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Abstract

We use different word representations as word features for a named-entity recog-
nition (NER) system with a linear model. This work is part of a larger empirical
survey, evaluating different word representations on different NLP tasks. We eval-
uate Brown clusters, Collobert and Weston (2008) embeddings, and HLBL (Mnih
& Hinton, 2009) embeddings of words. All three representations improve accu-
racy on NER, with the Brown clusters providing a larger improvement than the
two embeddings, and the HLBL embeddings more than the Collobert and Weston
(2008) embeddings. We also discuss some of the practical issues in using em-
beddings as features. Brown clusters are simpler than embeddings because they
require less hyperparameter tuning.

1 Introduction

Lexicalized NLP models require word features to be provided in some input representation. Con-
ventionally, we take the word and convert it to a symbolic ID, which we then transform to a feature
vector using a one-hot representation: The feature vector has the same length as the size of the
vocabulary, and only one dimension is on. However, the one-hot representation of a word suffers
from data sparsity: Namely, for words that are rare in the labeled training data, their corresponding
model parameters will be poorly estimated. Moreover, at test time, the model cannot handle out-
of-vocabulary words (OOV, words that do not appear in the labeled training data). Unlike one-hot
representations of words, distributed representations have the potential of generalizing naturally to
sequences semantically similar to those seen during training (Bengio et al., 2001; Bengio, 2008),
These limitations of one-hot word representations have prompted researchers to investigate unsu-
pervised methods for inducing word representations over large unlabeled corpora.

One common approach to inducing unsupervised word representation is to use clustering, perhaps
hierarchical, which were used by a variety of researchers (Miller et al., 2004; Liang, 2005; Koo et al.,
2008; Ratinov & Roth, 2009; Huang & Yates, 2009). This leads to a one-hot representation over a
smaller vocabulary size, which have the disadvantage of losing much information about the original
word. Neural language models (Bengio et al., 2001; Schwenk & Gauvain, 2002; Mnih & Hinton,
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2007; Collobert & Weston, 2008), on the other hand, induce dense real-valued low-dimensional
word embeddings using unsupervised approaches. (See Bengio (2008) for a more complete list of
references on neural language models.)

Unsupervised word representations have been used in previous NLP work, and have demonstrated
improvements in generalization accuracy on a variety of tasks. But different word representations
have never been systematically compared in a controlled way. In this work, we compare different
techniques for inducing word representations, evaluating them on the task of named entity recogni-
tion (NER)—identifying people, organizations, locations and other named entities in text. In partic-
ular, we focus on the applicability of distributed word representations as inputs to linear classifiers.

This work is part of a larger empirical survey, evaluating different word representations on different
NLP tasks using near state-of-the-art systems. Our goal is to distribute word features for off-the-shelf
use in all NLP tasks.

2 Clustering-based word representations

One type of word representation is to induce a clustering over words.

2.1 Hard clustering

The Brown algorithm is a hierarchical clustering algorithm which clusters words to maximize the
mutual information of bigrams (Brown et al., 1992). So it is a class-based bigram language model.
It runs in time O(V · K2), where V is the size of the vocabulary and K is the number of clusters.

The hierarchical nature of the clustering means that we can choose the word class at several levels
in the hierarchy, which can compensate for poor clusters of a small number of words. One downside
of this approach is that it is based solely on bigram statistics, and does not consider word usage in a
wider context.

Brown clusters have been used successfully in a variety of NLP applications: NER (Miller et al.,
2004; Liang, 2005; Ratinov & Roth, 2009), PCFG parsing (Candito & Crabbé, 2009), dependency
parsing (Koo et al., 2008), and semantic dependency parsing (Zhao et al., 2009).

Lin and Wu (2009) present a non-hierarchical clustering algorithm for phrases, which uses MapRe-
duce. They achieve state-of-the-art accuracy on NER using their phrase clusters. Martin et al.
(1998) presents algorithms for inducing hierarchical clusterings based upon word bigram and tri-
gram statistics. Ushioda (1996) presents an extension to the Brown clustering algorithm, and learn
hierarchical clusterings of word as well as phrases, which they apply to POS tagging.

