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Abstract

Most machine learning researchers perform quantitative experiments to
estimate generalization error and compare algorithm performances. In
order to draw statistically convincing conclusions, it is important to esti-
mate the uncertainty of such estimates. This paper studies the estimation
of uncertainty around the K-fold cross-validation estimator. The main
theorem shows that there exists no universal unbiased estimator of the
variance of K-fold cross-validation. An analysis based on the eigende-
composition of the covariance matrix of errors helps to better understand
the nature of the problem and shows that naive estimators may grossly
underestimate variance, as con£rmed by numerical experiments.

1 Introduction

The standard measure of accuracy for trained models is the prediction error (PE), i.e. the
expected loss on future examples. Learning algorithms themselves are often compared on
their average performance, which estimates expected value of prediction error (EPE) over
training sets. If the amount of data is large enough, PE can be estimated by the mean
error over a hold-out test set. The hold-out technique does not account for the variance
with respect to the training set, and may thus be considered inappropriate for the purpose
of algorithm comparison [4]. Moreover, it makes an inef£cient use of data which forbids
its application to small sample sizes. In this situation, one resorts to computer intensive
resampling methods such as cross-validation or bootstrap to estimate PE or EPE. We
focus here on K-fold cross-validation. While it is known that cross-validation provides an
unbiased estimate of EPE, it is also known that its variance may be very large [2]. This
variance should be estimated to provide faithful con£dence intervals on PE or EPE, and
to test the signi£cance of observed differences between algorithms. This paper provides
theoretical arguments showing the dif£culty of this estimation.

The dif£culties of the variance estimation have already been addressed [4, 7, 8]. Some
distribution-free bounds on the deviations of cross-validation are available, but they are
speci£c to locally de£ned classi£ers, such as nearest neighbors [3]. This paper builds upon
the work of Nadeau and Bengio [8], which investigated in detail the theoretical and prac-
tical merits of several estimators of the variance of cross-validation. Our analysis departs
from this work in the sampling procedure de£ning the cross-validation estimate. While [8]
considers K independent training and test splits, we focus on the standard K-fold cross-



validation procedure, with no overlap between test sets: each example is used once and
only once as a test example.

2 General Framework

Formally, we have a training set D = {z1, . . . , zn}, with zi ∈ Z , assumed independently
sampled from an unknown distribution P . We also have a learning algorithm A : Z∗ → F
which maps a data set to a function. Here we consider symmetric algorithms, i.e. A is
insensitive to the ordering of examples in the training set D. The discrepancy between
the prediction and the observation z is measured by a loss functional L : F × Z → R.
For example one may take in regression L(f, (x, y)) = (f(x) − y)2, and in classi£cation
L(f, (x, y)) = 1f(x)6=y .

Let f = A(D) be the function returned by algorithm A on the training set D. In
application-based evaluation, the goal of learning is usually stated as the minimization
of the expected loss of f = A(D) on future test examples:

PE(D) = E[L(f, z)] , (1)

where the expectation is taken with respect to z ∼ P . To evaluate and compare learn-
ing algorithms [4] we care about the expected performance of learning algorithm A over
different training sets:

EPE(n) = E[L(A(D), z)] , (2)

where the expectation is taken with respect to D×z independently sampled from P n× P .

When P is unknown, PE and EPE have to be estimated, and it is crucial to assess the
uncertainty attached to this estimation. Although this point is often overlooked, estimating
the variance of the estimates P̂E and ÊPE requires caution, as illustrated here.

2.1 Hold-out estimates of performance

The mean error over a hold-out test set estimates PE, and the variance of P̂E is given by the
usual variance estimate for means of independent variables. However, this variance estima-
tor is not suited to ÊPE: the test errors are correlated when the training set is considered as
a random variable.

Figure 1 illustrates how crucial it is to take these correlations into account. The average
ratio (estimator of variance/empirical variance) is displayed for two variance estimators, in
an ideal situation where 10 independent training and test sets are available. The average of
θ̂1/θ, the naive variance estimator ignoring correlations, shows that this estimate is highly
down-biased, even for large sample sizes.
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Figure 1: Average ratio (estimator of variance/empirical variance) on 100 000 experiments:
θ̂1/θ (ignoring correlations, lower curve) and θ̂2/θ (taking into account correlations, upper
curve) vs. sample size n. The error bars represent ±2 standard errors on the average value.



