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Abstract 

One of the key problems in spoken language understanding 

(SLU) is the task of slot filling. In light of the recent success 

of applying deep neural network technologies in domain 

detection and intent identification, we carried out an in-depth 

investigation on the use of recurrent neural networks for the 

more difficult task of slot filling involving sequence 

discrimination. In this work, we implemented and compared 

several important recurrent-neural-network architectures, 

including the Elman-type and Jordan-type recurrent networks 

and their variants. To make the results easy to reproduce and 

compare, we implemented these networks on the common 

Theano neural network toolkit, and evaluated them on the 

ATIS benchmark. We also compared our results to a 

conditional random fields (CRF) baseline. Our results show 

that on this task, both types of recurrent networks outperform 

the CRF baseline substantially, and a bi-directional Jordan-

type network that takes into account both past and future 

dependencies among slots works best, outperforming a CRF-

based baseline by 14% in relative error reduction. 

Index Terms: spoken language understanding, word 

embeddings, recurrent neural network, slot filling 

1. Introduction 

A major task in speech understanding or spoken language 

understanding (SLU) is to automatically extract semantic 

concept, or to fill in a set of arguments or “slots” embedded in 

a semantic frame, in order to achieve a goal in a human-

machine dialogue. Despite many years of research, the slot 

filling task in SLU is still a challenging problem, in parallel 

with the intent determination task [23][27]. 
Until fairly recently, the main technical approaches to solving 

the slot filling problem in SLU included generative modeling, 

such as HMM/CFG composite models [25], and discriminative 

or conditional modeling such as conditional random fields 

(CRF) [13][26]. A few years ago, a new approach emerged for 

advancing speech recognition, based on deep learning, which 

involves many layers of nonlinear information processing in 

deep neural networks [11][6]. Subsequently these techniques 

have been applied to intent determination or semantic 

utterance classification tasks of SLU [24][7]. Deep learning 

has also been successfully applied to a number of other human 

language technology areas including language modeling 

[16][21], especially with the use of the naturally deep 

architecture of recurrent neural networks [15]. Among these 

progresses, one important advance is the invention of word 

embeddings [2], successfully projecting very-high-

dimensional, sparse vector for word representations into a low-

dimensional, dense vector representation for a variety of 

natural language tasks [3][4][15].  

In light of the recent success of these methods, especially the 

success of recurrent neural networks for language modeling 

[15], we carried out an in-depth investigation of recurrent 

neural networks for the slot filling task of SLU. In this work, 

we implemented and compared several important recurrent 

neural network architectures, e.g., the Elman-type networks 

[8] [15] and Jordan-type networks [12] and their variations. To 

make the results easy to reproduce and rigorously comparable, 

we implemented these models using the common Theano 

neural network toolkit [1], and evaluated them on the standard 

ATIS (Airline Travel Information Systems) benchmark. We 

also compared our results to a baseline using conditional 

random fields (CRF). Our results show that on the ATIS task, 

both Elman-type networks and Jordan-type networks 

outperform the CRF baseline substantially, and a bi-directional 

Jordan-type network that takes into account of both past and 

future dependencies among slots works best. 

2. The Slot Filling Task 

Semantic parsing of input utterances in SLU typically consists 

of three tasks: domain detection, intent determination, and slot 

filling. Originating from call routing systems, domain 

detection or intent determination tasks are typically treated as 

semantic utterance classification.  Slot filling is typically 

treated as a sequence classification problem after semantic 

templates for concept classes or “slots” are defined.  

An example sentence is provided in Table 1, with domain, 

intent, and slot/concept annotations illustrated, along with 

typical domain-independent named entities. This example 

follows the popular in/out/begin (IOB) representation, where 

Boston and New York are the departure and arrival cities 

specified as the slot values in the user’s utterance, respectively. 

