


Abstract—Semantic slot filling is one of the most challenging

problems in spoken language understanding (SLU). In this study,

we propose to use recurrent neural networks (RNNs) for this task,

and present several novel architectures designed to efficiently

model past and future temporal dependencies. Specifically, we

implemented and compared several important RNN

architectures, including Elman, Jordan and hybrid variants. To

facilitate reproducibility, we implemented these networks with the

publicly available Theano neural network toolkit and completed

experiments on the well-known airline travel information system

(ATIS) benchmark. In addition, we compared the approaches on

two custom SLU data sets from the entertainment and movies

domains. Our results show that the RNN-based models

outperform the conditional random field (CRF) baseline by 2% in

absolute error reduction on the ATIS benchmark. We improve

the state-of-the-art by 0.5% in the Entertainment domain, and

6.7% for the movies domain.

Index Terms — spoken language understanding, word

embedding, recurrent neural network, slot filling.

I. INTRODUCTION

he term “spoken language understanding”'

(SLU) refers to the targeted understanding of

human speech directed at machines [1]. The goal of

such “targeted” understanding is to convert the

recognition of user input, 𝑆𝑖 , into a task-specific

semantic representation of the user's intention, 𝑈𝑖 at

each turn. The dialog manager then interprets 𝑈𝑖 and

decides on the most appropriate system action, 𝐴𝑖,

exploiting semantic context, user specific

meta-information, such as geo-location and personal

preferences, and other contextual information.

Manuscript submitted for review on XXX.

Copyright (c) 2013 IEEE. Personal use of this material is permitted. However,

permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org

This work was partially supported by Compute Canada and Calcul Québec.

G. Mesnil is with the University of Rouen, 76821 Mont-Saint-Aignan, France
and the University of Montréal, Montréal QC H3T 1J4, Canada. (corresponding

author e-mail: gregoire.mesnil@umontreal.ca). Y. Dauphin and Y. Bengio are

with the University of Montréal, Montréal QC H3T 1J4, Canada. K. Yao, L
Deng, X. He, D. Hakkani-Yur, D. Yu, and G. Zweig are with Microsoft

Research, USA. G. Tur is with Apple, USA. L. Heck is with Google, USA.

Part of this work has been done while Y. Dauphin and G. Mesnil were interns at
Microsoft Research.

The semantic parsing of input utterances in SLU

typically consists of three tasks: domain detection,

intent determination, and slot filling. Originating

from call routing systems, the domain detection and

intent determination tasks are typically treated as

semantic utterance classification problems

[2,3,4,30,62,63]. Slot filling is typically treated as a

sequence classification problem in which contiguous

sequences of words are assigned semantic class

labels. [5,7,31,32,33,34,40,55].

In this paper, following the success of deep

learning methods for semantic utterance

classification such as domain detection [30] and

intent determination [13,39,50], we focus on

applying deep learning methods to slot filling.

Standard approaches to solving the slot filling

problem include generative models, such as

HMM/CFG composite models [31,5,53], hidden

vector state (HVS) model [33], and discriminative or

conditional models such as conditional random

fields (CRFs) [6,7,32,34,40,51,54] and support

vector machines (SVMs) [52]. Despite many years

of research, the slot filling task in SLU is still a

challenging problem, and this has motivated the

recent application of a number of very successful

continuous-space, neural net, and deep learning

approaches, e.g. [13,15,24,30,56,64].

 In light of the recent success of these methods,

especially the success of RNNs in language

modeling [22,23] and in some preliminary SLU

experiments [15,24,30,56], in this paper we carry out

an in-depth investigation of RNNs for the slot filling

task of SLU. In this work, we implemented and

compared several important RNN architectures,

including the Elman-type networks [16], Jordan-type

networks [17] and their variations. To make the

results easy to reproduce and rigorously comparable,

we implemented these models using the common

Theano neural network toolkit [25] and evaluated

Using Recurrent Neural Networks for Slot

Filling in Spoken Language Understanding

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua Bengio, Li Deng, Dilek Hakkani-Tur,

Xiaodong He, Larry Heck, Gokhan Tur, Dong Yu, and Geoffrey Zweig

T

mailto:pubs-permissions@ieee.org
mailto:gregoire.mesnil@umontreal.ca

them on the standard ATIS (Airline Travel

Information Systems) benchmark. We also

compared our results to a baseline using conditional

random fields (CRF). Our results show that on the

ATIS task, both Elman-type networks and

Jordan-type networks outperform the CRF baseline

substantially, and a bi-directional Jordan-type

network that takes into account both past and future

dependencies among slots works best.

 In the next section, we formally define the

semantic utterance classification problem along with

the slot filling task and present the related work. In

Section III, we propose a brief review of deep

learning for slot filling. Section IV more specifically

describes our approach of RNN architectures for slot

filling. We describe sequence level optimization and

decoding methods in Section V. Experimental

results are summarized and discussed in section VII.

II. SLOT FILLING IN SPOKEN LANGUAGE

UNDERSTANDING

A major task in spoken language understanding in

goal-oriented human-machine conversational

understanding systems is to automatically extract

semantic concepts, or to fill in a set of arguments or

“slots” embedded in a semantic frame, in order to

achieve a goal in a human-machine dialogue.

An example sentence is provided here, with

domain, intent, and slot/concept annotations

illustrated, along with typical domain-independent

named entities. This example follows the popular

in/out/begin (IOB) representation, where Boston and

New York are the departure and arrival cities

specified as the slot values in the user’s utterance,

respectively.

Sentence show flights from Boston To New York today

Slots/Concepts O O O B-dept O B-arr I-arr B-date

Named Entity O O O B-city O B-city I-city O

Intent Find_Flight

Domain Airline Travel

ATIS utterance example IOB representation

While the concept of using semantic frames

(templates) is motivated by the case frames of the

artificial intelligence area, the slots are very specific

to the target domain and finding values of properties

from automatically recognized spoken utterances

may suffer from automatic speech recognition errors

and poor modeling of natural language variability in

expressing the same concept. For these reasons,

spoken language understanding researchers

employed statistical methods. These approaches

include generative models such as hidden Markov

models, discriminative classification methods such

as CRFs, knowledge-based methods, and

probabilistic context free grammars. A detailed

survey of these earlier approaches can be found in

[7].

For the slot filling task, the input is the sentence

consisting of a sequence of words, L, and the output

is a sequence of slot/concept IDs, S, one for each

word. In the statistical SLU systems, the task is often

formalized as a pattern recognition problem: Given

the word sequence L, the goal of SLU is to find the

semantic representation of the slot sequence 𝑆 that

has the maximum a posteriori probability 𝑃(𝑆|𝐿).

In the generative model framework, the Bayes rule

is applied:

𝑆̂ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑃(𝑆|𝐿) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑃(𝐿|𝑆)𝑃(𝑆)

The objective function of a generative model is

then to maximize the joint probability

𝑃(𝐿|𝑆)𝑃(𝑆) = 𝑃(𝐿, 𝑆) given a training sample of L,

and its semantic annotation, S.

The first generative model, used by both the

AT&T CHRONUS system [31] and the BBN

Hidden Understanding Model (HUM) [35], assumes

a deterministic one-to-one correspondence between

model states and the segments, i.e., there is only one

segment per state, and the order of the segments

follows that of the states.

 As another extension, in the Hidden Vector State

model the states in the Markov chain representation

encode all the structure information about the tree

using stacks, so the semantic tree structure

(excluding words) can be reconstructed from the

hidden vector state sequence. The model imposes a

hard limit on the maximum depth of the stack, so the

number of the states becomes finite, and the prior

model becomes the Markov chain in an HMM [33].

