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Abstract—Semantic slot filling is one of the most challenging 

problems in spoken language understanding (SLU).  In this study, 

we propose to use recurrent neural networks (RNNs) for this task, 

and present several novel architectures designed to efficiently 

model past and future temporal dependencies. Specifically, we 

implemented and compared several important RNN 

architectures, including Elman, Jordan and hybrid variants. To 

facilitate reproducibility, we implemented these networks with the 

publicly available Theano neural network toolkit and completed 

experiments on the well-known airline travel information system 

(ATIS) benchmark. In addition, we compared the approaches on 

two custom SLU data sets from the entertainment and movies 

domains. Our results show that the RNN-based models 

outperform the conditional random field (CRF) baseline by 2% in 

absolute error reduction on the ATIS benchmark. We improve 

the state-of-the-art by 0.5% in the Entertainment domain, and 

6.7% for the movies domain.  

 
Index Terms — spoken language understanding, word 

embedding, recurrent neural network, slot filling. 

 

I. INTRODUCTION 

he term “spoken language understanding”' 

(SLU) refers to the targeted understanding of 

human speech directed at machines [1]. The goal of 

such “targeted” understanding is to convert the 

recognition of user input, 𝑆𝑖 , into a task-specific 

semantic representation of the user's intention, 𝑈𝑖 at 

each turn. The dialog manager then interprets 𝑈𝑖 and 

decides on the most appropriate system action, 𝐴𝑖, 

exploiting semantic context, user specific 

meta-information, such as geo-location and personal 

preferences, and other contextual information. 
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The semantic parsing of input utterances in SLU 

typically consists of three tasks: domain detection, 

intent determination, and slot filling. Originating 

from call routing systems, the domain detection and 

intent determination tasks are typically treated as 

semantic utterance classification problems 

[2,3,4,30,62,63]. Slot filling is typically treated as a 

sequence classification problem in which contiguous 

sequences of words are assigned semantic class 

labels. [5,7,31,32,33,34,40,55].  

In this paper, following the success of deep 

learning methods for semantic utterance 

classification such as domain detection [30] and 

intent determination [13,39,50], we focus on 

applying deep learning methods to slot filling. 

Standard approaches to solving the slot filling 

problem include generative models, such as 

HMM/CFG composite models [31,5,53], hidden 

vector state (HVS) model [33], and discriminative or 

conditional models such as conditional random 

fields (CRFs) [6,7,32,34,40,51,54] and support 

vector machines (SVMs) [52]. Despite many years 

of research, the slot filling task in SLU is still a 

challenging problem, and this has motivated the 

recent application of a number of very successful 

continuous-space, neural net, and deep learning 

approaches, e.g. [13,15,24,30,56,64].  

 In light of the recent success of these methods, 

especially the success of RNNs in language 

modeling [22,23] and in some preliminary SLU 

experiments [15,24,30,56], in this paper we carry out 

an in-depth investigation of RNNs for the slot filling 

task of SLU. In this work, we implemented and 

compared several important RNN architectures, 

including the Elman-type networks [16], Jordan-type 

networks [17] and their variations. To make the 

results easy to reproduce and rigorously comparable, 

we implemented these models using the common 

Theano neural network toolkit [25] and evaluated 
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them on the standard ATIS (Airline Travel 

Information Systems) benchmark. We also 

compared our results to a baseline using conditional 

random fields (CRF). Our results show that on the 

ATIS task, both Elman-type networks and 

Jordan-type networks outperform the CRF baseline 

substantially, and a bi-directional Jordan-type 

network that takes into account both past and future 

dependencies among slots works best. 

 In the next section, we formally define the 

semantic utterance classification problem along with 

the slot filling task and present the related work. In 

Section III, we propose a brief review of deep 

learning for slot filling. Section IV more specifically 

describes our approach of RNN architectures for slot 

filling. We describe sequence level optimization and 

decoding methods in Section V. Experimental 

results are summarized and discussed in section VII. 

II. SLOT FILLING IN SPOKEN LANGUAGE 

UNDERSTANDING 

A major task in spoken language understanding in 

goal-oriented human-machine conversational 

understanding systems is to automatically extract 

semantic concepts, or to fill in a set of arguments or 

“slots” embedded in a semantic frame, in order to 

achieve a goal in a human-machine dialogue.  

An example sentence is provided here, with 

domain, intent, and slot/concept annotations 

illustrated, along with typical domain-independent 

named entities. This example follows the popular 

in/out/begin (IOB) representation, where Boston and 

New York are the departure and arrival cities 

specified as the slot values in the user’s utterance, 

respectively. 

 
Sentence show flights from Boston To New York today 

Slots/Concepts O O O B-dept O B-arr I-arr B-date 

Named Entity O O O B-city O B-city I-city O 

Intent Find_Flight 

Domain Airline Travel 

ATIS utterance example IOB representation 

 

While the concept of using semantic frames 

(templates) is motivated by the case frames of the 

artificial intelligence area, the slots are very specific 

to the target domain and finding values of properties 

from automatically recognized spoken utterances 

may suffer from automatic speech recognition errors 

and poor modeling of natural language variability in 

expressing the same concept. For these reasons, 

spoken language understanding researchers 

employed statistical methods. These approaches 

include generative models such as hidden Markov 

models, discriminative classification methods such 

as CRFs, knowledge-based methods, and 

probabilistic context free grammars. A detailed 

survey of these earlier approaches can be found in 

[7]. 

