
Hierarchical Probabilistic Neural Network Language Model

Frederic Morin
Dept. IRO, Université de Montréal
P.O. Box 6128, Succ. Centre-Ville,

Montreal, H3C 3J7, Qc, Canada
morinf@iro.umontreal.ca

Yoshua Bengio
Dept. IRO, Université de Montréal
P.O. Box 6128, Succ. Centre-Ville,

Montreal, H3C 3J7, Qc, Canada
Yoshua.Bengio@umontreal.ca

Abstract

In recent years, variants of a neural network ar-
chitecture for statistical language modeling have
been proposed and successfully applied, e.g. in
the language modeling component of speech rec-
ognizers. The main advantage of these architec-
tures is that they learn an embedding for words
(or other symbols) in a continuous space that
helps to smooth the language model and pro-
vide good generalization even when the num-
ber of training examples is insufficient. How-
ever, these models are extremely slow in com-
parison to the more commonly used n-gram mod-
els, both for training and recognition. As an al-
ternative to an importance sampling method pro-
posed to speed-up training, we introduce a hier-
archical decomposition of the conditional proba-
bilities that yields a speed-up of about 200 both
during training and recognition. The hierarchical
decomposition is a binary hierarchical cluster-
ing constrained by the prior knowledge extracted
from the WordNet semantic hierarchy.

1 INTRODUCTION

The curse of dimensionality hits hard statistical language
models because the number of possible combinations ofn
words from a dictionnary (e.g. of 50,000 words) is im-
mensely larger than all the text potentially available, at least
for n > 2. The problem comes down to transfering prob-
ability mass from the tiny fraction of observed cases to all
the other combinations. From the point of view of machine
learning, it is interesting to consider the different principles
at work in obtaining such generalization. The most funda-
mental principle, used explicitly in non-parametric mod-
els, is that of similarity: if two objects are similar they
should have a similar probability. Unfortunately, using a
knowledge-free notion of similarity does not work well in

high-dimensional spaces such as sequences of words. In
the case of statistical language models, the most success-
ful generalization principle (and corresponding notion of
similarity) is also a very simple one, and it is used in in-
terpolated and back-off n-gram models (Jelinek and Mer-
cer, 1980; Katz, 1987): sequences that share shorter subse-
quences are similar and should share probability mass.

However, these methods are based on exact matching
of subsequences, whereas it is obvious that two word se-
quences may not match and yet be very close to each other
semantically. Taking this into account, another principle
that has been shown to be very successful (in combina-
tion with the first one) is based on a notion of similarity
between individual words: two word sequences are said
to be “similar” if their corresponding words are “similar”.
Similarity between words is usually defined usingword
classes (Brown et al., 1992; Goodman, 2001b). These
word classes correspond to a partition of the set of words
in such a way that words in the same class share statisti-
cal properties in the context of their use, and this partition
can be obtained with various clustering algorithms. This is
a discrete all-or-nothing notion of similarity. Another way
to define similarity between words is based on assigning
each word to a continuous-valued set of features, and com-
paring words based on this feature vector. This idea has
already been exploited in information retrieval (Schutze,
1993; Deerwester et al., 1990) using a singular value de-
composition of a matrix of occurrences, indexed by words
in one dimension and by documents in the other.

This idea has also been exploited in (Bengio, Ducharme
and Vincent, 2001; Bengio et al., 2003): a neural network
architecture is defined in which the first layer maps word
symbols to their continuous representation as feature vec-
tors, and the rest of the neural network is conventional and
used to construct conditional probabilities of the next word
given the previous ones. This model is described in de-
tail in Section 2. The idea is to exploit the smoothness of
the neural network to make sure that sequences of words
that are similar according to this learned metric will be as-
signed a similar probability. Note that both the feature vec-

tors and the part of the model that computes probabilities
from them are estimated jointly, by regularized maximum
likelihood. This type of model is also related to the popular
maximum entropy models (Berger, Della Pietra and Della
Pietra, 1996) since the latter correspond to a neural network
with no hidden units (the unnormalized log-probabilities
are linear functions of the input indicators of presence of
words).