Recently, discriminative methods have become

more popular. One of the most successful

approaches for slot filling is the conditional random

field (CRF) [6] and its variants. Given the input word

sequence 𝐿1
𝑁 = 𝑙1, … , 𝑙𝑁 , the linear-chain CRF

models the conditional probability of a concept/slot

sequence 𝑆1
𝑁 = 𝑠1, … , 𝑠𝑁 as follows:

𝑃(𝑆1
𝑁|𝐿1

𝑁) =
1

𝑍
∏ 𝑒𝐻(𝑠𝑡−1,𝑠𝑡,𝑙𝑡−𝑑

𝑡+𝑑)𝑁
𝑡=1 (1)

where

𝐻(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑) = ∑ 𝜆𝑚ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑

𝑡+𝑑)𝑀
𝑚=1

(2)

and ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑) are features extracted from

the current and previous states 𝑠𝑡 and 𝑠𝑡−1 , plus a

window of words around the current word 𝑙𝑡, with a

window size of 2𝑑 + 1.

 CRFs have first been used for slot filling by

Raymond and Riccardi [33]. CRF models have been

shown to outperform conventional generative

models. Other discriminative methods such as the

semantic tuple classifier based on SVMs [36] has the

same main idea of semantic classification trees as

used by the Chanel system [37], where local

probability functions are used, i.e., each phrase is

separately considered to be a slot given features.

More formally,

𝑃(𝑆1
𝑁|𝐿1

𝑁) = ∏ 𝑃(𝑠𝑡|𝑠1
𝑡−1, 𝐿1

𝑁)𝑁
𝑡=1 (3)

These methods treat the classification algorithm as

a black box implementation of linear or log-linear

approaches but require good feature engineering. As

discussed in [57,13], one promising direction with

deep learning architectures is integrating both

feature design and classification into the learning

procedure.

III. DEEP LEARNING REVIEW

In comparison to the above described techniques,

deep learning uses many layers of neural networks

[57]. It has made strong impacts on applications

ranging from automatic speech recognition [8] to

image recognition [10].

A distinguishing feature of NLP applications of

deep learning is that inputs are symbols from a large

vocabulary, which led the initial work on neural

language modeling [26] to suggest map words to a

learned distributed representation either in the input

or output layers (or both), with those embeddings

learned jointly with the task. Following this

principle, a variety of neural net architectures and

training approaches have been successfully applied

[11,13,20,22,23,39,49,58,59,60,61]. Particularly,

RNNs [22,23,49] are also widely used in NLP. One

can represent an input symbol as a one-hot vector,

i.e., containing zeros except for one component

equal to one, and this weight vector is considered as

a low-dimensional continuous valued vector

representation of the original input, called word

embedding. Critically, in this vector space, similar

words that have occurred syntactically and

semantically tend to be placed by the learning

procedure close to each other, and relationships

between words are preserved. Thus, adjusting the

model parameters to increase the objective function

for a training example which involves a particular

word tends to improve performances for similar

words in similar context, thereby greatly improving

generalization and addressing the

curse-of-dimensionality obstacle faced with

traditional n-gram non-parametric models [26].

One way of building a deep model for slot filling

is to stack several neural network layers on top of

each other. This approach was taken in [27], which

used deep belief networks (DBNs), and showed

superior results to a CRF baseline on ATIS. The

DBNs were built with a stack of Restricted

Boltzmann Machines (RBMs) [12]. The RBM layers

were pre-trained to initialize the weights. Then the

well-known back-propagation algorithm was used to

fine-tune the weights of the deep network in a

discriminative fashion. Once the individual local

models are trained, Viterbi decoding is carried out to

find the best slot sequence given the sequence of

words.

In contrast to using DBNs, we propose recurrent

neural networks (RNNs). The basic RNNs used in

language modeling read an input word and predict

the next word. For SLU, these models are modified

to take a word and possibly other features as input,

and to output a slot value for each word. We will

describe RNNs in detail in the following section.

IV. RECURRENT NEURAL NETWORKS FOR

SLOT-FILLING

We provide here a description of the RNN models

used for the slot filling task.

A. Word Embeddings

The main input to a RNN is a one-hot

representation of the next input word. The first-layer

weight matrix defines a vector of weights for each

word, whose dimensionality is equal to the size of

the hidden layer (Fig. 1) – typically a few hundred.

This provides a continuous-space representation for

each word. These neural word embeddings [26] may

be trained a-priori on external data such as the

Wikipedia, with a variety of models ranging from

shallow neural networks [21] to convolutional neural

networks [20] and RNNs [22]. Such word

embeddings actually present interesting properties

[23] and tend to cluster [20] when their semantics are

similar.

While [15][24] suggest initializing the embedding

vectors with unsupervised learned features and then

fine-tune it on the task of interest, we found that

directly learning the embedding vectors initialized

from random values led to the same performance on

the ATIS dataset, when using the SENNA word

embeddings (http://ml.nec-labs.com/senna/). While

this behavior seems very specific to ATIS, we

considered extensive experiments about different

unsupervised initialization techniques out of the

scope of this paper. Word embeddings were

initialized randomly in our experiments.

B. Context Word Window

Before considering any temporal feedback, one

can start with a context word window as input for the

model. It allows one to capture short-term temporal

dependencies given the words surrounding the word

of interest. Given 𝑑𝑒 the dimension of the word

embedding and |𝑉| the size of the vocabulary, we

construct the 𝑑-context word window as the ordered

concatenation of 2𝑑 + 1 word embedding vectors,

i.e. 𝑑 previous word followed by the word of interest

and 𝑑 next words, with the following dot product:

𝐶𝑑(𝑙𝑖−𝑑
𝑖+𝑑) = 𝐸̃𝑙𝑖−𝑑

𝑖+𝑑 ∈ ℝ𝑑𝑒(2𝑑+1)

where 𝐸̃ corresponds to the embedding matrix 𝐸 ∈
ℳ𝑑𝑒×|𝑉|(ℝ) replicated vertically 2𝑑 + 1 times and

𝑙𝑖−𝑑
𝑖+𝑑 = [𝑙𝑖−𝑑 , … , 𝑙𝑖, … , 𝑙𝑖+𝑑]𝑇 ∈ ℝ|𝑉|(2𝑑+1)

corresponds to the concatenation of one-hot word

index vectors 𝑙𝑖.

𝑙𝑖 ("𝑓𝑙𝑖𝑔ℎ𝑡") =

[

0
⋮
1
⋮
0]

 In this window approach, one might wonder how

to build a 𝑑-context window for the first/last words

of the sentence. We work around this border effect

problem by padding the beginning and the end of

sentences 𝑑 times with a special token. Below, we

depict an example of building a context window of

size 3 around the word “from”:

𝑙(𝑡) = [𝑓𝑙𝑖𝑔ℎ𝑡𝑠, 𝒇𝒓𝒐𝒎,𝐵𝑜𝑠𝑡𝑜𝑛]

′𝑓𝑟𝑜𝑚′ → 𝑤𝑓𝑟𝑜𝑚 ∈ ℝ𝑑𝑒

𝑙(𝑡) → 𝐶3(𝑡) = [𝑙𝑓𝑙𝑖𝑔ℎ𝑡𝑠, 𝑙𝒇𝒓𝒐𝒎, 𝑙𝐵𝑜𝑠𝑡𝑜𝑛] ∈ ℝ3𝑑𝑒

In this example, 𝑙(𝑡) is a 3-word context window

around the 𝑡-th word “from”. 𝑙𝒇𝒓𝒐𝒎 corresponds to

the appropriate line in the embedding matrix 𝐸

mapping the word “from” to its word embedding.

Finally, 𝐶3(𝑡) gives the ordered concatenated word

embeddings vector for the sequence of words in 𝑙(𝑡).