For the slot filling task, the input is the sentence 

consisting of a sequence of words, L, and the output 

is a sequence of slot/concept IDs, S, one for each 

word. In the statistical SLU systems, the task is often 

formalized as a pattern recognition problem:  Given 

the word sequence L, the goal of SLU is to find the 

semantic representation of the slot sequence 𝑆 that 

has the maximum a posteriori probability 𝑃(𝑆|𝐿).  

In the generative model framework, the Bayes rule 

is applied: 

 

𝑆̂ =  𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑃(𝑆|𝐿) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑃(𝐿|𝑆)𝑃(𝑆) 
 

The objective function of a generative model is 

then to maximize the joint probability 

𝑃(𝐿|𝑆)𝑃(𝑆) = 𝑃(𝐿, 𝑆) given a training sample of L, 

and its semantic annotation, S. 

The first generative model, used by both the 

AT&T CHRONUS system [31] and the BBN 

Hidden Understanding Model (HUM) [35], assumes 

a deterministic one-to-one correspondence between 

model states and the segments, i.e., there is only one 

segment per state, and the order of the segments 

follows that of the states.   

  As another extension, in the Hidden Vector State 

model the states in the Markov chain representation 

encode all the structure information about the tree 

using stacks, so the semantic tree structure 

(excluding words) can be reconstructed from the 

hidden vector state sequence. The model imposes a 

hard limit on the maximum depth of the stack, so the 

number of the states becomes finite, and the prior 

model becomes the Markov chain in an HMM [33]. 

Recently, discriminative methods have become 

more popular. One of the most successful 

approaches for slot filling is the conditional random 

field (CRF) [6] and its variants. Given the input word 



sequence 𝐿1
𝑁 = 𝑙1, … , 𝑙𝑁 , the linear-chain CRF 

models the conditional probability of a concept/slot 

sequence 𝑆1
𝑁 = 𝑠1, … , 𝑠𝑁 as follows: 

𝑃(𝑆1
𝑁|𝐿1

𝑁) =
1

𝑍
∏ 𝑒𝐻(𝑠𝑡−1,𝑠𝑡,𝑙𝑡−𝑑

𝑡+𝑑)𝑁
𝑡=1             (1) 

where  

𝐻(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑) = ∑ 𝜆𝑚ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑

𝑡+𝑑)𝑀
𝑚=1     

(2) 

 

and ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑)  are features extracted from 

the current and previous states 𝑠𝑡  and 𝑠𝑡−1 , plus a 

window of words around the current word 𝑙𝑡, with a 

window size of 2𝑑 + 1. 

  CRFs have first been used for slot filling by 

Raymond and Riccardi [33]. CRF models have been 

shown to outperform conventional generative 

models. Other discriminative methods such as the 

semantic tuple classifier based on SVMs [36] has the 

same main idea of semantic classification trees as 

used by the Chanel system [37], where local 

probability functions are used, i.e., each phrase is 

separately considered to be a slot given features. 

More formally, 

 

𝑃(𝑆1
𝑁|𝐿1

𝑁) = ∏ 𝑃(𝑠𝑡|𝑠1
𝑡−1, 𝐿1

𝑁)𝑁
𝑡=1    (3) 

 

These methods treat the classification algorithm as 

a black box implementation of linear or log-linear 

approaches but require good feature engineering. As 

discussed in [57,13], one promising direction with 

deep learning architectures is integrating both 

feature design and classification into the learning 

procedure. 

III. DEEP LEARNING REVIEW 

In comparison to the above described techniques, 

deep learning uses many layers of neural networks 

[57]. It has made strong impacts on applications 

ranging from automatic speech recognition [8] to 

image recognition [10].  

A distinguishing feature of NLP applications of 

deep learning is that inputs are symbols from a large 

vocabulary, which led the initial work on neural 

language modeling [26] to suggest map words to a 

learned distributed representation either in the input 

or output layers (or both), with those embeddings 

learned jointly with the task. Following this 

principle, a variety of neural net architectures and 

training approaches have been successfully applied 

[11,13,20,22,23,39,49,58,59,60,61]. Particularly, 

RNNs [22,23,49] are also widely used in NLP. One 

can represent an input symbol as a one-hot vector, 

i.e., containing zeros except for one component 

equal to one, and this weight vector is considered as 

a low-dimensional continuous valued vector 

representation of the original input, called word 

embedding. Critically, in this vector space, similar 

words that have occurred syntactically and 

semantically tend to be placed by the learning 

procedure close to each other, and relationships 

between words are preserved. Thus, adjusting the 

model parameters to increase the objective function 

for a training example which involves a particular 

word tends to improve performances for similar 

words in similar context, thereby greatly improving 

generalization and addressing the 

curse-of-dimensionality obstacle faced with 

traditional n-gram non-parametric models [26]. 