Experiment 1 Ideal hold-out estimate of EPE.
We have K = 10 independent training sets D1, . . . , DK of n independent examples
zi = (xi, yi), where xi = (xi1, . . . , xid)

′ is a d-dimensional centered, unit covariance
Gaussian variable (d = 30), yi =

√
3/d

∑d
k=1 xik + εi with εi being independent, cen-

tered, unit variance Gaussian variables (the
√

3/d factor provides R2 ' 3/4). We also
have K independent test sets T1, . . . , TK of size n sampled from the same distribution.
The learning algorithm consists in £tting a line by ordinary least squares, and the
estimate of EPE is the average quadratic loss on test examples ÊPE = L̄ =
1
K

∑K
k=1

1
n

∑
zi∈Tk

Lki, where Lki = L(A(Dk), zi).

The £rst estimate of variance of ÊPE is θ̂1 = 1
Kn(Kn−1)

∑K
k=1

∑
i(Lki − L̄)2, which

is unbiased provided there is no correlation between test errors. The second estimate is
θ̂2 =

1
K(K−1)n2

∑K
k=1

∑
i,j(Lki − L̄)(Lkj − L̄), which estimates correlations.

Note that Figure 1 suggests that the naive estimator of variance θ̂1 asymptotically converges
to the true variance. This can be shown by taking advantage of the results in this paper, as
long as the learning algorithm converges (PE(D)

a.s.
→ limn→∞ EPE(n)), i.e. provided that

the only source of variability of ÊPE is due to the £nite test size.

2.2 K-fold cross-validation estimates of performance

In K-fold cross-validation [9], the data set D is £rst chunked into K disjoint subsets (or
blocks) of the same size m = n/K (to simplify the analysis below we assume that n is a
multiple of K). Let us write Tk for the k-th such block, and Dk the training set obtained
by removing the elements in Tk from D. The estimator is

CV =
1

K

K∑

k=1

1

m

∑

zi∈Tk

L(A(Dk), zi) . (3)

Under stability assumptions on A, CV estimates PE(D) at least as accurately as the
training error [6]. However, as CV is an average of unbiased estimates of PE(D1),
. . . ,PE(DK), a more general statement is that CV estimates unbiasedly EPE(n−m).

Note that the forthcoming analysis also applies to the version of cross-validation dedicated
to comparing algorithms, using matched pairs

∆CV =
1

K

K∑

k=1

1

m

∑

zi∈Tk

L(A1(Dk), zi)− L(A2(Dk), zi) ,

and to the delete-m jackknife estimate of PE(D) debiasing the training error (see e.g. [5]):

JK=
1

n

n∑

i=1

L(A(D), zi)−(K−1)

(
1

K(n−m)

K∑

k=1

∑

zi∈Dk

L(A(Dk), zi)−
1

n

n∑

i=1

L(A(D), zi)

)
.

In what follows, CV, ∆CV and JK will generically be denoted by µ̂:

µ̂ =
1

n

n∑

i=1

ei =
1

K

K∑

k=1

1

m

∑

i∈Tk

ei ,

where, slightly abusing notation, i ∈ Tk means zi ∈ Tk and

∀i ∈ Tk, ei =





L(A(Dk), zi) for µ̂ = CV ,
L(A1(Dk), zi)− L(A2(Dk), zi) for µ̂ = ∆CV ,
KL(A(D), zi)−

∑
`6=k L(A(D`), zi) for µ̂ = JK .



Note that µ̂ is the average of identically distributed (dependent) variables. Thus, it asymp-
totically converges to a normally distributed variable, which is completely characterized by
its expectation E[µ̂] and its variance Var[µ̂].

3 Structure of the Covariance Matrix

The variance of µ̂ is θ = 1
n2

∑
i,j Cov(ei, ej) . By using symmetry over permutations of

the examples in D, we show that the covariance matrix has a simple block structure.