C. Elman, Jordan and Hybrid architectures

As in [15], we describe here the two most common

RNN architectures in the literature: the Elman [16]

and Jordan [17] models. The architectures of these

models are illustrated in Figure 1.

(a) Feed-forward NN; (b) Elman-RNN; (c)

Jordan-RNN

Figure 1. Three types neural networks.

In contrast with classic feed-forward neural

networks, the Elman neural network keeps track of

the previous hidden layer states through its recurrent

connections. Hence, the hidden layer at time 𝑡 can be

viewed as a state summarizing past inputs along with

the current input. Mathematically, Elman dynamics

with 𝑑ℎ hidden nodes at each of the 𝐻 hidden layers

are depicted below:

The index of

word flight in the

vocabulary

ℎ(1)(𝑡) = 𝑓(𝑈(1)𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) +

𝑈′(1)ℎ(1)(𝑡 − 1)) (4)

ℎ(𝑛+1)(𝑡) = 𝑓(𝑈(𝑛+1)ℎ(𝑛)(𝑡) +

𝑈′(𝑛+1)ℎ(𝑛+1)(𝑡 − 1)) (5)

where we used the non-linear sigmoid function

applied element wise for the hidden layer 𝑓(𝑥) =
1/(1 + 𝑒−𝑥) and ℎ(𝑖)(0) ∈ ℝ𝑑ℎ are parameter

vectors to be learned. The superscript denotes the

depth of the hidden layers and 𝑈′ represents the

recurrent weights connection. The posterior

probabilities of the classifier for each class are then

given by the softmax function applied to the hidden

state:

𝑃(𝑦(𝑡) = 𝑖|𝑙0
𝑡+𝑑) =

𝑒
∑ 𝑉𝑖,𝑗ℎ

𝑗
(𝐻)

(𝑡)
𝑑ℎ
𝑗=1

∑ 𝑒
∑ 𝑉𝑖,𝑗ℎ

𝑗
(𝐻)

(𝑡)
𝑑ℎ
𝑗=1𝑁

𝑖=1

 (6)

Where 𝑉 correspond to the weights of the softmax

top layer.

The learning part then consists of tuning the

parameters Θ =

{𝐸, ℎ(1)(0), 𝑈(1), 𝑈′(1), … , ℎ(𝐻)(0), 𝑈(𝐻), 𝑈′(𝐻), 𝑉}

of the RNN with 𝑁 output classes. Precisely, the

matrix shapes are 𝑈(1) ∈ ℳ𝑑ℎ×𝑑𝑒(2𝑑+1)(ℝ)

𝑈′(1), … , 𝑈(𝐻), 𝑈′(𝐻) ∈ ℳ𝑑ℎ×𝑑ℎ
(ℝ) and 𝑉 ∈

ℳ𝑁×𝑑ℎ
(ℝ). For training, we use stochastic gradient

descent, with the parameters being updated after

computing the gradient for each one of the sentences

in our training set 𝒟 , towards minimizing the

negative log-likelihood. Note that a sentence is

considered as a tuple of words and a tuple of slots:

ℒ(Θ) = −∑ ∑ log PΘ(𝑠𝑡|𝑙0
𝑡+𝑑)𝑇

𝑡=1(𝑆,𝑊)∈𝒟 (7)

Note that the length 𝑇 of each sentence can vary

among the training samples and the context word

window size 𝑑 is a hyper-parameter.

The Jordan RNN is similar to the Elman-type

network except that the recurrent connections take

their input from the output posterior probabilities:

ℎ(𝑡) = 𝑓(𝑈𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 𝑈′Ρ(𝑦(𝑡 − 1))) (8)

where 𝑈′ ∈ ℳ𝑑ℎ×𝑁(ℝ) and Ρ(𝑦(0)) ∈ ℝ𝑁 are

additional parameters to tune. As pointed out in [15],

three different options can be considered for the

feedback connections: (a) Ρ(𝑦(𝑡 − 1)), (b) a one-hot

vector with an active bit for argmax
𝑖

𝑃𝑖(𝑦(𝑡 − 1)) or

even (c) the ground truth label for training.

Empirically [15], none of these options significantly

outperformed all others.

In this work, we focused on the Elman-type,

Jordan-type and hybrid versions of RNNs. The

hybrid version corresponds to a combination of the

recurrences from the Jordan and the Elman models:

ℎ(𝑡) = 𝑓(𝑈𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) +

𝑈′Ρ(𝑦(𝑡 − 1)) + 𝑈∗ℎ(𝑡 − 1))

D. Forward, Backward and Bidirectional

variants

In slot filling, useful information can be extracted

from the future and we do not necessarily have to

process the sequence online in a single forward pass.

It is also possible to take into account future

information with a single backward pass but still,

this approach uses only partial information available.

A more appealing model would consider both past

and future information at the same time: it

corresponds to the bi-directional Elman [18][19] or

Jordan [15] RNN.

We describe the bidirectional variant only for the

first layer since it is straightforward to build upper

layers as we did previously for the Elman RNN.

First, we define the forward ℎ⃗ (𝑡) and the backward

ℎ⃗⃖(𝑡) hidden layers:

ℎ⃗ (𝑡) = 𝑓(𝑈⃗⃗ 𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 𝑈⃗⃗ ′ℎ⃗ (𝑡 − 1))

ℎ⃗⃖(𝑡) = 𝑓(𝑈⃗⃗⃐𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 𝑈⃗⃗⃐′ℎ⃗⃖(𝑡 + 1))

where 𝑈⃗⃗ corresponds to the weights for the forward

pass and 𝑈⃗⃗⃐ for the backward pass. The superscript

𝑈′corresponds to the recurrent weights.

The bidirectional hidden layer ℎ⃡(𝑡) then takes as

input the forward and backward hidden layers:

ℎ⃡(𝑡) = 𝑓(𝐵𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) +

𝐵′ℎ⃗ (𝑡 − 1) + 𝐵∗ℎ⃗⃖(𝑡 + 1))

where 𝐵 are the weights for the context window

input, 𝐵′ projects the forward pass hidden layer of

the previous time step (past), and 𝐵∗ the backward

hidden layer of the next time step (future).

V. SEQUENCE LEVEL OPTIMIZATION AND

DECODING

The previous architectures are optimized based on

a tag-by-tag likelihood as opposed to a

sequence-level objective function. In common with

Maximum Entropy Markov Model (MEMM) [28]

models, the RNNs produce a sequence of

locally-normalized output distributions, one for each

word position. Thus, it can suffer from the same

label bias [6] problem. To ameliorate these problems,

we propose two methods: Viterbi decoding with slot

language models and recurrent CRF.

A. Slot Language Models

As just mentioned, one advantage of CRF models

over RNN models is that it is performing global

sequence optimization using tag level features. In

order to approximate this behavior, and optimize the

sentence level tag sequence, we explicitly applied

the Viterbi [40] algorithm. To this end, a second

order Markov model has been formed, using the slot

tags, si ∈ S as states, where the state transition

probabilities, P{LM}(si|sj) are obtained using a

trigram tag language model (LM). The tag level

posterior probabilities obtained from the RNN were

used when computing the state observation

likelihoods.

𝑆̂ = argmaxS P(S|L)
= argmaxS P{LM}(S)

α × P(L|S)

~ argmaxS P{LM}(S)
α

× ∏𝑃{𝑅𝑒𝑐𝑁𝑁}(𝑠𝑡|𝑙𝑡)/𝑃(𝑠𝑡)

𝑡

As is often done in the speech community, when

combining probabilistic models of different types, it

is advantageous to weight the contributions of the

language and observation models differently. We do

so by introducing a tunable model combination

weight, 𝛼 , whose value is optimized on held-out

data. For computation, we used the SRILM toolkit

(http://www.speech.sri.com/projects/srilm/).