 
Sentence show flights from Boston to New York today 

Slots/Concepts O O O B-dept O B-arr I-arr B-date 

Named Entity O O O B-city O B-city I-city O 

Intent Find_Flight 

Domain Airline Travel 

Table 1. ATIS utterance example IOB representation 

 

For the slot filling task, the input is the sentence consisting of 

a sequence of words, and the output is a sequence of 

slot/concept IDs, one for each word. Traditionally, one of the 

most successful approaches for slot filling is the conditional 

random field (CRF) [13] and its variants. I.e., given the input 

word sequence    
         , the linear-chain CRF models 

the conditional probability of a concept/slot sequence   
  

        as follows: 
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and   (            
   ) are features extracted from the current 

and previous states    and     , plus a window of words 

around the current word   , with a window size of     .      

3. Using RNNs for Slot Filling 

3.1. Word embeddings 

As an alternative to N-gram models, researchers came up with 

several different techniques based on learning Euclidean space 

structures for words. A real-valued embedding vector is 

associated with each word, and these embeddings are usually 

trained in an unsupervised way on a large corpus of natural 

language, e.g. Wikipedia. The architecture of these models can 

vary from shallow neural nets (NN) [19] or convolutional nets 

(SENNA) [4] to recurrent neural nets (RNN) [15]. The learned 

word embedding shows good generalization properties across 

many common natural language processing (NLP) tasks [4].  

The neural network architectures evaluated in this paper are 

based on such word embeddings.  

3.2. Short-term dependencies captured using a word 

context window 

Without considering a temporal feedback, the neural network 

architecture corresponds to a simple feed-forward multi-layer 

perceptron (MLP), e.g., with a hidden layer and sigmoid 

activations. To capture short-term temporal dependencies in 

this setting, one can use a word-context window. With each 

word mapped to an embedding vector, the word-context 

window is the ordered concatenation of word embedding 

vectors. Here is an example of constructing the input vector 

with the word context window of size 3:  

 ( )  [                   ] 

                

 ( )   ( )  [                      ]      

In the example,  ( )  is the 3-word context window 

around the t-th word ‘from’,       is the embedding vector of 

the word ‘from’, and d is the dimension of the embedding 

vector. Correspondingly,  ( )  is the ordered concatenated 

word embeddings vector for the words in  ( ). 

In the feed-forward NN [11], the raw input vector x is first 

fed into the hidden layer h. After a non-linear transformation, 

the output of the hidden layer h is then fed into the output 

layer to generate the final output y. 

3.3. Two types of RNN architectures  

At the highest level of complexity for slot filling, one has to 

take into account the slot/concept dependencies (sequences of 

labels) beyond the words surrounding the word of interest (the 

context word window that captures short-term dependencies). 

Here we first describe two variants of RNNs for modeling slot 

sequences: the Elman-type RNN [8] and the Jordan-type RNN 

[12]. Using RNNs to model long-term dependencies will be 

presented in the next sub-section. In contrast to a feed-forward 

NN, in the Elman-type RNN, the output from the hidden layer 

at time t-1 is be kept and fed back to the hidden layer at time t, 

together with the raw input  ( )  for time t. This can be 

interpreted as having an additional set of virtual “context 

nodes”, where there are connections from the hidden layer to 

these context nodes fixed with a weight of one. At each time 

step, the input is propagated in a standard feed-forward 

fashion, and then a parameter updating rule is applied, taking 

into account the influence of past states through the recurrent 

connections. In this way, the context nodes always maintain a 

copy of the previous values of the hidden nodes, since these 

propagate through the recurrent connections from time t-1, 

before the updating rule is applied at time t. Thus the network 

can maintain and learn a sort of state summarizing past inputs, 

allowing it to perform tasks such as sequence-prediction that 

are beyond the power of a standard feed-forward NN. 

Precisely, dynamics of the Elman-type RNN can be 

represented mathematically by 

 ( )    (  ( )    (   )) 

where we use the sigmoid function at the hidden layer:  
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and a softmax function at the output layer:  
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where U and V are weight matrices between the raw input and 

the hidden nodes, and between the context nodes and the 

hidden nodes, respectively, while W is the output weight 

matrix. The input vector  ( ) has as dimensionality that of the 

word embeddings   multiplied by the number of words in the 

context window.  ( )  corresponds to the hidden layer, and 

 ( ) has as dimensionality the number of classes; i.e., 127 for 

the ATIS slot filling task. 