2.2 Soft clustering

HMMs can be used to induce a soft clustering, specifically a multinomial distribution over possible
clusters (hidden states). Unlike all previous approaches, which assign a specific word representation
to each word type, HMM word representations are assigned to word tokens. The benefit of HMM
representations is that they can model polysemy and other context-specific characteristics of each
word token. On the downside, it is more difficult to distribute and use the HMM representations than
representations which are type-specific. Another disadvantage of token-specific representations is
that the corpus used to induce the HMM must have identical preprocessing as the data used during
the supervised task.

Huang and Yates (2009) induce a fully-connected HMM, which emits a multinomial distribution
over possible vocabulary words. The representation for a particular word token is the probability
distribution over the states. Goldberg et al. (2009) use an HMM to assign POS tags to words,
which in turns improves the accuracy of the PCFG-based Hebrew parser. Unlike (Huang & Yates,
2009), they use the emission probabilities, not the state probabilities, as the word representation.
Li and McCallum (2005) use an HMM-LDA model to improve POS tagging and Chinese Word
Segmentation.

At publication time, we were not able to include any HMM word representations in our experiments.
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3 Distributed representations

Another approach to word representation is to learn a distributed representation. A distributed rep-
resentation is dense, low-dimensional, and real-valued. Distributed word representations are called
word embeddings. Each dimension of the embedding represents a latent feature of the word, hope-
fully capturing useful syntactic and semantic properties. A distributed representation is compact, in
the sense that it can represent an exponential number of clusters in the number of dimensions.

Word embeddings are typically induced using neural language models, which use neural networks
as the underlying predictive model (Bengio, 2008). By comparison, clustering-based word repre-
sentations are usually induced under n-gram language models. Historically, training and testing of
neural language models has been slow, scaling as the size of the vocabulary for each model compu-
tation (Bengio et al., 2001; Bengio et al., 2003). However, many approaches have been proposed in
recent years to eliminate that linear dependency on vocabulary size (Morin & Bengio, 2005; Bengio
& Sénécal, 2008; Collobert & Weston, 2008; Mnih & Hinton, 2009) and allow scaling to very large
training corpora.

3.1 Collobert and Weston (2008) embeddings

Collobert and Weston (2008) presented a neural language model that was fast to train, because the
gradient of the loss was computed stochastically over a small sample of possible outputs, in a spirit
similar to Bengio and Sénécal (2003). This neural model of Collobert and Weston (2008) was refined
and presented in greater depth in Bengio et al. (2009).

The model is discriminative and non-probabilistic. Given an n-gram, the model concatenates the
learned embeddings of the n words, and predicts a score for that n-gram by passing the concatenation
through a single hidden layer net. The training criterion is that n-grams that are present in the
training corpus must have a score at least some margin higher than corrupted n-grams. In Collobert
and Weston (2008), the middle word in the n-gram is corrupted. In Bengio et al. (2009), the last
word in the n-gram is corrupted.

We implemented the approach of Collobert and Weston (2008), with the following differences:
• We did not achieve as low log-ranks on the English Wikipedia as the authors reported in Bengio
et al. (2009), despite initially attempting to have identical experimental conditions.
•We corrupt the last word of the n-gram during training.
• We had a separate learning rate for the embeddings and for the rest of the model weights. We
found that the embeddings should have a learning rate generally 1000–32000 times higher than the
remaining model weights. Otherwise, the unsupervised training criterion drops slowly.
• Although their sampling technique makes training fast, testing is still expensive when the size of
the vocabulary is large. Instead of cross-validating using the log-rank over the validation data as
they do, we instead used the moving average of the training loss on training examples before the
weight update.

3.2 HLBL embeddings

The log-bilinear model (Mnih & Hinton, 2007) is a probabilistic and linear neural model. Given an
n-gram, the model concatenates the embeddings of the n − 1 first words, and learns a linear model
to predict the embedding of the last word. The similarity between the predicted embedding and the
current actual embedding is transformed into a probability by exponentiating and then normalizing.
Mnih and Hinton (2009) speed up model evaluation during training and testing by using a hierarchy
to exponentially filter down the number of computations that are performed. This hierarchical eval-
uation technique was first proposed by Morin and Bengio (2005). The model, combined with this
optimization, is called the hierarchical log-bilinear (HLBL) model.

4 Approach to named entity recognition

NER is typically treated as a sequence prediction problem. Following Ratinov and Roth (2009), we
use the regularized averaged perceptron model. Ratinov and Roth (2009) showed that the BILOU
encoding outperforms BIO, and the greedy inference performs competitively to Viterbi while being
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significantly faster. Accordingly, we used greedy inference and BILOU text chunk representation.
We used the publicly available implementation from Ratinov and Roth (2009), but we did not use
gazetteers or non-local features.