B. Recurrent CRF

The second scheme uses the objective function of a

CRF, and trains RNN parameters according to this

objective function. In this scheme, the whole set of

model parameters, including transition probabilities

and RNN parameters, are jointly trained, taking

advantage of the sequence-level discrimination

ability of the CRF and the feature learning ability of

the RNN. Because the second scheme is a CRF with

features generated from an RNN, we call it a

recurrent conditional random field (R-CRF) [41,42].

The R-CRF differs from previous works that use

CRFs with feed-forward neural networks [43,44]

and convolutional neural networks [45], in that the

R-CRF uses RNNs for feature extraction – using

RNNs is motivated by its strong performances on

natural language processing tasks. The R-CRF also

differs from works in sequence training of

DNN/HMM hybrid systems [46-48] for speech

recognition, which use DNNs and HMMs, in that

R-CRF uses the CRF objective and RNNs.

The R-CRF objective function is the same as Eq.

(1) defined for the CRF, except that its features are

from the RNN. That is, the features

ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙0
𝑡+𝑑) in the CRF objective function (2)

now consist of transition feature ℎ𝑚(𝑠𝑡−1, 𝑠𝑡) and

tag-specific feature ℎ𝑚(𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑) from the RNN.

Note that since features are extracted from an RNN,

they are sensitive to inputs back to time t=0. Eq. (2)

is re-written as follows

𝐻(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑)

= ∑ 𝜆𝑚ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙0
𝑡+𝑑)

𝑀

𝑚=1

 (9)

= ∑ 𝜆𝑝ℎ𝑝(𝑠𝑡−1, 𝑠𝑡)

𝑃

𝑝=1

+ ∑ 𝜆𝑞ℎ𝑞(𝑠𝑡, 𝑙0
𝑡+𝑑)

𝑄

𝑞=1

In a CRF, ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑) is fixed and is usually a

binary value of one or zero, so the only parameters to

learn are the weights 𝜆𝑚. In contrast, the R-CRF

uses RNNs to output ℎ𝑚(𝑠𝑡, 𝑙0
𝑡+𝑑), which itself can

be tuned by exploiting error back-propagation to

obtain gradients. To avoid the label-bias problem [6]

that motivated CRFs, the R-CRF uses un-normalized

scores from the activations before the softmax layer

as features ℎ𝑚(𝑠𝑡, 𝑙0
𝑡+𝑑). In the future, we would like

to investigate using activations from other layers of

RNNs.

The R-CRF has additional transition features to

estimate. The transition features are actually the

transition probabilities between tags. Therefore the

size of this feature set is 𝑂(𝑁2) with 𝑁 the number

of slots. The number of RNN parameters is 𝑂(𝑁𝐻 +
𝐻2 + 𝐻𝑉). Usually the relation among vocabulary

size 𝑉, hidden layer size 𝐻 and slot number 𝑁is 𝑉 ≫
𝐻 > 𝑁 . Therefore, the number of additional

transition features is small in comparison.

Decoding from the R-CRF uses the Viterbi

algorithm. The cost introduced from computing

transition scores is 𝑂(𝑁𝑇) and 𝑇 is the length of a

sentence. In comparison to the computational cost of

𝑂(𝑁2𝑇) in the RNN, the additional cost from

transition scores is small.

VI. EXPERIMENTAL RESULTS

In this section we present our experimental results

for the slot filling task using the proposed

approaches.

A. Datasets

We used the ATIS corpus as used extensively by the

SLU community, e.g. [1,7,29,38]. The original

training data include 4978 utterances selected from

Class A (context independent) training data in the

ATIS-2 and ATIS-3 corpora. In this work, we

randomly sampled 20% of the original training data

as the held-out validation set, and used the left 80%

data as the model training set. The test set contains

893 utterances from the ATIS-3 Nov93 and Dec94

datasets. This dataset has 128 unique tags, as created

by [34] from the original annotations. In our first set

of experiments on several training methods and

different directional architectures, we only used

lexical features in the experiments. Then, in order to

compare with other results, we incorporated

additional features in the RNN architecture.

In our experiments, we preprocessed the data as in

[24]. Note that authors in [13, 15, 27, 29, 38] used a

different preprocessing technique, and hence their

results are not directly comparable. However, the

best numbers reported on ATIS by [27] are 95.3%

F1-score on manual transcriptions with DBNs, using

word and named entity features (in comparison to

their CRF baseline of 94.4%).

As additional sets of experiments, we report

results on two other custom datasets focusing on

movies [39] and entertainment. Each word has been

manually assigned a slot using the IOB schema as

described earlier.

B. Baseline and Models

On these datasets, Conditional Random Fields

(CRF) are commonly used as a baseline [7]. The

input of the CRF corresponds to a binary encoding of

N-grams inside a context window. For all datasets,

we carefully tuned the regularization parameters of

the CRF and the size of the context window using

5-fold cross-validation. Meanwhile, we also trained

a feed-forward network (FFN) for slot filling, with

the architecture shown in Fig 1 (a). The size of the

context window for FFN is tuned using 5-fold

cross-validation.

C. RNN versus Baselines and Stochastic training

versus Sentence mini-batch updates

Different ways of training the models were tested.

In our experiments, the stochastic version considered

a single (word, label) couple at a time for each

update while the sentence mini-batch processed the

whole sentence before updating the parameters. Due

to modern computing architectures, performing

updates after each example considerably increases

training time. A way to process many examples in a

shorter amount of time and exploit inherent

parallelism and cache mechanisms of modern

computers relies on updating parameters after

examining a whole mini-batch of sentences.

First, we ran 200 experiments with random

sampling [14] of the hyper-parameters. The

sampling choices for each hyper-parameter were for

the depth, 𝐻 ∈ {1,2} , the context size, 𝑑 ∈
{3, 5, … , 17} , the embedding dimension, 𝑑𝑒 ∈
{50, 100} and 3 different random seed values. The

learning rate was sampled from a uniform

distribution in the range [0.05, 0.1]. The embedding

matrix and the weight matrices were initialized from

the uniform in the range [-1,1]. We performed

early-stopping over 100 epochs, keeping the

parameters that gave the best performance on the

held-out validation set measured after each training

epoch (pass on the training set).

The F1-measure on the test set of each method was

computed after the hyper-parameter search. Results

are reported in Table 1. All the RNN variants and the

FFN model outperform the CRF baseline. And all

the RNN variants outperform the FFN model, too.

F1-score

%

Elman Jordan Hybrid

RNN 94.98 94.29 95.06

FFN 93.32

CRF 92.94
Table 1. Test set F1-score of the different models after 200 runs of

random sampling of the hyper-parameters. All models are trained

using the stochastic gradient approach.

Then, given the best hyper-parameters found

previously on the validation set, we report the

average, minimum, maximum and variance of the

test set accuracy over 50 additional runs by varying

only the random seed. In our case, the random

initialization seed impacted the way we initialized

the parameters and how we shuffled the samples at

each epoch. Note that for the Hybrid RNN and

stochastic updates, the score obtained during

hyper-parameters search corresponds to the max of

the validation set score over different random seeds.

The results are presented in Table 2. The observed

variances from the mean are in the range of 0.3%,

which is consistent with the 0.6% reported in [24]

with the 95% significance level based on the

binomial test. We also observe that stochastic (STO)

performs better than sentence mini-batches (MB) on

average. In a large-scale setting, it is always more

beneficial to perform sentence mini-batches as it

reduces the training complexity. On our small ATIS

benchmark, it took about the same number of epochs

for convergence for both training schemes STO and

MB, but each epoch took longer with STO.