Jordan-type RNNs are similar to Elman-type networks, 

except that the context nodes are fed from the output layer 

instead of from the hidden layer. The context nodes in a 

Jordan-type network are also referred to as the state layer. The 

difference between Elman and Jordan-type networks appears 

only in the hidden layer input: 

 ( )   (  ( )    (   )) 

3.4. Long-term dependencies captured using a RNN 

To capture dependencies beyond the input window, we need to 

exploit the time-connection feedback, giving rise to the RNN 

architectures. Learning long-term dependencies with RNNs 

raises an optimization problem known as the vanishing 

gradient problem. Indeed, capturing longer time dependencies 

correspond to training a deeper model when the RNN is 

unfolded in time (i.e., each time instance of a layer being a 

separate layer of a deep net). Rather than training classical 

RNNs in this way, we can directly provide some of the past 

information from different time steps. Instead of relying only 

on learning through one-step recurrences to capture context, 

one can combine recurrence with the idea of input window. 

This is achieved by feeding the network with concatenation of 

the T previous time steps vectors (from the output layer as in 

the Jordan-type network or the hidden layer as in the Elman-

type network) in addition to the use of word context windows. 

This also provides a way to obtain the most accurate number 

of time steps to consider for a particular task. In the case of 

Elman-type networks, the feedback from the output layer leads 

to the following backward model (predicting from the future to 

the past) and forward model (predicting from the past to the 

future): 
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Further, since having only backward or forward time 

dependencies uses only partial information available, it would 

be helpful to consider both past and future dependencies 

together. Bi-directional Elman-type RNNs have been studied 

in the past [18] and in this paper, we consider variants of bi-

directional Jordan-type RNNs: 
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where    and    denote the output of a backward model and a 

forward model in the Jordan-type RNN,  respectively. 

3.5. Learning methods 

3.5.1. Fine-tuning word embedding 

Once the word embeddings have been learned in an 

unsupervised fashion [3][15], it is possible to fine-tune them 

during supervised training on the task of interest. Actually, this 

is double-edged: the model could fit the task better but the risk 

of overfitting may arise. We compare both cases 

experimentally in Section 4. 

3.5.2. Sentence-level and word-level gradient descents 

The average length of a sentence in the ATIS data set is about 

15 words. With such relatively long inputs, training RNN 

models could be tricky if updates are done online (i.e., after 

each word). This is because the predictions at the current word 

have been made with model parameters that are no longer 

current, and the sequence of predictions does not correspond 

to the one that could be performed with a fixed parameter set. 

For instance, if we want to predict or perform an update at the 

17th slot of a sentence with a forward RNN model, we would 

have to re-compute all the values from the beginning of the 

sentence in order to get “correct” predictions consistent with 

the current model parameters. 

For training the Elman-type RNN, one option to prevent 

the above problem is to perform mini-batch gradient descent 

with exactly one sentence per mini-batch. For a given 

sentence, we perform one pass that computes the mean loss for 

this sentence and then perform a gradient update for the whole 

sentence. This approach performs well even if the mini-batch 

size varies for the sentences with different lengths. 

A similar learning technique has also been applied for 

training the Jordan-type RNN, which corresponds to 

performing parameter updates after each word. Like in the 

mini-batch case, we compute all slot values for the sentence in 

one pass. Then, we keep this history of values as an 

approximation to the exact values and perform one gradient 

step for each word. In the experiments, we have observed fast 

convergence between the exact and approximate slot values.  

3.5.3. Dropout regularization 

We found that training bi-directional RNNs on the 

slot/concept predictions of previously trained RNNs gave us 

poor generalization results due to overfitting. In order to 

address this issue, we implemented a recently introduced 

regularization technique called dropouts [10] that omits a 

given proportion of the hidden nodes for each training sample 

as well as parts of the input vector. Experimental results show 

that it allows us to improve the performance of the bi-

directional RNN over regular RNNs. 

4. Experimental Evaluation 

We use the ATIS corpus as used extensively by the SLU 

community, e.g. [9][17][22]. The training set contains 4978 

utterances selected from Class A (context independent) 

training data in the ATIS-2 and ATIS-3 corpora, while the test 

set contains 893 utterances from the ATIS-3 Nov93 and Dec94 

datasets. In the evaluation, we only use lexical features in the 
experiments.  