This neural network approach has been shown to gener-
alize well in comparison to interpolated n-gram models and
class-based n-grams (Brown et al., 1992; Pereira, Tishby
and Lee, 1993; Ney and Kneser, 1993; Niesler, Whittaker
and Woodland, 1998; Baker and McCallum, 1998), both
in terms of perplexity and in terms of classification error
when used in a speech recognition system (Schwenk and
Gauvain, 2002; Schwenk, 2004; Xu, Emami and Jelinek,
2003). In (Schwenk and Gauvain, 2002; Schwenk, 2004),
it is shown how the model can be used to directly improve
speech recognition performance. In (Xu, Emami and Je-
linek, 2003), the approach is generalized to form the vari-
ous conditional probability functions required in a stochas-
tic parsing model called the Structured Language Model,
and experiments also show that speech recognition perfor-
mance can be improved over state-of-the-art alternatives.
However, a major weakness of this approach is the very
long training time as well as the large amount of compu-
tations required to compute probabilities, e.g. at the time
of doing speech recognition (or any other application of
the model). Note that such models could be used in other
applications of statistical language modeling, such as auto-
matic translation and information retrieval, but improving
speed is important to make such applications possible.

The objective of this paper is thus to propose a
much faster variant of the neural probabilistic language
model. It is based on an idea that could in principle
deliver close to exponential speed-up with respect to the
number of words in the vocabulary. Indeed the computa-
tions required during training and during probability pre-
diction are a small constant plus a factor linearly propor-
tional to the number of words|V | in the vocabularyV .
The approach proposed here can yield a speed-up of order
O(|V |

log |V |) for the second term. It follows up on a proposal
made in (Goodman, 2001b) to rewrite a probability func-
tion based on a partition of the set of words. The basic
idea is to form a hierarchical description of a word as a se-
quence ofO(log |V |) decisions, and to learn to take these
probabilistic decisions instead of directly predicting each
word’s probability. Another important idea of this paper
is to reuse the same model (i.e. the same parameters) for
all those decisions (otherwise a very large number of mod-
els would be required and the whole model would not fit
in computer memory), using a special symbolic input that
characterizes the nodes in the tree of the hierarchical de-
composition. Finally, we use prior knowledge in the Word-

Net lexical reference system to help define the hierarchy of
word classes.

2 PROBABILISTIC NEURAL
LANGUAGE MODEL

The objective is to estimate the joint probability of se-
quences of words and we do it through the estimation of the
conditional probability of the next word (thetarget word)
given a few previous words (thecontext):

P (w1, . . . , wl) =
∏

t

P (wt|wt−1, . . . , wt−n+1),

wherewt is the word at positiont in a text andwt ∈ V ,
the vocabulary. The conditional probability is estimated
by a normalized functionf(wt, wt−1, . . . , wt−n+1), with
∑

v f(v, wt−1, . . . , wt−n+1) = 1.

In (Bengio, Ducharme and Vincent, 2001; Bengio et al.,
2003) this conditional probability function is represented
by a neural network with a particular structure. Its most
important characteristic is that each input of this function
(a word symbol) is first embedded into a Euclidean space
(by learning to associate a real-valued “feature vector” to
each word). The set of feature vectors for all the words
in V is part of the set of parameters of the model, esti-
mated by maximizing the empirical log-likelihood (minus
weight decay regularization). The idea of associating each
symbol with a distributed continuous representation is not
new and was advocated since the early days of neural net-
works (Hinton, 1986; Elman, 1990). The idea of using neu-
ral networks for language modeling is not new either (Mi-
ikkulainen and Dyer, 1991; Xu and Rudnicky, 2000), and
is similar to proposals of character-based text compression
using neural networks to predict the probability of the next
character (Schmidhuber, 1996).

There are two variants of the model in (Bengio,
Ducharme and Vincent, 2001; Bengio et al., 2003): one
with |V | outputs with softmax normalization (and the target
wordwt is not mapped to a feature vector, only the context
words), and one with a single output which represents the
unnormalized probability forwt given the context words.
Both variants gave similar performance in the experiments
reported in (Bengio, Ducharme and Vincent, 2001; Bengio
et al., 2003). We will start from the second variant here,
which can be formalized as follows, using the Boltzmann
distribution form, following (Hinton, 2000):

f(wt, wt−1, . . . , wt−n+1) =
e−g(wt,wt−1,...,wt−n+1)

∑

v e−g(v,wt−1,...,wt−n+1)

whereg(v, wt−1, . . . , wt−n+1) is a learned function that
can be interpreted as an energy, which is low when the tuple
(v, wt−1, . . . , wt−n+1) is “plausible”.

