Greedy Layer-Wise Training of Deep Networks

Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochkd
Université de Montréal
Montréal, Québec
{bengi oy, | anbl i np, popovi cd, | arocheh}@ro. unontreal . ca

Abstract

Complexity theory of circuits strongly suggests that deepitectures can be much
more efficient (sometimes exponentially) than shallow &ectures, in terms of
computational elements required to represent some furgtideep multi-layer
neural networks have many levels of non-linearities alfmyihem to compactly
represent highly non-linear and highly-varying functioftowever, until recently
it was not clear how to train such deep networks, since gradtiased optimization
starting from random initialization appears to often getktin poor solutions. Hin-
ton et al. recently introduced a greedy layer-wise unsupetMearning algorithm
for Deep Belief Networks (DBN), a generative model with médawyers of hidden
causal variables. In the context of the above optimizatioblem, we study this al-
gorithm empirically and explore variants to better undardtits success and extend
it to cases where the inputs are continuous or where thetsteuof the input dis-
tribution is not revealing enough about the variable to llted in a supervised
task. Our experiments also confirm the hypothesis that thedyrlayer-wise unsu-
pervised training strategy mostly helps the optimizatimninitializing weights in a
region near a good local minimum, giving rise to internatritisited representations
that are high-level abstractions of the input, bringingdregeneralization.

1 Introduction

Recent analyses (Bengio, Delalleau, & Le Roux, 2006; Bel&glce Cun, 2007) of modern non-
parametric machine learning algorithms that are kernehinas, such as Support Vector Machines
(SVMs), graph-based manifold and semi-supervised legraligorithms suggest fundamental limita-
tions of some learning algorithms. The problem is clear imkebased approaches when the kernel
is “local” (e.g., the Gaussian kernel), i.&((x, y) converges to a constant whgm — y|| increases.
These analyses point to the difficulty of learnifidghly-varying functions’, i.e., functions that have

a large number ofvariations” in the domain of interest, e.g., they would require a largaloer of
pieces to be well represented by a piecewise-linear appiation. Since the number of pieces can be
made to grow exponentially with the number of factors ofaioins in the input, this is connected with
the well-known curse of dimensionality for classical nargmetric learning algorithms (for regres-
sion, classification and density estimation). If the shayes! these pieces are unrelated, one needs
enough examples for each piece in order to generalize gyoptowever, if these shapes are related
and can be predicted from each ottiegn-local” learning algorithmshave the potential to generalize
to pieces not covered by the training set. Such ability waeleim necessary for learning in complex
domains such as Artificial Intelligence tasks (e.g., relatevision, language, speech, robotics).

Kernel machines (not only those with a local kernel) havghallow architecture, i.e., only two
levels of data-dependent computational elements. Thitsisteue of feedforward neural networks
with a single hidden layer (which can become SVMs when thebmmof hidden units becomes
large (Bengio, Le Roux, Vincent, Delalleau, & Marcotte, B)O A serious problem with shallow
architectures is that they can be very inefficient in termthefnumber of computational units (e.g.,
bases, hidden units), and thus in terms of required exaniBkggio & Le Cun, 2007). One way to
represent a highly-varying function compactly (with fewgraeters) is through the composition of
many non-linearities, i.e., with deep architecture For example, the parity function withhinputs
requiresO(2¢) examples and parameters to be represented by a GaussianEigig et al., 2006),
O(d?) parameters for a one-hidden-layer neural netw6id) parameters and units for a multi-layer
network withO(log, d) layers, and)(1) parameters with a recurrent neural network. More generally

boolean functions (such as the function that computes tHgpteation of two numbers from their
d-bit representation) expressible I6(log d) layers of combinatorial logic wittD(d) elements in
each layer may requir@(2¢) elements when expressed with only 2 layers (Utgoff & Strag2002;
Bengio & Le Cun, 2007). When the representation of a conaaptires an exponential number of
elements, e.g., with a shallow circuit, the number of tragnéxamples required to learn the concept
may also be impractical. Formal analyses of the computaticomplexity of shallow circuits can be
found in (Hastad, 1987) or (Allender, 1996). They point ie ame direction: shallow circuits are
much less expressive than deep ones.