One way of building a deep model for slot filling 

is to stack several neural network layers on top of 

each other. This approach was taken in [27], which 

used deep belief networks (DBNs), and showed 

superior results to a CRF baseline on ATIS. The 

DBNs were built with a stack of Restricted 

Boltzmann Machines (RBMs) [12]. The RBM layers 

were pre-trained to initialize the weights. Then the 

well-known back-propagation algorithm was used to 

fine-tune the weights of the deep network in a 

discriminative fashion. Once the individual local 

models are trained, Viterbi decoding is carried out to 

find the best slot sequence given the sequence of 

words.  

In contrast to using DBNs, we propose recurrent 

neural networks (RNNs). The basic RNNs used in 

language modeling read an input word and predict 

the next word. For SLU, these models are modified 

to take a word and possibly other features as input, 

and to output a slot value for each word. We will 

describe RNNs in detail in the following section.  

IV. RECURRENT NEURAL NETWORKS FOR 

SLOT-FILLING 

We provide here a description of the RNN models 

used for the slot filling task.  



A. Word Embeddings 

The main input to a RNN is a one-hot 

representation of the next input word. The first-layer 

weight matrix defines a vector of weights for each 

word, whose dimensionality is equal to the size of 

the hidden layer (Fig. 1) – typically a few hundred. 

This provides a continuous-space representation for 

each word. These neural word embeddings [26] may 

be trained a-priori on external data such as the 

Wikipedia, with a variety of models ranging from 

shallow neural networks [21] to convolutional neural 

networks [20] and RNNs [22]. Such word 

embeddings actually present interesting properties 

[23] and tend to cluster [20] when their semantics are 

similar. 

While [15][24] suggest initializing the embedding 

vectors with unsupervised learned features and then 

fine-tune it on the task of interest, we found that 

directly learning the embedding vectors initialized 

from random values led to the same performance on 

the ATIS dataset, when using the SENNA word 

embeddings (http://ml.nec-labs.com/senna/). While 

this behavior seems very specific to ATIS, we 

considered extensive experiments about different 

unsupervised initialization techniques out of the 

scope of this paper. Word embeddings were 

initialized randomly in our experiments. 

B. Context Word Window 

Before considering any temporal feedback, one 

can start with a context word window as input for the 

model. It allows one to capture short-term temporal 

dependencies given the words surrounding the word 

of interest. Given 𝑑𝑒  the dimension of the word 

embedding and |𝑉| the size of the vocabulary, we 

construct the 𝑑-context word window as the ordered 

concatenation of 2𝑑 + 1  word embedding vectors, 

i.e. 𝑑 previous word followed by the word of interest 

and 𝑑 next words, with the following dot product: 

 

𝐶𝑑(𝑙𝑖−𝑑
𝑖+𝑑) = 𝐸̃𝑙𝑖−𝑑

𝑖+𝑑 ∈ ℝ𝑑𝑒(2𝑑+1) 

  

where 𝐸̃ corresponds to the embedding matrix 𝐸 ∈
ℳ𝑑𝑒×|𝑉|(ℝ) replicated vertically 2𝑑 + 1 times and 

𝑙𝑖−𝑑
𝑖+𝑑 = [𝑙𝑖−𝑑 , … , 𝑙𝑖, … , 𝑙𝑖+𝑑]𝑇 ∈ ℝ|𝑉|(2𝑑+1)  

corresponds to the concatenation of one-hot word 

index vectors 𝑙𝑖. 
 

𝑙𝑖 ("𝑓𝑙𝑖𝑔ℎ𝑡") =

[
 
 
 
 
0
⋮
1
⋮
0]
 
 
 
 

 

 

 In this window approach, one might wonder how 

to build a 𝑑-context window for the first/last words 

of the sentence. We work around this border effect 

problem by padding the beginning and the end of 

sentences 𝑑 times with a special token. Below, we 

depict an example of building a context window of 

size 3 around the word “from”: 

𝑙(𝑡) = [𝑓𝑙𝑖𝑔ℎ𝑡𝑠, 𝒇𝒓𝒐𝒎,𝐵𝑜𝑠𝑡𝑜𝑛] 

′𝑓𝑟𝑜𝑚′ → 𝑤𝑓𝑟𝑜𝑚 ∈ ℝ𝑑𝑒  

𝑙(𝑡) → 𝐶3(𝑡) = [𝑙𝑓𝑙𝑖𝑔ℎ𝑡𝑠, 𝑙𝒇𝒓𝒐𝒎, 𝑙𝐵𝑜𝑠𝑡𝑜𝑛] ∈ ℝ3𝑑𝑒  

 

In this example, 𝑙(𝑡) is a 3-word context window 

around the 𝑡-th word “from”. 𝑙𝒇𝒓𝒐𝒎 corresponds to 

the appropriate line in the embedding matrix 𝐸 

mapping the word “from” to its word embedding. 

Finally, 𝐶3(𝑡) gives the ordered concatenated word 

embeddings vector for the sequence of words in 𝑙(𝑡). 

 

C. Elman, Jordan and Hybrid architectures 

As in [15], we describe here the two most common 

RNN architectures in the literature: the Elman [16] 

and Jordan [17] models. The architectures of these 

models are illustrated in Figure 1. 

 

(a) Feed-forward NN; (b) Elman-RNN; (c) 

Jordan-RNN 

Figure 1. Three types neural networks. 

