
Kernel Matching Pursuit

Pascal Vincent and Yoshua Bengio
Dept. IRO, Universit́e de Montŕeal

C.P. 6128, Montreal, Qc, H3C 3J7, Canada
{vincentp,bengioy }@iro.umontreal.ca

Abstract

We show how Matching Pursuit can be used to build kernel-based solu-
tions to machine-learning problems while keeping control of the sparsity
of the solution, and how it can be extended to use non-squared error loss
functions. We also derive MDL motivated generalization bounds for this
type of algorithm. Finally, links to boosting algorithms and RBF training
procedures, as well as extensive experimental comparison with SVMs
are given, showing comparable results with typically sparser models.

1 Quick overview of Matching Pursuit

1.1 Basic Matching Pursuit

Matching Pursuit was introduced in the signal-processing community as an algorithm“that
decomposes any signal into a linear expansion of waveforms that are selected from a re-
dundant dictionary of functions.”[8]. It is a general, greedy sparse-approximation scheme.
Given a finite dictionaryD of functions in a Hilbert spaceH and a target functionf ∈ H
we are interested in approximations off that are expansions of the form̃fn =

∑n
k=1 αkgk

where(α1, . . . , αn) ∈ IRn and{g1, . . . , gn} ⊂ D are chosen to minimize the squared
norm of the residue‖Rn‖2 = ‖f − f̃n‖2.

However finding the optimal basis{g1, . . . , gn} for a givenn is in general NP-complete.
So the algorithm proceeds in a constructive, greedy fashion, starting at stage 0 withf̃0 = 0,
and recursively appending functions to an initially empty basis. Givenf̃n we buildf̃n+1 =
f̃n + αn+1gn+1 by searching forgn+1 ∈ D and forαn+1 ∈ IR that minimize the squared
norm of the residue‖Rn+1‖2 = ‖Rn − αn+1gn+1‖2

(gn+1, αn+1) = arg min
(g∈D,α∈IR)

‖ (
n∑
k=1

αkgk)︸ ︷︷ ︸
f̃n

+αg − f‖2 (1)

The gn+1 that minimizes this expression is the one that maximizes| 〈gn+1,Rn〉
‖gn+1‖ | and the

correspondingαn+1 is αn+1 = 〈gn+1,Rn〉
‖gn+1‖2 .

1.2 Matching Pursuit with backfitting

An improvement over the basic algorithm, while still choosinggn+1 as previously, consists
in re-estimating all the coefficientsα1..n+1 at each step instead of only the lastαn+1:

α
(n+1)
1..n+1 = arg min

(α1..n+1∈IRn+1)

‖(
n+1∑
k=1

αkgk)− f‖2 (2)

This step is called backfitting or back-projection.

There is a further possible refinement: rather than findinggn+1 using (1) and only then
optimizing (2), which means we might be picking a dictionary function other than the one
that would give the best fit, we may want to directly find

(gn+1, α
(n+1)
1..n+1) = arg min

(g∈D,α1..n+1∈IRn+1)

‖(
n∑
k=1

αkgk) + αn+1g − f‖2 (3)

We shall call the latter procedurepre-backfittingand the formerpost-backfitting(as back-
fitting is done onlyafter the choice ofgn+1).

When doing least-squares fit in a finite-dimensional vector space, both backfitting versions
can be carried very efficiently through some form of orthogonal least squares procedures.
The resulting algorithms are often referred to as Orthogonal Matching Pursuit [11, 3]. Let
Bn = span(g1, . . . , gn). Our implementation maintains at each step a representation of the
target and every dictionary vectorg as the sum of two components: componentgBn ∈ Bn
is expressed as a linear combination of current basis vectors, while componentgB⊥n lies in
Bn’s orthogonal complement and is expressed in the original vector space coordinates. Pre-
backfitting is then achieved easily by considering only the components inB⊥n : we choose
gn+1 as theg ∈ D whosegB⊥n is most collinear withRn ∈ B⊥n . This procedure requires,
at every step, only two passes through the dictionary (searchinggn+1, then updating the
representation) where basic matching pursuit requires one.