F1-score % Elman Jordan Hybrid

STO Min 93.23 92.91 94.19

Max 95.04 94.31 95.06

Avg 94.44

±0.41

93.81

±0.32

94.61

±0.18

MB Min 92.8 93.17 93.06

Max 94.42 94.15 94.21

Avg 93.58

±0.30

93.72

±0.24

93.66

±0.30
Table 2. Measurement of the impact of using different ways of

training the models and random seed on the performance.

D. Local Context Window and Bi-Directional

Models

The slot-filling task is an off-line task, i.e., we

have access to the whole sentence at prediction time.

It should be beneficial to take advantage of all future

and past available information at any time step. One

way to do it consists of using bidirectional models to

encode the future and past information in the input.

The bidirectional approach relies on the capacity of

the network to summarize the past and future history

through its hidden state. Here, we compare the

bidirectional approach with the local context

window where the future and past information is fed

as input to the model. Therefore, rather than

considering a single word here, the context window

allows us to encode the future and past information

in the input.

We ran a set of experiments for different

architectures with different context-window sizes

and no local context window and compare the results

to a CRF using either unigram or N-grams. Results

are summarized in Table 3. Note that the CRF using

no context window (e.g., using unigram features

only) performs significantly worse than the CRF

using a context window (e.g., using up to 9-gram

features).

The absence of a context window affects the

performance of the Elman RNN (-1.83%), and it

considerably damages the accuracy of the Jordan

RNN (-29.00%). We believe this is because the

output layer is much more constrained than the

hidden layer, thus making less information available

through recurrence. The softmax layer defines a

probability and all its components sum to 1. The

components are tied together, limiting their degree of

freedom. In a classic hidden layer, none of the

component is tied to the others, giving the Elman

hidden layer a bit more power of expression than the

Jordan softmax layer. A context window provides

further improvements, while the bidirectional

architecture does not benefit any of the models.

F1-score Elman Jordan Hybrid CRF

Single,

w/o context

93.15 65.23 93.32 69.68

BiDir,

w/o context

93.46 90.31 93.16

Single,

context

94.98

(9)

94.29

(9)

95.06

(7)

92.94

(9)

Bidir,

context

94.73

(5)

94.03

(9)

94.15

(7)
Table 3. F1-score of single and Bi-Directional models with or w/o

context windows. We report the best context window size

hyper-parameter as the number in the round brackets.

E. Incorporating Additional Features

Most of the time, additional information such as

look-up tables or clustering of words into categories

is available. At some point, in order to obtain the best

performance, we want to integrate this information

in the RNN architecture. At the model level, we

concatenated the Named Entity (NE) information

feature as a one-hot vector feeding both to the

context window input and the softmax layer [49].

F1-score Elman Jordan Hybrid CRF

Word 94.98 94.29 95.06 92.94

Word+NE 96.24 95.25 95.85 95.16
Table 4. Performance with Named Entity features.

For the ATIS dataset, we used the gazetteers of

flight related entities, such as airline or airport names

as named entities. In Table 4, we can observe that it

yields significant performance gains for all methods,

RNN and CRF included.

F. ASR setting

In order to show the robustness of the RNN

approaches, we have also performed experiments

using the automatic speech recognition (ASR)

outputs of the test set. The input for SLU is the

recognition hypothesis from a generic dictation ASR

system and has a word error rate (WER) of 13.8%.

While this is significantly higher than the best

reported performances of about 5% WER [4], this

provides a more challenging and realistic

framework. Note that the model trained with manual

transcriptions is kept the same.

F1-score Elman Jordan Hybrid CRF

Word 94.98 94.29 95.06 92.94

ASR 85.05 85.02 84.76 81.15
Table 5. Comparison between manually labeled word and ASR

output.

Table 5 presents these results. As seen, the

performance drops significantly for all cases, though

RNN models continue to outperform the CRF

baseline. We also notice that under the ASR

condition, all three types of RNN perform similar to

each other.

G. Entertainment dataset

As an additional experiment, we ran our best

models on a custom dataset from the entertainment

domain. Table 6 shows these results. For this dataset,

the CRF outperformed RNN approaches. There are

two reasons for this:

 The ATIS and Entertainment datasets are

semantically very different. While the main task

in ATIS is disambiguating between a departure

and an arrival city/date, for the entertainment

domain, the main challenge is detecting longer

phrases such as movie names.

 While RNNs are powerful, the tag classification

is still local, and the overall sentence tag

sequence is not optimized directly as with CRFs.

However, as we shall cover in the next sections, the

performance of the RNN approach can be improved

using three techniques: Viterbi decoding, Dropout

regularization, and fusion with the CRF framework.

H. Slot Language Models and Decoding

Using the Viterbi algorithm with the output

probabilities of the RNN boosts the performance of

the network in the Entertainment domain, while on

ATIS, the improvement is much less significant.

This shows the importance of modeling the slot

dependencies explicitly and demonstrates the power

of dynamic programing.

F1-score Elman Jordan Hybrid

ATIS Word 94.98 94.29 95.06

ATIS Word

+Viterbi

94.99

(+0.01)

94.25

(-0.04)

94.77

(-0.29)

ATIS

Word/CRF

92.94

ATIS ASR 85.05 85.02 84.76

ATIS ASR

+Viterbi

86.16

(+1.11)

85.21

(+0.19)

85.36

(+0.6)

ATIS

ASR/CRF

81.15

Entertainment 88.67 88.70 89.04

Entertainment

+Viterbi

90.19

(+1.42)

90.62

(+1.92)

90.01

(+0.97)

Entertainment

+Viterbi

+Dropout

- 91.14

(+2.44)

-

Entertainment

/CRF

90.64

Table 6. Comparison with Viterbi decoding with different

methods on several datasets

I. Dropout regularization

While deep networks have more capacity to

represent functions than CRFs, they might suffer

from overfitting. Dropout [10] is a powerful way to

regularize deep neural networks. It is implemented

by randomly setting some of the hidden units to zero

with probability p during training, then dividing the

parameters by 1 / p during testing. In fact, this is an

efficient and approximate way of training an

exponential number of networks that share

parameters and then averaging their answer, much

like an ensemble. We have found it further improves

the performance on the Entertainment dataset, and

beats the CRF by 0.5% as seen in Table 6 (i.e.,

91.14% vs. 90.64%).

J. R-CRF results

We now compare the RNN and R-CRF models on

the ATIS, Movies and Entertainment datasets. For

this comparison, we have implemented the models

with C code rather than Theano. On the ATIS data,

the training features include word and named-entity

information as described in [29], which aligns to the

“Word+NE” line in table 4. Note that performances

between RNNs in Theano and C implementations

are slightly different on ATIS. The C

implementation of RNNs obtained 96.29% F1 score

and Theano obtained 96.24% F1 score. We used a

context window of 3 for bag-of-word feature [24]. In

this experiment, the RNN and R-CRF both are of the

Elman type and use a 100-dimension hidden layer.

On the Movies data, there are four types of features.

The n-gram features are unigrams and bi-grams

appeared in the training data. The regular expression

features are those tokens, such as zip code and

addresses, that can be defined in regular expressions.

The dictionary features include domain-general

knowledge sources such as US cities and

domain-specific knowledge sources such as hotel

names, restaurant names, etc. The

context-free-grammar features are those tokens that

are hard to be defined in a regular expression but

have context free generation rules such as time and

date. Both RNNs and CRFs are optimal for the

respective systems on the ATIS and Movies domains.

On the Entertainment dataset, both RNN and R-CRF

used 400 hidden layer dimension and momentum of

0.6. Features include a context window of 3 as a

bag-of-words. The learning rate for RNNs is 0.1 and

for R-CRFs it is 0.001.