However, until recently, it was believed too difficult toitraleep multi-layer neural networks. Empiri-
cally, deep networks were generally found to be not bettetadten worse, than neural networks with
one or two hidden layers (Tesauro, 1992). As this is a negadisult, it has not been much reported in
the machine learning literature. A reasonable explanasitimat gradient-based optimization starting
from random initialization may get stuck near poor solusioAn approach that has been explored with
some success in the past is baseatonstructivelyadding layers. This was previously done using a
supervised criterion at each stage (Fahlman & Lebiere, ;19806gellé & Denoeux, 1996). Hinton,
Osindero, and Teh (2006) recently introduced a greedy4aysunsupervisetbarning algorithm for
Deep Belief Networks (DBN), a generative model with manyelayof hidden causal variables. The
training strategy for such networks may hold great promsse principle to help address the problem
of training deep networks. Upper layers of a DBN are supptsegpresent more “abstract” concepts
that explain the input observatian whereas lower layers extract “low-level features” framThey
learn simpler concepts first, and build on them to learn mbstract concepts. This strategy, studied
in detail here, has not yet been much exploited in machirreileg. We hypothesize that three aspects
of this strategy are particularly important: first, preitiag one layer at a time in a greedy way; sec-
ond, using unsupervised learning at each layer in orderdsepve information from the input; and
finally, fine-tuning the whole network with respect to therakte criterion of interest.

We first extend DBNs and their component layers, RestrictedzBiann Machines (RBM), so that
they can more naturally handle continuous values in inpeto8d, we perform experiments to better
understand the advantage brought by the greedy layer-wggervised learning. The basic question
to answer is whether or not this approach helps to solve adliffoptimization problem. In DBNSs,
RBMs are used as building blocks, but applying this saméegtyausing auto-encoders yielded similar
results. Finally, we discuss a problem that occurs with dlyet-wise greedy unsupervised procedure
when the input distribution is not revealing enough of theditional distribution of the target variable
given the input variable. We evaluate a simple and succesdfution to this problem.

2 Deep Belief Nets

Let z be the input, ang?’ the hidden variables at layérwith joint distribution

P(z,g',¢%,....g") = P(z|lg")P(g'[g®) --- P(g" *|g") P(g" ", "),
where all the conditional layeB(g’|g’*!) are factorized conditional distributions for which compu-
tation of probability and sampling are easy. In Hinton e{2006) one considers the hidden lager
a binary random vector with* elementsg’:
ni’ n'H»l
P(g'lg"™") = [[Peile™) with P(g} =1[g""") =sigm(®) + Y Wigi™) (1)
J=1) k=1
wheresigm(t) = 1/(1 + ¢~7), theb’, arebiasesfor unit j of layeri, andW* is theweight matrixfor
layeri. If we denoteg” = z, the generative model for the first layBz|g!) also follows (1).

2.1 Restricted Boltzmann machines

The top-level priorP(gf~!, g*) is a Restricted Boltzmann Machine (RBM) between laye¢ — 1
and layer/. To lighten notation, consider a generic RBM with input lagetivationsv (for visi-
ble units) and hidden layer activations (for hiddenunits). It has the following joint distribution:
P(v,h) = LePWvHbvieh \whereZ is the normalization constant for this distributioris the vec-
tor of biases for visible units; is the vector of biases for the hidden units, &ids the weight matrix
for the layer. Minus the argument of the exponential is ciifeeenergy function,

energy(v,h) = —h'Wv — b'v — ¢'h.)

We denote the RBM parameters together with= (W, b,¢). We denoteQ(h|v) and P(v|h)
the layer-to-layer conditional distributions associateih the above RBM joint distribution.

The layer-to-layer conditionals associated with the RBMtdaze like in (1) and give rise to
P(vi = 1lh) = sigm(bx, + >_; Wjrh;) andQ(h; = 1|v) = sigm(c; + >_) Wjkvi).