In contrast with classic feed-forward neural 

networks, the Elman neural network keeps track of 

the previous hidden layer states through its recurrent 

connections. Hence, the hidden layer at time 𝑡 can be 

viewed as a state summarizing past inputs along with 

the current input. Mathematically, Elman dynamics 

with 𝑑ℎ hidden nodes at each of the 𝐻 hidden layers 

are depicted below: 

The index of 

word flight in the 

vocabulary 



 

ℎ(1)(𝑡) = 𝑓(𝑈(1)𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 

𝑈′(1)ℎ(1)(𝑡 − 1))  (4) 

 

ℎ(𝑛+1)(𝑡) = 𝑓(𝑈(𝑛+1)ℎ(𝑛)(𝑡) + 

𝑈′(𝑛+1)ℎ(𝑛+1)(𝑡 − 1))    (5) 

 

where we used the non-linear sigmoid function 

applied element wise for the hidden layer 𝑓(𝑥) =
1/(1 + 𝑒−𝑥)  and ℎ(𝑖)(0) ∈ ℝ𝑑ℎ  are parameter 

vectors to be learned. The superscript denotes the 

depth of the hidden layers and 𝑈′  represents the 

recurrent weights connection. The posterior 

probabilities of the classifier for each class are then 

given by the softmax function applied to the hidden 

state: 

 

𝑃(𝑦(𝑡) = 𝑖|𝑙0
𝑡+𝑑) =

𝑒
∑ 𝑉𝑖,𝑗ℎ

𝑗
(𝐻)

(𝑡)
𝑑ℎ
𝑗=1

∑ 𝑒
∑ 𝑉𝑖,𝑗ℎ

𝑗
(𝐻)

(𝑡)
𝑑ℎ
𝑗=1𝑁

𝑖=1

    (6) 

 

Where 𝑉 correspond to the weights of the softmax 

top layer.  

The learning part then consists of tuning the 

parameters Θ =

{𝐸, ℎ(1)(0), 𝑈(1), 𝑈′(1), … , ℎ(𝐻)(0), 𝑈(𝐻), 𝑈′(𝐻), 𝑉}  

of the RNN with 𝑁  output classes. Precisely, the 

matrix shapes are 𝑈(1) ∈ ℳ𝑑ℎ×𝑑𝑒(2𝑑+1)(ℝ) 

𝑈′(1), … , 𝑈(𝐻), 𝑈′(𝐻) ∈ ℳ𝑑ℎ×𝑑ℎ
(ℝ)  and 𝑉 ∈

ℳ𝑁×𝑑ℎ
(ℝ). For training, we use stochastic gradient 

descent, with the parameters being updated after 

computing the gradient for each one of the sentences 

in our training set 𝒟 , towards minimizing the 

negative log-likelihood. Note that a sentence is 

considered as a tuple of words and a tuple of slots: 

 

ℒ(Θ) = −∑ ∑ log PΘ(𝑠𝑡|𝑙0
𝑡+𝑑)𝑇

𝑡=1(𝑆,𝑊)∈𝒟     (7) 

 

Note that the length 𝑇 of each sentence can vary 

among the training samples and the context word 

window size 𝑑 is a hyper-parameter. 

The Jordan RNN is similar to the Elman-type 

network except that the recurrent connections take 

their input from the output posterior probabilities: 

 

ℎ(𝑡) = 𝑓(𝑈𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 𝑈′Ρ(𝑦(𝑡 − 1)))    (8) 

 

where  𝑈′ ∈ ℳ𝑑ℎ×𝑁(ℝ)  and Ρ(𝑦(0)) ∈ ℝ𝑁  are 

additional parameters to tune. As pointed out in [15], 

three different options can be considered for the 

feedback connections: (a) Ρ(𝑦(𝑡 − 1)), (b) a one-hot 

vector with an active bit for argmax
𝑖

𝑃𝑖(𝑦(𝑡 − 1)) or 

even (c) the ground truth label for training. 

Empirically [15], none of these options significantly 

outperformed all others. 

In this work, we focused on the Elman-type, 

Jordan-type and hybrid versions of RNNs. The 

hybrid version corresponds to a combination of the 

recurrences from the Jordan and the Elman models: 

 

ℎ(𝑡) = 𝑓(𝑈𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 

𝑈′Ρ(𝑦(𝑡 − 1)) + 𝑈∗ℎ(𝑡 − 1)) 

 

D. Forward, Backward and Bidirectional 

variants 

In slot filling, useful information can be extracted 

from the future and we do not necessarily have to 

process the sequence online in a single forward pass. 

It is also possible to take into account future 

information with a single backward pass but still, 

this approach uses only partial information available. 

A more appealing model would consider both past 

and future information at the same time: it 

corresponds to the bi-directional Elman [18][19] or 

Jordan [15] RNN. 

We describe the bidirectional variant only for the 

first layer since it is straightforward to build upper 

layers as we did previously for the Elman RNN. 