After each epoch over the training set, we measured the accuracy of the model on the development
set. Training was stopped after the accuracy on the development set did not improve for 10 epochs,
generally about 50–80 epochs total. The epoch that performed best on the development set was
chosen as the final model.

We use the following baseline set of features from Zhang and Johnson (2003):
• Previous two predictions yi−1 and yi−2
• Current word xi
xi word type information: all-capitalized, is-capitalized, all-digits, alphanumeric, etc.
• Prefixes and suffixes of xi, if the word contains hyphens, then the tokens between the hyphens
• Tokens in the window c = (xi−2, xi−1, xi, xi+1, xi+2)
• Capitalization pattern in the window c
• Conjunction of c and yi−1.

When using the lexical features, we normalize dates and numbers. For example, 1980 becomes
*DDDD* and 212-325-4751 becomes *DDD*-*DDD*-*DDDD*. This allows a degree of abstraction
to years, phone numbers, etc. This delexicalization is performed separately from using the word
representation. That is, if we have induced an embedding for 12/3/2008 , we will use the embedding
of 12/3/2008 , and *DD*/*D*/*DDDD* in the baseline features listed above.

5 Data

5.1 Unlabeled Data

Unlabeled data is used for inducing the word representations. We used the RCV1 corpus, which
contains one year of Reuters English newswire, from August 1996 to August 1997, about 63 millions
words in 3.3 million sentences. We left case intact in the corpus. By comparison, Collobert and
Weston (2008) lowercases words and delexicalizes numbers.

Liang, (2005, p. 51) proposes a preprocessing technique, which was later used by Koo et al. (2008):
Remove all sentences that are less than 90% lowercase a–z. We assume that whitespace is not
counted, although this is not specified in Liang’s thesis. We call this preprocessing step cleaning,
but we leave the RCV1 corpus unclean except where noted. After cleaning, there are 37 million
words (58% of the original) in 1.3 million sentences (41% of the original).

The RCV1 corpus has 651K word types. The cleaned RCV1 corpus has 269K word types. This is
the vocabulary size, i.e. how many word representations were induced.

There were 405 word tokens (124 word types) in the CoNLL03 labeled data that do not appear in
the RCV1 vocabulary.1 There were 3082 word tokens (1507 word types) in the CoNLL03 labeled
data that do not appear in the cleaned RCV1 vocabulary.

5.2 Labeled Data

The standard evaluation benchmark for NER is the CoNLL03 shared task dataset drawn from the
Reuters newswire. The training set contains 204K words (14K sentences, 946 documents), the test
set contains 46K words (3.5K sentences, 231 documents), and the development set contains 51K
words (3.3K sentences, 216 documents). Note that cleaning is applied only to the unlabeled data,
not to the labeled data (training nor dev not test).

RCV1 is a superset of the CoNLL03 corpus. For this reason, results that use RCV1 embeddings are
a form of transductive learning.

1Article titles are present in the CoNLL03 data but were stripped from RCV1 during preprocessing, so a
few uppercase versions of words were in the CoNLL03 data but had no representation.
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Representation #feat Factor
baseline 76 1.0

Brown clusters 130 1.7
C&W embeddings 749 9.9

Table 1: Mean number of features per NER example. Column 3 is the multiplicative factor over the baseline.
C&W is Collobert and Weston (2008). The baseline does not use any word representations. HLBL embeddings
are twice the size of C&W embeddings.

6 Experiments and Results

6.1 Details of inducing word representations

The Brown clusters took roughly 3 days to induce. We induced 1000 clusters, as did prior work (Koo
et al., 2008; Ratinov & Roth, 2009). Because Brown clusters are hierarchical, we can use cluster
supersets as features. We used clusters at path depth 4, 6, 10, and 20 (Ratinov & Roth, 2009).

The Collobert and Weston (2008) embeddings were induced over the course of a few weeks. One of
the difficulties in inducing these embeddings is that there is no stopping criterion defined, and that the
quality of the embeddings can keep improving as training continues. Collobert (p.c.) simply leaves
one computer training his embeddings indefinitely. We induced embeddings with 50 dimensions
over 5-gram windows. We found that learning rate 3.2e-6 for the embeddings and 1e-10 for the
neural network reduced the training loss most quickly on the unclean RCV1 corpus.