2.2 Gibbs Markov chain and log-likelihood gradient in an RBM

To obtain an estimator of the gradient on the log-likelihobdn RBM, we consider a Gibbs Markov
chain on the (visible units, hidden units) pair of variabléibbs sampling from an RBM proceeds by
samplingh givenv, thenv givenh, etc. Denotev; for thet-th v sample from that chain, starting at
t = 0 with v, the “input observation” for the RBM. Thereforeyy, hy) for £ — oo is a sample from
the jointP(v, h). The log-likelihood of a valuey under the model of the RBM is

log P(vg) = log Z P(vo,h) = log Z eeneray(vo,h) _ log Z e—eneray(v,h)
v,h

and its gradient with respect to= (W, b, ¢) is

Olo Pv Bener V,h Oenergy(vy, h
g 0) o ZQ gy 0,19 +Z (vi, 1) ggék k)

vi,hy

Oenergy(vo, h Oenergy (v, h

g(};é 0, ho) + Ep, ggé k> hy) o |
wherehy is a sample fron®) (hg|vo) and(vy, hy) is a sample of the Markov chain, and the expecta-
tion can be easily computed thanksRo¢h|vi) factorizing. The idea of the Contrastive Divergence
algorithm (Hinton, 2002) is to také small (typicallyk = 1). A pseudo-code for Contrastive Di-
vergence training (witlk = 1) of an RBM with binomial input and hidden units is presentedhie
Appendix (AlgorithmRBMupdat e(x, e, W, b, ¢)). This procedure is called repeatedly with = =
sampled from the training distribution for the RBM. To dexighen to stop one may use a proxy for
the training criterion, such as the reconstruction errdog P(vy = z|vp =).

for k — oo. An unbiased sample is-

2.3 Greedy layer-wise training of a DBN

A greedy layer-wise training algorithm was proposed (Hingbal., 2006) to train a DBN one layer at
a time. One first trains an RBM that takes the empirical data@st and models it. Deno®@ (g |g°)
the posterior oveg! associated with that trained RBM (we recall thlt = 2 with = the observed
input). This gives rise to an “empirical” distributiqﬂ over the first Iayelg wheng is sampled

from the data empirical distributign we havep Zp Q(g'g").

Note that a 1-level DBN is an RBM. The basic idea of the greegpei-wise strategy is that after
training the top-level RBM of &-level DBN, one changes the interpretation of the RBM patanse
to insert them in af+ 1)-level DBN: the distributionP(g~!|g’) from the RBM associated with
layers? — 1 and/ is kept as part of the DBN generative model. In the RBM betwlagars/ — 1
and/, P(g") is defined in terms on the parameters of that RBM, whereaeiDBN P(g*) is defined
in terms of the parameters of the upper layers. Consequeptly’|g‘~!) of the RBM does not
correspond tdP(g’|g’~!) in the DBN, except when that RBM is the top layer of the DBN. Hwer,
we useQ(g’|gf~!) of the RBM as an approximation of the posterfofg’|g‘ ") for the DBN.

The samples og‘~!, with empirical distributiorp® !, are converted stochastically into samplegof
with distributionp® throughp*(g®) = >, 9" (g ")Q(g|g"). Althoughp* cannot be rep-
resented explicitly it is easy to sample unbiasedly fronplt:k a training example and propagate it
stochastically through th@(g’|g?~!) at each level. As a nice side benefit, one obtains an approxi-
mation of the posterior for all the hldden variables in theNDBt all levels, given an inpy’ = z.
Mean-field propagation (see below) gives a fast determiragtporoximation of posterior® (g’ |z).

Note that if we consider all the layers of a DBN from leveio the top, we have a smaller DBN,
which generates the marginal distributiBiig®) for the complete DBN. The motivation for the greedy
procedure is that a partial DBN with— i levels starting above levéimay provide a better model for
P(g') than does the RBM initially associated with levétself.

The above greedy procedure is justified using a variationahd (Hinton et al., 2006). As a con-
sequence of that bound, when inserting an additional lafygris initialized appropriately and has
enough units, one can guarantee that initial improvememtt® training criterion for the next layer

(fitting p°) will yield improvement on the training criterion for theguious layer (likelihood with
respect tgp*—1). The greedy layer-wise training algorithm for DBNs is g@usimple, as illustrated by
the pseudo-code in Algorithifr ai nUnsuper vi sedDBN of the Appendix.