F1-score CRF RNN R-CRF

ATIS

Word+NE

95.16 96.29 96.46

Movies 75.50 78.20 82.21

Entertainment 90.64 88.11 88.50
Table 7. Comparison with R-CRF and RNN on ATIS, Movies, and

Entertainment datasets.

As shown in Table 7, the RNNs outperform CRFs

on ATIS and Movies datasets. Using the R-CRF

produces an improved F1 score on ATIS. The

improvement is particularly significant on Movies

data, because of the strong dependencies between

labels. For instance, a movie name has many words

and each of them has to have the same label of

“movie_name”. Therefore, it is beneficial to

incorporate dependencies between labels, and train

at the sequence level. On the Entertainment dataset,

the RNN and R-CRF did not perform as well as the

CRF. However, results confirm that the R-CRF

improves over a basic RNN.

VII. CONCLUSIONS

We have proposed the use of recurrent neural

networks for the SLU slot filling task, and performed

a careful comparison of the standard RNN

architectures, as well as hybrid, bi-directional, and

CRF extensions. Similar to the previous work on

application of deep learning methods for intent

determination and domain detection, we find that

these models have competitive performances and

have improved performances over the use of CRF

models. The new models set a new state-of-the-art in

this area. Investigation of deep learning techniques

for more complex SLU tasks, for example ones that

involve hierarchical semantic frames, is part of

future work.

REFERENCES

[1] G. Tur and R. De Mori, “Spoken Language Understanding:

Systems for Extracting Semantic Information from Speech” in

Eds. John Wiley and Sons, 2011

[2] R. E. Schapire and Y. Singer, “Boostexter: A boosting-based

system for text categorization” in Machine Learning, vol. 39,

no.2/3, pp. 135-168, 2000.

[3] P. Haffner, G. Tur and J.Wright, “Optimizing SVMs for complex

call classification” in ICASSP, 2003.

[4] S. Yaman, L. Deng, D. Yu, Y.-Y. Wang and A. Acero, “An

integrative and discriminative technique for spoken utterance

classification” in IEEE Transactions on Audio, Speech and

Language Processing, vol. 16, no. 6, pp. 1207-1214, 2008

[5] Y. Wang, L. Deng and A. Acero, “Spoken Language

Understanding — An Introduction to the Statistical Framework”

in IEEE Signal Processing Magazine, vol. 22, no. 5, pp. 16-31,

2005.

[6] J. Lafferty, A. McCallum and F. Pereira, “Conditional random

fields: Probabilistic models for segmenting and labeling sequence

data” in ICML, 2001

[7] Y. Wang, L. Deng and A. Acero, “Semantic Frame Based Spoken

Language Understanding,” in Chapter 3, Tur and De Mori

“Spoken Language Understanding: Systems for Extracting

Semantic Information from Speech” pp. 35-80, Eds. John Wiley

and Sons, 2011.

[8] G. Dahl, D. Yu, L. Deng and A. Acero, “Context-dependent

pre-trained deep neural networks for large vocabulary speech

recognition” in IEEE Transactions on Audio, Speech, and

Language Processing, 20 (1), 33–42, 2012.

[9] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I.

Goodfellow, E. Lavoie, X. Muller, G. Desjardins, D.

Warde-Farley, P. Vincent, A. Courville and J. Bergstra,

“Unsupervised and transfer learning challenge: a deep learning

approach” in JMLR W&CP: Proc. Unsupervised and Transfer

Learning, volume 7, 2011.

[10] A. Krizhevsky, I. Sutskever and G. Hinton, “ImageNet

classification with deep convolutional neural networks” in

Advances in Neural Information Processing Systems 25, 2012.

[11] P-S Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck,

Learning Deep Structured Semantic Models for Web Search

using Clickthrough Data, in ACM International Conference on

Information and Knowledge Management (CIKM), 2013.

[12] G. Hinton, S. Osindero and Y. Teh, “A fast learning algorithm for

Deep Belief Nets” in Neural Computation 18, 1527–1554, 2006.

[13] L. Deng, G. Tur, X. He, and D. Hakkani-Tur, “Use of Kernel

Deep Convex Networks and End-To-End Learning for Spoken

Language Understanding”, in IEEE SLT, 2012.

[14] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter

Optimization”, in Journal of Machine Learning Research 13

(2012) 281-305, 2012.

[15] G. Mesnil, X. He, L. Deng and Y. Bengio, “Investigation of

Recurrent-Neural-Network architectures and learning methods

for spoken language understanding” in Interspeech, 2013.

[16] J. Elman “Finding structure in time” in Cognitive Science, 14 (2),

1990.

[17] M. Jordan “Serial order: a parallel distributed processing

approach” in Tech. Rep no 8604, San Diego, University of

California, Institute of Computer Science, 1997.

[18] M. Schuster and K. Paliwal, “Bidirectional recurrent neural

networks,” in IEEE Transactions on Signal Processing, 1997.

[19] A. Graves, A. Mohamed and G. Hinton, “Speech recognition with

deep recurrent neural networks” in ICASSP, 2013.

[20] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu

and P. Kuksa, “Natural language processing (almost) from

scratch” in Journal of Machine Learning Research, vol 12, pages

2493-2537, 2011.

[21] H. Schwenk and J-L. Gauvain, “Training neural network

language models on very large corpora” in HLT/EMNLP, 2005.

[22] T. Mikolov, S. Kombrink, L. Burget, J. Cernocky and S.

Khudanpur, “Extensions of recurrent neural network based

language model” in ICASSP, 2011.

[23] T. Mikolov, W. Yih and G. Zweig, “Linguistic regularities in

continuous space word representations” in NAACL-HLT, 2013.

[24] K. Yao, G. Zweig, M-Y. Hwang, Y. Shi and D. Yu, “Recurrent

neural networks for language understanding” in Interspeech,

2013.

[25] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,

G. Desjardins, J. Turian, D. Warde-Farley and Y. Bengio,

“Theano: A CPU and GPU Math Expression Compiler,” in Proc.

Python for Scientific Computing Conference (SciPy), 2010.

[26] Y. Bengio, R. Ducharme and P. Vincent, “A Neural

Probabilistic Language Model”, in NIPS, 2000.

[27] A. Deoras and R. Sarikaya, “Deep belief network based semantic

tagger for spoken language understanding”, in Interspeech, 2013.

[28] A. McCallum, D. Freitag, and F. Pereira, “Maximum entropy

Markov models for information extraction and segmentation”, in

ICML. Pp. 591-598, 2000.

[29] G. Tur and D. Hakkani-Tur and L. Heck and S. Parthasarathy,

“Sentence simplification for spoken language understanding”, in

ICASSP. pp. 5628-5631, 2011.

[30] R. Sarikaya, G. E. Hinton, and B. Ramabhadran, “Deep belief

nets for natural language call-routing,” in ICASSP, 2011.

[31] R. Pieraccini, E. Tzoukermann, Z. Gorelov, J.-L. Gauvain,

E. Levin, C.-H. Lee, and J. G. Wilpon, “A speech understanding

system based on statistical representation of semantics,” in

ICASSP, 1992.

[32] Y.-Y. Wang and A. Acero, “Discriminative models for spoken

language understanding,” in ICSLP, 2006.

[33] Y. He and S. Young, “A data-driven spoken language

understanding system,” in IEEE ASRU, pp. 583–588, 2003.

[34] C. Raymond and G. Riccardi, “Generative and discriminative

algorithms for spoken language understanding,” in

INTERSPEECH, 2007.

[35] S. Miller, R. Bobrow, R. Ingria, and R. Schwartz, “Hidden

understanding models of natural language,” in ACL, 1994.

[36] M. Henderson, M. Gasic, B. Thomson, P. Tsiakoulis, K. Yu, S.