Lemma 1 Using the notation introduced in section 2.2, 1) all ei are identically distributed;
2) all pairs (ei, ej) belonging to the same test block are jointly identically distributed; 3)
all pairs (ei, ej) belonging to different test blocks are jointly identically distributed;

Proof: derived immediately from the permutation-invariance of P (D) and the symmetry
of A. See [1] for details and the proofs not shown here for lack of space.

Corollary 1 The covariance matrix Σ of cross-validation errors e = (e1, . . . , en)
′ has

the simple block structure depicted in Figure 2: 1) all diagonal elements are identical
∀i, Cov(ei, ei) = Var[ei] = σ2; 2) all the off-diagonal entries of the K m ×m diagonal
blocks are identical ∀(i, j) ∈ T 2k : j 6= i, T (j) = T (i), Cov(ei, ej) = ω; 3) all the
remaining entries are identical ∀i ∈ Tk, ∀j ∈ T` : ` 6= k, Cov(ei, ej) = γ.

n︷ ︸︸ ︷

︸ ︷︷ ︸
m

Figure 2: Structure of the covariance matrix.

Corollary 2 The variance of the cross-validation estimator is a linear combination of three
moments:

θ =
1

n2

∑

i,j

Cov(ei, ej) =
1

n
σ2 +

m− 1

n
ω +

n−m

n
γ (4)

Hence, the problem of estimating θ does not involve estimating n(n + 1)/2 covariances,
but it cannot be reduced to that of estimating a single variance parameter. Three compo-
nents intervene, which may be interpreted as follows when µ̂ is the K-fold cross-validation
estimate of EPE:

1. the variance σ2 is the average (taken over training sets) variance of errors for
“true” test examples (i.e. sampled independently from the training sets) when
algorithm A is fed with training sets of size m(K − 1);

2. the within-block covariance ω would also apply to these “true” test examples; it
arises from the dependence of test errors stemming from the common training set.

3. the between-blocks covariance γ is due to the dependence of training sets (which
share n(K − 2)/K examples) and the fact that test block Tk appears in all the
training sets D` for ` 6= k.



4 No Unbiased Estimator of Var[µ̂] Exists

Consider a generic estimator θ̂ that depends on the sequence of cross-validation errors
e = (e1, e2, . . . , en)

′. Assuming θ̂ is analytic in e, consider its Taylor expansion:

θ̂ = α0 +
∑

i

α1(i)ei +
∑

i,j

α2(i, j)eiej +
∑

i,j,k

α3(i, j, k)eiejek + . . . (5)

We £rst show that for unbiased variance estimates (i.e. E[ θ̂] = Var[µ̂]), all the αi coef£-
cients must vanish except for the second order coef£cients α2,i,j .

Lemma 2 There is no universal unbiased estimator of Var[µ̂] that involves the ei in a
non-quadratic way.

Proof: Take the expected value of θ̂ expressed as in (5), and equate it with Var[µ̂] (4).

Since estimators that include moments other than the second moments in their expectation
are biased, we now focus on estimators which are quadratic forms of the errors, i.e.

θ̂ = e′We =
∑

i,j

Wijeiej . (6)

Lemma 3 The expectation of quadratic estimators θ̂ de£ned as in (6) is a linear combina-
tion of only three terms

E[θ̂] = a(σ2 + µ2) + b(ω + µ2) + c(γ + µ2) , (7)

where (a, b, c) are de£ned as follows:



a
∆
=

∑n
i=1Wii ,

b
∆
=

∑K
k=1

∑
i∈Tk

∑
j∈Tk:j 6=i

Wij ,

c
∆
=

∑K
k=1

∑
`6=k

∑
i∈Tk

∑
j∈T`

Wij .

A “trivial” representer of estimators with this expected value is

θ̂ = as1 + bs2 + cs3 , (8)

where (s1, s2, s3) are the only quadratic statistics of e that are invariants to the within
blocks and between blocks permutations described in Lemma 1:




s1
∆
= 1

n

∑n
i=1 e

2
i ,

s2
∆
= 1

n(m−1)

∑K
k=1

∑
i∈Tk

∑
j∈Tk:j 6=i

eiej ,

s3
∆
= 1

n(n−m)

∑K
k=1

∑
`6=k

∑
i∈Tk

∑
j∈T`

eiej .