4.1. Corpus for learning word embeddings 

The methods and data used for learning word embeddings 

might impact performance on the slot filling task we are 

interested in. In order to evaluate that impact, different 

procedures for learning word embeddings have been 

considered, including SENNA [4] and RNNs [14]. For 

SENNA, we directly download the embeddings pre-trained on 

the Wikipedia corpus. RNN word embeddings were obtained 

by running the RNNLM toolkit available online [14]. We also 

took into account the dimension d of the embedding as a factor 

of variation. For data, we consider three semantically different 

corpora for embedding training: Wikipedia, Gutenberg, and 

Broadcast news. A Wikipedia snapshot is downloaded from 

[20]. Gutenberg corresponds to digitized books with expired 

copyrights which we downloaded and built ourselves.  For the 

Broadcast news corpus, we directly downloaded the word 

embeddings provided by [14] on the RNNLM website. 

4.2. Results on word embeddings 

To evaluate the impact on SLU of learning methods and data 

for word embedding training, we test different types of word 

embeddings trained on different corpora and by different 

methods.  We first consider a frame-level MLP setting (e.g., a 

feed-forward MLP with inputs of only word embedding 

features within a word context window), and we compare 

results of using the embeddings as is versus fine-tuning them 

during training. Results are also compared with randomly 

initialized word embeddings of various dimensions 

            which are fine-tuned during training. In the 

experiment, an MLP with      hidden nodes is trained. 1000 

sentences of the original ATIS training set are held out as a 

validation set for choosing the best word context window size 

and hyper-parameters. The model is then re-trained with the 

best set of hyper-parameters on the whole ATIS training set.  

 
method Corpus embedding’s 

dimension 
w/o fine-

tuning 
w/ fine-
tuning 

SENNA Wikipedia 50 92.01 92.38 

RNNLM Wikipedia 100 90.51 90.61 

Gutenberg 100 90.20 90.31 

Broadcast 80 90.14 90.58 

Random N/A 50 N/A 90.26 

80 90.94 

100 90.81 

Table 2: F1 score on the ATIS task for different methods and 

training corpora for the embeddings, with the corresponding 

dimension   of word embeddings.  



We first observe from Table 2 that fine-tuning word 

embeddings is helpful, improving results by a small but 

consistent margin across the board. We also find that SENNA 

embeddings gives the best performance. We hypothesize that 

this may essentially be due to a conditioning issue, since the 

norm of SENNA word vectors is kept normalized to 1 during 

training while it is not the case for RNNLM. As indicated by 

the RNNLM results, word embeddings trained on a 

semantically different corpus (Wikipedia, Gutenberg, and 

Broadcast) lead to similar performance, and the differences 

become even smaller after fine-tuning. In later experiments, 

we use the embeddings from SENNA. 

4.3. Results on Jordan-RNN  

There are several choices for feeding the Jordan-type RNN 

with outputs from previous or future time steps. The first 

option takes the output probabilities of the NN. Intuitively, 

probabilities would allow the model to perform a kind of 

disambiguation since no hard decision is made. The second 

option considers the hard decision of the model in both the 

training and testing phases. The third option differs from the 

last choice during training: the model is trained with ground 

truth labels, while at test time, since no ground truth labels are 

available, the hard decisions are used. 

For all these options, we measure the precision, recall and 

F1-score using the conlleval.pl script [22] and compare it to a 

CRF baseline. The CRF hyper-parameters, i.e., window sizes 

and regularizers, have been chosen using 5-fold cross 

validation on the ATIS training set. We use the CRFpp toolkit 

[5] to run these experiments. Results are reported in Table 3. 

All the Jordan-type RNNs outperform the CRF baseline. As 

expected, the probability-based J-RNN outperforms the hard-

decision-based version. More interestingly, the forward 

Jordan-type RNN trained with ground-truth labels obtains the 

best performance although there is a condition mismatch (e.g., 

no ground truth label is available in testing). This may be 

because training with model-predicted labels, either in the 

hard-decision form or the probability form, could introduce 

unnecessary noise or convergence difficulty in training. 