First, we define the forward ℎ⃗ (𝑡) and the backward 

ℎ⃗⃖(𝑡) hidden layers: 

 

ℎ⃗ (𝑡) = 𝑓(𝑈⃗⃗ 𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 𝑈⃗⃗ ′ℎ⃗ (𝑡 − 1)) 

ℎ⃗⃖(𝑡) = 𝑓(𝑈⃗⃗⃐𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 𝑈⃗⃗⃐′ℎ⃗⃖(𝑡 + 1)) 

 

where 𝑈⃗⃗  corresponds to the weights for the forward 

pass and 𝑈⃗⃗⃐ for the backward pass. The superscript 

𝑈′corresponds to the recurrent weights.  

The bidirectional hidden layer ℎ⃡(𝑡) then takes as 

input the forward and backward hidden layers: 

 

ℎ⃡(𝑡) = 𝑓(𝐵𝐶𝑑(𝑙𝑡−𝑑
𝑡+𝑑) + 

𝐵′ℎ⃗ (𝑡 − 1) + 𝐵∗ℎ⃗⃖(𝑡 + 1)) 



where 𝐵  are the weights for the context window 

input, 𝐵′ projects the forward pass hidden layer of 

the previous time step (past), and 𝐵∗ the backward 

hidden layer of the next time step (future). 

V. SEQUENCE LEVEL OPTIMIZATION AND 

DECODING 

The previous architectures are optimized based on 

a tag-by-tag likelihood as opposed to a 

sequence-level objective function. In common with 

Maximum Entropy Markov Model (MEMM) [28] 

models, the RNNs produce a sequence of 

locally-normalized output distributions, one for each 

word position. Thus, it can suffer from the same 

label bias [6] problem. To ameliorate these problems, 

we propose two methods: Viterbi decoding with slot 

language models and recurrent CRF. 

A. Slot Language Models 

As just mentioned, one advantage of CRF models 

over RNN models is that it is performing global 

sequence optimization using tag level features. In 

order to approximate this behavior, and optimize the 

sentence level tag sequence, we explicitly applied 

the Viterbi [40] algorithm. To this end, a second 

order Markov model has been formed, using the slot 

tags, si ∈ S  as states, where the state transition 

probabilities, P{LM}(si|sj)  are obtained using a 

trigram tag language model (LM). The tag level 

posterior probabilities obtained from the RNN were 

used when computing the state observation 

likelihoods. 

𝑆̂ = argmaxS P(S|L)
=  argmaxS P{LM}(S)

α × P(L|S) 

~ argmaxS P{LM}(S)
α

× ∏𝑃{𝑅𝑒𝑐𝑁𝑁}(𝑠𝑡|𝑙𝑡)/𝑃(𝑠𝑡)

𝑡

  

As is often done in the speech community, when 

combining probabilistic models of different types, it 

is advantageous to weight the contributions of the 

language and observation models differently. We do 

so by introducing a tunable model combination 

weight, 𝛼 , whose value is optimized on held-out 

data. For computation, we used the SRILM toolkit 

(http://www.speech.sri.com/projects/srilm/). 

B.       Recurrent CRF 

The second scheme uses the objective function of a 

CRF, and trains RNN parameters according to this 

objective function. In this scheme, the whole set of 

model parameters, including transition probabilities 

and RNN parameters, are jointly trained, taking 

advantage of the sequence-level discrimination 

ability of the CRF and the feature learning ability of 

the RNN. Because the second scheme is a CRF with 

features generated from an RNN, we call it a 

recurrent conditional random field (R-CRF) [41,42].  

The R-CRF differs from previous works that use 

CRFs with feed-forward neural networks [43,44] 

and convolutional neural networks [45], in that the 

R-CRF uses RNNs for feature extraction – using 

RNNs is motivated by its strong performances on 

natural language processing tasks. The R-CRF also 

differs from works in sequence training of 

DNN/HMM hybrid systems [46-48] for speech 

recognition, which use DNNs and HMMs, in that 

R-CRF uses the CRF objective and RNNs.  

The R-CRF objective function is the same as Eq. 

(1) defined for the CRF, except that its features are 

from the RNN. That is, the features 

ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙0
𝑡+𝑑) in the CRF objective function (2) 

now consist of transition feature ℎ𝑚(𝑠𝑡−1, 𝑠𝑡)  and 

tag-specific feature ℎ𝑚(𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑)  from the RNN. 

Note that since features are extracted from an RNN, 

they are sensitive to inputs back to time t=0. Eq. (2) 

is re-written as follows 

𝐻(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑)

= ∑ 𝜆𝑚ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙0
𝑡+𝑑)

𝑀

𝑚=1

                         (9)

= ∑ 𝜆𝑝ℎ𝑝(𝑠𝑡−1, 𝑠𝑡)

𝑃

𝑝=1

+ ∑ 𝜆𝑞ℎ𝑞(𝑠𝑡, 𝑙0
𝑡+𝑑)

𝑄

𝑞=1

 

 

In a CRF, ℎ𝑚(𝑠𝑡−1, 𝑠𝑡, 𝑙𝑡−𝑑
𝑡+𝑑) is fixed and is usually a 

binary value of one or zero, so the only parameters to 

learn are the weights 𝜆𝑚.  In contrast, the R-CRF 

uses RNNs to output ℎ𝑚(𝑠𝑡, 𝑙0
𝑡+𝑑), which itself can 

be tuned by exploiting error back-propagation to 

obtain gradients. To avoid the label-bias problem [6] 

that motivated CRFs, the R-CRF uses un-normalized 

scores from the activations before the softmax layer 

as features ℎ𝑚(𝑠𝑡, 𝑙0
𝑡+𝑑). In the future, we would like 

to investigate using activations from other layers of 

RNNs.  