Young, “Discriminative Spoken Language Understanding Using

Word Confusion Networks”, in IEEE SLT, 2012.

[37] R. Kuhn and R. De Mori, “The Application of Semantic

Classification Trees to Natural Language Understanding”, in

IEEE Transactions on Pattern Analysis and Machine Intelligence v.

17, pp. 449-460, 1995.

[38] G. Tur, D. Hakkani-Tür, and L. Heck, “What is Left to be

Understood in ATIS”, in IEEE SLT, 2010.

[39] G. Tur, L. Deng, D. Hakkani-Tür, X. He, “Towards Deeper

Understanding: Deep Convex Networks for Semantic Utterance

Classification”, in ICASSP, 2012.

[40] A. J. Viterbi, “Error bounds for convolutional codes and an

 asymptotically optimal decoding algorithm,” in IEEE

Transactions on Information. Theory, vol. IT-13, pp. 260-269,

Apr. 1967.

[41] K. Yao, B. Peng, and G. Zweig, D. Yu, X. Li and F. Gao,

“Recurrent conditional random field for language

understanding,” in ICASSP, pp. 4105-4009, 2014.

[42] K. Yao, B. Peng, and G. Zweig, D. Yu, X. Li and F. Gao,

“Recurrent conditional random fields,” in NIPS Deep Learning

Workshop, 2013.

 [43] J. Peng, L. Bo, and J. Xu , “Conditional neural fields,” in NIPS,

2009.

[44] D. Yu, S. Wang and L. Deng, “Sequential labeling using

deep-structured conditional random fileds,” in Journal of

Selected Topics in Signal Processing, vol. 4, no. 6, pp. 965-973,

2010.

[45] P. Xu and R. Sarikaya, “Convolutional neural nteworks based

triangular CRF for joint intent detection and slot filling,” in

ASRU, 2013.

[46] K. Vesely, A. Ghoshal, L. Burget and D. Povey,

“Sequence-discriminative training of deep neural networks,” in

INTERSPEECH, 2013.

[47] B. Kingsbury, T. N. Sainath, and H. Soltau, “Scalable minimum

Bayes risk training of deep neural network acoustic models using

distributed Hessian-free optimization,” in INTERSPEECH, 2012.

[48] H. Su, G. Li, D. Yu, and F. Seide. “Error back propagation for

sequence training of context-dependent deep neural networks for

conversational speech transcription,” in ICASSP, 2013.

[49] T. Mikolov and G. Zweig. “Context Dependent Recurrent Neural

Network Language Model” in IEEE SLT, 2012.

[50] Y. Dauphin, G.Tur, D. Hakkani-Tur and L. Heck. “Zero-shot

learning and clustering for semantic utterance classification,” in

International Conference on Learning Representations (ICLR),

2013.

 [51] J. Liu, S. Cyphers, P. Pasupat, I. McGraw, and J. Glass, “A

conversational movie search system based on conditional random

fields”, in INTERSPEECH 2012.

[52] T. Kudo and Y. Matsumoto, “Chunking with support vector

machine”, in ACL 2001.

[53] M. Macherey, F. Och, and H. Ney, “Natural language

understanding using statistical machine translation”, in European

Conference on Speech Communication and Technology, pp.

2205-2208, 2001.

[54] M. Jeong and G. Lee, “Structures for spoken language

understanding: a two-step approach”, in ICASSP 2007.

[55] V. Zue and J. Glass, “Conversational interface: advances and

challenges”, in Proceedings of the IEEE, vol. 88, no. 8, pp.

1166-1180, 2000.

[56] K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spoken

language understanding using long short-term memory neural

networks”, in IEEE SLT, 2014.

[57] Y. Bengio, Learning deep architectures for AI, Now Publishers,

2009.

[58] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil, "A latent

semantic model with convolutional-pooling structure for

information retrieval," in CIKM, 2014

[59] R. Socher, B. Huval, C. Manning, and A. Ng, "Semantic

compositionality through recursive matrix-vector spaces," in

EMNLP-CoNLL, pp. 1201-1211, 2012

[60] W. Yih, X. He, and C. Meek, “Semantic parsing for

single-relation question answering,” in ACL, 2014

[61] M. Yu, T. Zhao, D. Dong, H. Tian, and D. Yu, "Compound

embedding features for semi-supervised learning," in

NAACL-HLT 2013, pp. 563–568, 2013

[62] D. Hakkani-Tur, L. Heck, and G. Tur, “Exploiting query click

logs for utterance domain detection in spoken language

understanding,” in ICASSP, 2011.

[63] L. Heck and D. Hakkani-Tur, “Exploiting the semantic web for

unsupervised spoken language understanding,” in IEEE-SLT,

2012

[64] L. Heck and H. Huang, “Deep learning of knowledge graph

embeddings for semantic parsing of twitter dialogs,” in IEEE

Global Conference on Signal and Information Processing, 2014.

Grégoire Mesnil is a Ph.D.

student in Computer Science at

University of Montréal in Canada

and University of Rouen in

France. His main research

interests lie within Artificial

Intelligence, Machine Learning

and Deep Neural Networks,

creating solutions for large scale

problems in Natural Language

Processing and Computer Vision.

He holds a M.Sc. in Machine

Learning from École Normale

Supérieure de Cachan and a B.Sc. in Applied Mathematics

from University of Caen in France. He also received an

Engineer degree in Applied Mathematics from the National

Institute of Applied Sciences in Rouen.

Yann Dauphin is a machine

learning researcher and computer

engineer. He is currently finishing

my Ph.D. at University of

Montréal on deep learning

algorithms for large-scale

problems. He received a M.S.

degree in Computer Science from

the University of Montréal in

Canada in 2011, and a B. Eng.

Degree in Computer Engineering

from Ecole Polytechnique de

Montreal, Canada, in 2010.

Kaisheng Yao is a senior RSDE

at Microsoft Research. He

received his Ph.D. degree in

Electrical Engineering in a joint

program of Tsinghua University,

China, and Hong Kong

University of Science and

Technology in 2000. From 2000

to 2002, he worked as an invited

researcher at Advanced

Telecommunication Research

Lab in Japan. From 2002 to 2004,

he was a post-doc researcher at

Institute for Neural Computation at University of California at

San Diego. From 2004 to 2008, he was with Texas Instruments.

He joined Microsoft in 2008. He has been active in both

research and development areas including natural language

understanding, speech recognition, machine learning and

speech signal processing. He has published more than 50

papers in these areas and is the inventor/co-inventor of more

than 20 granted/pending patents. At Microsoft, he has helped in

shipping products such as smart watch gesture control, Bing

query understanding, Xbox, and voice search. His current

research and development interests are in the areas of deep

learning using recurrent neural networks and its applications to

natural language processing, document understanding, speech

recognition and speech processing. He is a senior member of

IEEE and a member of ACL.

Yoshua Bengio (CS PhD, McGill

University, 1991) was post-doc

with Michael Jordan at MIT and

worked at AT&T Bell Labs

before becoming professor at U.

Montreal. He wrote two books

and around 200 papers, the most

cited being in the areas of deep

learning, recurrent neural

networks, probabilistic learning,

NLP and manifold learning.

Among the most cited Canadian

computer scientists and one of the

scientists responsible for reviving neural networks research

with deep learning in 2006, he sat on editorial boards of top ML

journals and of the NIPS foundation, holds a Canada Research

Chair and an NSERC chair, is a Senior Fellow and program

director of CIFAR and has been program/general chair for

NIPS. He is driven by his quest for AI through machine

learning, involving fundamental questions on learning of deep

representations, the geometry of generalization in

high-dimension, manifold learning, biologically inspired

learning, and challenging applications of ML.