2 Kernel Matching Pursuit and links with other paradigms
Kernel Matching Pursuit (KMP) is simply Matching Pursuit with a kernel-based dictionary,
applied to problems in machine-learning. LetL = {(x1, y1), . . . , (xl, yl)} a training set
containingl (input,output) pairs sampled i.i.d. from an unknown distributionP (X,Y) with
X ∈ IRd andY ∈ IR for regression problems, orY ∈ {−1,+1} for binary classification
(our main focus). Then, given a kernel functionK : IRd×IRd → IR, we use as our dictionary
the kernels centered on the training points:D = {K(·, xi)|i = 1..l}. Optionally, the
constant function can also be included in the dictionary, which accounts for a bias termb:
the functional form of approximatioñfn then becomes

f̃n(x) = b+
n∑
i=1

αiK(x, xγi) (4)

where theγ1..n are the indexes of the “support points” selected by the algorithm. During
training we only consider the values of the dictionary functions at the training points, so
that it amounts to doing Matching Pursuit in a finite-dimensional function-space: a vector-
space of dimensionl. Consequently, efficient backfitting procedures can be used.

The functional form (4) is very similar to the one obtained with theSupport Vector Machine
(SVM) algorithm [1], the main difference being that SVMs impose further constraints on
α1..n. However the quantity optimized by the SVM algorithm is quite different from the
KMP greedy optimization, which for now1 is a simple least-squares fit. Consequently the

1We discuss extension of KMP to other loss functions in section 3.1

support vectors and coefficients found by the two types of algorithms are usually different
(see experimental results). One other important difference is that in KMP, capacity control
is achieved bydirectlycontrolling the sparsity of the solution, i.e. the numbern of support
vectors, whereas the capacity of SVMs is controlled through the box-constraint parameter
C, which has an indirect and hardly controllable influence on sparsity.

Squared-error KMP with a Gaussian kernel and pre-backfitting is identical toOrthogonal
Least Squares Radial Basis Functions[2] (OLS-RBF). In [13] SVMs were compared to
“classical RBFs”, where the RBF centers were chosen by unsupervised k-means clustering,
and SVMs gave better results. To our knowledge, however, there has been no experimental
comparison between OLS-RBF and SVMs, although their resulting functional forms are
very much alike. This is one of the contributions of this paper.

KMP in its basic form is also very similar to boosting algorithms [4, 6], in which the chosen
class of weak-learners would be the set of kernels centered on the training points. These
algorithms differ mainly in the loss function they optimize, which we discuss in the second
part of the next section.

3 Extension to non-squared error loss

3.1 Gradient descent in function space

It has been noticed that boosting algorithms are performing a form of gradient descent in
function space with respect to particular loss functions [12, 9]. Following [5], the technique
can be adapted to extend KMP to optimize arbitrary differentiable loss functions, instead
of doing least-squares fitting. Given a loss functionL(yi, f̃n(xi)) that computes the cost
of predicting a value of̃fn(xi) when the true target wasyi, we use an alternative residue
R̃n rather than the usualRn = f − f̃n when searching for the next dictionary element to
append to the basis at each step.R̃n is the direction of steepest descent (the gradient) in
function space (evaluated at the data points) with respect toL:

R̃n =

(
−∂L(y1, f̃n(x1))

∂f̃n(x1)
, . . . ,−∂L(yn, f̃n(xn))

∂f̃n(xn)

)
(5)

i.e. gn+1 is chosen such that it is most collinear with this gradient. A line-minimization
procedure can then be used to find the corresponding coefficient

αn+1 = arg min
α∈IR

m∑
i=1

L(f(xi), f̃n(xi) + αgn+1(xi))

This corresponds to basic matching pursuit. It is also possible to do post-backfitting, by
re-optimizing allα1..n+1 to minimize the target cost (with a conjugate gradient optimizer
for instance). But as this can be time-consuming, it may be desirable to do it every few
steps instead of every single step.