Let F be an embedding matrix (a parameter) with row
Fi the embedding (feature vector) for wordi. The above
energy function is represented by a first transformation of
the input label through the feature vectorsFi, followed by
an ordinary feedforward neural network (with a single out-
put and a bias dependent onv):

g(v, wt−1, . . . , wt−n+1) = a′. tanh(c + Wx + UF ′
v) + bv

(1)

wherex′ denotes the transpose ofx, tanh is applied ele-
ment by element,a, c andb are parameters vectors,W and
U are weight matrices (also parameters), andx denotes the
concatenation of input feature vectors for context words:

x = (Fwt−1
, . . . , Fwt−n+1

)′. (2)

Let h be the number of hidden units (the number of rows
of W) and d the dimension of the embedding (number
of columns ofF). Computingf(wt, wt−1, . . . , wt−n+1)
can be done in two steps: first computec + Wx (requires
hd(n − 1) multiply-add operations), and second, for each
v ∈ V , computeUF ′

v (hd multiply-add operations) and
the value ofg(v, ...) (h multiply-add operations). Hence
total computation time for computingf is on the order of
(n − 1)hd + |V |h(d + 1). In the experiments reported
in (Bengio et al., 2003),n is around 5,|V | is around 20000,
h is around 100, andd is around 30. This gives around
12000 operations for the first part (independent of|V |) and
around 60 million operations for the second part (that is
linear in|V |).

Our goal in this paper is to drastically reduce the sec-
ond part, ideally by replacing theO(|V |) computations by
O(log |V |) computations.

3 HIERARCHICAL DECOMPOSITION
CAN PROVIDE EXPONENTIAL
SPEED-UP

In (Goodman, 2001b) it is shown how to speed-up a max-
imum entropy class-based statistical language model by
using the following idea. Instead of computing directly
P (Y |X) (which involves normalization across all the val-
ues thatY can take), one defines a clustering partition for
theY (into the word classesC, such that there is a deter-
ministic functionc(.) mappingY to C), so as to write

P (Y = y|X = x) =

P (Y = y|C = c(y), X)P (C = c(y)|X = x).

This is always true for any functionc(.) because
P (Y |X) =

∑

i P (Y, C = i|X) =
∑

i P (Y |C =

i, X)P (C = i|X) = P (Y |C = c(Y), X)P (C =
c(Y)|X) because only one value ofC is compatible with
the value ofY , the valueC = c(Y).

Although anyc(.) would yield correct probabilities, gen-
eralization could be better for choices of word classes that
“make sense”, i.e. those for which it easier to learn the
P (C = c(y)|X = x).

If Y can take 10000 values and we have 100 classes with
100 wordsy in each class, then instead of doing normaliza-
tion over 10000 choices we only need to do two normal-
izations, each over 100 choices. If computation of condi-
tional probabilities is proportional to the number of choices
then the above would reduce computation by a factor 50.
This is approximately what is gained according to the mea-
surements reported in (Goodman, 2001b). The same pa-
per suggests that one could introduce more levels to the
decomposition and here we push this idea to the limit. In-
deed, whereas a one-level decomposition should provide a
speed-up on the order of|V |√

|V |
=

√

|V |, a hierarchical de-

composition represented by a balanced binary tree should
provide an exponential speed-up, on the order of|V |

log2 |V |

(at least for the part of the computation that is linear in the
number of choices).

Each word v must be represented by a bit vector
(b1(v), . . . bm(v)) (wherem depends onv). This can be
achieved by building a binary hierarchical clustering of
words, and a method for doing so is presented in the next
section. For example,b1(v) = 1 indicates thatv belongs
to the top-level group 1 andb2(v) = 0 indicates that it be-
longs to the sub-group 0 of that top-level group.