2.4 Supervised fine-tuning

As a last training stage, it is possible to fine-tune the patars of all the layers together. For exam-
ple Hinton et al. (2006) propose to use the wake-sleep algorfHinton, Dayan, Frey, & Neal, 1995)
to continue unsupervised training. Hinton et al. (2006) @iopose to optionally use a mean-field ap-
proximation of the posterior®(gt|g’), by replacing the samplgf1 at leveli — 1 by their bit-wise
mean-field expected valqe?l, with p* = sigm(b® + Wiu*~1). According to these propagation
rules, the whole network now deterministically computdeiinal representations as functions of the
network inputg® = z. After unsupervised pre-training of the layers of a DBN dating Algorithm

Tr ai nUnsuper vi sedDBN(see Appendix) the whole network can be further optimizeddaglient
descent with respect to any deterministically computatali@ing criterion that depends on these rep-
resentations. For example, this can be used (Hinton & Satdkiov, 2006) to fine-tune a very deep
auto-encoder, minimizing a reconstruction error. It iog®ssible to use this as initialization of all
except the last layer of a traditional multi-layer neuralwegk, using gradient descent to fine-tune the
whole network with respect to a supervised training criteri

Algorithm DBNSuper vi sedFi neTuni ng in the appendix contains pseudo-code for supervised
fine-tuning, as part of the global supervised learning dlyar Tr ai nSuper vi sedDBN. Note that
better results were obtained when usingQafold larger learning ratewith the supervised criterion
(here, squared error or cross-entropy) updates than irothteastive divergence updates.

3 Extension to continuous-valued inputs

With the binary units introduced for RBMs and DBNs in Hintanak (2006) one can “cheat” and
handle continuous-valued inputs by scaling them to thé {ft&rval and considering each input con-
tinuous value as the probability for a binary random vagatbl take the value 1. This has worked
well for pixel gray levels, but it may be inappropriate fohet kinds of input variables. Previous
work on continuous-valued input in RBMs include (Chen & Mayr2003), in which noise is added
to sigmoidal units, and the RBM forms a special form of DifirsNetwork (Movellan, Mineiro, &
Williams, 2002). We concentrate here on simple extensibtissoRBM framework in which only the
energy function and the allowed range of values are changed.

Linear energy: exponential or truncated exponential

Consider a unit with valug of an RBM, connected to units of the other layer.p(y|z) can be
obtained from the terms in the exponential that contgaiwhich can be grouped iga(z) for linear
energy functions as in (2), whea¢z) = b+ w’z with b the bias of unit, andw the vector of weights
connecting unity to unitsz. If we allow y to take any value in interval, the conditional density
exp(ya(z))lyer
fv exp(va(z))lyerdv’
with parameter(z), and the normalizing integral equalsl /a(z), but only exists ifvz, a(z) < 0
Computing the density, computing the expected vatte(l/a(z)) and sampling would all be easy.

of y becomesp(y|z) = WhenI = [0, c0), this is an exponential density

Alternatively, if I is a closed interval (as in many applications of interest)if ve would like to
use such a unit as a hidden unit witln-linear expected valyehe above density is &runcated
exponential For simplicity we consider the cade= [0, 1] here, for which the normalizing integral,

which always exists, i ””p(;‘(lz()z))*l. The conditional expectation af givenz is interesting because

it has a sigmoidal-like saturating and monotone non-ligarE[y|z] = m - ﬁ

sampling from the truncated exponential is easily obtafred a uniform samplé&/, using the inverse
cumulativeF—! of the conditional density|z: F~1(U) = leel=UxU_czp(a(z))) |y poth truncated

a(z)
and not truncated cases, the Contrastive Divergence uplate the same form as for binomial units
(input value times output value), since the updates onlyeddpn the derivative of the energy with

respect to the parameters. Only sampling is changed, daogaalthe unit's conditional density.