3.2 Margin loss functions versus traditional loss functions for classification

While the original notion of margin in classification problems comes from the geometri-
cally inspired hard-margin of SVMs (the smallest Euclidean distance between the deci-
sion surface and the training points), a slightly different perspective has emerged in the
boosting community along with the notion of margin loss function. The margin quantity
m = yf̃(x) of an individual data point(x, y), with y ∈ {−1,+1} can be understood as a
confidence measure of its classification by functionf̃ , while the class decided for is given
by sign(f̃(x)). The loss functions that boosting algorithms optimize are typically expressed
as functions ofm. Thus AdaBoost [12] uses an exponential (e−m) margin loss function,

LogitBoost [6] uses the negative binomial log-likelihoodlog2(1 + e−2m), whose shape
is similar to a smoothed version of the soft-margin SVM loss function(1 − Cx)+, and
Doom II [9] approximates a theoretically motivated margin loss with1− tanh(m). As can
be seen in Figure 1 (left), all these functions encourage large positive margins, and differ
mainly in how they penalize large negative ones. In particular1 − tanh(x) is expected to
be more robust, as it won’t penalize outliers to excess.

It is enlightening to compare these with the more traditional loss functions that have been
used for neural networks in classification tasks, when we express them as functions ofm.
Squared loss:(f̃(x)− y)2 = (1−m)2

Squared loss aftertanh with modified target:(tanh(f̃(x))−0.65y)2 = (0.65−tanh(m))2

Both are illustrated on figure 1 (right). Notice how the squared loss aftertanh appears
similar to the margin loss function used in Doom II, except that it slightly increases for
large positive margins, which is why it behaves well and does not saturate even with un-
constrained weights (boosting and SVM algorithms impose further constraints).

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3 4

lo
ss

(m
)

margin m = y.f(x)

exp(-m) [AdaBoost]
log(1+exp(-m)) [LogitBoost]

1-tanh(m) [Doom II]
 (1-m)+ [SVM]

0

0.5

1

1.5

2

2.5

3

-3 -2 -1 0 1 2 3 4

lo
ss

(m
)

margin m = y.f(x)

squared error as a margin cost function
squared error after tanh with 0.65 target

Figure 1: Boosting and SVM margin loss functions (left) vs. traditional loss functions
(right) viewed as functions of the margin. Interestingly the last-born of the margin moti-
vated loss functions (used in Doom II) is similar to the traditional squared error aftertanh.

4 Bounds on generalization error
The results of Vapnik on the Minimum Description Length [14] provide a framework for
establishing bounds on expected generalization error for KMP algorithms. We will show
that, essentially, the bound dependslinearly on the number of support vectorsandlogarith-
mically on the total number of training examples

Vapnik’s result states that the expected generalization error,Egen, for binary classification,
when training withl examples, is less than2C log(2) − 2 log(η)/l with probability1 − η,
whereC is the “compression rate”: the number of bits to transfer the compressed condi-
tional value of the training target classes (given the training input points) divided by the
number of bits required to transmit them without compression, i.e.,l. The compression is
due to the representation learned by the training algorithm. Here we take advantage of the
sparse representation of the learned function in terms of onlyn “support points”. To obtain
a rough bound we will encode the target outputs using three sets of bits, corresponding to
three terms forC. The first one is the total empirical classification errorEemp. The second
term is required to encode the identity of the support points:log2((ln)) < n log2 l bits. The
third term is to encode the quantized weightsαk associated with each support point, which
will cost np bits, wherep is the number of bits of precision to quantize the weights, and
it can be chosen as the smallest number that allows to obtain with the discretizedα’s the
same classes on the training set as the undiscretizedα’s. To summarize, for KMP, we have
Egen <

Eemp
l + n log l

l + np
l . In contrast, one can obtain an expectation bound [14] for

SVMs that isE[Egen] < E[nl], whereE is expectation over training sets (note that for
SVMs,n is random because it depends on the training set).