The HLBL embeddings took 6 days to induce. Unlike our Collobert and Weston (2008) embeddings,
we did not extensively tune the learning rates for HLBL. We used a learning rate of 1e-3 for both
model parameters and embedding parameters. We induced embeddings with 100 dimensions over
5-gram windows. Embeddings were induced over one pass approach using a random tree, not two
passes with an updated tree and embeddings re-estimation.

6.2 Training time

Table 1 compares the number of active features per NER example for the different word representa-
tions. All word representations took roughly 50–80 training epochs to converge, and training time
for an epoch is proportional to the number of active features. Hence, training with Collobert and
Weston (2008) embeddings took an order of magnitude more time than training the baseline. (The
baseline trained on the order of a few hours.)

6.3 Normalization of Word Embeddings

Like many NLP systems, the baseline system contains only binary features. The word embeddings,
however, are real numbers that are not necessarily in a bounded range. If the range of the word
embeddings is too large, they will exert more influence than the binary features.

Assume that the embeddings are represented by a matrix E, where row i, Ei, is the representation of
word i. We experimented with two strategies for normalizing the embeddings:
independent We normalize each embedding independently: Ei ← Ei/(a ·max(|Ei|))
overall We normalize each embedding under the same factor: Ei ← Ei/(a ·max(|E|))
a is a normalization constant. Infrequent words tend to have a lower norms, because they have been
updated less frequently during training. Therefore, the independent normalization will scale rare
words to be as important as the more common words, while overall normalization will have the
model give more importance to the embeddings of more frequent words.

In preliminary experiments, we tried both normalization strategies with a variety of constants a. We
induced embeddings on the English Wikipedia (1.5B words) using the approach of Collobert and
Weston (2008). We converted the corpus to lowercase, and induced embeddings on the most frequent
20K words. The values of these embeddings were within the range [−15,+12] with mean 0.01 and
stddev 1.15. (In all other experiments in this paper, we used the RCV1 corpus, case-intact except
where noted, and did not delexicalize any words.) We also used the HLBL embeddings induced on
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Figure 1: Effect of different normalization strategies and parameters on NER dev F1. HLBL embeddings were
induced on (unclean) RCV1. Collobert and Weston (2008) embeddings were induced on the English Wikipedia
with a 20K vocabulary, for this experiment only. (All other experiments used embeddings induced over RCV1.)

Representation Clean Dev F1 Test F1
Brown clusters X 92.47 88.39
Brown clusters 91.65 88.10

HLBL embeddings 92.32 87.66
C&W embeddings X 91.77 87.13
C&W embeddings 91.14 86.27

none (baseline) n/a 89.87 84.07

Table 2: NER F1 on the dev set and test set, using different representation trained on RCV1. Some word
representations were induced over the cleaned RCV1, as indicated by the second column. C&W is Collobert
and Weston (2008). As of publication time, we were not able to train HLBL on the cleaned RCV1.

RCV1 as described in Section 5.1, which were within the range [−1.21,+0.92] with mean 0.00 and
stddev 0.05.

Figure 1 shows the effect of normalization technique on the NER system. This table indicates that the
accuracy of the NER system is sensitive to the choice of this value, and should be optimized. Overall
normalization with constant a = 1.0 had the best dev set performance with Collobert and Weston
(2008) embeddings, and this is what we used for inducing Collobert and Weston (2008) embeddings
for the rest of the experiments.2 For HLBL embeddings, we used normalization constant a = 0.3.
Neither of these normalization constants corresponds to transforming the embeddings to have unit
variance, so we cannot prescribe any analytical technique for choosing the normalization constant.

6.4 Final results

Table 2 shows the final NER F1 results on the test set, using different representation trained on
RCV1.

Brown clusters provide a larger accuracy increase over the baseline than both styles of embeddings.
HLBL embeddings outperform Collobert and Weston (2008) embeddings, despite taking an order
of magnitude less time to induce. HLBL embeddings are induced under a linear model, whereas
Collobert and Weston (2008) embeddings are induced under a non-linear classifier. We hypothesize
that, for this reason, HLBL embeddings are more suitable as features when the classifier for the
supervised task is linear, like the perceptron we use in NER. We do not know why the embeddings
experience a steeper drop from dev F1 to test F1 than the Brown clusters. It is not clear what the
results would be if we included additional features used in NER, such as POS tags, shallow parsing
information, and gazetteers.