Quadratic energy: Gaussian units

To obtain Gaussian-distributed units, one adds quadstics to the energy. Addin}, d?y? gives
rise to a diagonal covariance matrix between units of theedager, wherey; is the continuous value
of a Gaussian unit and? is a positive parameter that is equal to the inverse of thiawee ofy;. In

° Do Network wit 10 pre-iaiing Figure 1: Training classification error vs training
i g

iteration, on the Cotton price task, for deep net-
work without pre-training, for DBN with unsuper-
vised pre-training, and DBN with partially super-
vised pre-training. lllustrates optimization diffi-
culty of deep networks and advantage of partially
supervised training.

classification error on training set

* Abalone Cotton

train. valid. test. train. valid. test.
1. Deep Network with no pre-training 423 443 42 452% 9%2.943.0%
2. Logistic regression . : 44.0% 42.6% 45.0%
3. DBN, binomial inputs, unsupervised 459 460 4.47 44.0%%.6% 45.0%
4. DBN, binomial inputs, partially supervised 4.39 4.45 &.243.3% 41.1% 43.7%
5. DBN, Gaussian inputs, unsupervised 425 442 419 35.7%9% 35.8%
6. DBN, Gaussian inputs, partially supervised 4.23 4.43 84.P7.5% 28.4% 31.4%

Table 1: Mean squared prediction error on Abalone task and clasdfit&rror on Cotton task,
showing improvement with Gaussian units.

this case the variance is unconditional, whereas the mgaemds on the inputs of the unit: for a unit

. . . . - a(z)
y with inputsz and inverse varianc#”, Ey|z] = 57

The Contrastive Divergence updates are easily obtainedmputing the derivative of the energy
with respect to the parameters. For the parameters in tharliterms of the energy function (e.g.,
andw above), the derivatives have the same form (input unit véiloes output unit value) as for the
case of binomial units. For quadratic parameter 0, the derivative is simplRdy?. Gaussian units
were previously used as hidden units of an RBM (with binorarahultinomial inputs) applied to an
information retrieval task (Welling, Rosen-Zvi, & HintoRQ05). Our interest here is to use them for
continuous-valued inputs.

Using continuous-valued hidden units

Although we have introduced RBM units with continuous valte better deal with the representa-
tion of input variables, they could also be considered fa insthe hidden layers, in replacement or
complementing the binomial units which have been used irp#s¢. However, Gaussian and expo-
nential hidden units have a weakness: the mean-field prtipaghrough a Gaussian unit gives rise
to a purely linear transformation. Hence if we have only slisar hidden units in a multi-layered
network, the mean-field propagation function that maps t&pal internal representations would be
completely linear. In addition, in a DBN containing only Gaian units, one would only be able
to model Gaussian data. On the other hand, combining Gausstia other types of units could be
interesting. In contrast with Gaussian or exponentialgym#gmark that the conditional expectation
of truncated exponential units is non-linear, and in fact involves a sigtal form of non-linearity
applied to the weighted sum of its inputs.

Experiment 1

This experiment was performed on two data sets: the UCI iepgsAbalone data set (split in 2177
training examples, 1000 validation examples, 1000 teshekes) and a financial data set. The latter
has real-valued input variables representing averages$worhis and squared returns for which the bino-
mial approximation would seem inappropriate. The targetie is next month’s return of a Cotton
futures contract. There are 13 continuous input varialtkegt,are averages of returns over different
time-windows up to 504 days. There are 3135 training exasppl@00 validation examples, and 1000
test examples. The dataset is publicly availabletdtp: / / www. i r 0. unont r eal . ca/ ~ i sa/
fin.data/. In Table 1 (rows 3 and 5), we show improvements brought by BBIih Gaussian
inputs over DBNs with binomial inputs (with binomial hiddenits in both cases). The networks have
two hidden layers. All hyper-parameters are selected basedlidation set performance.

4 Understanding why the layer-wise strategy works

A reasonable explanation for the apparent success of the-Vaige training strategy for DBNs is that
unsupervised pre-training helps to mitigate the difficydtimization problem of deep networks by
better initializing the weights of all layers. Here we preisexperiments that support and clarify this.