The R-CRF has additional transition features to 

estimate. The transition features are actually the 

transition probabilities between tags. Therefore the 

size of this feature set is 𝑂(𝑁2) with 𝑁 the number 

of slots. The number of RNN parameters is 𝑂(𝑁𝐻 +
𝐻2 + 𝐻𝑉). Usually the relation among vocabulary 

size 𝑉, hidden layer size 𝐻 and slot number 𝑁is 𝑉 ≫
𝐻 > 𝑁 .  Therefore, the number of additional 

transition features is small in comparison. 

Decoding from the R-CRF uses the Viterbi 

algorithm. The cost introduced from computing 

transition scores is 𝑂(𝑁𝑇) and 𝑇 is the length of a 

sentence. In comparison to the computational cost of 

𝑂(𝑁2𝑇)  in the RNN, the additional cost from 

transition scores is small.  

VI. EXPERIMENTAL RESULTS 

In this section we present our experimental results 

for the slot filling task using the proposed 

approaches. 

A. Datasets  

We used the ATIS corpus as used extensively by the 

SLU community, e.g. [1,7,29,38]. The original 

training data include 4978 utterances selected from 

Class A (context independent) training data in the 

ATIS-2 and ATIS-3 corpora. In this work, we 

randomly sampled 20% of the original training data 

as the held-out validation set, and used the left 80% 

data as the model training set. The test set contains 

893 utterances from the ATIS-3 Nov93 and Dec94 

datasets. This dataset has 128 unique tags, as created 

by [34] from the original annotations. In our first set 

of experiments on several training methods and 

different directional architectures, we only used 

lexical features in the experiments. Then, in order to 

compare with other results, we incorporated 

additional features in the RNN architecture. 

In our experiments, we preprocessed the data as in 

[24]. Note that authors in [13, 15, 27, 29, 38] used a 

different preprocessing technique, and hence their 

results are not directly comparable. However, the 

best numbers reported on ATIS by [27] are 95.3% 

F1-score on manual transcriptions with DBNs, using 

word and named entity features (in comparison to 

their CRF baseline of 94.4%). 

As additional sets of experiments, we report 

results on two other custom datasets focusing on 

movies [39] and entertainment. Each word has been 

manually assigned a slot using the IOB schema as 

described earlier.   

B. Baseline and Models 

On these datasets, Conditional Random Fields 

(CRF) are commonly used as a baseline [7]. The 

input of the CRF corresponds to a binary encoding of 

N-grams inside a context window. For all datasets, 

we carefully tuned the regularization parameters of 

the CRF and the size of the context window using 

5-fold cross-validation. Meanwhile, we also trained 

a feed-forward network (FFN) for slot filling, with 

the architecture shown in Fig 1 (a). The size of the 

context window for FFN is tuned using 5-fold 

cross-validation. 

C. RNN versus Baselines and Stochastic training 

versus Sentence mini-batch updates 

Different ways of training the models were tested. 

In our experiments, the stochastic version considered 

a single (word, label) couple at a time for each 

update while the sentence mini-batch processed the 

whole sentence before updating the parameters. Due 

to modern computing architectures, performing 

updates after each example considerably increases 

training time. A way to process many examples in a 

shorter amount of time and exploit inherent 

parallelism and cache mechanisms of modern 

computers relies on updating parameters after 

examining a whole mini-batch of sentences. 

First, we ran 200 experiments with random 

sampling [14] of the hyper-parameters. The 

sampling choices for each hyper-parameter were for 

the depth, 𝐻 ∈ {1,2} , the context size, 𝑑 ∈
{3, 5, … , 17} , the embedding dimension, 𝑑𝑒 ∈
{50, 100} and 3 different random seed values. The 

learning rate was sampled from a uniform 

distribution in the range [0.05, 0.1]. The embedding 

matrix and the weight matrices were initialized from 

the uniform in the range [-1,1]. We performed 

early-stopping over 100 epochs, keeping the 

parameters that gave the best performance on the 

held-out validation set measured after each training 

epoch (pass on the training set).  

The F1-measure on the test set of each method was 

computed after the hyper-parameter search. Results 

are reported in Table 1. All the RNN variants and the 

FFN model outperform the CRF baseline. And all 

the RNN variants outperform the FFN model, too.  



F1-score 

% 

Elman Jordan Hybrid 

RNN 94.98 94.29 95.06 

FFN  93.32 

CRF  92.94 
Table 1. Test set F1-score of the different models after 200 runs of 

random sampling of the hyper-parameters. All models are trained 

using the stochastic gradient approach.  

Then, given the best hyper-parameters found 

previously on the validation set, we report the 

average, minimum, maximum and variance of the 

test set accuracy over 50 additional runs by varying 

only the random seed. In our case, the random 

initialization seed impacted the way we initialized 

the parameters and how we shuffled the samples at 

each epoch. Note that for the Hybrid RNN and 

stochastic updates, the score obtained during 

hyper-parameters search corresponds to the max of 

the validation set score over different random seeds. 