5 Experimental results on binary classification

Throughout this section, any mention of KMP without further specification of the loss
function means least-squares KMP (also sometimes writtenKMP-mse) as opposed toKMP-
tanh which refers to KMP using squared error after a hyperbolic tangent with modified
targets as described earlier in section 3.2.

5.1 2D experiments

Figure 2 shows a 2D binary classification problem with the decision surface found by the
three versions of KMP-mse and SVMs, when using a Gaussian kernel.

Figure 2: From left to right: 100 iterations of basic KMP, 7 iterations of KMP post-
backfitting, 7 iterations of KMP pre-backfitting, and SVM. Classes are+ and×. Support
vectors are circled. Pre-backfitting KMP and SVM appear to find equally reasonable solu-
tions, though using different support vectors. Only SVM chooses its support vectors close
to the decision surface. Post-backfitting chooses yet another support set, and its decision
surface appears to have a slightly worse margin. As for basic KMP, after 100 iterations
during which it mostly cycled back to previously chosen support points to improve their
weights, it appears to use more support vectors than the others while still being unable to
separate the data points, and is thus a bad choice if we want sparse solutions.

All further mentions of KMP will refer to backfitting KMP, that is pre-backfitting for least-
squares KMP, and post-backfitting for KMP-tanh.

Figure 3, where we used a simple dot-product kernel (i.e. linear decision surfaces), illus-
trates a problem that can arise when using least-squares fit: since the squared error penalizes
large positive margins, the decision surface is drawn towards the cluster on the lower right,
at the expense of a few misclassified points. The use of atanh corrects this problem.

Figure 3:Problem with least squares fit that leads KMP-mse (center) to misclassify points,
but does not affect SVMs (left), and is successfully treated by KMP-tanh (right).

5.2 US Postal Service Database

The purpose of this experiment was to complement the results of [13] with those obtained
using KMP-mse (which, as already mentioned, is equivalent to orthogonal least squares
RBF [2]). We used the same Gaussian Kernel and the same training set (7300 patterns)
and independent test set (2007 patterns) of preprocessed handwritten digits. Table 1 gives
the number of errors obtained by the various algorithms on the tasks consisting of dis-
criminating each digit versus all the others (see [13] for more details). As can be seen,
results obtained with KMP are comparable to those obtained for SVMs, contrarily to those
obtained with “classical” RBFs.

Table 1: USPS Results: number of errors on the test set (2007 patterns), when using the
same number of support vectors as found by SVM (except last row which uses half #sv).
The first half of this table was taken from [13].

Digit class 0 1 2 3 4 5 6 7 8 9
#sv 274 104 377 361 334 388 236 235 342 263
SVM 16 8 25 19 29 23 14 12 25 16
classical RBF 20 16 43 38 46 31 15 18 37 26
KMP with same #sv 15 15 26 17 30 23 14 14 25 13
KMP with half #sv 16 15 29 27 29 24 17 16 28 18

5.3 Benchmark datasets

We did some further experiments, on 5 well-known datasets from the the UCI Machine
Learning Databases, using Gaussian kernels. A first series of experiments used the
Delve [7] system on the Mushrooms dataset. Hyper-parameters (theσ of the kernel, the
bound constraint C for SVM and the number of support points for KMP) were chosen au-
tomatically using K-fold cross validation. The results for varying sizes of the training set
are summarized in table 2.

Table 2: Results obtained on the mushrooms data set with the Delve [7] system. KMP
require less support vectors, while none of the differences in error rates are significant.

size of KMP SVM p-value KMP SVM
train error error (t-test) #s.v. #s.v.
64 6.28% 4.54% 0.24 17 63
128 2.51% 2.61% 0.82 28 105
256 1.09% 1.14% 0.81 41 244
512 0.20% 0.30% 0.35 70 443
1024 0.05% 0.07% 0.39 127 483

For Wisconsin Breast Cancer, Sonar, Pima Indians Diabetes and Ionosphere, we used a
slightly different procedure: each dataset was randomly split into three equal-sized subsets
for training, validation and testing. SVM, KMP-mse and KMP-tanh were then trained on
the training set while the validation set was used to choose the optimal C for SVMs, and
to do early stopping (decide on the number of s.v.) for KMP. This procedure was repeated
50 times to give confidence measures. Table 5.3 reports the average error rate measured on
the test sets, and the rounded average number of support vectors found by each algorithm.