The next-word conditional probability can thus be rep-
resented and computed as follows:

P (v|wt−1, . . . , wt−n+1) =
m
∏

j=1

P (bj(v)|b1(v), . . . , bj−1(v), wt−1, . . . , wt−n+1)

This can be interpreted as a series of binary stochastic
decisions associated with nodes of a binary tree. Each node
is indexed by a bit vector corresponding to the path from
the root to the node (append 1 or 0 according to whether the
left or right branch of a decision node is followed). Each
leaf corresponds to a word. If the tree is balanced then the
maximum length of the bit vector is⌈log2 |V |⌉. Note that
we could further reduce computation by looking for an en-
coding that takes the frequency of words into account, to
reduce the average bit length to the unconditional entropy
of words. For example with the corpus used in our experi-
ments,|V | = 10000 so log2 |V | ≈ 13.3 while the unigram
entropy is about 9.16, i.e. a possible additional speed-up
of 31% when taking word frequencies into account to bet-
ter balance the binary tree. The gain would be greater for

larger vocabularies, but not a very significant improvement
over the major one obtained by using a simple balanced
hierarchy.

The “target class” (0 or 1) for each node is obtained di-
rectly from the target word in each context, using the bit
encoding of that word. Note also that there will be a target
(and gradient propagation) only for the nodes on the path
from the root to the leaf associated with the target word.
This is the major source of savings during training.

During recognition and testing, there are two main cases
to consider: one needs the probability of only one word,
e.g. the observed word, (or very few) , or one needs the
probabilities of all the words. In the first case (which oc-
curs during testing on a corpus) we still obtain the exponen-
tial speed-up. In the second case, we are back toO(|V |)
computations (with a constant factor overhead). For the
purpose of estimating generalization performance (out-of-
sample log-likelihood) only the probability of the observed
next word is needed. And in practical applications such as
speech recognition, we are only interested in discriminat-
ing between a few alternatives, e.g. those that are consistent
with the acoustics, and represented in a treillis of possible
word sequences.

This speed-up should be contrasted with the one
provided by the importance sampling method proposed
in (Bengio and Senécal, 2003). The latter method is based
on the observation that the log-likelihood gradient is the
average over the model’s distribution forP (v|context) of
the energy gradient associated with all the possible next-
words v. The idea is to approximate this average by a
biased (but asymptotically unbiased) importance sampling
scheme. This approach can lead to significant speed-up
during training, but because the architecture is unchanged,
probability computation during recognition and test stillre-
quiresO(|V |) computations for each prediction. Instead,
the architecture proposed here gives significant speed-up
both during training and test / recognition.

4 SHARING PARAMETERS ACROSS
THE HIERARCHY

If a separate predictor is used for each of the nodes in the
hierarchy, about2|V | predictors will be needed. This rep-
resents a huge capacity since each predictor maps from the
context words to a single probability. This might create
problems in terms of computer memory (not all the models
would fit at the same time in memory) as well as overfitting.
Therefore we have chosen to build a model in which pa-
rameters are shared across the hierarchy. There are clearly
many ways to achieve such sharing, and alternatives to the
architecture presented here should motivate further study.

Based on our discussion in the introduction, it makes

sense to force the word embedding to be shared across all
nodes. This is important also because the matrix of word
featuresF is the largest component of the parameter set.

Since each node in the hierarchy presumably has a se-
mantic meaning (being associated with a group of hope-
fully similar-meaning words) it makes sense to also as-
sociate each node with a feature vector. Without loss
of generality, we can consider the model to predict
P (b|node, wt−1, . . . , wt−n+1) wherenode corresponds to
a sequence of bits specifying a node in the hierarchy andb
is the next bit (0 or 1), corresponding to one of the two chil-
dren ofnode. This can be represented by a model similar to
the one described in Section 2 and (Bengio, Ducharme and
Vincent, 2001; Bengio et al., 2003) but with two kinds of
symbols in input: the context words and the current node.
We allow the embedding parameters for word cluster nodes
to be different from those for words. Otherwise the archi-
tecture is the same, with the difference that there are only
two choices to predict, instead of|V | choices.