The results are presented in Table 2. The observed 

variances from the mean are in the range of 0.3%, 

which is consistent with the 0.6% reported in [24] 

with the 95% significance level based on the 

binomial test. We also observe that stochastic (STO) 

performs better than sentence mini-batches (MB) on 

average. In a large-scale setting, it is always more 

beneficial to perform sentence mini-batches as it 

reduces the training complexity. On our small ATIS 

benchmark, it took about the same number of epochs 

for convergence for both training schemes STO and 

MB, but each epoch took longer with STO. 

 

F1-score % Elman Jordan Hybrid 

STO Min 93.23 92.91 94.19 

Max 95.04 94.31 95.06 

Avg 94.44 

±0.41 

93.81 

±0.32 

94.61 

±0.18 

MB Min 92.8 93.17 93.06 

Max 94.42 94.15 94.21 

Avg 93.58 

±0.30 

93.72 

±0.24 

93.66 

±0.30 
Table 2. Measurement of the impact of using different ways of 

training the models and random seed on the performance. 

D. Local Context Window and Bi-Directional 

Models 

The slot-filling task is an off-line task, i.e., we 

have access to the whole sentence at prediction time. 

It should be beneficial to take advantage of all future 

and past available information at any time step. One 

way to do it consists of using bidirectional models to 

encode the future and past information in the input. 

The bidirectional approach relies on the capacity of 

the network to summarize the past and future history 

through its hidden state. Here, we compare the 

bidirectional approach with the local context 

window where the future and past information is fed 

as input to the model. Therefore, rather than 

considering a single word here, the context window 

allows us to encode the future and past information 

in the input. 

We ran a set of experiments for different 

architectures with different context-window sizes 

and no local context window and compare the results 

to a CRF using either unigram or N-grams. Results 

are summarized in Table 3. Note that the CRF using 

no context window (e.g., using unigram features 

only) performs significantly worse than the CRF 

using a context window (e.g., using up to 9-gram 

features).  

The absence of a context window affects the 

performance of the Elman RNN (-1.83%), and it 

considerably damages the accuracy of the Jordan 

RNN (-29.00%). We believe this is because the 

output layer is much more constrained than the 

hidden layer, thus making less information available 

through recurrence. The softmax layer defines a 

probability and all its components sum to 1. The 

components are tied together, limiting their degree of 

freedom. In a classic hidden layer, none of the 

component is tied to the others, giving the Elman 

hidden layer a bit more power of expression than the 

Jordan softmax layer. A context window provides 

further improvements, while the bidirectional 

architecture does not benefit any of the models. 

 

F1-score Elman Jordan Hybrid CRF 

Single,    

w/o context 

93.15 65.23 93.32 69.68 

BiDir,      

w/o context 

93.46 90.31 93.16 

Single, 

context 

94.98 

(9) 

94.29 

(9) 

95.06 

(7) 

92.94 

(9) 

Bidir, 

context 

94.73 

(5) 

94.03 

(9) 

94.15 

(7) 
Table 3. F1-score of single and Bi-Directional models with or w/o 

context windows. We report the best context window size 

hyper-parameter as the number in the round brackets. 



E. Incorporating Additional Features 

Most of the time, additional information such as 

look-up tables or clustering of words into categories 

is available. At some point, in order to obtain the best 

performance, we want to integrate this information 

in the RNN architecture. At the model level, we 

concatenated the Named Entity (NE) information 

feature as a one-hot vector feeding both to the 

context window input and the softmax layer [49].  

 

F1-score Elman Jordan Hybrid CRF 

Word 94.98 94.29 95.06 92.94 

Word+NE 96.24 95.25 95.85 95.16 
Table 4. Performance with Named Entity features. 

For the ATIS dataset, we used the gazetteers of 

flight related entities, such as airline or airport names 

as named entities. In Table 4, we can observe that it 

yields significant performance gains for all methods, 

RNN and CRF included. 

F. ASR setting 

In order to show the robustness of the RNN 

approaches, we have also performed experiments 

using the automatic speech recognition (ASR) 

outputs of the test set. The input for SLU is the 

recognition hypothesis from a generic dictation ASR 

system and has a word error rate (WER) of 13.8%. 

While this is significantly higher than the best 

reported performances of about 5% WER [4], this 

provides a more challenging and realistic 

framework. Note that the model trained with manual 

transcriptions is kept the same. 

 

F1-score Elman Jordan Hybrid CRF 

Word 94.98 94.29 95.06 92.94 

ASR 85.05 85.02 84.76 81.15 
Table 5. Comparison between manually labeled word and ASR 

output. 

Table 5 presents these results. As seen, the 

performance drops significantly for all cases, though 

RNN models continue to outperform the CRF 

baseline. We also notice that under the ASR 

condition, all three types of RNN perform similar to 

each other. 

G. Entertainment dataset 

As an additional experiment, we ran our best 

models on a custom dataset from the entertainment 

domain. Table 6 shows these results. For this dataset, 

the CRF outperformed RNN approaches. There are 

two reasons for this: 

 The ATIS and Entertainment datasets are 

semantically very different. While the main task 

in ATIS is disambiguating between a departure 

and an arrival city/date, for the entertainment 

domain, the main challenge is detecting longer 

phrases such as movie names. 