As can be seen from these experiments, the error rates obtained are comparable, but the
KMP versions appear to require fewer support vectors. On these datasets, however, KMP-
tanh did not seem to give any significant improvement over KMP-mse. Even in other
experiments with added label noise, KMP-tanh didn’t seem any better.

Table 3:Results on 4 UCI-MLDB datasets. Again, error rates are not significantly differ-
ent (values in parentheses are the p-values for the difference with SVMs, as given by the
resampled t-test [10]), but KMPs require fewer support vectors.

Dataset SVM KMP-mse KMP-tanh SVM KMP-mse KMP-tanh
error error error #s.v. #s.v. #s.v.

Wisc. Cancer 3.41% 3.40% (0.49) 3.49% (0.45) 42 7 21
Sonar 20.6% 21.0% (0.45) 26.6% (0.16) 46 39 14

Pima Indians 24.1% 23.9% (0.44) 24.0% (0.49) 146 7 27
Ionosphere 6.51% 6.87% (0.41) 6.85% (0.40) 68 50 41

6 Conclusion
We have shown how Matching Pursuit provides a flexible framework to build and study
alternative kernel-based methods, how it can be extended to use arbitrary differentiable
loss functions, and how it relates to RBFs and boosting methods. We have also provided
experimental evidence that such greedy algorithms can perform as well as SVMs, while
allowing a better control of sparsity, and thus often lead to much sparser solutions. It should
also be mentioned that the use of a dictionary gives additional flexibility: it could be used,
for instance, to mix several kernel shapes to choose from, or to include other non-kernel
functions based on prior knowledge, which opens the way to further research.

References

[1] B. Boser, I. Guyon, and V. Vapnik. An algorithm for optimal margin classifiers. InFifth Annual
Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, 1992.

[2] S. Chen, F. Cowan, and P. Grant. Orthogonal least squares learning algorithm for radial basis
function networks.IEEE Transactions on Neural Networks, 2(2):302–309, 1991.

[3] G. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency decompositions.Optical Engi-
neering, 33(7):2183–2191, July 1994.

[4] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. InMachine
Learning: Proceedings of Thirteenth International Conference, pages 148–156, 1996.

[5] J. Friedman. Greedy function approximation: a gradient boosting machine. Technical report,
Dept. of Statistics, Stanford University, 1999.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting. Technical report, Department of Statistics, Stanford University, 1998.

[7] G. Hinton, R. Neal, and R. Tibshirani. Assessing learning procedures using
delve. Technical report, University of Toronto, Department of Computer Science,
http://www.cs.utoronto.ca/neuron/delve/delve.html., 1995.

[8] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionaries.IEEE Trans. Signal
Proc., 41(12):3397–3415, Dec. 1993.

[9] L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. In S. A.
Solla, T. K. Leen, and K-R. Mller, editors,Advances in Neural Information Processing Systems
12. The MIT Press, 2000. Accepted for Publication.

[10] Claude Nadeau and Yoshua Bengio. Inference for the generalization error. InAdvances in
Neural Information Processing Systems 12, page to appear. MIT Press, 2000.

[11] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: Recursive function
approximation with applications to wavelet decomposition.Proceedings of the 27 th Annual
Asilomar Conference on Signals, Systems, and Computers, Nov. 1993.

[12] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A
new explanation for the effectiveness of voting methods.The Annals of Statistics, 1998.

[13] B. Schoelkopf, K. Sung, C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. Vapnik. Compar-
ing support vector machines with gaussian kernels to radial basis function classifiers.IEEE
Transactions on Signal Processing, 45:2758–2765, 1997.

[14] V.N. Vapnik. The Nature of Statistical Learning Theory. Springer, New-York, 1995.