More precisely, the specific predictor used in our exper-
iments is the following:

P (b = 1|node, wt−1, . . . , wt−n+1) =

sigmoid(αnode + β′. tanh(c + Wx + UNnode))

wherex is the concatenation of context word features
as in eq. 2,sigmoid(y) = 1/(1 + exp(−y)), αi is a bias
parameter playing the same role asbv in eq. 1,β is a weight
vector playing the same role asa in eq. 1,c, W , U andF
play the same role as in eq. 1, andN gives feature vector
embeddings for nodes in a way similar thatF gave feature
vector embeddings for next-words in eq. 1.

5 USING WORDNET TO BUILD THE
HIERARCHICAL DECOMPOSITION

A very important component of the whole model is the
choice of the words binary encoding, i.e. of the hierar-
chical word clustering. In this paper we combine empir-
ical statistics with prior knowledge from the WordNet re-
source (Fellbaum, 1998). Another option would have been
to use a purely data-driven hierarchical clustering of words,
and there are many other ways in which the WordNet re-
source could have been used to influence the resulting clus-
tering.

The IS-A taxonomy in WordNet organizes semantic
concepts associated with senses in a graph that is almost a
tree. For our purposes we need a tree, so we have manually
selected a parent for each of the few nodes that have more
than one parent. The leaves of the WordNet taxonomy are
senses and each word can be associated with more than one

sense. Words sharing the same sense are considered to be
synonymous (at least in one of their uses). For our pur-
pose we have to choose one of the senses for each word
(to make the whole hierarchy one over words) and we se-
lected the most frequent sense. A straightforward extension
of the proposed model would keep the semantic ambiguity
of each word: each word would be associated with sev-
eral leaves (senses) of the WordNet hierarchy. This would
require summing over all those leaves (and corresponding
paths to the root) when computing next-word probabilities.

Note that the WordNet tree is not binary: each node
may have many more than two children (this is particu-
larly a problem for verbs and adjectives, for which Word-
Net is shallow and incomplete). To transform this hierar-
chy into a binary tree we perform a data-driven binary hi-
erarchical clustering of the children associated with each
node, as illustrated in Figure 1. The K-means algorithm is
used at each step to split each cluster. To compare nodes,
we associate each node with the subset of words that it
covers. Each word is associated with a TF/IDF (Salton
and Buckley, 1988) vector of document/word occurrence
counts, where each “document” is a paragraph in the train-
ing corpus. Each node is associated with the dimension-
wise median of the TF/IDF scores. Each TF/IDF score
is the occurrence frequency of the word in the document
times the logarithm of the ratio of the total number of doc-
uments by the number of documents containing the word.

6 COMPARATIVE RESULTS

Experiments were performed to evaluate the speed-up and
any change in generalization error. The experiments also
compared an alternative speed-up technique (Bengio and
Senécal, 2003) that is based on importance sampling (but
only provides a speed-up during training). The experiments
were performed on the Brown corpus, with a reduced vo-
cabulary size of 10,000 words (the most frequent ones).
The corpus has 1,105,515 occurrences of words, split into
3 sets: 900,000 for training, 100,000 for validation (model
selection), and 105,515 for testing. The validation set was
used to select among a small number of choices for the size
of the embeddings and the number of hidden units.

The results in terms of raw computations (time to pro-
cess one example), either during training or during test
are shown respectively in Tables 1 and 2. The computa-
tions were performed on Athlon processors with a 1.2 GHz
clock. The speed-up during training is by a factor greater
than 250 and during test by a factor close to 200. These are
impressive but less than the|V |/ log2 |V | ≈ 750 that could
be expected if there was no overhead and no constant term
in the computational cost.

It is also important to verify that learning still works

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

Figure 1: WordNet’s IS-A hierarchy is not a binary tree:
most nodes have many children. Binary hierarchical clus-
tering of these children is performed.

and that the model generalizes well. As usual in statis-
tical language modeling this is measured by the model’s
perplexity on the test data, which is the exponential of
the average negative log-likehood on that data set. Train-
ing is performed over about 20 to 30 epochs according to
validation set perplexity (early stopping). Table 3 shows
the comparative generalization performance of the differ-
ent architectures, along with that of an interpolated trigram
and a class-based n-gram (same procedures as in (Bengio
et al., 2003), which follow respectively (Jelinek and Mer-
cer, 1980) and (Brown et al., 1992; Ney and Kneser, 1993;
Niesler, Whittaker and Woodland, 1998)). The validation
set was used to choose the order of the n-gram and the
number of word classes for the class-based models. We
used the implementation of these algorithms in the SRI
Language Modeling toolkit, described by (Stolcke, 2002)
and inwww.speech.sri.com/projects/srilm/.
Note that better performance should be obtainable with
some of the tricks in (Goodman, 2001a). Combining the
neural network with a trigram should also decrease its per-