Li Deng (M'89 – SM'92 – F'04) is

Partner Research Manager at the

Deep Learning Technology

Center of Microsoft Research in

Redmond. His current interest

and work are focused on research,

advanced development of deep

learning and machine intelligence

techniques applied to large-scale

data analysis and to

speech/image/text multimodal

information processing. In

several areas of computer science

and electrical engineering, he has published over 300 refereed

papers and authored or co-authored 5 books including the latest

2 books on Deep Learning during 2014. He is Fellow of IEEE,

Fellow of the Acoustical Society of America, and Fellow of the

International Speech Communication Association. He is

granted over 70 patents in acoustics/audio, speech/language

technology, large-scale data analysis, and machine learning.

Dilek Hakkani-Tür (F’14) is a

principal researcher at Microsoft

Research. Prior to joining

Microsoft, she was a senior

researcher at the International

Computer Science Institute

(ICSI) speech group (2006-2010)

and she was a senior technical

staff member in the Voice

Enabled Services Research

Department at AT&T

Labs-Research in Florham Park,

NJ (2001-2005). She received her

BSc degree from Middle East Technical University, in 1994,

and MSc and PhD degrees from Bilkent University,

Department of Computer Engineering, in 1996 and 2000,

respectively. Her research interests include natural language

and speech processing, spoken dialog systems, and machine

learning for language processing. She has 38 patents that were

granted and co-authored more than 150 papers in natural

language and speech processing. She is the recipient of three

best paper awards for her work on active learning, from IEEE

Signal Processing Society, ISCA and EURASIP. She was an

associate editor of IEEE Transactions on Audio, Speech and

Language Processing (2005-2008), an elected member of the

IEEE Speech and Language Technical Committee

(2009-2012), an area editor for speech and language processing

for Elsevier's Digital Signal Processing Journal and IEEE

Signal Processing Letters (2011-2013). She was selected as a

Fellow of the IEEE and ISCA in 2014.

Xiaodong He (M’03 – SM’08) is

a Researcher of Microsoft

Research, Redmond, WA, USA.

He is also an Affiliate Professor

in Electrical Engineering at the

University of Washington,

Seattle, WA, USA. His research

interests include deep learning,

information retrieval, natural

language understanding, machine

translation, and speech

recognition. Dr. He and his

colleagues have developed

entries that obtained No. 1 place in the 2008 NIST Machine

Translation Evaluation (NIST MT) and the 2011 International

Workshop on Spoken Language Translation Evaluation

(IWSLT), both in Chinese-English translation, respectively. He

serves as Associate Editor of IEEE Signal Processing Magazine

and IEEE Signal Processing Letters, as Guest Editors of IEEE

TASLP for the Special Issue on Continuous-space and related

methods in natural language processing, and Area Chair of

NAACL2015. He also served as GE for several IEEE Journals,

and served in organizing committees and program committees

of major speech and language processing conferences in the

past. He is a senior member of IEEE and a member of ACL.

Larry Heck joined the Google

Machine Intelligence group in

2014. From 2009-2014, he was

with Microsoft. In 2009, he

started the personal assistant

effort in Microsoft's Speech

Group. The effort established the

early conversational

understanding (CU) scientific

foundations for Cortana,

Microsoft’s personal assistant

launched on Windows Phone in

2014. From 2005 to 2009, he was

Vice President of Search & Advertising Sciences at Yahoo!,

responsible for the creation, development, and deployment of

the algorithms powering Yahoo! Search, Yahoo! Sponsored

Search, Yahoo! Content Match, and Yahoo! display

advertising. From 1998 to 2005, he was with Nuance

Communications and served as Vice President of R&D,

responsible for natural language processing, speech

recognition, voice authentication, and text-to-speech synthesis

technology. He began his career as a researcher at the Stanford

Research Institute (1992-1998), initially in the field of

acoustics and later in speech research with the Speech

Technology and Research (STAR) Laboratory. Dr. Heck

received the PhD in Electrical Engineering from the Georgia

Institute of Technology in 1991. He has published over 80

scientific papers and has granted/filed for 47 patents.

 Gokhan Tur is an established

computer scientist working on

spoken language understanding

(SLU), mainly for conversational

systems. He received the Ph.D.

degree in Computer Science from

Bilkent University, Turkey in

2000. Between 1997 and 1999, he

was a visiting scholar at the

Language Technologies Institute,

CMU, then the Johns Hopkins

University, MD, and the Speech

Technology and Research

(STAR) Lab of SRI, CA. He worked at AT&T Labs - Research,

NJ (2001-2006), working on pioneering conversational systems

such as "How May I Help You?". He worked for the DARPA

GALE and CALO projects at the STAR Lab of SRI, CA

(2006-2010). He worked on building conversational

understanding systems like Cortana in Microsoft (2010-2014).

He is currently with the Apple Siri. Dr. Tur co-authored more

than 150 papers published in journals or books and presented at

conferences. He is the editor of the book entitled "Spoken

Language Understanding - Systems for Extracting Semantic

Information from Speech" by Wiley in 2011. Dr. Tur is also the

recipient of the Speech Communication Journal Best Paper

awards by ISCA for 2004-2006 and by EURASIP for

2005-2006. Dr. Tur is the organizer of the HLT-NAACL 2007

Workshop on Spoken Dialog Technologies, and the

HLT-NAACL 2004 and AAAI 2005 Workshops on SLU, and

the editor of the Speech Communication Issue on SLU in 2006.

He is also the spoken language processing area chair for IEEE

ICASSP 2007, 2008, and 2009 conferences and IEEE ASRU

2005 workshop, spoken dialog area chair for HLT-NAACL

2007 conference, and organizer of SLT 2010 workshop. Dr.

Tur is a senior member of IEEE, ACL, and ISCA, was an

elected member of IEEE Speech and Language Technical

Committee (SLTC) for 2006-2008, and an associate editor for

the IEEE Transactions on Audio, Speech, and Language

Processing journal for 2010-2014, and is currently an associate

editor for the IEEE Transactions on Multimedia Processing

journal and member of the IEEE SPS Industrial Relations

Committee.

Dong Yu (M'97, SM'06) is a

principal researcher at the

Microsoft speech and dialog

research group. His current

research interests include speech

processing, robust speech

recognition, discriminative

training, and machine learning.

He has published two books and

over 140 papers in these areas and

is the co-inventor of more than 50

granted/pending patents. His

work on context-dependent deep

neural network hidden Markov model (CD-DNN-HMM) has

helped to shape the new direction on large vocabulary speech

recognition research and was recognized by the IEEE SPS 2013

best paper award. Dr. Dong Yu is currently serving as a

member of the IEEE Speech and Language Processing

Technical Committee (2013-) and an associate editor of IEEE

transactions on audio, speech, and language processing

(2011-). He has served as an associate editor of IEEE signal

processing magazine (2008-2011) and the lead guest editor of

IEEE transactions on audio, speech, and language processing -

special issue on deep learning for speech and language

processing (2010-2011).

Geoffrey Zweig (F’13) is a

Principal Researcher, and

Manager of the Speech &

Dialog Group at Microsoft

Research. His research

interests lie in improved

algorithms for acoustic and

language modeling for speech

recognition, and language

processing for downstream

applications. Recent work has

included the development of

methods for conditioning

recurrent neural networks on side-information for applications

such as machine translation, and the use of recurrent neural

network language models in first pass speech recognition. Prior

to Microsoft, Dr. Zweig managed the Advanced Large

Vocabulary Continuous Speech Recognition Group at IBM

Research, with a focus on the DARPA EARS and GALE

programs. Dr. Zweig received his PhD from the University of

California at Berkeley. He is the author of over 80 papers,

numerous patents, an Associate Editor of Computers Speech &

Language, and is a Fellow of the IEEE.

javascript:void(0)