Training each layer as an auto-encoder

We want to verify that the layer-wise greedy unsupervisedtmining principle can be applied when
using an auto-encoder instead of the RBM as a layer buildlogkb Let 2 be the input vector
with z; € (0,1). For a layer with weights matri¥’, hidden biases column vectérand input
biases column vectar, the reconstruction probability for bitis p;(x), with the vector of proba-
bilities p(x) sigm(c + Wsigm(b + W'x)). The training criterion for the layer is the average
of negative log-likelihoods for predicting from p(z). For example, ifr is interpreted either as a
sequence of bits or a sequence of bit probabilities, we nikgirthe reconstruction cross-entropy:
R=—->,zilogp;(x)+ (1 — z;)log(1 — p;(x)). We report several experimental results using this
training criterion for each layer, in comparison to the castive divergence algorithm for an RBM.
Pseudo-code for a deep network obtained by training eadr ks an auto-encoder is given in Ap-
pendix (AlgorithmTr ai nGr eedyAut oEncodi ngDeepNet).

One question that arises with auto-encoders in comparisthnRBMs is whether the auto-encoders
will fail to learn a useful representation when the numbeumits is not strictly decreasing from one
layer to the next (since the networks could theoreticalty jearn to be the identity and perfectly min-
imize the reconstruction error). However, our experimentggest that networks with non-decreasing
layer sizes generalize well. This might be due to weight dacal stochastic gradient descent, prevent-
ing large weights: optimization falls in a local minimum whicorresponds to a good transformation
of the input (that provides a good initialization for supgeed training of the whole net).

Greedy layer-wise supervised training

A reasonable question to ask is whether the fact that eaehn iayrained in an unsupervised way is
critical or not. An alternative algorithm is supervisedeedy and layer-wise: train each new hidden
layer as the hidden layer of a one-hidden layer supervisadaheetworkNN (taking as input the
output of the last of previously trained layers), and theowhaway the output layer ®N and use the
parameters of the hidden layerdN as pre-training initialization of the new top layer of theedenet,

to map the output of the previous layers to a hopefully begpresentation. Pseudo-code for a deep
network obtained by training each layer as the hidden lafersupervised one-hidden-layer neural
network is given in Appendix (Algorithriir ai nGr eedySuper vi sedDeepNet).

Experiment 2.

We compared the performance on the MNIST digit classificatisk obtained with five algorithms:
() DBN, (b) deep network whose layers are initialized a®-autcoders, (c) above described su-
pervised greedy layer-wise algorithm to pre-train eackedagd) deep network with no pre-training
(random initialization), (e) shallow network (1 hidden éaywith no pre-training.

The final fine-tuning is done by adding a logistic regressayet on top of the network and train-
ing the whole network by stochastic gradient descent on th&seentropy with respect to the target
classification. The networks have the following architeet/84 inputs, 10 outputs, 3 hidden layers
with variable number of hidden units, selected by validaset performance (typically selected layer
sizes are between 500 and 1000). The shallow network hagyke dirdden layer. An L2 weight
decay hyper-parameter is also optimized. The DBN was sléavéain and less experiments were
performed, so that longer training and more appropriatblysen sizes of layers and learning rates
could yield better results (Hinton 2006, unpublished, repb.15% error on the MNIST test set).

Experiment 2

Experiment 3

train. valid. test train. valid. test
DBN, unsupervised pre-training 0% 1.2% 1.2% 0% 15% 15%
Deep net, auto-associator pre-training 0% 1.4% 1.4% 0% 1.406%
Deep net, supervised pre-training 0% 1.7% 2.0% 0% 1.8% 1.9%
Deep net, no pre-training .004% 2.1% 24% .59% 2.1% 2[2%
Shallow net, no pre-training .004% 1.8% 1.9% 3.6% 4.7% 5/0%

Table 2: Classification error on MNIST training, validation, andttssts, with the best hyper-
parameters according to validation error, with and withanettraining, using purely supervised or
purely unsupervised pre-training. In experiment 3, the sizthe top hidden layer was set to 20.

On MNIST, differences of more than .1% are statisticallynffigant. The results in Table 2 suggest
that the auto-encoding criterion can yield performance mamable to the DBN when the layers are
finally tuned in a supervised fashion. They also clearly stimatthe greedy unsupervised layer-wise
pre-training gives much better results than the standaydtavérain a deep network (with no greedy

pre-training) or a shallow network, and that, without magfting, deep networks tend to perform worse
than shallow networks. The results also suggestuhatipervised greedy layer-wise pre-training can
perform significantly better than purely supervised greleggr-wise pre-training A possible expla-
nation is that the greedy supervised proceduteagyreedy. in the learned hidden units representation
it may discard some of the information about the target,rmfttion that cannot be captured easily by
a one-hidden-layer neural network but could be capturedbyposing more hidden layers.