Time per Time per speed-up
architecture epoch (s) ex. (ms)
original neural net 416 300 462.6 1
importance sampling 6 062 6.73 68.7
hierarchical model 1 609 1.79 258

Table 1: Training time per epoch (going once through all
the training examples) and per example. The original neu-
ral net is as described in sec. 2. The importance sam-
pling algorithm (Bengio and Senécal, 2003) trains the same
model faster. The hierarchical model is the one proposed
here, and it yields a speed-up not only during training but
for probability predictions as well (see the next table).

Time per speed-up
architecture example (ms)
original neural net 270.7 1
importance sampling 221.3 1.22
hierarchical model 1.4 193

Table 2:Test time per example for the different algorithms.
See Table 1’s caption. It is at test time that the hierarchical
model’s advantage becomes clear in comparison to the im-
portance sampling technique, since the latter only brings a
speed-up during training.

plexity, as already shown in (Bengio et al., 2003).

As shown in Table 3, the hierarchical model does not
generalize as well as the original neural network, but the
difference is not very large and still represents an improve-
ment over the benchmark n-gram models. Given the very
large speed-up, it is certainly worth investigating variations
of the hierarchical model proposed here (in particular how
to define the hierarchy) for which generalization could be
better. Note also that the speed-up would be greater for
larger vocabularies (e.g. 50,000 is not uncommon in speech
recognition systems).

7 CONCLUSION AND FUTURE WORK

This paper proposes a novel architecture for speeding-up
neural networks with a huge number of output classes and
shows its usefulness in the context of statistical language
modeling (which is a component of speech recognition and
automatic translation systems). This work pushes to the
limit a suggestion of (Goodman, 2001b) but also intro-
duces the idea of sharing the same model for all nodes of
the decomposition, which is more practical when the num-
ber of nodes is very large (tens of thousands here). The
implementation and the experiments show that a very sig-
nificant speed-up of around 200-fold can be achieved, with
only a little degradation in generalization performance.

Validation Test
perplexity perplexity

trigram 299.4 268.7
class-based 276.4 249.1
original neural net 213.2 195.3
importance sampling 209.4 192.6
hierarchical model 241.6 220.7

Table 3:Test perplexity for the different architectures and
for an interpolated trigram. The hierarchical model per-
formed a bit worse than the original neural network, but
is still better than the baseline interpolated trigram and the
class-based model.

From a linguistic point of view, one of the weaknesses
of the above model is that it considers word clusters as de-
terministic functions of the word, but uses the nodes in
WordNet’s taxonomy to help define those clusters. How-
ever, WordNet provides word sense ambiguity information
which could be used for linguistically more accurate mod-
eling. The hierarchy would be a sense hierarchy instead of
a word hiearchy, and each word would be associated with
a number of senses (those allowed for that word in Word-
Net). In computing probabilities, this would involve sum-
ming over several paths from the root, corresponding to the
different possible senses of the word. As a side effect, this
could provide a word sense disambiguation model, and it
could be trained both on sense-tagged supervised data and
on unlabeled ordinary text. Since the average number of
senses per word is small (less than a handful), the loss in
speed would correspondingly be small.

Acknowledgments

The authors would like to thank the following funding or-
ganizations for support: NSERC, MITACS, IRIS, and the
Canada Research Chairs.

References

Baker, D. and McCallum, A. (1998). Distributional clus-
tering of words for text classification. InSIGIR’98.

Bengio, Y., Ducharme, R., and Vincent, P. (2001). A neu-
ral probabilistic language model. In Leen, T., Diet-
terich, T., and Tresp, V., editors,Advances in Neural
Information Processing Systems 13 (NIPS’00), pages
933–938. MIT Press.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.
(2003). A neural probabilistic language model.Jour-
nal of Machine Learning Research, 3:1137–1155.