The clean corpus gave better representations, both with Collobert and Weston (2008) embeddings
and Brown clusters. This is the case even though the cleaning process was very aggressive, and

2It is possible that a different normalization constant is needed when we change the unlabeled corpus to
RCV1.
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discarded more than half of the sentences. According to the evidence and arguments presented in
Bengio et al. (2009), the non-convex optimization process for Collobert and Weston (2008) em-
beddings may be adversely affected by noise and the statistical sparsity issues regarding rare words,
especially at the beginning of training. For this reason, we hypothesize that learning representations
over the most frequent words first and gradually increasing the vocabulary (a curriculum training
strategy), would provide better results than cleaning (Bengio et al., 2009).

When there is not much contextual evidence for the current label decision, the model can “back-off”
to its estimate Pr(label|token). We hypothesize that this probability is more difficult to estimate under
a linear model (Perceptron) when the representation for each token is low-dimensional and dense
(embeddings). High-dimensional and sparse representations appear preferable when many of the
decisions we make rely upon words that are the least common (named entities) in the vocabulary. It
might be the case that distributed representations are more favorable in situations like parsing, where
syntactic decisions are usually based upon common words (function words like “of”, “at”, etc.) and
medium rareness words (nouns, verbs) etc. It might also be the case that Brown clustering is not a
good method for inducing word representations for function words. However, error analysis does
indicate that Brown clustering is better than distributed representations for modeling fine-grained
semantics using a linear model.

7 Conclusions

Word embeddings seem more promising than Brown clusters, because Brown clusters only model bi-
gram statistics whereas word embeddings model relationships over an entire n-gram window. How-
ever, in our experiments Brown clusters outperform both styles of word embeddings.

The distributed representation of embeddings is compact, in the sense that it can represent an expo-
nential number of clusters in the number of dimensions. Perhaps this compactness is not as good
for features of a linear supervised model, and a high-dimensional sparse representation is better? It
might also be the case that if our supervised model used a non-linear classifier (SVM, neural net-
work, etc.), that the embeddings’ distributed representations are more appropriate than class-based
representations.

We were surprised to find HLBL embeddings outperform Collobert and Weston (2008) embeddings,
despite taking less time to induce.3 HLBL embeddings are induced under a linear model, whereas
Collobert and Weston (2008) embeddings are induced under a non-linear model. We hypothesize
that, for this reason, HLBL embeddings are more suitable as features when the classifier for the
supervised task is linear, like the perceptron we use in NER. We did not experiment with different
learning rates for inducing the HLBL embeddings. We are curious if HLBL embeddings would be
competitive with Brown clusters, if we were to tune these learning rates.

There are other difficulties in working with word embeddings:

• There is no clearly defined stopping criterion. One can train the embeddings indefinitely, and
we have trained the Collobert and Weston (2008) embeddings for weeks. Brown clustering, by
comparison, stops when each word has been inserted into a cluster.

• Embeddings, because they are dense representations, increase the number of active features in the
model by far more than Brown clusters. This, in turn, increases supervised training time.

• Brown clusters have no hyperparameters that we needed to tune. (We chose 1000 clusters, the
standard choice in the literature.)

• When inducing Collobert and Weston (2008) embeddings, we must choose both a learning rate
for the embeddings and a learning rate for the rest of the parameters. This might also be helpful
when inducing HLBL embeddings.

• Embeddings are sensitive to choice of normalization, which introduces another hyperparameter.

The clean corpus gave better representations, both with Collobert and Weston (2008) embeddings
and Brown clusters. We are interested to understand better how to induce representations, so that
they are less sensitive to noise in the unlabeled corpus.

3Preliminary experiments showed that HLBL embeddings after 1.5 days of training are already better than
the Collobert and Weston (2008) embeddings, despite being induced for an order of magnitude less time.
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We are curious how these representations will work as word features on other NLP tasks. This work
is part of a larger survey work that is underway: We are currently collaborating with other authors
who have near-state-of-the-art baseline systems, and adding our word representations to them. We
encourage researchers who are interested in improving the accuracy of their systems to contact us
about a potential collaboration.
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