 While RNNs are powerful, the tag classification 

is still local, and the overall sentence tag 

sequence is not optimized directly as with CRFs. 

However, as we shall cover in the next sections, the 

performance of the RNN approach can be improved 

using three techniques: Viterbi decoding, Dropout 

regularization, and fusion with the CRF framework. 

H. Slot Language Models and Decoding 

Using the Viterbi algorithm with the output 

probabilities of the RNN boosts the performance of 

the network in the Entertainment domain, while on 

ATIS, the improvement is much less significant. 

This shows the importance of modeling the slot 

dependencies explicitly and demonstrates the power 

of dynamic programing.  

F1-score Elman Jordan Hybrid 

ATIS Word 94.98 94.29 95.06 

ATIS Word  

+Viterbi 

94.99 

(+0.01) 

94.25    

(-0.04) 

94.77  

(-0.29) 

ATIS 

Word/CRF 

 

92.94 

ATIS ASR 85.05 85.02 84.76 

ATIS ASR  

+Viterbi 

86.16 

(+1.11) 

85.21 

(+0.19) 

85.36 

(+0.6) 

ATIS 

ASR/CRF 

 

81.15 

Entertainment 88.67 88.70 89.04 

Entertainment  

+Viterbi 

90.19 

(+1.42) 

90.62 

(+1.92) 

90.01 

(+0.97) 

Entertainment  

+Viterbi 

+Dropout 

- 91.14  

(+2.44) 

- 

Entertainment 

/CRF 

 

90.64 

Table 6. Comparison with Viterbi decoding with different 

methods on several datasets 



I. Dropout regularization 

While deep networks have more capacity to 

represent functions than CRFs, they might suffer 

from overfitting. Dropout [10] is a powerful way to 

regularize deep neural networks. It is implemented 

by randomly setting some of the hidden units to zero 

with probability p during training, then dividing the 

parameters by 1 / p during testing. In fact, this is an 

efficient and approximate way of training an 

exponential number of networks that share 

parameters and then averaging their answer, much 

like an ensemble. We have found it further improves 

the performance on the Entertainment dataset, and 

beats the CRF by 0.5% as seen in Table 6 (i.e., 

91.14% vs. 90.64%).  

J. R-CRF results 

We now compare the RNN and R-CRF models on 

the ATIS, Movies and Entertainment datasets. For 

this comparison, we have implemented the models 

with C code rather than Theano. On the ATIS data, 

the training features include word and named-entity 

information as described in [29], which aligns to the 

“Word+NE” line in table 4. Note that performances 

between RNNs in Theano and C implementations 

are slightly different on ATIS. The C 

implementation of RNNs obtained 96.29% F1 score 

and Theano obtained 96.24% F1 score. We used a 

context window of 3 for bag-of-word feature [24]. In 

this experiment, the RNN and R-CRF both are of the 

Elman type and use a 100-dimension hidden layer. 

On the Movies data, there are four types of features. 

The n-gram features are unigrams and bi-grams 

appeared in the training data. The regular expression 

features are those tokens, such as zip code and 

addresses, that can be defined in regular expressions. 

The dictionary features include domain-general 

knowledge sources such as US cities and 

domain-specific knowledge sources such as hotel 

names, restaurant names, etc. The 

context-free-grammar features are those tokens that 

are hard to be defined in a regular expression but 

have context free generation rules such as time and 

date. Both RNNs and CRFs are optimal for the 

respective systems on the ATIS and Movies domains. 

On the Entertainment dataset, both RNN and R-CRF 

used 400 hidden layer dimension and momentum of 

0.6. Features include a context window of 3 as a 

bag-of-words. The learning rate for RNNs is 0.1 and 

for R-CRFs it is 0.001.  

 

F1-score CRF RNN R-CRF 

ATIS 

Word+NE 

95.16 96.29 96.46 

Movies 75.50 78.20 82.21 

Entertainment 90.64 88.11 88.50 
Table 7. Comparison with R-CRF and RNN on ATIS, Movies, and 

Entertainment datasets. 

As shown in Table 7, the RNNs outperform CRFs 

on ATIS and Movies datasets. Using the R-CRF 

produces an improved F1 score on ATIS. The 

improvement is particularly significant on Movies 

data, because of the strong dependencies between 

labels. For instance, a movie name has many words 

and each of them has to have the same label of 

“movie_name”. Therefore, it is beneficial to 

incorporate dependencies between labels, and train 

at the sequence level. On the Entertainment dataset, 

the RNN and R-CRF did not perform as well as the 

CRF. However, results confirm that the R-CRF 

improves over a basic RNN.  

VII. CONCLUSIONS 

We have proposed the use of recurrent neural 

networks for the SLU slot filling task, and performed 

a careful comparison of the standard RNN 

architectures, as well as hybrid, bi-directional, and 

CRF extensions. Similar to the previous work on 

application of deep learning methods for intent 

determination and domain detection, we find that 

these models have competitive performances and 

have improved performances over the use of CRF 

models. The new models set a new state-of-the-art in 

this area. Investigation of deep learning techniques 

for more complex SLU tasks, for example ones that 

involve hierarchical semantic frames, is part of 

future work. 
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