(9)

Proof: in (6), group the terms that have the same expected values (from Corollary 1).

Theorem 1 There exists no universally unbiased estimator of Var[µ̂].

Proof: thanks to Lemma 2 and 3, it is enough to show that E[θ̂] = Var[µ̂] has no solution
for quadratic estimators:

E[θ̂] = Var[µ̂]⇔ a(σ2 + µ2) + b(ω + µ2) + c(γ + µ2) =
1

n
σ2 +

m− 1

n
ω +

n−m

n
γ .

Finding (a, b, c) satisfying this equality for all admissible values of (µ, σ2, ω, γ) is impos-
sible since it is equivalent to solving the following overdetermined system:




a = 1
n
,

b = m−1
n

,
c = n−m

n
,

a+ b+ c = 0

(10)

Q.E.D.



5 Eigenanalysis of the covariance matrix

One way to gain insight on the origin of the negative statement of Theorem 1 is via the
eigenanalysis ofΣ, the covariance of e. This decomposition can be performed analytically
thanks to the very particular block structure displayed in Figure 2.

Lemma 4 Let vk be the binary vector indicating the membership of each example to test
block k. The eigenvalues of Σ are as follows:

• λ1 = σ2 − ω with multiplicity n−K and eigenspace orthogonal to {vk}Kk=1;
• λ2 = σ2 + (m − 1)ω −mγ with multiplicity K − 1 and eigenspace de£ned in

the orthogonal of 1 by the basis {vk}Kk=1;
• λ3 = σ2 + (m− 1)ω + (n−m)γ with eigenvector 1.

Lemma 4 states that the vector e can be decomposed into three uncorrelated parts: n−K
projections to the subspace orthogonal to {vk}Kk=1, K − 1 projections to the subspace
spanned by {vk}Kk=1 in the orthogonal of 1, and one projection on 1.

A single vector example with n independent elements can be seen as n independent ex-
amples. Similarly, the uncorrelated projections of e can be equivalently represented by
respectively n−K, K − 1 and one uncorrelated one-dimensional examples.

In particular, for the projection on 1, with a single example, the sample variance is null,
resulting in the absence of unbiased variance estimator of λ3. The projection of e on
the eigenvector 1

n
1 is precisely µ̂. Hence there is no unbiased estimate of V ar[µ̂] = λ3

n
when we have only one realization of the vector e. For the same reason, even with simple
parametric assumptions on e (such as e Gaussian), the maximum likelihood estimate of θ
is not de£ned. Only λ1 and λ2 can be estimated unbiasedly. Note that this problem cannot
be addressed by performing multiple K-fold splits of the data set. Such a procedure would
not provide independent realizations of e.

6 Possible values for ω and γ

Theorem 1 states that no estimator is unbiased, and in its demonstration, it is shown that
the bias of any quadratic estimator is a linear combination of µ2, σ2, ω and γ. Regarding
estimation, it is thus interesting to see what constraints restrict their possible range.

Lemma 5 For µ̂ = CV and µ̂ = ∆CV, the following inequalities hold:{
0 ≤ ω ≤ σ2

− 1
n−m

(σ2 + (m− 1)ω) ≤ γ ≤ 1
m
(σ2 + (m− 1)ω)

⇒

{
0 ≤ ω ≤ σ2

− m
n−m

σ2 ≤ γ ≤ σ2 .

The admissible (ω, γ) region is very large, and there is no constraint linking µ to σ2. Hence,
we cannot propose a variance estimate with universally small bias.

7 Experiments

The bias of any quadratic estimator is a linear combination of µ2, σ2, ω and γ. The ad-
missible values provided earlier suggest that ω and γ cannot be proved to be negligible
compared to σ2. This section illustrates that in practice, the contribution to the variance of
µ̂ due to ω and γ (see Equation (4)) can be of same order as the one due σ2. This con£rms
that the estimators of θ should indeed take into account the correlations of ei.