Experiment 3

However, there is something troubling in the Experimentults (Table 2): all the networks, even
those without greedy layer-wise pre-training, perform @imperfectly on theraining set which
would appear to contradict the hypothesis that the maircefiethe layer-wise greedy strategy is
to help the optimization (with poor optimization one woubpect poor training error). A possible
explanation coherent with our initial hypothesis and with &bove results is captured by the following
hypothesis Without pre-training, the lower layers are initializedoply, but still allowing the top two
layers to learn the training set almost perfectly, becabhseotitput layer and the last hidden layer
form a standard shallow but fat neural network. Considerttipetwo layers of the deep network
with pre-training it presumably takes as inputleetter representatignone that allows for better
generalization. Instead, the netwavithout pre-trainingsees a “random” transformation of the input,
one that preserves enough information about the input thditraining set, but that does not help to
generalize. To test that hypothesis, we performed a se@iesof experiments in which we constrain
the top hidden layer to be small (20 hidden units). The Expenit 3 results (Table 2) clearly confirm
our hypothesis. With no pre-training, training error delgrs significantly when there are only 20
hidden units in the top hidden layer. In addition, the resalitained without pre-training were found
to have extremely large variance indicating high sensitito initial conditions. Overall, the results
in the tables and in Figure 1 are consistent with the hypdgHeat the greedy layer-wise procedure
essentially helps to better optimize the deep netwamiahably by initializing the hidden layers so that
they represent more meaningful representations of thetjmghich also yields to better generalization.

Continuous training of all layers of a DBN

With the layer-wise training algorithm for DBNS ai nUnsuper vi sedDBN in Appendix), one
element that we would like to dispense with is having to det¢fte number of training iterations for
each layer. It would be good if we did not have to explicitlydddyers one at a time, i.e., if we
could train all layers simultaneously, but keeping the &giy’ idea thateach layer is pre-trained to
model its input, ignoring the effect of higher layer§o achieve this it is sufficient to insert a line
in Tr ai nUnsuper vi sedDBN, so thatRBMupdat e is called on all the layers and the stochastic
hidden values are propagated all the way up. Experimentsthig variant demonstrated that it works
at least as well as the original algorithm. The advantagkdswe can now have a single stopping
criterion (for the whole network). Computation time is $lity greater, since we do more computations
initially (on the upper layers), which might be wasted (lvefthe lower layers converge to a decent
representation), but time is saved on optimizing hypeeajeters. This variant may be more appealing
for on-line training on very large data-sets, where one waver cycle back on the training data.

5 Dealing with uncooperative input distributions

In classification problems such as MNIST where classes allesearated, the structure of the input
distributionp(z) naturally contains much information about the target \@eig. Imagine a super-
vised learning task in which the input distribution is mgsthrelated withy. In regression problems,
which we are interested in studying here, this problem cheldnuch more prevalent. For example
imagine a task in whiclr ~ p(z) and the targey = f(z) + noise (e.g.p is Gaussian andl = sinus)
with no particular relationbetweenp and f. In such settings we cannot expect the unsupervised
greedy layer-wise pre-training procedure to help in tragnieep supervised networks. To deal with
such uncooperative input distributions, we propose taiteaich layer with a mixed training criterion
that combines the unsupervised objective (modeling om&tcocting the input) and a supervised ob-
jective (helping to predict the target). A simple algorittimus adds the updates on the hidden layer
weights from the unsupervised algorithm (Contrastive Bjeace or reconstruction error gradient)
with the updates from the gradient on a supervised predi€timr, using a temporary output layer, as
with the greedy layer-wise supervised training algorithmour experiments it appeared sufficient to
perform that partial supervision with ttiest layer only, since once the predictive information about
the target is “forced” into the representation of the firgela it tends to stay in the upper layers. The
results in Figure 1 and Table 1 clearly show the advantagei®partially supervised greedy training

algorithm in the case of the financial dataset. Pseudo-code for [hadigervising the first (or later
layer) is given in AlgorithnTr ai nParti al | ySuper vi sedLayer (in the Appendix).

