean-variance framework of modern portfolio theory (introduced by Markowitz

[100]), portfolios that maximize expected return for a given standard deviation should
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Figure 7.13: Risk estimate Ĵπ0 (X0) and initial decision µ1(X0) for various policies π as
a function of the risk aversion parameter γ. Left-hand side : put option, right-hand
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be preferred (i.e. efficient portfolios). Under this criterion, both Local and Local-A

actually do very well in figure 7.14, which is expected because they are designed for

low γ, i.e. a case where the negative exponential risk objective becomes approxi-

mately equivalent to a mean-variance objective. But this objective does not take

into account higher moments of the portfolio performance V π
K−V0, as opposed to the

negative exponential risk function. Note that the NH policy results appear as a point

at the top right of the graphs, corresponding to very low costs, but high variance,

whereas the BSM policy results appear as a point at the bottom left, corresponding

to low variance but high costs.

7.3 Conclusion

Generally speaking, we cannot expect the heuristic policies tested here, such as

BSM, WW and Z, to do well in every setup, since they where designed to work

under the GBM price dynamics and for small or no costs. Conversely, for any setup

with a high enough number of mesh points N , the stochastic mesh based policy is

supposed to dominate the heuristics, since it should converge to the optimal policy

as N increases. Given the numerical evidence from the previous sections, here are

the cases which could most benefit from using approximately optimal policies (such

as stochastic mesh based policies), as opposed to the tested heuristics :

• Higher costs b,

• Higher risk aversion γ,

• Longer horizon T , larger volatility parameters σ0, σ,

• Put options (as opposed to call options), and

• Smaller number of time steps K
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For high K and no costs (b = 0), results for the stochastic mesh method are

generally poor (for a fixed value of N), i.e. the bias is high for the estimates Mesh-

LB and Mesh-HB. But in that context, computing an optimal policy over many steps

appears unnecessary. Indeed, although convergence of the mesh-based policy is still

obtained eventually, local hedging was shown to yield an optimal policy (see section

4.2.3), but at a much smaller computational cost since there is no need to compute

a full stochastic mesh.

In practice, the heuristics can still do very well compared to the mesh based

method when there is a strong time constraint, because of the reduced noise. The

noise in the mesh based policy can be reduced by increasing the number of mesh

nodes N , but with an accompanying increase in computation time. One possibility

around this problem is to compute the optimal policies offline (i.e. overnight). It

is not realistic to assume the option positions to hedge will not change daily, but

it could still be useful to precompute approximately optimal policies if the option

positions to hedge don’t change too much. That is, one could bear a small mishedging

cost for one day.

The performance of the Z policy is the closest to mesh-based policy in the case of

the call option in general, for both the GBM and expOU models, but less so in the

case of the put option. By construction, Z is optimized on a call option, so this can be

seen as an example of what can happen if a policy is optimized on one derivative and

applied to another. Furthermore, the difference in performance is more pronounced

for the general expOU model than for the GBM examples. This indicates that the

additional market risk coming from the stochastic volatility in the expOU model does

have an impact on the portfolio risk, which can somewhat be reduced by the optimal

policy (as approximated by the mesh-based policy).
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CHAPTER 8

CONCLUSION

Building on existing works, this thesis has provided a new methodology for com-

puting the optimal solutions to dynamic hedging problems in discrete time, including

costs. Our motivation was to be able to compute such hedging policies for various

underlying processes and derivative payoffs. But, knowing that the resulting policies

would only be approximately optimal, we also wanted to have some kind of lower

bound on the risk, to ascertain that the policies could not be improved upon by much

more.

The central innovation was the application of stochastic mesh methods in this

context, and the use of the associated high and low biased estimators. A realistic

example, based on a stochastic volatility process and an exponential utility objective,

was worked out in detail. Furthermore, we studied suitable efficiency improvement

techniques (single grid, Russian roulette and RQMC) that provided appreciable com-

putation time reductions for a given level of precision, especially when used simulta-

neously. But as was apparent along the various chapters, the hedging problem has

many components, and the analysis from this thesis could be extended in various

directions.

In terms of applying the methods presented here, using a different stochastic pro-

cess for the underlying stock should not cause any additional difficulty, provided the

transition densities are known (see section 3.2.3). In this regard, it would be inter-

esting to try stochastic mesh hedging on interest rate derivatives (such as swaptions,

for example), where the state space is naturally multi-dimensional when modelling

the dynamics of the yield curve and its associated volatility.

As for the choice of the loss function, another natural case to consider for stochas-



tic mesh hedging is that of the quadratic loss function, or the portfolio variance. Such

a function is much faster to compute than the negative exponential loss function and

is widely used as a risk measure. But this would require to take the cash variable

into account into the state during the DP recursion, whereas this was not necessary

when the negative exponential loss function was considered in our examples. Thus a

suitable two-dimensional approximation would have to be used for the risk function

for a given value of the market information vector Yk, instead of the one-dimensional

approximation used in this thesis.

Another extension in this vein could be to allow hedging with more than one

instrument. But then again, the challenge is that a higher dimensional approximation

would be required to keep track of the effect of the quantities held of the various

hedging instruments at each step.
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