Experiment 2 True variance of K-fold cross-validation.
We repeat the experimental setup of Experiment 1, except that only one sample of size n is
available. Since cross-validation is known to be sensitive to the instability of algorithms,



in addition to this standard setup, we also consider another one with outliers:
The input xi = (xi1, . . . , xid)

′ is still 30-dimensional, but it is now a mixture of two cen-
tered Gaussian: let ti be a binary variable, with P (ti = 1) = p = 0.95; ti = 1 ⇒ xi ∼

N (0, I), ti = 0 ⇒ xi ∼ N (0, 100I); yi =
√

3/(d(p+ 100(1− p)))
∑d

k=1 xik + εi;
ti = 1⇒ εi ∼ N (0, 1/(p+ 100(1− p))), ti = 0⇒ εi ∼ N (0, 100/(p+ 100(1− p))).

We now look at the variance of K-fold cross-validation (K = 10), and decompose in the
three orthogonal components σ2, ω and γ. The results are shown in Figure 3.
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Figure 3: Contributions of (σ2, ω, γ) to total variance V ar[CV ] vs. n−m.

Without outliers, the contribution of γ is very important for small sample sizes. For large
sample sizes, the overall variance is considerably reduced and is mainly caused by σ2

because the learning algorithm returns very similar answers for all training sets. When
there are outliers, the contribution of γ is of same order as the one of σ2 even when the
ratio of examples to free parameters is large (here up to 20). Thus, in dif£cult situations,
where A(D) varies according to the realization of D, neglecting the effect of ω and γ can
be expected to introduce a bias of the order of the true variance.

It is also interesting to see how these quantities are affected by the number of folds K. The
decomposition of θ in σ2, ω and γ (4) does not imply that K should be set either to n or
to 2 (according to the sign of ω−γ) in order to minimize the variance of µ̂. Modifying
K affects σ2, ω and γ through the size and overlaps of the training sets D1, . . . , DK , as
illustrated in Figure 4. For a £xed sample size, the variance of µ̂ and the contribution of σ 2,
ω and γ vary smoothly with K (of course, the mean of µ̂ is also affected in the process).
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Figure 4: Contributions of (σ2, ω, γ) to total variance V ar[CV ] vs. K for n = 120.

8 Discussion

The analysis presented in this paper for K-fold cross-validation can be instantiated to sev-
eral interesting cases. First, when having K independent training and test sets (K = 1



is the realistic case), the structure of hold-out errors resemble the one of cross-validation
errors, with γ = 0. Knowing that allows to build the unbiased estimate θ̂2 given in 2.1:
knowing that γ = 0 removes the third equation of system (10) in the proof of Theorem 1.

Two-fold cross-validation has been advocated to perform hypothesis testing [4]. It is a
special case of K-fold cross-validation where the training blocks are mutually independent
since they do not overlap. However, this independence does not modify the structure of e
in the sense that γ is not null. The between-block correlation stems from the fact that the
training block D1 is the test block T2 and vice-versa.

Finally, Leave-one-out cross validation is another particular case, with K = n. The
structure of the covariance matrix is simpli£ed, without diagonal blocks. The estimation
dif£culties however remain: even in this particular case, there is no unbiased estimate of
variance. From the de£nition of b in Lemma 3, we have b = 0, and with m = 1 the linear
system (10) still admits no solution.

To summarize, it is known that K-fold cross-validation may suffer from high variability,
which can be responsible for bad choices in model selection and erratic behavior in the
estimated expected prediction error [2, 4, 8]. This paper demonstrates that estimating the
variance of K-fold cross-validation is dif£cult. Not only there is no unbiased estimate of
this variance, but we have no theoretical result showing that this bias should be negligi-
ble in the non-asymptotical regime. The eigenanalysis of the covariance matrix of errors
traces the problem back to the dependencies between test-block errors, which induce the
absence of redundant pieces of information regarding the average test error. i.e. the K-fold
cross-validation estimate. It is clear that this absence of redundancy is bound to provide
dif£culties in the estimation of variance.

Our experiments show that the bias incurred by ignoring test errors dependencies can be
of the order of the variance itself, even for large sample sizes. Thus, the assessment of the
signi£cance of observed differences in cross-validation scores should be treated with much
caution. The next step of this study consists in building and comparing variance estimators
dedicated to the very speci£c structure of the test-block error dependencies.
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