Bengio, Y. and Senécal, J.-S. (2003). Quick training of
probabilistic neural nets by importance sampling. In

Proceedings of AISTATS 2003.

Berger, A. L., Della Pietra, V. J., and Della Pietra, S. A.
(1996). A maximum entropy approach to natural lan-
guage processing.Computational Linguistics, 22:39–
71.

Brown, P. F., Pietra, V. J. D., DeSouza, P. V., Lai, J. C.,
and Mercer, R. L. (1992). Class-basedn-gram mod-
els of natural language.Computational Linguistics,
18:467–479.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent
semantic analysis.Journal of the American Society
for Information Science, 41(6):391–407.

Elman, J. L. (1990). Finding structure in time.Cognitive
Science, 14:179–211.

Fellbaum, C. (1998). WordNet: An Electronic Lexical
Database. MIT Press.

Goodman, J. (2001a). A bit of progress in language mod-
eling. Technical Report MSR-TR-2001-72, Microsoft
Research, Redmond, Washington.

Goodman, J. (2001b). Classes for fast maximum entropy
training. In International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Utah.

Hinton, G. E. (1986). Learning distributed representations
of concepts. InProceedings of the Eighth Annual
Conference of the Cognitive Science Society, pages 1–
12, Amherst 1986. Lawrence Erlbaum, Hillsdale.

Hinton, G. E. (2000). Training products of experts by
minimizing contrastive divergence. Technical Report
GCNU TR 2000-004, Gatsby Unit, University Col-
lege London.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estima-
tion of Markov source parameters from sparse data.
In Gelsema, E. S. and Kanal, L. N., editors,Pattern
Recognition in Practice. North-Holland, Amsterdam.

Katz, S. M. (1987). Estimation of probabilities from sparse
data for the language model component of a speech
recognizer.IEEE Transactions on Acoustics, Speech,
and Signal Processing, ASSP-35(3):400–401.

Miikkulainen, R. and Dyer, M. G. (1991). Natural lan-
guage processing with modular PDP networks and
distributed lexicon.Cognitive Science, 15:343–399.

Ney, H. and Kneser, R. (1993). Improved clustering tech-
niques for class-based statistical language modelling.
In European Conference on Speech Communication
and Technology (Eurospeech), pages 973–976, Berlin.

Niesler, T. R., Whittaker, E. W. D., and Woodland, P. C.
(1998). Comparison of part-of-speech and automat-
ically derived category-based language models for
speech recognition. InInternational Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 177–180.

Pereira, F., Tishby, N., and Lee, L. (1993). Distributional
clustering of english words. In30th Annual Meet-
ing of the Association for Computational Linguistics,
pages 183–190, Columbus, Ohio.

Salton, G. and Buckley, C. (1988). Term weighting ap-
proaches in automatic text retrieval.Information Pro-
cessing and Management, 24(5):513–523.

Schmidhuber, J. (1996). Sequential neural text com-
pression. IEEE Transactions on Neural Networks,
7(1):142–146.

Schutze, H. (1993). Word space. In Giles, C., Hanson, S.,
and Cowan, J., editors,Advances in Neural Informa-
tion Processing Systems 5 (NIPS’92), pages 895–902,
San Mateo CA. Morgan Kaufmann.

Schwenk, H. (2004). Efficient training of large neural net-
works for language modeling. InInternational Joint
Conference on Neural Networks (IJCNN), volume 4,
pages 3050–3064.

Schwenk, H. and Gauvain, J.-L. (2002). Connectionist
language modeling for large vocabulary continuous
speech recognition. InInternational Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 765–768, Orlando, Florida.

Stolcke, A. (2002). SRILM - an extensible language mod-
eling toolkit. InProceedings of the International Con-
ference on Statistical Language Processing, Denver,
Colorado.

Xu, P., Emami, A., and Jelinek, F. (2003). Train-
ing connectionist models for the structured language
model. In Proceedings of the 2003 Conference on
Empirical Methods in Natural Language Processing
(EMNLP’2003), volume 10, pages 160–167.

Xu, W. and Rudnicky, A. (2000). Can artificial neural
networks learn language models. InInternational
Conference on Statistical Language Processing, pages
M1–13, Beijing, China.