6 Conclusion

This paper is motivated by the need to develop good trainiggrigdhms for deep architectures, since
these can be much more representationally efficient thdloshanes such as SVMs and one-hidden-
layer neural nets. We study Deep Belief Networks appliedupesvised learning tasks, and the prin-
ciples that could explain the good performance they havelgie The three principal contributions
of this paper are the following. First we extended RBMs and\BEn new ways to naturally handle
continuous-valued inputs, showing examples where muderbptedictive models can thus be ob-
tained. Second, we performed experiments which suppohythethesis that the greedy unsupervised
layer-wise training strategy helps eptimize deep networkbut suggest that better generalization is
also obtained because this strategy initializes uppersayith better representations relevantigh-
level abstractionsThese experiments suggest a general principle that capgdie@ beyond DBNSs,
and we obtained similar results when each layer is inigalias an auto-associator instead of as an
RBM. Finally, although we found that it is important to havewnsupervised component to train each
layer (a fully supervised greedy layer-wise strategy pentd worse), we studied supervised tasks in
which the structure of the input distribution is not reveglienough of the conditional density gf
givenz. In that case the DBN unsupervised greedy layer-wise glyappears inadequate and we
proposed a simple fix based on partial supervision, that &dd significant improvements.

References

Allender, E. (1996). Circuit complexity before the dawn bétew millennium. Irl6th Annual Conference
on Foundations of Software Technology and Theoretical CoenfSciencepp. 1-18. Lecture Notes in
Computer Science 1180.

Bengio, Y., Delalleau, O., & Le Roux, N. (2006). The curse afhfy variable functions for local kernel
machines. In Weiss, Y., Scholkopf, B., & Platt, J. (Ed&Jlvances in Neural Information Processing
Systems 18%p. 107-114. MIT Press, Cambridge, MA.

Bengio, Y., & Le Cun, Y. (2007). Scaling learning algorithtosvards Al. In Bottou, L., Chapelle, O., DeCoste,
D., & Weston, J. (Eds.).arge Scale Kernel MachineMIT Press.

Bengio, Y., Le Roux, N., Vincent, P., Delalleau, O., & MareptP. (2006). Convex neural networks. In
Weiss, Y., Scholkopf, B., & Platt, J. (EdsAdvances in Neural Information Processing System®(t8
123-130. MIT Press, Cambridge, MA.

Chen, H., & Murray, A. (2003). A continuous restricted balann machine with an implementable training
algorithm. IEE Proceedings of Vision, Image and Signal Processis@(3), 153-158.

Fahlman, S., & Lebiere, C. (1990). The cascade-correldéaming architecture. In Touretzky, D. (Ed.),
Advances in Neural Information Processing System2 524-532 Denver, CO. Morgan Kaufmann,
San Mateo.

Hastad, J. T. (1987)Computational Limitations for Small Depth CircuitslIT Press, Cambridge, MA.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learnaigorithm for deep belief net®Neural Computa-
tion, 18, 1527-1554.

Hinton, G. (2002). Training products of experts by minimizicontrastive divergencéNeural Computation
14(8), 1771-1800.

Hinton, G., Dayan, P., Frey, B., & Neal, R. (1995). The waleep algorithm for unsupervised neural networks.
Science268 1558-1161.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimenality of data with neural networksScience
3135786), 504-507.

Lengellg, R., & Denoeux, T. (1996). Training MLPs layer layér using an objective function for internal
representationdNeural Networks9, 83-97.

Movellan, J., Mineiro, P., & Williams, R. (2002). A montett@EM approach for partially observable diffusion
processes: theory and applications to neural netwadiksiral Computationl4, 1501-1544.

Tesauro, G. (1992). Practical issues in temporal diffezdaarning.Machine Learning8, 257-277.
Utgoff, P., & Stracuzzi, D. (2002). Many-layered learnifdeural Computationl4, 2497—-2539.

Welling, M., Rosen-2vi, M., & Hinton, G. E. (2005). Exponditfamily harmoniums with an application to
information retrieval. IPAdvances in Neural Information Processing Systevok 17 Cambridge, MA.
MIT Press.