Model Precision Recall F1-score 

CRF baseline 94.08 91.82 92.94 

Prob. – (past) 92.93 93.66 93.39 

Prob. – (future) 92.93 93.58 93.26 

Hard – (past) 92.52 93.76 93.14 

Hard – (future) 92.55 93.76 93.15 

Ground – (past) 93.42 94.11 93.77 

Ground – (future) 92.76 93.87 93.31 

Table 3: results on several choices of sequential inputs in the 

Jordan-type RNN predicting from the past/future i.e., 

forward/backward: probabilities, hard decisions or ground-

truth during training and hard decisions for testing. 

4.4. Results on slot filling accuracy 

We compare the performance of the introduced RNNs and 

CRF at the sequential level, along with a frame-level MLP and 

a Logistic Regression models. Since the NN-based models use 

word embeddings that leverage unsupervised information from 

Wikipedia, we clustered all the words in Wikipedia into 200 

clusters and add a cluster ID for each word as a discrete 

feature to the CRF and the Logistic Regression models to 

make the results comparable. As before, baselines have been 

trained with CRFpp with 5-fold cross validation for the 

regularization parameter and the optimal window size. 

Experimental results in Table 4 show that models that 

consider sequential dependency outperform models that don’t, 

and the RNN models consistently outperform the CRF model. 

We also observe that the Elman-type RNN’s forward version 

(e.g., use past information) performs very well while its 

backward version (e.g., use future information) gives worse 

results, though mathematically these two versions are 

symmetric to each other. Further analysis of the ATIS dataset 

shows that most of the concept slots to be predicted in ATIS 

are located in the second half of sentences, which makes the 

backward model perform predictions with very little historical 

information. This is also shown by the best hyper-parameters 

found for the Elman-type RNN which included a window of 

size   for the forward model and    for the backward model. 

The backward model was trying to get the historical 

information inside the word context window while it was 

available in the hidden layer for the forward model. 

The Jordan-type RNNs, although giving similar results to 

the forward Elman-type RNN, has shown to be more robust to 

this problem. Further, the bi-directional version of the Jordan-

type RNN improves upon both the backward and forward 

Jordan models. It is trained with dropout regularization [9] and 

rectifiers nodes i.e.,  ( )      (   ) , for     epochs and 

with a batch size of    . Input nodes are dropped out with a 

probability       while for hidden nodes we used      . 

Compared to the CRF+Wiki baseline, it yields an absolute 

improvement of the F1 score of 0.98%, corresponding to a 

relative error reduction of 14%. 

Models Prec. Rec. F1 

Logistic Regress. 91.54 90.73 91.13 

Logistic Regress.+Wiki 91.82 91.82 91.82 

Frame-NN 92.17 92.59 92.38 

CRF 94.08 91.82 92.94 

CRF+Wiki 93.77 92.25 93.00 

Elman-RNN (past) 93.25 94.04 93.65 

Elman-RNN (future) 91.75 92.49 92.12 

Jordan-RNN (past) 93.42 94.11 93.77 

Jordan-RNN (future) 92.76 93.87 93.31 

Bi-dir. Jordan-RNN 93.82 94.15 93.98 

Table 4: Detailed performance measures (precision, recall, and 

F1 score) for a set of models evaluated on ATIS. 

5. Conclusion and Discussion 

We carried out comprehensive investigations of RNNs for the 

task of slot filling in SLU. We implemented and compared 

several RNN architectures, including the Elman-type and 

Jordan-type networks with their variants. We also studied the 

effectiveness of word embeddings for slot filling. To make the 

results easy to reproduce and to compare, we implemented all 

networks on the common Theano neural network toolkit, and 

evaluated them on the ATIS benchmark. Our results show that 

both Elman and Jordan-type networks outperform the CRF 

baseline substantially, both giving similar performance. A bi-

directional version of the Jordan-RNN gave the best 

performance, outperforming the CRF-based baseline by 14% 

in relative error reduction. Future work will explore more 

efficient training of RNNs and the choice of more 

comprehensive features [28] and using a different RNN 

training toolkit [14] incorporating more advanced features.  
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